EP1310133A1 - Adaptation of the timing advance in synchronous handover - Google Patents

Adaptation of the timing advance in synchronous handover

Info

Publication number
EP1310133A1
EP1310133A1 EP01964898A EP01964898A EP1310133A1 EP 1310133 A1 EP1310133 A1 EP 1310133A1 EP 01964898 A EP01964898 A EP 01964898A EP 01964898 A EP01964898 A EP 01964898A EP 1310133 A1 EP1310133 A1 EP 1310133A1
Authority
EP
European Patent Office
Prior art keywords
accuracy
synchronicity
terminal
base station
timing advance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01964898A
Other languages
German (de)
French (fr)
Inventor
Stefan Oestreich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1310133A1 publication Critical patent/EP1310133A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • CD 0- 0 pi iQ ⁇ rt P- PJ P- 0 0 ⁇ 0 pj: C ⁇ 0 ⁇ ⁇ ⁇ P ) 0 C ⁇ ⁇ p P> rf 1 0 J ⁇ 0 ⁇ 0 P. rt P- N P. 0 3 p- 1 ⁇
  • the invention is based on the insight that, although the tatsumble ⁇ Liche synchronism error between two base stations in the individual case a specific handover can not be specified, but that it is generally possible to specify the accuracy of the Synchronitat the two base stations, that is, an upper limit for estimate the amount of the synchronism error, which it will not exceed with a predetermined probability.
  • Time difference between the time standards of the two base stations determined timing advance value i.e. a delay in transmission by the subscriber station, depending on the known accuracy of the synchronicity, is achieved that the radio signal of the terminal device transmitted with reduced timing advance may be at the second base station does not arrive immediately at the beginning of the allocated time slot, but in no case before the beginning of the time slot.
  • reaching the radio signal into the guard period following the time slot can be tolerated.
  • the reduction in the timing advance value is preferably twice the accuracy of the synchronicity specified in time units.
  • the accuracy of the synchronicity is too poor, a reduction in the timing advance value corrected on the basis of the measured time shift could result in essential parts of the radio signal falling into the guard period or even into the subsequent time slot of another station on the base station. In such a case, it is more appropriate to completely refrain from correcting the timing advance value and to use a timing advance value of 0 for transmission to the second base station. In this case, a new measurement of the timing advance by the second base station is essential.
  • the accuracy of the synchronicity of the two base stations involved in the handover is preferably signaled to the terminal in the course of the handover process.
  • heuristic estimates of the accuracy of the synchronicity are also conceivable. For example, Assume that the accuracy of the synchronicity is proportional to the distance between two base stations. The distance to the first base station is known to the terminal from its timing advance used before the handover. If one assumes that the distance to the second base station will be of the same order of magnitude as that to the first, the terminal can derive an estimate of the accuracy of the synchronicity directly from the timing advance value.
  • the pairs of base stations of the radio communication system are classified into one of several classes depending on the accuracy of their synchronicity, and the terminal is signaled in each case to the class to which the pair of stations belongs between which the Handover takes place.
  • the signaling of the accuracy of the synchronicity can be limited to the transmission of a small number of bits. If the terminal takes the upper limit of such a class as the value for the accuracy of the synchronicity, a premature arrival of the signal at the base station is reliably avoided, regardless of the actual value of the accuracy.
  • the number of classes is preferably at least three. These classes preferably include one where the accuracy the synchronicity is so good that a reduction in the timing advance value corrected on the basis of the measured time shift can be completely dispensed with. Such a class expediently comprises pairs of stations at which the accuracy of the synchronicity does not exceed a limit in the range 100-500 ns.
  • a further division of the classes expediently distinguishes those pairs of stations where a reduction in the timing advance value by a value derived from the accuracy of the synchronicity makes sense from those pairs where the accuracy of the synchronicity is so bad that a complete redefinition timing advance by the second base station is more advantageous.
  • the limit for this subdivision is expediently between 500 ns and 2.5 ⁇ s in the calculation.
  • FIG. 1 is a schematic block diagram of a radio communication system in which the present invention is applicable;
  • FIG. 2 shows a time diagram to explain the determination of the timing advance value by a terminal in the event of a handover
  • dl the path length between the base station BS1 and the terminal MS.
  • This delay dl / c is also the value of the timing ad vance ⁇ TA1, which the terminal MS is used for transmitting to the base station BSl.
  • the subscriber station MS uses a local time scale for the time control of its tasks before the handover, which is based on the time standard transmitted by the base station BS1. You can see the time of arrival
  • the distance .DELTA.t between the arrival times of the two time standards denotes the amount by which the terminal MS must correct its timing advance value in order to be able to communicate correctly with the base station BS: the terminal MS 00 oo ro ro P> P 1
  • TA2 TAl + ⁇ t-2Gsync
  • the timing advance value is thus 3Gsync smaller than in the case of FIG. 2;
  • the reception window for the signal of the terminal MS at the base station BS2 is premature by Gsync, so that the signal of the terminal MS arrives at the base station BS2 with a delay of 4Gsync against its reception window in the time interval F a .
  • the timing advance value is therefore smaller by Gsync than with perfect synchronization.
  • the reception window of the base station BS2 is also delayed by Gsync compared to that of the base station BS1, so that the signal of the terminal MS at the base station BS2 coincides exactly with the reception window F d assigned to it.
  • the risk that the signal of the terminal MS at the Basissta ⁇ tion BS2 arrives too early to be evaluated to correct, is thus eliminated regardless of the amount and direction of the actual synchronization error Esync.
  • the handover between two base stations does not necessarily signal the accuracy of the synchronicity to the terminal that has been determined for the two base stations, but rather only an indication of the affiliation of the relevant pair of base stations to one transferred from several accuracy classes.
  • the number of bits required for signaling the accuracy is reduced to the two-logarithm of the number of classes.
  • a second class comprises pairs of base stations with an average accuracy of the synchronicity Gsync of typically ⁇ 500 ns. With such a value of Gsync, taking it into account when determining TA2 in the worst case can lead to a delayed arrival of the signal at the base station BS2 by 2 ⁇ s.
  • a third accuracy class contains those pairs of base stations already mentioned above in which the accuracy of the synchronicity is so poor that taking them into account when determining TA2 can lead to unusually large delays in the signal at the base station BS2.
  • the terminal MS uses the upper accuracy limit of this class as Gsync to determine TA2.
  • all pairs of base stations with Gsync ⁇ 200 ns can enter the first Class, those with 200 ns ⁇ Gsync ⁇ 1 ⁇ s in the second and all with Gsync> 1 ⁇ s in the third class.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

The aim of the invention is to adapt the timing advance of a mobile terminal (MS) during synchronous handover from a first (BS1) to a second base station (BS2) of a radio communications system. To this end a time delay (Δt, Δta, Δtd) between time standard (N1, 2, N2a, N2d) received by the terminal from the two base stations are measured. A timing advance value (TA1) that is used by the terminal (MS) prior to handover for transmission to the first base station (BS1) is corrected using the time delay measured. The corrected timing advance value is reduced by a value (2Gsync) derived from the accuracy (Gsync) of the synchronicity of the two base stations (BS1, BS2) and is used as the timing advance value (TA2) for transmission to the second base station (BS2).

