EP1311179A1 - Apparatus and method for windlocking a building opening - Google Patents

Apparatus and method for windlocking a building opening

Info

Publication number
EP1311179A1
EP1311179A1 EP00959400A EP00959400A EP1311179A1 EP 1311179 A1 EP1311179 A1 EP 1311179A1 EP 00959400 A EP00959400 A EP 00959400A EP 00959400 A EP00959400 A EP 00959400A EP 1311179 A1 EP1311179 A1 EP 1311179A1
Authority
EP
European Patent Office
Prior art keywords
curtain
track
opening
view
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00959400A
Other languages
German (de)
English (en)
French (fr)
Inventor
Willis Jay Mullet
Donald Bruce Kyle
Kelly Ray Green
Harry Edward Asbury
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wayne Dalton Corp
Original Assignee
Wayne Dalton Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wayne Dalton Corp filed Critical Wayne Dalton Corp
Priority claimed from PCT/US2000/023357 external-priority patent/WO2002015755A1/en
Publication of EP1311179A1 publication Critical patent/EP1311179A1/en
Withdrawn legal-status Critical Current

Links

Definitions

  • the invention is in the field of windlocking a building opening to prevent the intrusion of unwanted air, fluid (typically water or sea . water) and debris.
  • air typically water or sea . water
  • debris typically dirt, dirt, and debris.
  • the breach of a building opening can cause great damage to the structure. If the building structure is not breached, then substantial damage can be prevented.
  • test method requires that the person specifying the test translate anticipated wind velocities and durations into uniform static air pressure differences and durations. Durations are considered because most materials have strength or deflection characteristics which are time dependent. Testing under this method is performed in a test chamber which measures the pressure difference across the test specimen.
  • ASTM has declared a Standard Test Method For Water Penetration Of Exterior Windows, Curtain Walls, And Doors By Uniform Static Air Pressure Difference which includes a water spraying apparatus within the test chamber. See, ASTM designation E331-96. Leakage rate testing can be done under the ASTM Standard Test Method For Determining The Rate Of Air Leakage Through Exterior Windows, Curtain Walls And Doors Under Specified Pressure Differences Across The Specimen. See, ASTM designation E283-91.
  • U.S. Patent No. 4,065,900 to Eggert discloses an apparatus for framing and fastening a secondary glazing pane which utilizes a hinge.
  • U.S. Patent No. 4,069,641 to De Zutter discloses a storm window frame which utilizes double-faced tape to mount the storm window frame and, hence, the storm window.
  • U.S. Patent No. 4,478,268 to Palmer discloses a hard flexible curtain door, a tensioned storage or wind-up drum, and channels in which the door resides. The door moves out of the channels under impact and is wound up to open for vehicle passage.
  • U.S. Patent No. 4,126,174 to Moriarty, et al. discloses a tensioned flexible sheet storage roller, a guide roller and side seal guides. These coverings are normally clear flexible materials that must be installed and removed as needed or can be rolled and stored in a storage area above the window. These materials can be tinted to provide a reduction in sunlight transmission, but tinting would also reduce vision at night. These storm window coverings offer good thermal insulation, but offer minimal protection from high wind velocity pressures and wind borne debris. Further, these coverings are usually made of flexible polyvinyl chloride and will functionally deteriorate with time and must be replaced. The coverings that are of rolling construction must have adequate clearance between the guide rails and the sheet to prevent jamming of the sheet in the guide rails during opening and closing.
  • U.S. Patent No. 4,294,302 to Ricke, Sr. discloses a security shutter and awning device for covering windows and doors.
  • the device includes slats made from aluminum or other extmdable material of sufficient strength to protect against storms and/or vandalism.
  • the shutter of Ricke, Sr. may be slidably mounted and pivoted so as to act as an awning.
  • U.S. Patent No. 4,601,320 to Taylor discloses a pressure differential compensating flexible curtain with side edge sections which are sealingly engaged with channels.
  • the first upper end of the curtain is attached to a curtain winding mechanism which includes a spring barrel.
  • Taylor discloses an elastomeric curtain having plastic supports with rubber covers banded thereto. Alternatively the plastic supports may be high molecular weight plastic strips. The purpose behind the design of the supports is to minimize the friction of these supports enabling operation of the door/curtain with a high differential pressure across it.
  • U.S. Patent No. 4,723,588 to Ruppel discloses a roller shutter slat which interlocks with the adjacent roller sheet slat.
  • U.S. Patent No. 5,657,805 to Magro discloses a wind-resistant overhead closure with windlocks on the lateral edge portions of the intermediate and bottommost slats of the closure. First means to limit the lateral movement of the lateral edge of the intermediate potions and second means to limit the lateral movement of the endmost door portion are disclosed. Intermediate slats and endmost slats are provided.
  • the '805 patent indicates in col. 2, lines 12 et seq. that it conforms with the South Florida Building Code, 1994 Edition, previously referred to hereinabove.
  • Windlocks can be added at the end of slats which will improve the resistance of multileaf shutters or doors to wind velocity pressures by transmitting the stresses on the continuous hinge area to the ends of the slat, to the guide system and finally to the jambs or building structure.
  • the slat In order for the windlocks to engage the guide track the slat must deflect a considerable amount. Normally clearance is allowed between the guide track and the windlock to keep the door from jamming during operation and the more clearance allowed the more deflection of the slats before the windlocks contact the guide track.
  • these windlocks are larger in cross section than the slat profile and when the shutter or door deflects from high wind velocity pressures, the windlocks are designed to engage the same space in which the slats are guided.
  • additional room is needed because the depth of the windlock is larger than the slat profile, the diameter of the storage area increases dramatically.
  • clearance between the windlock and the track must be allowed to prevent the windlocks from jamming and care must be taken when operating shutters or doors in a wind because the windlocks will sometimes jam as the product deflects.
  • U.S. Patent No. 5,445,902 to Lichy discloses a damage minimizing closure door somewhat similar to U.S. Patent No.4,478,268 to Palmer.
  • Lichy '209 patent discloses a flexible curtain and a guide for receiving and guiding the side edges of the flexible door during vertical movement.
  • a counterbalancing power spring is associated with the door to assist in raising and lowering the curtain.
  • Side edges of the curtain separate from the guide assembly upon being impacted by an externally applied force such as a vehicle.
  • U.S. Patent No. 5,482,104 to Lichy discloses in Fig. 17 thereof, a flexible curtain and double windlocks which breakaway from the channel upon the application of excessive force to the curtain. See, col. 7, lines 33 et seq.
  • U.S. Patent No. 5, 131 ,450 to Lichy discloses in Fig. 6 thereof a double edged guide and a curtain edge with two loose portions sewn to the transverse curtain. See, col. 6, lines 21, et seq.
  • U.S. Patent No. 5,232,408 to Brown discloses a flexible tape drive system wherein the tape is relatively rigid and it is driven by a toothed cog to provide both push and pull capabilities.
  • U.S. Patent No. 5,048,739 to Unoma, et al. illustrates a conical toothed drive paper feeder.
  • Storm bars create a passive system i.e. in the event of a severe storm they need to be taken out of storage and attached in predetermined locations across the span of the curtain.
  • a wide curtain may require as many as three sets of storm bars. Sets consist of two bars in close proximity to each other in such a way as the curtain passes between the two bars. This addresses deflection that occurs in both positive and negative directions. Positive deflection is in the direction of the building and negative deflection is away from the building.
  • brackets must first be attached to the floor, soffit and sills. Depending on the surrounding construction materials, secure locations are often difficult to find. After the brackets are attached to the building, the next step is to attach the storm bars to the brackets.
  • the instant invention addresses these three issues.
  • the first issue with conventional storm curtains, that being an increase in coil storage requirement, is addressed by utilizing an interrupt formed on the ends of the tension rods of the instant invention which does not increase the requirement for coil storage when the curtain is stored.
  • the instant invention uses light weight materials that have stiffness in the direction of the opening and closing but will bend around a radius as small as 0.5 inches. This strengthens the curtain by uniformly spreading the stresses developed by wind velocity pressure or impact over the width of the curtain and transferring the stresses to the track and to the structure of the building.
  • the invention adds tension to the elements of the curtain in the direction along its width or perpendicular to the force that is created by wind velocity pressure or impact from debris.
  • the tension is directly proportional to the wind velocity pressure or impact from debris.