Description

U> 00 t\3 tv> P1 P1 U> 00 t \ 3 tv> P 1 P 1
Cπ o Cπ o (Ji o CπCπ o Cπ o ( Ji o Cπ
CΛ T) N α rt ü CΛ P. iQ N rt P- M P. rt er tu CS3 α tsi Cd H cn rt K ö tuCΛ T) N α rt ü CΛ P. iQ N rt P- M P. rt er tu CS3 α tsi Cd H cn rt K ö tu
P- CD 0 PJ P- P- P> rr P> Φ Φ Φ PJ 0 Φ J J 0 Φ P) Φ φ 0 0 O P- fu Φ P- Φ Q H ιQ CD O PJ CΛ cn P- 0 CΛ P- H rt l-i CΛ P- l-i cn P- α h-1 O 0 CΛ φ O CΛP- CD 0 PJ P- P- P> rr P> Φ Φ Φ PJ 0 Φ JJ 0 Φ P ) Φ φ 0 0 O P- fu Φ P- Φ QH ιQ CD O PJ CΛ cn P- 0 CΛ P- H rt li CΛ P- li cn P- α h- 1 O 0 CΛ φ O CΛ
0 P- CD P1 0 rT rf rt υq cn P- rt Hi rt iQ ^ O 0 0 Ω0 P- CD P 1 0 rT rf rt υq cn P- rt Hi rt iQ ^ O 0 0 Ω
PJ O rt PJ 0 P- P- ω H ι-3 H Φ ω pj: P- CΛ -> • t i CΛ Φ 0 0J CΛ o ι-3 <l CΛPJ O rt PJ 0 P- P- ω H ι-3 H Φ ω pj: P- CΛ -> • ti CΛ Φ 0 0 J CΛ o ι-3 <l CΛ
P- CD 0 0 ω φ O P- PJ φ P- 0 i-i P> O CΛ CΛ Φ O H 0 Φ CΛ < P- o CΛ HP- CD 0 0 ω φ O P- PJ φ P- 0 i-i P> O CΛ CΛ Φ O H 0 Φ CΛ <P- o CΛ H
CD P- Hl rt P- 0 υ5 0J CΛ 3 P- pj: CΛ 0J rt rt ü P- " pj: K ω Φ 3 H 0 ΦCD P- Hl rt P- 0 υ5 0 J CΛ 3 P- pj: CΛ 0 J rt rt ü P- "pj: K ω Φ 3 H 0 Φ
"5 N CD o ^ 0 P1 P- ^Q rt P- • PJ P- P- rt P1 rt 1 cn P, P- PJ 0 P-"5 N CD o ^ 0 P 1 P- ^ Q rt P- • PJ P- P- rt P 1 rt 1 cn P, P- P J 0 P-
Φ CD rt CD ι-i - 0 Φ PJ rt CΛ 0 Φ cn P- rt φ φ P- P- ^ <! rt 0 P- iQ erΦ CD rt CD ι-i - 0 Φ PJ rt CΛ 0 Φ cn P- rt φ φ P- P- ^ <! rt 0 P- iQ er
P- rt CD P- CΛ 0 P- Φ φ iQ H w CΛ O g P- 0 rt Hi o φ φ N iQ φ 0P- rt CD P- CΛ 0 P- Φ φ iQ H w CΛ O g P- 0 rt Hi o φ φ N iQ φ 0
0 ι-f 0 rf o 0- 0 0 P- p : Φ rt 1 3 o φ t-1 rt N : ä H 3 s; iQ 00 ι-f 0 rf o 0- 0 0 P- p: Φ rt 1 3 o φ t- 1 rt N: ä H 3 s; iQ 0
CD CD CD 0* pj: ω rt P- 0 rt υ5 J 0 P- pj: Φ l-i 3 Hl cn P- Φ φCD CD CD 0 * pj: ω rt P- 0 rt υ5 J 0 P- pj: Φ li 3 Hl cn P- Φ φ
CΛ 0 INI 0 P- 0 P- H 0 N Φ rt P- CΛ 0 0 H N 0 PJ ω P. 0 CΛCΛ 0 INI 0 P- 0 P- H 0 N Φ rt P- CΛ 0 0 H N 0 PJ ω P. 0 CΛ
0 CD CD Hl iQ P- Φ co <! Φ P1 P- 0 P- N vQ <l 0 α 0 0^ n o <i0 CD CD Hl iQ P- Φ co <! Φ P 1 P- 0 P- N vQ <l 0 α 0 0 ^ no <i
M rt P- T P- P- 0 Hi P- P- PJ P- 3 O Ω 0 ^ Φ P> sQ H- P- H O 0^ J Φ ι-3M rt P- T P- P- 0 Hi P- P- PJ P- 3 O Ω 0 ^ Φ P> sQ H- P- HO 0 ^ J Φ ι-3
0 • rt PJ iQ P> Hi Φ rt tQ 0 0 pj: 0 1 l-i 0 Φ Φ t Φ 2 Φ 0 P-0 • rt PJ iQ P> Hi Φ rt tQ 0 0 pj: 0 1 li 0 Φ Φ t Φ 2 Φ 0 P-
P- CΛ er P- rt- 3 0 0 o Φ &> Φ Φ 0: 0 P- rt P> 0 P- 0 o Cd 3 iQ H n CD O J Φ • o PJ Φ 0 P- PJ 3 H n - P- • Φ « rt φ φ H H-P- CΛ er P- rt- 3 0 0 o Φ &> Φ Φ 0: 0 P- rt P> 0 P- 0 o Cd 3 iQ H n CD OJ Φ • o PJ Φ 0 P- PJ 3 H n - P- • Φ «rt φ φ H H-
(D 0 0- 0 0' 0 P- H P1 1 3 0 N i cn Φ P- O P- 0 N Hi 0(D 0 0- 0 0 '0 P- HP 1 1 3 0 N i cn Φ P- O P- 0 N Hi 0
H 0 CD Hl N " 3 Si <! Q. 0 N P- CΛ P- H s O 0 φ ≤ φ P- pi: CD P- w s: 0 PJ iQ φ o o φ CΛ 0 iQ Φ 0 rt s 0 s: P- Φ P- 0 rt- l-i rt O: tr1 3 P- P1 φ l-i 0 3 3 rt 0 H » 0 CΛ 0 P- 0 &H 0 CD Hl N "3 Si <! Q. 0 N P- CΛ P- H s O 0 φ ≤ φ P- pi: CD P- ws: 0 PJ iQ φ oo φ CΛ 0 iQ Φ 0 rt s 0 s : P- Φ P- 0 rt- li rt O: tr 1 3 P- P 1 φ li 0 3 3 rt 0 H »0 CΛ 0 P- 0 &
^ CΛ 0" N 0 pj: CD CΛ N iQ rt CΛ 3 Φ Φ 0 P. 0 cn 0 φ 0^ CΛ 0 "N 0 pj: CD CΛ N iQ rt CΛ 3 Φ Φ 0 P. 0 cn 0 φ 0