  • Angled guide tracks may be used that tension the curtain when the curtain is closed without jamming the curtain in the guide tracks.
  • Metallic, non-metallic materials (or a combination of both) may be used and they may be and can be opaque or transparent.
  • the windlock feature of the instant invention is incorporated into the curtain without affecting the thickness of the curtain and therefore does not affect the size of the storage area.
  • the mass of the curtain is low allowing precise control of raising and lowering the curtain with a small power source and can be battery powered. Materials such as aramid fibers may be used thus making the curtain bullet proof.
  • An apparatus and method for windlocking a curtain covering and protecting an opening in a building is disclosed and claimed.
  • the windlocking curtain resides to the exterior of the window, door or other opening and protects it from the intrusion of air, water or debris.
  • the windlocking curtain In its upper position the windlocking curtain permits normal use of the opening and in its lower position it secures the opening.
  • a flexible corrugated curtain has tension rods therethrough and the tension rods run in tracks on each side of the curtain and necessarily on each side of the opening. Interengagement of the tension rods with the tracks is accomplished by deformations in the rods that are referred to as interrupts.
  • the rods are successively longer from top to bottom of the curtain and their interrupts matingly wedge with angled tracks to secure the curtain.
  • interrupts matingly engage parallel tracks upon the application of force due to wind, fluid (usually water or sea water) or debris.
  • tension rods and interrupts are not used or necessary and a flap on the edges of a three-ply flexible curtain engage the interior of the side tracks absorbing shocking and sealing the opening.
  • a method for securing the opening utilizing the apparatus is also claimed which provides top, bottom and side securement.
  • the flexible curtain comprises part of a curtain system for covering an opening in a building.
  • a frame is affixed to an opening in a building.
  • a flexible, corrugated curtain has a plurality of rods extending through some of the corrugations of the curtain.
  • the rods sometimes referred to as the tension rods, are rectangular in cross-section so as to provide maximum strength of the rod. Other cross-sectional sizes may be used.
  • Angled tracks are provided in one embodiment which mate and wedge with angled interrupts when the curtain is in its second, closed position. When the curtain is open, it is in its first position and resides primarily on a counterbalanced windup reel. Each successive tension rod is longer than the prior rod so as to engagingly wedge with the angled tracks.
  • the tracks are angled away from each other when the top point of the tracks are taken as the reference points. In other words, the tracks are at a divergent angle and get farther apart at the bottom.
  • the tension rods include a deformed portion sometimes referred to as an interrupt.
  • the purpose of the interrupt is to matingly engage the tracks.
  • the preferred divergent angle is one-half of one degree. Specifically, each track is diverging with respect to an imaginary vertical line at an angle of one- half degree making the total divergence for two tracks equal to one degree.
  • One-half to one degree divergence from vertical per track one to two degree divergence for both tracks has been found to work well. Larger divergence angles require necessarily deeper tracks and larger interrupts particularly if a long building opening is to be protected. Those skilled in the art will readily realize from reading this disclosure that other angles may be used depending on the size of the opening to be covered.
  • Corrugated flexible curtain is used in one embodiment as stated above and slits therein may be employed in the face of the curtain to improve the flexibility for storing on the counterbalanced wind-up reel.
  • the deformations of the tensioning rods (interrupts) do not increase the space required for storage because the thickness of the tension rod is not increased in the direction of the radii of the wind-up reel.
  • Another embodiment of the invention employs parallel tracks and the tension rods do not engage the tracks except during times when they are loaded.
  • the tension rods are all the same length and when the curtain is closed in its second position the lips of the interrupt do not engage the track. When the wind velocity becomes sufficiently high, the curtain deflects and pulls the mating surfaces of the interrupts into engagement with the track.
  • Another embodiment of the invention employs tension rods having a ninety degree radius at the ends thereof and eliminates the need for interrupts. It is the ninety degree radius which engages the angled/parallel tracks.
  • Rectangular apertures exist in the flexible corrugated curtain for engagement with teeth of a driving gear or gears.
  • the gears under resistance of a counterbalance spring affixed to the wind-up rod, drive the curtain from a first, open position to a second, closed position.
  • All embodiments disclose rectangular curtains. Standard window dimensions are 30 to 36 inches wide and 30, 38 or 54 inches long. However, longer and wider openings can be secured with the embodiments of the invention disclosed herein.
  • Corrugated curtains can be driven with a single gear or with dual gears. Openings in buildings of all sizes may be protected using the principles of the invention.
  • a driven adapter rack and/or an adapter rack and a gear may be simultaneously used to drive the tension rods.
  • Another embodiment employs a flexible curtain comprising three-plies laminated together.
  • the plies may be laminated together under the influence of heat and pressure. Additionally adhesive may be used to secure the plies together.
  • Two outer plies or sheets are polymeric and the inner ply is woven.
  • a living seal is formed on the edges of the curtain by folding the edges of the curtain back on the curtain itself.
  • the folded portion is secured by stitching with thread, or by adhesive, or by heat fusing, or by ultrasonic welding. Only a portion of the folded flap is secured. Preferably two-thirds (2/3) of the folded flap is secured to itself and one-third (1/3) remains free.
  • the folded portion engages the interior of the track which houses the folded portion preventing its escape therefrom. Further, the folded flap provides a total seal which is sometimes referred to herein as a living seal.
  • the free portion of the flap provides a shock absorber which cushions the frame against time variant forces which may be applied due to fluctuating wind and/or debris.
  • the three ply curtain may also be used with angled track by slitting the outer face of the three ply curtain. The slitting provides a loose flap which engages the track.
  • Cylindrical apertures reside in the folded portion of said three-ply curtain and the drive cog interengages the apertures for raising and lowering the curtain against the force of the counterbalance spring.
  • there is a folded portion on each side of the curtain residing in its respective track and being driven by its respective drive cog.
  • Conically shaped cogs fit the apertures well and, additionally, the apertures may be fitted with eyelets.
  • a bowed bottom bar is secured within a folded portion of the curtain and guides the curtain into a slot.
  • the curtain is slightly longer at its edges than in the middle such that as the curtain is coming down for securement in the second, closed position the sides enter the retaining slot first. If the curtain is being closed during a strong wind event, the middle of the curtain may be deflected slightly inwardly but the side portions are not because they are within the tracks which are directly aligned with (above) the retaining slot. This enables the bottom bar to begin seating in the retaining slot at the side edges and guide the bottom bar into place. Additionally, the weight of the bar assists in positioning it in place in the retaining slot.
  • a living seal formed by a flap extending from the stitched or heat sealed bottom bar may be employed in a modified retaining slot sometimes referred to herein as a storage slot.
  • Another embodiment of the bottom bar interengages a sill or bottom member having a seal therein.
  • the bottom bar may be affixed to the bottom of the curtain by any one of several known fastening devices such as rivets, bolts and threads, and the like.
  • the curtain system covers a window, door or other opening a building.
  • the curtain system may reside to the exterior of the window, door or other opening or it may reside to the interior of the window, door or other opening.
  • Conventional storm curtains require periodic high pressure washing especially along coastal areas where they are exposed to salt spray and blowing sand.
  • the lower slats usually start to malfunction first since they have the least gravitational force to cause separation. If this separation or telescoping does not occur and the slats enter the coil storage area they will be put into a severe bind and as a consequence, become damaged. Telescoping slats develop more beam strength when the longitudinal edges of the slats are telescoped into each other when fully closed. However, the maximum allowable radius requirement for the curtain to coil within the allocated storage area cannot be met unless the slat edges are fully extended from each other as they begin to articulate into the coil storage position. In the instant invention, the outside surface consists of a smooth polymeric material with no requirement to telescope. As such, there is no opportunity for salt spray and sand to accumulate in irregular surfaces. It is a further object of this invention to provide a smaller storage area.