0 CD 0 0 0J o 0 φ α cn Φ t? "3 N φ P. P- *< ^ tu CΛ 0 <!0 CD 0 0 0 J o 0 φ α cn Φ t? "3 N φ P. P- * <^ tu CΛ 0 <!
(- CD iQ H - υ5 o 0 P- φ 0 0 Φ Φ 3 • cn er 0 0 iQ 0 er l_J. 0 CD CD Φ Φ H : Q. Φ 0 " Φ 0 er P- - P) rt 0 0 CΛ 3 0(- CD iQ H - υ5 o 0 P- φ 0 0 Φ Φ 3 • cn er 0 0 iQ 0 er l_J. 0 CD CD Φ Φ H: Q. Φ 0 "Φ 0 er P- - P ) rt 0 0 CΛ 3 0
P- CD ""» 0 H 0 N er Φ CΛ ^ 0 n rt Φ • rt Φ H ?? P- o er nP- CD "" »0 H 0 N er Φ CΛ ^ 0 n rt Φ • rt Φ H ?? P- o er n
(D α Ξ Φ J P- Φ H Φ CΛ CΛ Φ J cn cn P- 3 1 CΛ er Φ Φ(D α Ξ Φ J P- Φ H Φ CΛ CΛ Φ J cn cn P- 3 1 CΛ er Φ Φ
P- CD CΛ 0 0 o Φ H l-i P- n l-J 0 O Φ O φ P- ^ CΛ P- rtP- CD CΛ 0 0 o Φ H l-i P- n l-J 0 O Φ O φ P- ^ CΛ P- rt
Φ CD P- P- 0 Φ J 0* α sQ 1 pj: o 1 ö P- 0 0 cn o rt P1 l-i er p- CΛ 0 & S! 0 rf Φ Φ Φ s 0 pj: rt ) 3 01 P- P) 0 rt s 0 φ P- Φ ö CD cn α CD Φ 0 P- 3 φ PJ rt &D ^ rt P- rt 3 3 • H rt 0 Hi p-Φ CD P- P- 0 Φ J 0 * α sQ 1 pj: o 1 ö P- 0 0 cn o rt P 1 left p- CΛ 0 & S! 0 rf Φ Φ Φ s 0 pj: rt ) 3 0 1 P- P ) 0 rt s 0 φ P- Φ ö CD cn α CD Φ 0 P- 3 φ PJ rt & D ^ rt P- rt 3 3 • H rt 0 hi p-
Φ l-i ιQ tu 0 0 CΛ P1 N N Φ rt Φ CΛ P- P- 0 P- HiΦ li ιQ tu 0 0 CΛ P 1 NN Φ rt Φ CΛ P- P- 0 P- Hi
CΛ rt 3C 3 rt 3
& P) CD 0 3 Φ M 0 ^ Ό. N 0 P- rt rt 0 O Cd rt cn 0 P- 3 0 N 0 3 0 0 PJ iQ 0 Φ 0 φ n P- 0 0 CΛ& P ) CD 0 3 Φ M 0 ^ Ό. N 0 P- rt rt 0 O Cd rt cn 0 P- 3 0 N 0 3 0 0 PJ iQ 0 Φ 0 φ n P- 0 0 CΛ
V-1 0 H CD P- vQ Φ £ & 0 Φ 0 3 DJ tr Φ INI y Φ P- Φ •< pj: 0 n r+ iQ Φ P- <! υq ι Hi P- rt 0: P- 0 P- φ 0 0 sQ P- 0V- 1 0 H CD P- vQ Φ £ & 0 Φ 0 3 DJ tr Φ INI y Φ P- Φ • <pj: 0 n r + iQ Φ P- <! υq ι Hi P- rt 0: P- 0 P- φ 0 0 sQ P- 0
3 H 0" <i ι-i rr o Φ N Φ Φ cn er P- cn Ό 0 P- rt φ 0 O iQ CD 0 CD pj: Hi j 0 H PJ Φ P- p- Φ φ rt Φ Φ rt p- Φ H tr3 H 0 "<i ι-i rr o Φ N Φ Φ cn er P- cn Ό 0 P- rt φ 0 O iQ CD 0 CD pj: Hi j 0 H PJ Φ P- p- Φ φ rt Φ Φ rt p- Φ H tr
CD CD l-i 0 P- rt Φ pj: er P- ω PJ tQ n 0 P- l-i H 3 o P- pj: <! l-iCD CD li 0 P- rt Φ pj: er P- ω P J tQ n 0 P- li H 3 o P- pj: <! li
P> πj P- CΛ r+ O Φ 0 P rt iQ rt PJ rt 0 cn Φ P- 0 0 rt Φ oP> πj P- CΛ r + O Φ 0 P rt iQ rt PJ rt 0 cn Φ P- 0 0 rt Φ o
CD D 0 O CD 0J 0 cn ω Φ Φ cn Φ PJ S O o tu P" CΛ φ CΛ H 0CD D 0 O CD 0 J 0 cn ω Φ Φ cn Φ PJ SO o tu P "CΛ φ CΛ H 0
0 P> CD tT l-i N rt- P- H PJ PJ P- 0 P- Φ tu α 0 rt CΛ CΛ Hi Φ0 P> CD tT l-i N rt- P- H PJ PJ P- 0 P- Φ tu α 0 rt CΛ CΛ Hi Φ
P- P- CΛ Φ 0 φ O 0 Φ er Λ Φ n ^ W ) P- CΛ P- *< er 0 0 o ω CD O P- 0 H 0J tu ιQ P- CΛ t i 0' 0 cn CΛ H- O cn ^ φ trP- P- CΛ Φ 0 φ O 0 Φ er Λ Φ n ^ W ) P- CΛ P- * <er 0 0 o ω CD O P- 0 H 0 J tu ιQ P- CΛ ti 0 '0 cn CΛ H - O cn ^ φ tr
0 α o 0- rf Φ J P- rt 0 rt φ Φ rt H P- O CΛ rt 0 P- H0 α o 0- rf Φ J P- rt 0 rt φ Φ rt H P- O CΛ rt 0 P- H
CΛ *Q CD P- P- er H CΛ er φ 0 P) P- P- O N CΛ - CΛ Φ Φ 0 3 φ er y CD 0 CD iQ Q. φ N P- rt rt rt rt 0 <i 3 cn rt 3 y 0 0CΛ * Q CD P- P- er H CΛ er φ 0 P ) P- P- ON CΛ - CΛ Φ Φ 0 3 φ er y CD 0 CD iQ Q. φ N P- rt rt rt rt 0 <i 3 cn rt 3 y 0 0
H O: 0 CD P, φ P- 0 CΛ Φ P- cn Φ Φ rt 0 1 CΛH O: 0 CD P, φ P- 0 CΛ Φ P- cn Φ Φ rt 0 1 CΛ
CD 0 J 0 PJ l-i 01 CΛ 0 CΛ O Ω cn Hi Cd α 0 P- rt s: W "< N oCD 0 J 0 PJ l-i 01 CΛ 0 CΛ O Ω cn Hi Cd α 0 P- rt s: W "<N o
P- 0 0 P- 0 rt rt 0 Φ 0 J 0 0 P) rt φ P- P- p- o 0 0 < rt CD 0 Cd O CΛ Öd Φ Φ PJ 3 CΛ 0 P1 Cd P> &α P- o H 0 g n 3 ΦP- 0 0 P- 0 rt rt 0 Φ 0 J 0 0 P ) rt φ P- P- p- o 0 0 <rt CD 0 Cd O CΛ Öd Φ Φ PJ 3 CΛ 0 P 1 Cd P>& α P- o H 0 gn 3 Φ
0 0 rf 0 0J er J H rt O α Hi P- 0 o iQ O Φ 0 α 3 tr H0 0 rf 0 0 J er JH rt O α Hi P- 0 o iQ O Φ 0 α 3 tr H
0 CD CD H ω P- ≤ iQ φ 0: rt 0- 0 n P- 0 H0 CD CD H ω P- ≤ iQ φ 0: rt 0- 0 n P- 0 H
LQ 0 iQ φ P- tu φ O P- Φ rt H N iQ n P- 0J φ I_l. Φ 0 o &LQ 0 iQ φ P- tu φ O P- Φ rt HN iQ n P- 0 J φ I_l. Φ 0 o &
03 0 O CD CΛ P- ω J 0 0 φ 0 Φ pj: pj: Φ cn o P- φ l-i P- rt CΛ M . 3 P- 0 Ό03 0 O CD CΛ P- ω J 0 0 φ 0 Φ pj: pj: Φ cn o P- φ l-i P- rt CΛ M. 3 P- 0 Ό
≤ O 0 <J PJ J l—J J ι-i CΛ rt Φ P1 0 - Φ 0≤ O 0 <J PJ J l — JJ ι-i CΛ rt Φ P 1 0 - Φ 0
CD 0- 0 pi: iQ Φ rt P- PJ P- 0 0 Φ 0 pj: CΛ 0 Φ Φ φ P) 0 CΛ ιp P> rf 1 0 J ω 0 φ 0 P. rt P- N P. 0 3 p- 1 ωCD 0- 0 pi: iQ Φ rt P- PJ P- 0 0 Φ 0 pj: CΛ 0 Φ Φ φ P ) 0 CΛ ιp P> rf 1 0 J ω 0 φ 0 P. rt P- N P. 0 3 p- 1 ω
CD 1 1 J CΛ 1 Φ cn sQ 0 Φ 1 φ 0 1 CΛ 1 l-i 0 0 CD 1 1 J CΛ 1 Φ cn sQ 0 Φ 1 φ 0 1 CΛ 1 li 0 0
OJ J r-υ tv> P1 P> cπ σ cπ O cπ o CnOJ J r-υ tv> P 1 P> cπ σ cπ O cπ o Cn
INI t LQ CΛ 0 ≥; P-" α tu ι-3 CΛ ; 3 P- ts P- t s: tu <! er Ω P- P. rt *1 g N Ό 1-1 3 trINI t LQ CΛ 0 ≥; P- "α tu ι-3 CΛ; 3 P- ts P- t s: tu <! Er Ω P- P. rt * 1 g N Ό 1-1 3 tr
Φ Φ P1 rt φ P- Φ P- P- P- Ω o P- P- φ 3 Φ P- Φ Φ P- tr 0 P- l-i 0 0 3 0 φ Φ P- 0 iQ Φ H 0 Ω H Φ 0 3 tr H rt φ H1 1 φ P- H 0 Φ φ P- P1 CΛ 0 P- 0 erΦ Φ P 1 rt φ P- Φ P- P- P- Ω o P- P- φ 3 Φ P- Φ Φ P- tr 0 P- li 0 0 3 0 φ Φ P- 0 iQ Φ H 0 Ω H Φ 0 3 tr H rt φ H 1 1 φ P- H 0 Φ φ P- P 1 CΛ 0 P- 0 er
P^ H P- 0 CΛ Φ tr rt P- φ H >U - cn l-h i " C pj: • Ω vQ ΦP ^ H P- 0 CΛ Φ tr rt P- φ H> U - cn l-h i "C pj: • Ω vQ Φ
Φ P- O tr • H tu H 0 Φ N Φ 0 φ φ S o 0 φ tu H, P- cn P- rt tr 0Φ P- O tr • H tu H 0 Φ N Φ 0 φ φ S o 0 φ tu H, P- cn P- rt tr 0
0 Hi tr 0 Φ CΛ 0 0 Φ ι N y Φ £ PJ 0 rt o ι-J •u p- 0 rt φ N CΛ Φ 0 Hi tr 0 Φ CΛ 0 0 Φ ι N y Φ £ P J 0 rt o ι-J • u p- 0 rt φ N CΛ Φ
Hl Φ 0 Ω Φ CΛ Hi Hl Φ rt 3 Φ N P1 € er Φ iQ CΛ τ3 t_j. t-1 O 0Hl Φ 0 Ω Φ CΛ Hi Hl Φ rt 3 Φ NP 1 € er Φ iQ CΛ τ3 t_j. t- 1 O 0
0 tr *U P- P- 0: Hi P- P- 0 Φ P- P- 0 P" Φ P- 0 Φ Φ P- <! P* φ P- iQ H 0 0 CΛ H Φ - rt J Cd rt 0 h-> • o P" 3 cn 0 i-i 0 Ω K 0 cn0 tr * U P- P- 0: Hi P- P- 0 Φ P- P- 0 P "Φ P- 0 Φ Φ P- <! P * φ P- iQ H 0 0 CΛ H Φ - rt J Cd rt 0 h- > • o P "3 cn 0 ii 0 Ω K 0 cn
P- CΛ INI O 0 • CΛ 0 <! 0 0 Φ Φ Φ Hi α cn α P- o 0 tr O: oP- CΛ INI O 0 • CΛ 0 <! 0 0 Φ Φ Φ Hi α cn α P- o 0 tr O: o
0 rt Φ 0 J* rt P- 0 3 Hi α P- !_.. α Φ 0 Φ y tu rt O Ω P1 0 tr O α φ P- Φ P- 1 0 0 . 0 iQ es 0 0 Φ 3 0 l-i 0 3 rt tr P- N 0 Φ Φ0 rt Φ 0 J * rt P- 0 3 Hi α P-! _ .. α Φ 0 Φ y tu rt O Ω P 1 0 tr O α φ P- Φ P- 1 0 0. 0 iQ es 0 0 Φ 3 0 li 0 3 rt tr P- N 0 Φ Φ
0 rt CΛ CΛ w rt Φ O öo Φ φ Φ Φ n ** TJ rt Φ rt 0 Φ Φ 00 rt CΛ CΛ w rt Φ O öo Φ φ Φ Φ n * * TJ rt Φ rt 0 Φ Φ 0
Φ ö J o P- « CΛ φ PJ 11 i-i cn cn 1 a H P- P- Hi pj: ι-i 0 αΦ ö J o P- «CΛ φ PJ 11 ii cn cn 1 a H P- P- Hi pj: ι-i 0 α
CΛ P- 0 e rt s O 0 1 CΛ PJ: M ^Ö Λ ^ er 0 O o 0 rt 3 Φ αCΛ P- 0 e rt s O 0 1 CΛ PJ: M ^ Ö Λ ^ er 0 O o 0 rt 3 Φ α
O 0 0 Φ P- 0 0 CΛ 33 P- rt φ N W Φ S o Φ 0 0 s: cn P-, e p- cn oO 0 0 Φ P- 0 0 CΛ 33 P- rt φ N W Φ S o Φ 0 0 s: cn P-, e p- cn o
Φ W P- O 0 Hi P- Φ φ Cd Ξ 0 iQ 1 g l-i P- ι Φ ι O p- rt 3 φ 0 rt rt 0 0 *Ö < H 3 <l φ 0 Φ CΛ 3 rt φ cn 0 P- φ CΛ Φ 3 Φ tu P-Φ W P- O 0 Hi P- Φ φ Cd Ξ 0 iQ 1 g li P- ι Φ ι O p- rt 3 φ 0 rt rt 0 0 * Ö <H 3 <l φ 0 Φ CΛ 3 rt φ cn 0 P- φ CΛ Φ 3 Φ tu P-
0 0 P- H V 0 rt Hl σ J O: P- P, < 0 H Hi P- cn 0 P- H P- CΛ 00 0 P- HV 0 rt Hl σ JO: P- P , <0 H Hi P- cn 0 P- H P- CΛ 0
0 K P- O er JV o Φ 0 Φ Hi 0 P-1 rt o CΛ 0 0 t Φ Ω φ P- υ5 φ Φ P-0 K P- O er JV o Φ 0 Φ Hi 0 P- 1 rt o CΛ 0 0 t Φ Ω φ P- υ5 φ Φ P-
0 0 0 H Φ 0 •ö 0 <J P- 0 Hi P1 Φ 0 rt P- ι 0 0 tr φ 0 CΛ P- iQ φ0 0 0 H Φ 0 • ö 0 <J P- 0 Hi P 1 Φ 0 rt P- ι 0 0 tr φ 0 CΛ P- iQ φ