  • Another advantage of the instant invention unlike conventional storm curtains, is that the instant invention becomes taut from top to bottom when in a closed position. For this reason there is no chatter, banging or rattling that exists with conventional storm curtains in buffeting winds. Further, when the embodiment of the living seal is employed, the loose or free portion of the folded flap or strip absorbs shock and therefore does not transmit it to the surrounding frame. This will make a quieter system with low or no maintenance.
  • Still another advantage of the instant invention is that the storm curtain is directly linked to drive gears and a drive shaft which are engaged into perforations pierced into the curtain and essentially (but not actually) place the gear teeth in contact with the metal tension rods lodged in the corrugated curtain which, when activated, cause the curtain to be raised and lowered.
  • the tension rods are completely sealed with respect to contamination by the corrugated material. In the embodiment of the three ply curtain, it completely seals against the intrusion of wind borne salt and debris.
  • the storm curtain can be pre-installed into the window frame at the factory as a single unit. The sub-contractor normally involved in the installation of storm curtains is no longer required.
  • Another advantage of the instant invention is that since the interrupts pressed (deformed) into the metal rods embedded in the curtain are engaged into the "J-shaped" track, the curtain cannot escape or "blow out”.
  • Fig. 1 is a front plan view of a seventy-two inch flexible curtain having a track at one degree (1 °) from vertical.
  • Fig. 2 is an exploded view of a portion of Fig. 1.
  • Fig. 3 is an exploded view of a portion of Fig. 2.
  • Fig. 4 is a composite view illustrating a reduced scale view of Fig. 1 together with reduced scale views of Figs. 4A and 4B.
  • Fig. 4A is a cross-sectional view of the flexible curtain illustrated in Fig. 1 taken along the lines 4A-4A.
  • Fig. 4B is a cross-sectional view of the flexible curtain and window illustrated in Fig. 1 taken along the lines 4B-4B.
  • Fig. 4C is an enlarged cross-sectional view of Fig. 4A illustrating the application of the invention to protect a window opening.
  • Fig. 4D is a cross-sectional view similar to that of Fig. 4A illustrating the wind-up reel in greater detail for use in connection with the three-ply flexible curtain and the cog drive.
  • Fig. 5 is a schematic view of the seventy-two (72") inch curtain illustrating a one degree (1 °) runout of the tracks and tension rods.
  • Fig. 6 is a front view of a seventy-two inch (72") curtain similar to that illustrated in Fig. 1 except that the left side and right side tracks are parallel to each other and, additionally, illustrates that the tension rods do not have any runout.
  • Fig. 7 is an enlarged portion of Fig. 6.
  • Fig. 8 is a schematic representation of the flexible curtain, track and tension rods of the embodiment of Fig. 6.
  • Fig. 9 is a front view of a thirty-eight inch (38") curtain illustrating a one-half degree (V2 0 ) runout of the tension rods.
  • Fig. 9 A is a view similar to that of Fig. 1 illustrating a one-half degree ( l A ° ) runout of the tracks, interrupts and tension rods.
  • Fig. 9B is an enlarged portion of Fig. 9 illustrating the tension rods, flexible curtain and the drive apertures in the curtain.
  • Fig. 9C is a perspective view of a portion of the curtain having a one- half degree runout further illustrating the corrugated flexible curtain and the interrupts mating with the frack restraining movement of the flexible curtain toward the window.
  • Fig. 10 is a schematic of the thirty-eight inch (38") curtain illustrating a one-half degree ( l ⁇ °) runout of the track, interrupts, and tension rods.
  • Fig. 11 is a top view of a left side track like that of Fig. 1 illustrating the top rod in its fully down position engaging the track.
  • Fig. 11 illustrates a cross-sectional view of the top of the track which has a one degree (1 °) runout. The runout, however, is not illustrated in this drawing.
  • Fig. 11 A is a front view of the left side track and the top rod illustrated in Fig. 11.
  • Fig. 1 IB is a top view of a left side track like that of Fig. 9A illustrating the top rod in its fully down position engaging the frack.
  • Fig. 9A illustrates a cross-sectional view of the top of the track which has a one-half degree (/ °) runout. The runout, however, is not illustrated in this drawing.
  • Fig. 11C is a front view of the left side track and the top rod illustrated in Fig. 11B.
  • Fig. 12 is a top view of a left side track like that of Fig. 1 illustrating the bottom rod in its fully up position entering the track.
  • Fig. 12 illustrates a cross-sectional view of the top of the track which has a one degree (1 °) runout. The runout, however, is not illustrated in this drawing.
  • Fig. 12A is a front view of the left side track and the top rod illustrated in Fig: 12.
  • Fig. 12B is a top view of a left side frack like that of Fig. 9 A illustrating the bottom rod in its fully up position entering the track.
  • Fig. 12B illustrates a cross-sectional view of the top of the track which has a one-half degree (Vi ° ) runout. The runout, however, is not illustrated in this drawing.
  • Fig. 12C is a front view of the left side track and the top rod illustrated in Fig. 12B.
  • Fig. 13 is a cross-sectional view of the bottom bar sealingly engaging the bottom sill which is affixed to the frame of the structure.
  • Fig. 13 A is a cross-sectional view of a three-ply flexible curtain affixed to a bottom bar.
  • Fig. 13B is a cross-sectional view of a three-ply curtain with a bottom bar secured therein by adhesive or lamination.
  • Fig. 13C is the same as Fig. 13B except stitching is used to secure the bottom bar.
  • Fig. 13D is a front view of the vertically bowed bottom bar alone.
  • Fig. 14 is a perspective view of a tension rod.
  • Fig. 15 is an enlarged portion of the tension rod illustrated in Fig. 14.
  • Fig. 16 is another enlarged view of a portion of a tension rod.
  • Fig. 17 is a view of the end portion of a tension rod illustrating a circular in cross-section tension rod.
  • Fig. 18 is a plan view of a tension rod.
  • Fig. 19 is a side view of a tension rod illustrating the interrupts therein.
  • Fig. 20 is a perspective view of the track.
  • Fig. 21 illusfrates a plan view of one of the tracks.
  • Fig. 22 is a cross-sectional view of a three-ply curtain and track taken along the lines 22-22 of Fig. 28.
  • Fig. 22A is a cross-sectional view similar to the view of Fig. 22 further illustrating eyelets in the apertures.
  • Fig. 22B is a cross-sectional view identical to Fig. 22 except the cross hatching of the polymeric plies is not illustrated so as to better depict the curtain.
  • Fig. 22C is a cross-sectional view identical to Fig. 22A except the cross hatching of the polymeric plies is not illustrated so as to better depict the curtain.
  • Fig. 23 is a cross-sectional view of a three-ply curtain and track with the curtain taken along the lines 23-23 of Fig. 7.
  • Fig. 23 A is a cross-sectional view similar to the view of Fig. 23 except the cross hatching of the polymeric plies is not illustrated so as to better depict the curtain.
  • Fig. 23B is similar to the view shown in Fig. 23 except the curtain is shown under the influence of pressure "P.”
  • Fig. 23C is similar to the view shown in Fig. 23A except the curtain is shown under the influence of pressure "P.”
  • Fig. 24 is a cross-sectional view of a three-ply curtain together with a semi-rigid strip affixed to one edge thereof.
  • Fig. 25 is a cross-sectional view of a three-ply curtain similar to the view of Fig. 23 with the curtain under the influence of a force, for example, a high velocity wind.
  • Fig. 26 is a cross-sectional view of a three-ply curtain having a folded edge and illustrating two polymer sheets and a woven sheet secured together with adhesive.
  • Fig. 26A is a cross-sectional view of a three-ply curtain having a semirigid strip affixed to one edge thereof by means of adhesive.
  • Fig. 26B is a cross-sectional view of an embodiment employing two plies of polymeric material secured together with a fiber reinforcement. One ply of the polymeric material has been slit to engage the frack when the curtain is under tension.
  • Fig. 27 is a rear view of the three-ply flexible curtain illustrating a semi-rigid strip applied to both edges of the curtain.
  • Fig. 28 is a front view of a three-ply curtain being driven by a gear having conical teeth or cogs.
  • Fig. 28 A is a cross-sectional view taken along the lines 28A-28A of Fig. 28 illustrating the drive roller.
  • Fig. 28B is a cross-sectional view taken along the lines 28B-28B of Fig. 28 illustrating counterbalanced springs which tension the curtain between the drive cogs and the storage reel. Further, securement of the springs to a fixed structure is shown in this view but is not shown in Fig. 28.
  • Fig. 28C is a view similar to Fig. 28 further illustrating a bowed bottom bar.
  • Fig. 28D is a perspective view illusfrating the bottom bar being guided by the tracks into the storage slot.
  • Fig. 28E is a front view of a flexible curtain and window in a building illusfrating the curtain in its first, open position.
  • Fig. 28F is a front view of a flexible curtain and window in a building illustrating the curtain in its second, closed position.
  • Fig. 29 is a side view of Fig. 28.
  • Fig. 30 is a perspective view of the chain (drive adapter rack) and gear drive.
  • Fig. 31 is a perspective view of an adapter rack illusfrating tensioning rods having a ninety degree (90 °) bend at the edges thereof.
  • Fig. 32 is a perspective view of an adapter drive.
  • Fig. 33 is a perspective view of the gear drive.