0 3 et o O CΛ O PJ 0 Φ P- 0 φ P- Φ ? 0 CΛ cn rt 3 0 ι ; φ CΛ Φ Hi rt er 0 0 P- H 0 0 υ3 0 v H Ω 3 0 0 p- rt P- t PJ p H P- CΛ H φ0 3 et o O CΛ OP J 0 Φ P- 0 φ P- Φ? 0 CΛ cn rt 3 0 ι; φ CΛ Φ Hi rt er 0 0 P- H 0 0 υ3 0 v H Ω 3 0 0 p- rt P- t P J p H P- CΛ H φ
Φ o Φ Ω O rt 3 0 Φ CΛ P- α cn tr rt LQ cn Φ P- rt φ * Φ ^ P- 0: 0Φ o Φ Ω O rt 3 0 Φ CΛ P- α cn tr rt LQ cn Φ P- rt φ * Φ ^ P- 0: 0
0 P- cn tr P- Φ 0 o tT1 Hi Φ 0 PJ rt cn P- CΛ cn ι-i 0 P- φ O 0 0 ι rt0 P- cn tr P- Φ 0 o tT 1 Hi Φ 0 PJ rt cn P- CΛ cn ι-i 0 P- φ O 0 0 ι rt
Φ er CΛ O 0 3 Φ Φ cn φ P- o CΛ rt α rt P- " P- 0 0 01 Φ cn H Φ er PJ CΛ 0 Φ P. cn Φ 0 « 0 P- cn 0 P- 0 ? φ CΛ 0 0 φ P1 0 0Λ er CΛ O 0 3 Φ Φ cn φ P- o CΛ rt α rt P- "P- 0 0 01 Φ cn H Φ er PJ CΛ 0 Φ P. cn Φ 0« 0 P- cn 0 P- 0? Φ CΛ 0 0 φ P 1 0 0
>< N H • 0 *> φ Φ H CΛ O Pd 0 ^ CΛ rt rt O φ H Ω φ er 0 w er> <N H • 0 *> φ Φ H CΛ O Pd 0 ^ CΛ rt rt O φ H Ω φ er 0 w er
0 N z. rt CΛ PJ l-i cn rt s ^P P- φ 0 cn N p- i-i H tr cn CΛ o Φ Φ0 N z. rt CΛ P J li cn rt s ^ P P- φ 0 cn N p- ii H tr cn CΛ o Φ Φ
Ω Ξ IN) • φ rt Φ N n PJ Ω CΛ 'SΩ Ξ IN) • φ rt Φ N n P J Ω CΛ 'S
P, rt Φ g Φ 3 cn Ω < : 0 O ι-( c Ji 0 3 0 tr P- φ l-i Φ 0 t Φ SM H 0 3 P- £> P- CΛ _ 0 0 Φ t→ 0 P- Cd tr P- T3 Φ CΛP , rt Φ g Φ 3 cn Ω <: 0 O ι- (c Ji 0 3 0 tr P- φ li Φ 0 t Φ SM H 0 3 P- £> P- CΛ _ 0 0 Φ t → 0 P- Cd tr P- T3 Φ CΛ
H cn P* CL 3 <! 3 0 rt 0 Φ 0 tu H rt ιP 0 0 rt 0 0: v o 0 cn er o O P« φ INI Φ φ cn • P- CΛ P- CΛ «5 0 O Φ rt ιp ι-i N rt 0 0 0 CΛ n tr Φ l-i φ W e? P- O y CΛ . 0 es 3 N 0 Φ α ( N 0 φ Φ Φ φ Φ 0 s: N CΛ CΛ 0 0 J Φ '•Q P- φ φ 0 cn N N φ 0 0 Φ 0 P-H cn P * CL 3 <! 3 0 rt 0 Φ 0 tu H rt ιP 0 0 rt 0 0: vo 0 cn er o OP « φ INI Φ φ cn • P- CΛ P- CΛ« 5 0 O Φ rt ιp ι-i N rt 0 0 0 CΛ n tr Φ li φ W e? P- O y CΛ. 0 es 3 N 0 Φ α ( N 0 φ Φ Φ φ Φ 0 s: N CΛ CΛ 0 0 J Φ '• Q P- φ φ 0 cn NN φ 0 0 Φ 0 P-
• >u p- O: cn CΛ O Ω rt 0 , Φ CΛ P- o 0 π3 0 l-i 0 y rt H rt•> u p- O: cn CΛ O Ω rt 0, Φ CΛ P- o 0 π3 0 l-i 0 y rt H rt
0 φ φ iQ rt rt u3 " P- <! i P- rt t- CΛ φ sQ 0: LP o Φ Φ p- 00 φ φ iQ rt rt u3 "P- <! I P- rt t- CΛ φ sQ 0: LP o Φ Φ p- 0
W N Cd 0 0 Φ PJ PJ 3 Φ H o s, 0 0: Φ 0 p- Φ P- ι- Φ rt 0 l-i CΛ 0W N Cd 0 0 Φ PJ PJ 3 Φ H o s, 0 0: Φ 0 p- Φ P- ι- Φ rt 0 l-i CΛ 0
0 P- y φ H 0 rt P- iQ 0 0 φ 0 rt H O Φ 0 sQ H φ P- rt CΛ N *ü rt ^P0 P- y φ H 0 rt P- iQ 0 0 φ 0 rt H O Φ 0 sQ H φ P- rt CΛ N * ü rt ^ P
Φ »-{ < rt 0 α P- l-J Φ 0 l-i Ω CΛ rt H n Φ 0 y o Φ ~- 0 o 0 Cd CΛ α H- PJ o s: 0 O er P- P- Φ • 3 0 φ ^u a P- 0 0 0 t. o tu tr l-i 0 "3 α 0 Φ cn 0 Φ <i 0 N • H1 0 o PJ <! Φ P- φΦ »- {<rt 0 α P- lJ Φ 0 li Ω CΛ rt H n Φ 0 yo Φ ~ - 0 o 0 Cd CΛ α H- PJ os: 0 O er P- P- Φ • 3 0 φ ^ and others P- 0 0 0 t. o tu tr li 0 "3 α 0 Φ cn 0 Φ <i 0 N • H 1 0 o P J <! Φ P- φ
<ι CΛ 0 3 >"* Φ N P- P. O ö I-1 s: 0 cn 0: rt Φ Φ ι H- ^<ι CΛ 0 3>"* Φ N P- P. O ö I- 1 s: 0 cn 0: rt Φ Φ ι H- ^
Φ •< P- Φ y cn s: Φ φ Q. φ 0 P- φ ö 0 φ p- er 3 H rt Φ Φ Φ "Φ • <P- Φ y cn s: Φ φ Q. φ 0 P- φ ö 0 φ p- er 3 H rt Φ Φ Φ "
H 0 iQ 0 Pd 0 0 0 H φ 3 CΛ φ P- 0 P- 0 rt Φ P- er Φ l-J HH 0 iQ 0 Pd 0 0 0 H φ 3 CΛ φ P- 0 P- 0 rt Φ P- er Φ l-J H
Ω Φ • w 0 Cd n H Hi rt l-i 0 Φ CΛ rt CΛ Ω P- H CΛ Φ pj: tu Hl tr H Φ tr Jfcl 0 0 v 0 • tß Cd P- o Φ tr O ^ rt Φ CΛ ^ tu rt 0 :Ω Φ • w 0 Cd n H Hi rt li 0 Φ CΛ rt CΛ Ω P- H CΛ Φ pj: tu Hl tr H Φ tr Jfcl 0 0 v 0 • tß Cd P- o Φ tr O ^ rt Φ CΛ ^ tu rt 0:
0 n pj: H • P- Φ Φ H N 0 0 er CΛ rt 0 0 -« l CΛ Φ 0 Φ cn H0 n pj: H • P- Φ Φ H N 0 0 er CΛ rt 0 0 - «l CΛ Φ 0 Φ cn H
0 o rt Hi P3 1—1- * CΛ P- s: . φ Φ P- 0 T3 Φ 0 cn p-0 o rt Hi P3 1—1- * CΛ P- s:. φ Φ P- 0 T3 Φ 0 cn p-
CΛ O Cd Φ Φ Ω 0 CΛ 0 φ er ι n er CD iQ Φ O N 11 0 P- N CΛ Q.CΛ O Cd Φ Φ Ω 0 CΛ 0 φ er ι n er CD iQ Φ O N 11 0 P- N CΛ Q.
N P- P" P- α α ι-i tr P- Φ Φ Φ Φ 0 P- φ Φ rt 0 0 0 rt CΛ 0 cn ΦN P- P "P- α α ι-i tr P- Φ Φ Φ Φ 0 P- φ Φ rt 0 0 0 rt CΛ 0 cn Φ
0 CΛ <P Φ o pj: P1 N 3 P. rt <! H φ 0 0 0 0 P- CΛ Hi • N CΛ rt 00 CΛ <P Φ o pj: P 1 N 3 P. rt <! H φ 0 0 0 0 P- CΛ Hi • N CΛ rt 0
Hl P- 0 rt CΛ O rt o 0 P- Φ Φ o pi: H rt Φ Φ 0 Hi rt rt 0:Hl P- 0 rt CΛ O rt o 0 P- Φ Φ o pi: H rt Φ Φ 0 Hi rt rt 0:
0: Φ CΛ Φ tr CΛ cn rt ι-i 0 l-i rt CΛ Φ Ω ι-i 1-1 φ CΛ CΛ ι-s α er rt α tr H N 0 0" ω Hl cn rt rt tr 0 ^ 3 P- O 0: P- s: rt Φ p- 00: Φ CΛ Φ tr CΛ cn rt ι-i 0 li rt CΛ Φ Ω ι-i 1-1 φ CΛ CΛ ι-s α er rt α tr HN 0 0 "ω Hl cn rt rt tr 0 ^ 3 P- O 0: P- s: rt Φ p- 0
H rt P- P CΛ Φ Φ <i φ H Φ es ts Φ Φ -* er π- Φ ιp tr φ Φ P- l-i O cn φ Φ 3 § 1 0 H O 0: P- s: φ P- Hl 0 P- tr Φ cn 0 P- H O P1 0H rt P- P CΛ Φ Φ <i φ H Φ es ts Φ Φ - * er π- Φ ιp tr φ Φ P- li O cn φ Φ 3 § 1 0 HO 0: P- s: φ P- Hl 0 P- tr Φ cn 0 P- HOP 1 0
0 01 0 ^ - 0 P- }-• 0: α H o rt H O 0 CΛ Φ 0 0 Pd0 0 1 0 ^ - 0 P-} - • 0: α H o rt HO 0 CΛ Φ 0 0 Pd
CD Φ Φ φ 1 Φ H 0 rt 1 P- rt P- Φ Ό Φ H-CD Φ Φ φ 1 Φ H 0 rt 1 P- rt P- Φ Ό Φ H-
P- er CΛ 3 Φ Ö3 Φ I cn 0 1 ι-i 1P- er CΛ 3 Φ Ö3 Φ I cn 0 1 ι-i 1
1 1 1 1 1 1 1 1
OJ oo > IV) P1 P>OJ oo> IV) P 1 P>
Cπ o Cπ o Cn o CπCπ o Cπ o Cn o Cπ
P- ;*r CΛ 3 rt Ω Td > rt 03 Hi er ^0 φ Φ rt Φ P- tr 0 φ O Φ Φ φP-; * r CΛ 3 rt Ω Td> rt 03 Hi er ^ 0 φ Φ rt Φ P- tr 0 φ O Φ Φ φ
CΛ P- 0 0 O H 01 Hl P- 03 iV tr rt 3 o cn ^P 03 rt rtCΛ P- 0 0 O H 01 Hl P- 03 iV tr rt 3 o cn ^ P 03 rt rt
Pd Φ P- φ φ 0 rt Φ •Pd Φ P- φ φ 0 rt Φ •
P- O CΛ φ Φ 0 er Φ P- φ 0P- O CΛ φ Φ 0 er Φ P- φ 0
3 tu 0 cn P- 0 Φ 0 0 v rt ö3 tu 0 cn P- 0 Φ 0 0 v rt ö
P- 0 0 0 cx 0 0P- 0 0 0 cx 0 0
0 rt z 0 cn ffi φ (X t CΛ 0 03 i Φ ιp n Φ φ P- sQ P- <0 rt z 0 cn ffi φ (X t CΛ 0 03 i Φ ιp n Φ φ P- sQ P- <
0 P- " l-i P- tp 0 o0 P- "l-i P- tp 0 o
<! rt P- 0 P, ι-3 rt 0 01 ,<! rt P- 0 P, ι-3 rt 0 01,
Φ <Q Φ 0 o p- <! Hi 0 Φ NΦ <Q Φ 0 o p- <! Hi 0 Φ N
<! H Φ cn w < 3 o Φ P- φ<! H Φ cn w <3 o Φ P- φ
0 PJ tr 1 φ P- l-i 0 0 P P-0 P J tr 1 φ P- li 0 0 P P-
0 φ P w H, 0 P-1 CΛ 0 Φ 0 Ω0 φ P w H, 0 P- 1 CΛ 0 Φ 0 Ω
Ω cn P- o iP p- rt 0 cn 0 trΩ cn P- o iP p- rt 0 cn 0 tr
Φ rt cx 3 3 <! Φ Φ 0 ΦC rt cx 3 3 <! Φ Φ 0 Φ
1 Φ P- 3 o > v ι-i x ι-3 01 Φ P- 3 o> v ι-i x ι-3 0
S! < 0 0 0 (X φ Φ P- cx φ 0 Φ ιp 0 < 0 N H 3 0 0S! <0 0 0 (X φ Φ P- cx φ 0 Φ ιp 0 <0 N H 3 0 0
H 0 l-i P- φ 0 0 P- 03 0 rt Hl 3 ? P- 0 Φ 0 P.H 0 l-i P- φ 0 0 P- 03 0 rt Hl 3? P- 0 Φ 0 P.