  • Fig. 34 is another embodiment of the invention illustrating pressure from the wind applied to the glass window which resides exteriorly to the flexible curtain.
  • the first embodiment is the combination of a curtain composed of corrugated nonmetallic material with metallic rods embedded in the corrugations.
  • metallic rods also known as the tension rods
  • interrupts are formed which maintain the cross-sectional area of the rod. This provides for uniform tensile strength of the rod.
  • the rod lengths uniformly increase from rod to rod from the top of the curtain toward the bottom of the curtain.
  • the ends of the rods form an angle with respect to the corrugated nonmetallic material of the curtain.
  • the interrupts in the rods have a matching or corresponding angle to the angle of the tracks. This angle allows the curtain assembly to wedge when the curtain is closed.
  • the tracks have a "J-shaped” portion with one leg angled back from the mouth of the "J” to form a mating interrupt with the interrupt on the rod such that as tension is developed in the rod due to wind velocity pressure or windborne debris, the "J” will close on the rod with a clamping action transferring the stress load to the tracks and then to the opening frame and onto the building structure.
  • the curtain is additionally supported by a counterbalance drive tube that will assist in returning the curtain to a rolled up stored position.
  • the nonmetallic portion of the curtain can also be made from sheets of material laminated together capturing and positioning the metallic rod. These sheets can be fused, glued, stitched, or attached by other fastening means to prevent the rotation of the rod in relationship to the curtain.
  • the metallic rods preferred in this curtain can be round or polygonal in shape. The more polygonal, the more retention needed to hold the rod in position. Conversely, the less polygonal or the fewer number of sides in the polygon, then less retention is required.
  • a version of this embodiment can be used on conventional rolling door systems where the slats are cut in uniformly, progressively longer lengths from the top of the door to the bottom of the door with standard windlocks alternately attached to the slat ends and the guide frack deepened to the longest slat and set at a matching angle where the slats are uniformly placed in tension when the door is closed.
  • the second embodiment (“parallel” embodiment) is a combination of a curtain composed of corrugated nonmetallic material with metallic rods embedded in the corrugations. Inward from the ends of the metallic rods, interrupts are formed in the tension rods which maintain the cross-sectional area for uniform tensile strength of the rod. Rod length is uniform from rod to rod, from the top of the curtain toward the bottom of the curtain, so that the ends of the rods are aligned parallel to the corrugated nonmetallic material of the curtain.
  • a guide track system is employed that has vertical guide tracks that are parallel to the edge of the curtain.
  • the guide tracks have a "J-shaped" end portion with one leg angled back from the mouth of the "J” to form a mating interrupt with the tension rods such that as tension is developed in the rod, the "J” will close on the rod with a clamping action.
  • the curtain is supported by a counterbalanced drive tube that will assist in returning the curtain to a rolled up position. Further, the curtain is taut between the drive tube and the wind-up reel.
  • the profile of the corrugated nonmetallic material is such that the front and back faces are in continuous contact allowing the curtain to be driven down without jamming or binding.
  • the stored portion of the curtain has a tensioning device (i.e., a counterbalanced spring) to prevent the curtain from resisting movement as the diameter of the stored curtain reduces.
  • a third embodiment employs a flexible curtain comprising three plies laminated together. These plies can be fused, glued, stitched or attached by other fastening methods.
  • Two outer plies or sheets are polymeric. The inner ply is woven.
  • a living seal is formed on the edges of the curtain by folding the edges of the curtain back on the curtain itself.
  • the folded portion is secured by stitching with thread, by adhesive, or by heat fusing or by ultrasonic welding. Only a portion of the folded flap is secured, preferably two-thirds (2/3) of the folded flap is secured to itself and one-third (1/3) remains free. Under tension, this free portion of the folded flap seals and cushions the shock caused by the wind or airborne debris. Under the tension the free portion of the flap engages the guide track.
  • the three ply flexible curtain is driven by a cog wheel having conically shaped cogs which drive apertures located along the edges of the flexible curtain of this embodiment.
  • Another version of this invention is a curtain employing a flat sheet of flexible material. It has grooves cut into one face that serve as an interrupt to a mating edge of the "J-shaped" track or of a track having another shape. Inward from the edges of the sheet, grooves at the same angle as frack are cut into the curtain such that the grooves at the top of the curtain are closer together than they are at the bottom of the curtain.
  • the guide tracks are then placed at the same angle to place the curtain in tension when the curtain is in the closed position.
  • the grooves create a loose flap which engages the track when the curtain is all the way down in its second position.
  • Fig. 1 is a front plan view of a 72" flexible curtain having tracks which are 1 ° from vertical. The entire curtain is not depicted in Fig. 1 because resolution would decrease. Put another way, the tracks are at a 1 ° angle from the edges of the corrugated curtain.
  • Reference numeral 100 indicates generally the 72" flexible curtain.
  • the curtain may be driven by motor 101 or by a pulley 102 as determined by a coupling 103 which may engage either the motor or the pulley as a source of energy for raising and lowering curtain 115.
  • Curtain 115 is a rectangular corrugated nonmetallic curtain. Apertures 116 reside in the left-hand portion of the corrugated curtain and apertures 117 reside in the right-side portion of the corrugated curtain 115.
  • Left-side track 111 is affixed to the frame or building structure as is right-side track 112.
  • Reference numeral 113 is spaced leftwardly of frack 111 and reference numeral 113 denotes the bottom portion of the left-side frack 111.
  • Reference numeral 114 illustrates the bottom portion of the right-side track 112 and it too indicates a runout rightwardly with respect to the right side track 112.
  • Fig. 1 depicts the first several tension rods and interrupts and the last several tension rods and interrupts.
  • Interrupt 121 is near the top of the curtain.
  • Interrupts 122 and 127 are near the bottom left side of the curtain.
  • Tension rods 123 and 124 are shown entering the left side of the curtain traversing through the curtain in corrugated sections thereof and extending rightwardly through the curtain. It will be observed that tension rod 123 has a left side interrupt 122 and a right side interrupt 125.
  • a plurality of slits 126 are indicated in Fig. 1 to enhance the flexibility of the curtain.
  • Gears 119 and 120 are viewed in Fig. 1 for driving apertures 116 and 117 in the flexible curtain 115.
  • a front view of bottom bar 118 which engages a sill/receptacle not shown in Fig. 1 is illusfrated therein.
  • shaft 104 is supported by bearings 105 and 106.
  • Curtain 115 extends onto windup reel 107 which is a counterbalanced windup reel.
  • Supports 108 and 109 support the windup reel 107.
  • Platform 110 which is interconnected to the opening in the building supports the structure generally.
  • Fig. 2 is an exploded view of a portion of Fig. 1.
  • reference numeral 200 generally represents the enlarged portion of Fig. 1.
  • Track 111 is shown in a cross-sectional view.
  • the outer edge 201 and the intermediate support 202 of frack 111 are shown.
  • Mating surface 203 of the "J-shaped" portion 204 of track 111 are also shown.
  • Mating surface 203 on the "J-shaped" portion 204 of track 111 are shown in better detail in Fig. 3.
  • Fig. 3 is an exploded view of a portion of Fig. 2.
  • First interrupt 205 is illustrated in Figs. 2 and 3 and mating point 206 is also illustrated in both figures. Referring to Fig.
  • interrupt 205 includes a surface which engages the mating surface 203 of track 111. It must be kept in mind that frack 111 is angling downwardly and leftward when viewing Figs. 2 and 3 such that the frack and the interrupts are angled at a 1 ° angle with respect to the left side portion of the left side 220 of the curtain 115.
  • the second interrupt 207 is illustrated with mating surface 208 which engages mating surface 203 on the "J-shaped" portion 204 of frack 111.
  • mating surface 209 of interrupt 210 engages mating surface 203 of track 111.
  • Reference numeral 211 indicates the end of interrupt 205. Referring to Fig. 3, reference numeral 212 indicates the beginning of the interrupt of the first tension rod near curtain 115.
  • Fig. 4 is a composite view illustrating a reduced scale view of Fig. 1 together with reduced scale views of Figures 4A and 4B.
  • Fig. 4A is a cross- sectional view of the flexible curtain illusfrated in Fig. 1 taken along the lines 4A-4A.
  • Fig. 4B is a cross-sectional view of the flexible curtain illustrated in Fig. 1 taken along the lines 4B-4B.
  • Support frame 407 is interconnected to the frame of the building opening.
  • Fig. 4 illustrates the environment of the invention.
  • Fig. 4A illusfrates window 401 along with interior wall 402 and an exterior sheathing 403 such as plywood.
  • a space 404 between the window 401 and curtain 115 is illusfrated.
  • Fig. 4C is a full cross-sectional view of Fig.
  • reference numeral 405 represents a full sized 38" window taken along the lines 4A-4A without track 112 shown.
  • Reference numeral 406 generally indicates wood framing.
  • windup reel 107 is indicated and the curtain is shown in both a minimum position indicated by reference numeral 408 (i.e., the curtain in its down, second position) and a maximum position as represented by reference numeral 409 (i.e., the curtain in its up, first position).
  • Reference numeral 404 indicates the space between the curtain 115 and the window to be protected 401.
  • the curtain may be a flexible three ply curtain or it may be corrugated.
  • Fig. 4C the wind pressure and/or debris is coming from the rightward side of the drawing figure and is headed leftwardly.
  • the curtain resides exteriorly of the window, door or other building opening.
  • Fig. 34 the wind, debris and pressure "P" is illustrated as coming from the leftward side of the drawing figure and is headed rightwardly.
  • a flexible three ply curtain 2805 is depicted.
  • a single ply or double ply curtain may also be used.
  • the curtain 2805 resides interiorly to the window, door or other building opening.
  • the window 401 would be smashed by debris in a hurricane, but the building would still be protected.
  • Reference numeral 3402 represents the exterior wall and reference numeral 3403 represents the interior wall in Fig. 34.
  • Slot 2820 restrains the curtain 2805 at the bottom.
  • Fig. 4D is a cross-sectional view similar to that of Fig.
  • FIG. 4A illustrating the wind-up reel 107 (sometimes referred to herein as the storage reel) in greater detail adapted for use in connection with the three-ply flexible curtain and the cog drive.
  • Fig. 5 is a schematic view of the 72" curtain illustrating a 1 ° runout of the leftside track, tension rods, and interrupts.
  • Reference numeral 500 generally indicates a schematic representation of a 1 ° runout for a 72" long window. The interrupts are actually at a 1 ° angle which matches the angle of mating surface 203 on the "J-shaped" portion of the track.
  • Fig. 11 illustrates the top of a 72", 1 ° track in cross section. The "J-shaped" portion of the track in Fig. 11 is indicated by reference numeral 1101.
  • the dashed unnumbered lines are at 1 ° angle with respect to the side 220 of curtain 115.
  • the outer edge 201B of the track at the bottom is approximately 1.25" leftwardly of the point marked by reference numeral 201 in the preferred embodiment of the 72", 1 ° curtain.
  • the intermediate support 202 at the bottom has a runout of the same magnitude as indicated by reference numeral 202B. All of the runouts, of the rods, the interrupts, and the tracks are the same. When all of the rods progress to their closed, second position as illusfrated in Figures 1 and 5, the interrupts engage the mating surface 203 of the track and wedge into place. This secures the curtain in its closed position.
  • Reference numeral 203B illustrates the runout of the mating surface at the bottom of the 1 °, 72" long building opening.
  • Reference numeral 501 illustrates the runout of the outside of the track.
  • Reference numeral 502 illustrates runout of the tension rods. It will be noted that the tension rod 124 illusfrates a runout of approximately 1.25" from the side of the curtain 220.
  • Reference numeral 503 illustrates a runout of the interrupt engaging surfaces with the mating surface 203 of frack 111.
  • Reference numeral 504 illustrates the runout of the inside portion of track 111.
  • Curtain 115 has no runout as illustrated by reference numeral 505.
  • Track 111 at a 1 ° angle, must have a relatively wide mouth, or opening, for use in protecting a 72" long building opening.
  • reference numeral 502 defines the runout of the rods and, indeed, the end of tension rod 124, it must fit within the track as it enters from its stored, open, first position.
  • Fig. 5 illustrates that point 502 will fit within the mouth of track
  • Fig. 6 is a front view of the 72 inch curtain similar to that illustrated in Fig. 1 except that the left side and right side tracks are parallel to each other and additionally the tension rods do not have any runout.
  • Fig. 6 is one of the illustrations of the second (parallel) embodiment.
  • Reference numeral 600 generally refers to the parallel embodiment.
  • Left side track 602 and right side track 603 are illustrated as being parallel to each other.
  • Drive apertures 616 and 617 are driven by gears as was indicated in connection with the gears 119 and 120 of Fig. 1.
  • the left side 620 of the curtain is parallel to the right side 630 of the curtain and the interrupt of the first rod 705 (Fig. 7) is in the same position relative to the track 602 as is the last rod 627 (Fig. 6).
  • Fig. 6 is a front view of the 72 inch curtain similar to that illustrated in Fig. 1 except that the left side and right side tracks are parallel to each other and additionally the tension rods do not have any runout.
  • FIG. 7 is an enlarged portion of Fig. 6.
  • Fig. 7 illustrates first tension rod 701, second tension rod 702, and third tension rod 704.
  • Interrupts 705, 707 and 710 include respective mating surfaces 706, 708, 709. Those mating surfaces are spaced apart from the conjugate mating surface 703 on the "J-shaped" portion
  • Fig. 6 illustrates the curtain in its second, fully down position.
  • the interrupts do not wedge and engage with the mating surface 703 on the guide 602 unless pressure due to wind or debris is applied to the curtain. Rather, at rest, there is a distance of approximately 1/8" in the preferred embodiment between the mating surface
  • the interrupts for the parallel arrangement are approximately 0.50 inches in length and the end portions are spaced an additional .150 inches away from the mating interrupt surfaces.
  • Reference numeral 711 indicates an end of a tension rod.
  • Reference numerals 712 and 713 indicate the beginnings of the interrupts 705 and 707 in tension rods 701 and 702.
  • the tension rods extend about .250 inches leftwardly and rightwardly of the corrugated curtain before the interrupts begin.
  • the parallel arrangement is driven similarly to the wedging arrangement illustrated in the previous drawing figures and Fig. 7 illusfrates teeth 719 on the gear driving the corrugated curtain.
  • the preferred material of the corrugated curtain is polycarbonate and the preferred material of the tension rod is aluminum. As the cross-sectional areas of the tension rods increase, so does the shear strength of the rods.
  • the "J-shaped" portion of the track is at an angle of approximately thirty degrees and the gap between the mating edge 703 of the J-shaped portion 718 and the support 702 is approximately 0.07 inches.
  • Fig. 8 is a schematic representation of the flexible curtain, track and tension rods of the embodiment of Fig. 6.
  • Reference numeral 800 generally indicates the parallel arrangement.
  • reference numeral 801 illustrates no runout of the track 602
  • reference numeral 802 indicates no runout of the ends of the tension rods
  • reference numeral 803 indicates no runout of the mating surface of frack 602
  • reference numeral 804 indicates no runout of the curtain. All embodiments employ a curtain having a zero runout. It should be noted in connection with the parallel embodiment that the interrupts are pressed (formed) such that they are parallel to the curtain and/or perpendicular to the longitudinal axes of the tension rods.
  • Fig. 9 is a front view of a 38" curtain illustrating a 1/2° runout of the tension rods.
  • Reference numeral 900 indicates the curtain generally, slits 926 add flexibility to the curtain and drive apertures 916 and 917 are indicated as well.
  • Fig. 9A is similar to that of Fig. 1 illusfrating a V ⁇ ° runout of the tracks, interrupts, and tension rods.
  • Reference numeral 900A illusfrates the 38" long curtain having a l A ° runout in its fully extended down or second position.
  • Left side frack 911 runs out as indicated by reference numeral 913 which is the lower portion of the left side frack.
  • reference numeral 914 indicates a small, VX runout of the right side track 912.
  • the last tension rod 924 illustrates a relatively small space between the curtain 915 and the interrupts on that last tension rod 924.
  • a counterbalanced wind-up reel 907 is employed as illusfrated in Fig. 9 A.
  • Bottom bar 918 is illustrated in Fig. 9 A.
  • Fig. 9B illusfrates an enlarged portion of Fig. 9.
  • a relatively small runout between the near side interrupts 931 and 932 (first and fifth rods of the curtain) is indicated.
  • interrupt 932 of the fifth rod down is not much leftwardly relative to the interrupt 931 of the first rod.
  • Fig. 9C is a perspective view of a portion of a curtain having a 1 /.” runout further illusfrating the corrugated flexible curtain 915 and interrupts 906, 908 and 909 mating with the corresponding mating surface 903 at points 903A, 903B and 903C on the "J-shaped" portion 904 of track 911 when the curtain is in its fully down or second position.
  • Fig. 9C illustrates the "J-shaped" portion 904 angled back (with respect to the side of the curtain).
  • Mating surface 903 is at the same angle as the mating surfaces on interrupts 906, 908 and 909.
  • Reference numerals 903A, 903B and 903C signify a flush contact between the "J- shaped" portion 904 of the track 911 and the respective interrupts.
  • Fig. 9C also illustrates the outside edge 901 of the frack and this figure does a particularly good job in representing the corrugated curtain 915.
  • Corrugations 936 can be viewed in apertures 916 are indicated as are face slits 926.