Φ i P- 9 0 0 Ω CΛ φ <P Cd cn H Φ <! rt φ Φ *< 0 tuΦ i P- 9 0 0 Ω CΛ φ <P Cd cn H Φ <! rt φ Φ * <0 tu
0 P. 0 P- i-i Cd 0 φ φ α 0 φ 0 o Φ H Ω 0 CX ιp rt0 P. 0 P- i-i Cd 0 φ φ α 0 φ 0 o Φ H Ω 0 CX ιp rt
0 0 Ω φ P- Hi tr < Φ H0 0 Ω φ P- Hi tr <Φ H
H Φ CΛ H 0 P- l-i tu 0 H 0H Φ CΛ H 0 P- l-i tu 0 H 0
Ω φ z 1 CΛ 03 Φ 0 o 0 0 pj: i tr P- 55 "< rt CΛ cx 03 Ω rtΩ φ z 1 CΛ 03 Φ 0 o 0 0 pj: i tr P- 55 "<rt CΛ cx 03 Ω rt
0 H φ 03 Φ 0 P- P- Φ φ cx ii rt 0 3 03 03 ! P- Φ0 H φ 03 Φ 0 P- P- Φ φ cx ii rt 0 3 03 03! P- Φ
0 H Φ rt Φ o i P- 01 s tr 03 cn 0 Φ 3 N er φ rt φ 00 H Φ rt Φ o i P- 01 s tr 03 cn 0 Φ 3 N er φ rt φ 0
Hl cn CΛ 0 P- P- H 0 l-i CΛ tu Φ w 03 Φ rt rt 0 *< tr 0 cx 0 Φ Φ rt 0 P- Φ 0 0 α 0 0 0 P- 0 • O 01 Ω ΩHl cn CΛ 0 P- P- H 0 l-i CΛ tu Φ w 03 Φ rt rt 0 * <tr 0 cx 0 Φ Φ rt 0 P- Φ 0 0 α 0 0 0 P- 0 • O 01 Ω Ω
< Φ 0 H N 0 0 tr tr φ H *> Ω 0 Φ Cd φ er H l-i tr tr < H 0 P- 3 Φ 0 o<Φ 0 H N 0 0 tr tr φ H *> Ω 0 Φ Cd φ er H l-i tr tr <H 0 P- 3 Φ 0 o
0: 0 0 Φ cx 0 P- H P- 0 rt Hl 0 er N ι rt 0: Ω P- rt cx P- Φ z Φ < Ω tr rt0: 0 0 Φ cx 0 P- H P- 0 rt Hl 0 er N ι rt 0: Ω P- rt cx P- Φ z Φ <Ω tr rt
0 φ Φ φ φ cx ? rt j:0 φ Φ φ φ cx? rt j:
0 0 er P- 0: P, φ ω rt0 0 er P- 0: P, φ ω rt
Hi Φ N rt rt H) 3 P- er CΛ rt ^ P- s: er Φ 03 0 Ω Φ Hl l-i φ Φ Φ 0 tr P- r r P- φHi Φ N rt rt H) 3 P- er CΛ rt ^ P- s: er Φ 03 0 Ω Φ Hl l-i φ Φ Φ 0 tr P- r r P- φ
Φ CΛ { P- P- e H tr rt tr rt rt Φ rt t Φ φ 3 P- P- P1 Φ CΛ {P- P- e H tr rt tr rt rt Φ rt t Φ φ 3 P- P- P 1
Φ 3 Φ cx 0 P- 0 3 Φ φΦ 3 Φ cx 0 P- 0 3 Φ φ
0 Φ Φ 01 3 N Φ H H0 Φ Φ 01 3 N Φ H H
• ι P- tu 3 P- N 0 0 cn• ι P- tu 3 P- N 0 0 cn
0 φ 0 03 CΛ ιp 30 φ 0 03 CΛ ιp 3
0 0 cn Φ 03 •< 3 φ φ 0 i 0 H- P- rt 0 1 0 0 P- o cn 1 s 3 1 Ω0 0 cn Φ 03 • <3 φ φ 0 i 0 H- P- rt 0 1 0 0 P- o cn 1 s 3 1 Ω
Ω 1 Φ 1 tr tr 1 rt Ω 1 Φ 1 tr tr 1 rt
Die Erfindung basiert auf der Einsicht, daß zwar der tatsäch¬ liche Synchronitätsfehler zwischen zwei Basisstationen im Einzelfall eines spezifischen Handover nicht angegeben werden kann, daß es aber in der Regel möglich ist, die Genauigkeit der Synchronitat der zwei Basisstation anzugeben, d.h. eine obere Grenze für den Betrag des Synchronitätsfehlers abzuschätzen, den dieser mit einer vorgegebenen Wahrscheinlichkeit nicht überschreiten wird.The invention is based on the insight that, although the tatsäch ¬ Liche synchronism error between two base stations in the individual case a specific handover can not be specified, but that it is generally possible to specify the accuracy of the Synchronitat the two base stations, that is, an upper limit for estimate the amount of the synchronism error, which it will not exceed with a predetermined probability.
Durch eine Verminderung des von dem Endgerät anhand einerBy reducing the from the terminal using a
Zeitverschiebung zwischen den Zeitnormalen der zwei Basisstationen ermittelten Timing Advance-Wertes, also ein Verzögern des Sendens durch die Teilnehmerstation, in Abhängigkeit von der bekannten Genauigkeit der Synchronitat, wird erreicht, daß das mit vermindertem Timing Advance ausgestrahlte Funksignal des Endgeräts an der zweiten Basisstation zwar möglicherweise nicht unmittelbar zu Beginn des zugeteilten Zeitschlitzes, auf keinen Fall jedoch vor Beginn des Zeitschlitzes, eintrifft. Ein Hineinreichen des Funksignals in die auf den Zeitschlitz folgende Guard Period kann hingegen toleriert werden.Time difference between the time standards of the two base stations determined timing advance value, i.e. a delay in transmission by the subscriber station, depending on the known accuracy of the synchronicity, is achieved that the radio signal of the terminal device transmitted with reduced timing advance may be at the second base station does not arrive immediately at the beginning of the allocated time slot, but in no case before the beginning of the time slot. On the other hand, reaching the radio signal into the guard period following the time slot can be tolerated.
Vorzugsweise beträgt die Verminderung des Timing Advance- Wertes das Zweifache der in Zeiteinheiten angegebenen Genau- igkeit der Synchronitat.The reduction in the timing advance value is preferably twice the accuracy of the synchronicity specified in time units.
Falls die Genauigkeit der Synchronitat zu schlecht ist, könnte eine Verminderung des anhand der gemessenen Zeitverschiebung korrigierten Timing Advance-Wertes dazu führen, daß we- sentliche Teile des Funksignals in die Guard Period oder sogar in den nachfolgenden Zeitschlitz einer anderen Station an der Basisstation hineinfallen. In einem solchen Fall ist es zweckmäßiger, von einer Korrektur des Timing Advance-Wertes völlig abzusehen und zum Senden an die zweite Basisstation einen Timing Advance-Wert von 0 zu verwenden. In diesem Fall ist eine Neumessung des Timing Advance durch die zweite Basisstation unumgänglich. Vorzugsweise wird die Genauigkeit der Synchronitat der zwei am Handover beteiligten Basisstationen dem Endgerät im Laufe des Handover-Prozesses signalisiert. Dies erlaubt es dem Netzbetreiber, für jedes Paar von Basisstationen, die an ei¬ nem Handover beteiligt sein können, die Genauigkeit der Syn¬ chronitat im Einzelfall zu berechnen oder zu messen, und einen so erhaltenen Genauigkeitswert allen Endgeräten zur Verfügung zu stellen, die ein Handover zwischen besagten zwei Basisstationen durchführen müssen.If the accuracy of the synchronicity is too poor, a reduction in the timing advance value corrected on the basis of the measured time shift could result in essential parts of the radio signal falling into the guard period or even into the subsequent time slot of another station on the base station. In such a case, it is more appropriate to completely refrain from correcting the timing advance value and to use a timing advance value of 0 for transmission to the second base station. In this case, a new measurement of the timing advance by the second base station is essential. The accuracy of the synchronicity of the two base stations involved in the handover is preferably signaled to the terminal in the course of the handover process. This allows the network operator, for each pair of base stations that may be involved in ei ¬ nem handover, the accuracy of the Syn ¬ chronitat in individual cases to calculate or measure, and provide a level of accuracy obtained all devices available to that one Have to perform handover between said two base stations.