  • Reference numeral 935 illusfrates the rectangular in cross-section rod extending through the curtain 915. It will be noticed that where the rods extend through the curtain that there is no slit at a corresponding point in the face. The rods are sealed within the curtain so that contaminants such as sea salt cannot reach them enabling a low maintenance curtain.
  • Fig. 10 is a schematic representation similar to that of Fig. 5 only it will be noticed that the angle is ⁇ /X illustrated over a 38" length as compared to 1 ° angle illustrated over a 72" length in Fig. 1. It will be apparent when viewing Fig. 10 that a smaller mouth or area is needed to receive the bottom rod of a V2 0 , 38" curtain system because the runout is much less.
  • Reference numeral 1000 generally indicates this schematic representation.
  • curtain 1015 includes apertures 1016 and the bottom bar is denoted by reference numeral 1018.
  • Track 1011 has an outer edge 1012 whose runout is indicated with reference numeral 1001.
  • the first tension rod has an end 1020 whose runout is indicated with reference numeral 1002.
  • the first mating interrupt of the first rod is indicated by reference numeral 1007 and its runout is indicated by reference numeral 1003.
  • the inner portion of the guide also has a runout as indicated by reference numeral 1004.
  • Reference numeral 1009 illustrates the surface of the "J-shaped" portion of the frack 1011 which mates with the interrupts. In this V2 0 , 38" embodiment, the interrupts are also at a V2 0 angle mating arrangement.
  • the track support 1008 performs the same function that the track support performs in the first embodiment in that it supports and restrains the rods during tensioning. During tensioning, the rods will pivot slightly on mating surface 1009 and the end portions thereof, for example end portion 1020, will engage support 1008.
  • the track supports (i.e., 1008) are necessarily close to the mating surface (i.e., 1009) of the "J-shaped" portion of the frack in the embodiments employing an angled frack as well. Bending moments are thus minimized because the gap is preferably small, on the order of .007 inches.
  • the distance between the mating surface 1009 and the frack support 1008 is important. If this distance is too large then the rods tend to shear as the bending moment caused by the structure of the curtain with the rods therethrough is too large. It has been found that a preferred distance between the track support 1008 and the mating surface 1009 of the track is approximately 0.07 inches. This distance can, however, be changed as those skilled in the art will appreciate.
  • Fig. 11 is a top view of the leftside frack like that of Fig. 1 illustrating the top rod in its fully down position engaging the track.
  • Fig. 11 illusfrates a cross-sectional view of the top of the frack which has 1 ° runout. The runout, however, is not illustrated in this drawing.
  • Reference numeral 1100 generally illustrates the rod and the relative spacing arrangements for a 72" long opening having a 1 ° runout.
  • Rod 1104 includes a relatively long interrupt 1105.
  • "J-shaped" portion 1101 of track 1103 is shown engaging the mating surface 1106 of the interrupt 1005 of the rod 1104.
  • there are 'many rods employed in the curtain and each of those rods will seat against the "J-shaped" portion 1101 of the frack 1103.
  • FIG. 11A is a front view of the leftside track 1103 and the top rod 1104 illustrated in Fig. 11. Reference 1100A generally illustrates this front view. Gap 1108 is the space between the J-shaped portion 1101 and the track support 1109 and is preferably small (.007 inches).
  • Fig. 1 IB is a top view of a leftside track like that of Fig. 9A illustrating the top rod in its fully down position engaging the frack.
  • Fig. 1 IB illustrates a cross-sectional view of the top of the frack which has a Vz° runout. The runout, however, is not illusfrated in this drawing.
  • Reference numeral 1100B generally denotes the view. It will be noticed that the track 1103B is somewhat smaller when compared to the track necessary for a 72" opening having a 1 ° runout. Further, it will be noticed that the rod 1104B includes a smaller interrupt 1105B as compared to the 72", 1 ° runout.
  • Fig. 11C is a front view of the leftside frack and top rod illustrated in Fig. 1 IB.
  • Reference numeral 1100C generally denotes this view.
  • Reference numeral 1200 generally denotes this view.
  • Fig. 12 is a top view of a leftside frack like that of Fig. 1 illusfrating the bottom rod in its fully up position entering the track.
  • Fig. 12 illustrates a cross-sectional view of the top of the track which has a 1 ° runout. The runout, however, is not illustrated in this drawing.
  • the interrupt 1205 is relatively and necessarily large. Because this interrupt is relatively large a relatively large mouthed track 1203 is necessary to in effect swallow or accept the tension rod 1204. The interrupt must straddle the gap 1202 between the "J-shaped" portion 1201 of the track and the frack support 1209.
  • Fig. 12A is a front view of the leftside track and the bottom rod illusfrated in Fig. 12 and reference numeral 1200A generally denotes this view.
  • Fig. 12B is a top view of a leftside track like that of Fig. 9A illustrating the bottom rod 1204B in its fully up position entering the track.
  • Fig. 12B illusfrates a cross-sectional view of the top of the track which has a l A° runout. The runout, however, is not indicated in this drawing.
  • 1200B generally denotes this view.
  • a smaller track 1203B is acceptable because the runout over a 38" long opening having tracks that diverge l A° from vertical or 1 ° from each other does not require a lengthy interrupt 1205B. Additionally, it will be noticed too that there is a small clearance between the "J-shaped" portion 1201B of the track 1203B and the interrupt 1205B. This is necessary so that the rods may progress downwardly without much friction. Clearance is indicated in all of Figs. 11 and 12. Sufficient clearance between end portion 1206B of the rod 1204B and the track 1203B is indicated. Gap 1202B is indicated between J-shaped position 1201B and the support 1209B.
  • Fig. 12C is a front view of the leftside track and the top rod as illustrated in Fig. 12B and reference numeral 1200C generally denotes this view.
  • the J-shaped portion is at an angle of 30° and the gap between the mating surface of the J-shaped portion and the support is 0.07 inches. This geometry provides good securement of the curtain under load.
  • Fig. 13 is a cross-sectional view of the bottom bar 1300 sealingly engaging the bottom sill 1304 which is affixed to the frame 1306, 1307 of the structure.
  • Fig. 13 illustrates a curtain 1309 which is corrugated. Corrugated curtain 1309 is affixed to the bottom bar 1300 by means of a fastener 1310.
  • Magnet 1302 is a part of bottom bar 1301 and is attracted to the sill or other structure.
  • Sill 1304 includes seal 1308 which is restrained in sill 1304 by means of adhesive or epoxy.
  • the wood frame traps sill portion 1305 to assist in holding the sill in place.
  • Catch 1303 engages sill 1304 when curtain 1309 is sufficiently flexed by wind or debris.
  • Fig. 13 A is a cross-sectional view of a three-ply flexible curtain 1300A.
  • Two polymeric sheets or plies 1320, 1321 are pressed and fused into engagement with a woven ply 1322 which is affixed by fastener 1310 to bottom bar 1301.
  • Fig. 13B is a cross-sectional view of a three-ply flexible curtain 1300A together with a vertically bowed bottom bar 1330 entrapped by adhesive/lamination of the flexible curtain.
  • Fig. 13C illustrates entrapment of bottom bar 1330 by stitching the plies together.
  • the bowed bar 1330 is illustrated in Fig. 13D and functions to guide the curtain into a retaining slot 2820 as illustrated in Figs. 28C and 28D.
  • the middle portion 2841 of the curtain may bow toward the window.
  • the side portions, however, are guided by the tracks (2801,
  • Fig. 14 is a perspective view of a tension rod 1401 having an interrupt 1402 in an end portion 1404 and having an interrupt 1403 in an end portion 1405.
  • the rod is generally represented by the reference numeral 1400.
  • the tension rod is rectangular in cross-section and the cross-sectional shape has been found to be the strongest shape. Other shapes, however, may be used.
  • Fig. 15 is an enlarged portion of the tension rod 1401 illustrated in Fig. 14.
  • Interrupt 1402 is shown having curved radii 1501, 1502 and 1503.
  • Reference numeral 1500 generally denotes the end portion of the rod.
  • Fig. 16 is another enlarged view of a portion of a tension rod.
  • Reference numeral 1600 generally indicates the end portion of the tension rod with end 1602 and radius 1601.
  • Mating surface 1601 is a good representation of an angled surface with respect to the longitudinal axis of the tension rod. It is this mating surface 1601 which engages a similarly angled mating surface on the "J-shaped" portion of the tracks. In other words, surface 1601 is at an angle with respect to the longitudinal axis of the rod.
  • Fig. 17 is a view of the end portion of a tension rod illustrating a circular in cross-section tension rod.
  • Reference numeral 1700 generally represents this embodiment with end portion 1702 having an interrupt formed therein with mating surface 1701 being angled to match the "J-shaped" portion of the tracks.
  • the mating surfaces 1601 and 1701 will necessarily be perpendicular to the longitudinal axes of the tension rods.
  • the tension rods are preferred to be rectangular in cross-section so as to maximize the area filled in the corrugated material which is rectangular in cross-section. The rectangular in cross-section rod has been found to be the strongest because it occupies the largest cross-sectional area.
  • FIG. 18 is a plan view of a tension rod illustrating the interrupts 1402 and 1403.
  • Reference numeral 1800 is a general designation for this rod. Dashed lines 1801, 1802, 1803 and 1804 correspond to angled track.
  • Fig. 19 is a side view of a tension rod of Fig. 18 illustrating the interrupts therein.
  • Reference numeral 1900 is a general designation for this view of the rod.
  • Fig. 20 is a perspective view of the track which has been referred to in this figure by reference numeral 2000. J-shaped portion 2001 is well shown in this illustration.
  • Fig. 21 illustrates a plan view of one of the tracks 2000 with bolt holes or apertures 2101 for fixing to a casing or frame.
  • Reference numeral 2100 generally denotes this drawing figure.
  • FIG. 22 is a cross-sectional view of a three-ply flexible curtain 2200 taken along the lines 22-22 of Fig. 28.
  • Figs. 22-29 illusfrates the third embodiment of the invention.
  • a first polymeric sheet 2201, a second polymeric sheet 2202, and a third woven sheet 2203 are heated and pressed together forming the construction of a flexible curtain.
  • Track 2204, preferably metal, is illusfrated in Fig. 22.
  • the edges of the flexible curtain 2200 are folded upon themselves and are maintained in the folded position by stitching 2205. Alternatively, the folds may be glued to the curtain.
  • the stitching is preferably placed such that 1/3 of the folded flap will be loose and 2/3 of the folded flap will be secured to the curtain.
  • FIG. 22A is identical to Fig. 22 only eyelet 2209 in aperture 2206 is illustrated. Eyelets 2209 add sfrength for driving the curtain between its first, open and second, closed positions. It may be noticed that the cross-hatching used for the plies 2201 and 2202 appear to cause an optical illusion such that the plies do not appear parallel but, in fact, they are parallel.
  • Figs. 22B and 22C are identical to Figs. 22 and 22A, respectively, but Figs. 22B and 22C do not include the cross-hatching. Figs. 22B and 22C do not portray any optical illusions.
  • Fig. 23 is a cross-sectional view taken along the lines 23-23 of Fig. 28.
  • Fig. 23 A is identical to Fig. 23 without cross-hatching of the polymeric plies illustrated.
  • Figs. 23 and 23A illustrate the curtain without any pressure applied.
  • Figs. 23B and 23C correspond to Figs. 23 and 23A, respectively, only they are illusfrated with pressure applied.
  • Figs. 23B and 23C are cross-sectional views of the three-ply curtain and tracks with the curtain under the influence of a force, for example, a high velocity wind indicated by the letter "P.”
  • the force of the wind causes the curtain to attempt to extract itself from the tracks 2204 and 2801.
  • the folded edge which have loose flaps are deformed and seal the interior of the tracks 2204 and 2801.
  • Gaps 2306 and 2307 are created between the flaps 2207 and 2209 the three-ply flexible curtain when the curtain is under pressure "P."
  • Gap 2308 between frack 2204 and the folded edge is created as the curtain attempts to exit the frack.
  • gap 2309 between frack 2801 and the other folded edge is created as the curtain attempts to exit the track.
  • flaps 2207 and 2209 are no longer loose and act as shock absorbers which take up energy imparted to the curtain by the wind. The elastic properties of the flexible curtain absorb the energy of the wind.
  • Fig. 24 is a cross-sectional view of a three-ply curtain together with a semi-rigid polymeric strip 2401 affixed to one edge thereof.
  • the polymeric rigid strip 2401 includes a flap 2402 which is not securely fastened to the three-ply curtain 2400. Stitching 2405 or other means may be used to affix the strip to the curtain 2500.
  • Fig. 25 is a cross-sectional view of a three-ply curtain similar to the view of Fig. 23 with the curtain under the influence of a force, "P," for example a high velocity wind.
  • a seal is made at points referred to by reference numerals 2503 and 2507.
  • Gap 2504 exists between the rigid strip 2402 and the main three-ply curtain.
  • Fig. 26 is a cross-sectional view of a three-ply curtain having a folded edge and illustrating two polymeric plies 2201 and 2202 and a woven sheet 2203 secured together with adhesive 2601.
  • Reference numeral 2602 indicates a 1/3 flap length as the preferred free distance of the flap.
  • reference numeral 2603 illustrates that 2/3 of the flap is secured by stitching 2205.
  • the frack has an approximate inner length of one inch meaning that 1/3 of an inch would be the free distance for the flap and 2/3 of an inch would be the secured distance for the flap. These distances represent the preferred embodiment and in no way limit the invention.
  • Fig. 26A illusfrates adhesive 2609 affixing a portion of the semirigid strips 2401 to the main three-ply curtain. Alternatively, a strip of the three-ply curtain may be used in place of the semirigid strip.
  • Fig. 26B is a cross-sectional view of an embodiment employing two plies of polymeric material 2615, 2616 secured together with a fiber reinforcement 2617.
  • This material is high-tear vinyl polyester and is commercially available from BONDCOAT MANUFACTURING COMPANY.
  • a loose flap 2620 has been slit such that it engages truck 2204 at lip 2210 when the curtain is under the influence of pressure. The slit may be used in either the horizontal or the divergent angle embodiments.
  • Fig. 27 is a rear view of the three-ply flexible curtain 2700 illustrating a semi-rigid strip applied to both edges of the curtain.
  • Semi-rigid strip 2702 is applied to the left side of the curtain and semi-rigid strip 2701 is applied to the right side of the right edge of the curtain.
  • Apertures 2703 are placed in a repeating fashion along the left and right side edges of the curtain for interengagement with conical cogs to raise and lower the curtain.
  • Fig. 28 is a front view of a three-ply curtain 2805 driven by a cog/pin drive 2802 (sometimes referred to herein as the drive roller 2802) having cogs/pins 2803.
  • Leftside track 2801 is illusfrated in Fig. 28 as is rightside track 2204. These tracks are secured to the building structure as indicated in Fig. 4.
  • Wind-up reel 2804 sometimes referred to herein as a storage reel is illusfrated and it is also counterbalanced. See, Fig. 28B.
  • Fig. 28 illustrates the curtain in its second, down position.
  • Fig. 28A is a cross-sectional view taken along the lines 28A-28A of Fig. 28 illusfrating the drive roller 2802.
  • the drive roller 2802 is driven by a motor or by a hand operated pulley. See, Fig. 1 illusfrating an arrangement for accomplishing operation of the drive roller 2802.
  • the drive roller 2802 and the storage reel are supported as illusfrated in Fig. 1.
  • the drive roller 2802 supports the curtain which is under constant tension between the cogs/pins 2803 and the storage reel 2804. In practice, the three-ply curtain is less than
  • Fig. 28B is a cross-sectional view taken along the lines 28B-28B of Fig. 28 illustrating counterbalanced springs 2820', 2821 which tension the curtain between the drive cogs 2803 and the storage reel 2804.
  • the springs are grounded by pegs 2850 which are coupled to the building 2840.
  • Spring holders 2822, 2833 secure the spring to the storage reel 2804.
  • Fig. 28C is a view similar to Fig. 28 further illustrating a bowed bottom bar 1340 approaching a retaining slot 2820 as illustrated in Fig. 28D as previously described above.
  • Tracks 2801 and 2204 keep the edges of the curtain aligned with the retaining slot.
  • the edges 1341, 1342 of the bottom portion 1340 of the curtain enter the retaining slot 2820 first followed by the middle portion.
  • Fig. 28E is a front view of flexible curtain 2805 and window 2870 in a building illustrating the curtain in a first, open position. Bottom bar 1340 is shown in phantom behind siding 2860. Reference numeral 2880 indicates travel of the curtain upwardly and downwardly.
  • Fig. 28 F is a front view of a flexible curtain 2805 illusfrated in the second, closed position. Window 2870, side tracks 2801 and 2204, and retaining slots 2820 are illustrated in Fig. 28F in phantom. The side tracks and retaining slots are affixed to the frame of the building in a manner understood by those sldlled in the art.
  • the window 2870 and curtain may be preinstalled as illusfrated in Figs. 4B and 4D, for example.
  • Frame 407 in Fig. 4B represents an embodiment which may be used to preinstall the window and curtain.
  • Fig. 29 is a side view of Fig. 28 and reference numeral 2900 generally indicates the assembly. Track 2204 is also shown in Fig. 29.
  • Fig. 30 is a perspective view of the chain drive (drive adaptor rack) and gear drive.
  • the tension rods 3006 pass through the flexible curtain 3007 and are tensioned and rolled up upon counterbalanced wind-up reel 3009.
  • Adaptor rack 3001 includes notched holes 3002 that are vertically spaced between slots 3003 with rods 3006 at a spacing equal to the circular pitch of the drive gear 3005 as the curtain is moved from the opened, first position to the closed, second position.
  • the drive system of Fig. 30 is preferably used with the parallel embodiment but with certain modifications it may be used with the divergent frack.
  • Fig. 31 is a perspective view of an adaptor rack 3104 illusfrating tensioning rods 3101 having a 90 ° bend 3102 at the edges thereof.
  • This embodiment of the drive system may be used with the divergently angled tracks or it may be used with the parallel tracks.
  • Rods 3101 pass through corrugated curtain 3106.
  • Track 3105 is the same track described previously.
  • Fig. 32 is a perspective view of an adaptor drive illustrating engagement of tensioning rods 3203 with the adaptor drive 3201 .
  • Fig. 33 is a perspective view of a gear drive such as the one illustrated in Fig. 1 and is generally represented by reference numeral 3300.
  • Gear 3303 includes teeth 3301 which drive the flexible curtain 3302.
  • Fig. 33 illusfrates the curtain in the down, second position.

Landscapes

  • Operating, Guiding And Securing Of Roll- Type Closing Members (AREA)
  • Curtains And Furnishings For Windows Or Doors (AREA)
EP00959400A 2000-08-23 2000-08-23 Apparatus and method for windlocking a building opening Withdrawn EP1311179A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/023357 WO2002015755A1 (en) 2000-03-08 2000-08-23 Apparatus and method for windlocking a building opening

Publications (1)

Publication Number Publication Date
EP1311179A1 true EP1311179A1 (en) 2003-05-21

Family

ID=21741710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00959400A Withdrawn EP1311179A1 (en) 2000-08-23 2000-08-23 Apparatus and method for windlocking a building opening

Country Status (4)

Country Link
EP (1) EP1311179A1 (ja)
JP (1) JP3718669B2 (ja)
AU (2) AU2000270733B2 (ja)
CA (1) CA2419639A1 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5575322A (en) * 1995-09-15 1996-11-19 Miller; James V. Rolling protective shutters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0215755A1 *

Also Published As

Publication number Publication date
AU7073300A (en) 2002-03-04
CA2419639A1 (en) 2002-02-28
JP3718669B2 (ja) 2005-11-24
AU2000270733B2 (en) 2005-06-23
JP2004506823A (ja) 2004-03-04

Similar Documents

Publication Publication Date Title
US6296039B1 (en) Apparatus and method for windlocking a building opening
US6341639B1 (en) Apparatus and method for windlocking a building opening
US6431250B2 (en) Apparatus and method for windlocking a building opening
US7438111B2 (en) Storm curtain with counterbalance system and drive component protection
US10794112B2 (en) Slatted door with increased impact resistance
US8162028B2 (en) High load operation of an industrial roll door
US20090229767A1 (en) Storm curtain side retention system
US8887789B2 (en) Retractable, low-profile storm shield systems and methods
US20130306252A1 (en) Coiling door assembly having guide members with narrow wall gap opening and internal smoke or weather seal
US20110061822A1 (en) Retractable, low-profile storm shield systems and methods
US20080041537A1 (en) Storm curtain assembly having edge tracking system and roller and lock bar attachment features
AU774863B2 (en) Apparatus and method for windlocking a building opening
EP1485560B1 (en) Apparatus and method for windlocking a building opening
AU2000270733B2 (en) Apparatus and method for windlocking a building opening
JP2006177152A (ja) 建物の開口部を被覆するウィンドロック機構
AU2000270733A1 (en) Apparatus and method for windlocking a building opening
EP4227481A1 (en) Double door installation assembly and associated locking method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030102

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070301