Alternativ sind auch heuristische Abschätzungen der Genauigkeit der Synchronitat vorstellbar. So kann z.B. angenommen werden, daß die Genauigkeit der Synchronitat proportional zum Abstand zwischen zwei Basisstationen ist. Der Abstand zur ersten Basisstation ist dem Endgerät aus seinem vor dem Handover verwendeten Timing Advance bekannt. Wenn man davon ausgeht, daß der Abstand zur zweiten Basisstation von ähnlicher Größenordnung wie der zur ersten sein wird, so kann das End- gerät direkt aus dem Timing Advance-Wert einen Schätzwert für die Genauigkeit der Synchronitat ableiten.Alternatively, heuristic estimates of the accuracy of the synchronicity are also conceivable. For example, Assume that the accuracy of the synchronicity is proportional to the distance between two base stations. The distance to the first base station is known to the terminal from its timing advance used before the handover. If one assumes that the distance to the second base station will be of the same order of magnitude as that to the first, the terminal can derive an estimate of the accuracy of the synchronicity directly from the timing advance value.
Für die technische Handhabung ist es zweckmäßig, wenn die Paare von Basisstationen des Funk-Kommunikationssystems je nach Genauigkeit ihrer Synchronitat in eine von mehreren Klassen eingeordnet werden, und dem Endgerät jeweils die Klasse signalisiert wird, zu der dasjenige Paar von Stationen gehört, zwischen denen der Handover stattfindet. So kann die Signalisierung der Genauigkeit der Synchronitat auf die Über- tragung einer kleinen Bitzahl begrenzt werden. Wenn das Endgerät die obere Grenze einer solchen Klasse als Wert für die Genauigkeit der Synchronitat annimmt, wird ein verfrühtes Eintreffen des Signals an der Basisstation unabhängig vom tatsächlichem Wert der Genauigkeit sicher vermieden.For technical handling, it is useful if the pairs of base stations of the radio communication system are classified into one of several classes depending on the accuracy of their synchronicity, and the terminal is signaled in each case to the class to which the pair of stations belongs between which the Handover takes place. In this way, the signaling of the accuracy of the synchronicity can be limited to the transmission of a small number of bits. If the terminal takes the upper limit of such a class as the value for the accuracy of the synchronicity, a premature arrival of the signal at the base station is reliably avoided, regardless of the actual value of the accuracy.
Vorzugsweise beträgt die Zahl der Klassen wenigstens drei. Zu diesen Klassen gehört vorzugsweise eine, wo die Genauigkeit der Synchronitat so gut ist, daß von einer Verminderung des anhand der gemessenen Zeitverschiebung korrigierten Timing Advance-Wertes vollends abgesehen werden kann. Eine solche Klasse umfaßt zweckmäßigerweise Paare von Stationen, bei de- nen die Genauigkeit der Synchronitat einen Grenzwert im Bereich 100 - 500 ns nicht überschreitet.The number of classes is preferably at least three. These classes preferably include one where the accuracy the synchronicity is so good that a reduction in the timing advance value corrected on the basis of the measured time shift can be completely dispensed with. Such a class expediently comprises pairs of stations at which the accuracy of the synchronicity does not exceed a limit in the range 100-500 ns.
Eine weitere Klasssenunterteilung grenzt zweckmäßigerweise diejenigen Paare von Stationen, wo eine Verminderung des Ti- ing Advance-Wertes um einen von der Genauigkeit der Synchronitat abgeleiteten Wert sinnvoll ist, gegen jene Paare ab, wo die Genauigkeit der Synchronitat so schlecht ist, daß eine völlige Neubestimmung des Timing Advance durch die zweite Basisstation vorteilhafter ist. Der Grenzwert für diese Unter- teilung liegt zweckmäßigerweise im Berech zwischen 500 ns und 2,5 μs .A further division of the classes expediently distinguishes those pairs of stations where a reduction in the timing advance value by a value derived from the accuracy of the synchronicity makes sense from those pairs where the accuracy of the synchronicity is so bad that a complete redefinition timing advance by the second base station is more advantageous. The limit for this subdivision is expediently between 500 ns and 2.5 μs in the calculation.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels mit Bezug auf die beigefügten Figuren. Es zeigen:Further features and advantages of the invention result from the following description of an exemplary embodiment with reference to the attached figures. Show it:
Fig. 1 ein schematisches Blockdiagramm eines Funk-Kommunikationssystems, in dem die vorliegende Erfindung anwendbar ist;1 is a schematic block diagram of a radio communication system in which the present invention is applicable;
Fig. 2 ein Zeitdiagramm zur Erläuterung der Bestimmung des Timing Advance-Werts durch ein Endgerät im Falle eines Handovers;2 shows a time diagram to explain the determination of the timing advance value by a terminal in the event of a handover;
Fig. 3+4 die Auswirkungen von Synchronitätsfehlern auf die Bestimmung des Timing Advance-Werts;3 + 4 the effects of synchronism errors on the determination of the timing advance value;
Fig. 5 die Berücksichtigung der Genauigkeit der Synchronitat bei der Festlegung eines Timing Advance-Werts durch das Endgerät. 00 00 ro ro P1 5 the consideration of the accuracy of the synchronicity when determining a timing advance value by the terminal. 00 00 ro ro P 1
Cπ o Cπ σ Cπ O cπCπ o Cπ σ Cπ O cπ
<i H Φ 03 0 03 X> tu tu ^ X φ ^ Hl 01 tu rt rt ts cx < CΛ tu t o 3 0 rt Hi er "U<i H Φ 03 0 03 X> tu tu ^ X φ ^ Hl 01 tu rt rt ts cx <CΛ tu t o 3 0 rt Hi er "U
O -> P- 0 P- P- Φ CΛ 0 p- π 0 o p- 0 P- o Φ P- 0 0 Φ P- 0 CΛ 0 P- Φ Φ 0 Φ P-O - > P- 0 P- P- Φ CΛ 0 p- π 0 o p- 0 P- o Φ P- 0 0 Φ P- 0 CΛ 0 P- Φ Φ 0 Φ P-
0 X φ 0 rt 03 03 03 H P> cx LP φ 0 0 03 X l-i l-i o l-i 03 H 01 CΛ n 03 rt 3 H &3 P- LP0 X φ 0 rt 03 03 03 H P> cx LP φ 0 0 03 X l-i l-i o l-i 03 H 01 CΛ n 03 rt 3 H & 3 P- LP
Φ p- P- 03 cn Hi LP • X 01 <P <P P. P- rt 0 er 01 P- o rt Φ rt •Φ p- P- 03 cn Hi LP • X 01 <P <P P. P- rt 0 er 01 P- o rt Φ rt •
0 Ω es O Φ *U rt Φ N φ 1 Ω φ 03 Φ P- ι-i 01 tu 03 P- rt 01 φ o P- >U P- P-0 Ω es O Φ * U rt Φ N φ 1 Ω φ 03 Φ P- ι-i 01 tu 03 P- rt 01 φ o P-> U P- P-
Φ tr Φ 0 Hi 0 0 ι-i ro f tr 0 0 03 Φ 0 03 Φ P- 0 CΛ H 0 0 Φ 0 Φ Φ P1 Φ tr Φ 0 Hi 0 0 ι-i ro f tr 0 0 03 Φ 0 03 Φ P- 0 CΛ H 0 0 Φ 0 Φ Φ P 1
H ≥; φ P- N Φ rt rt 0: 0 P1 0 ö rt 1 ^ 0 ^ N Ω cx rt rt 3 (i- 0 ω 0 P- 3H ≥; φ P- N Φ rt rt 0: 0 P 1 0 ö rt 1 ^ 0 ^ N Ω cx rt rt 3 (i- 0 ω 0 P- 3
P> 0 rt er Φ P- P- Φ Φ rt < 0 P- Hi Φ 0 0 ^ Φ rt 01 φ tr 0 P- 0 O: H LP rt 0 0 N t * 0 Φ P- M 0 0 P- 03 Φ Φ tr rt 0 0 Φ rt P- O rt LP o 01 0 CX Φ - ΦP> 0 rt er Φ P- P- Φ Φ rt <0 P- Hi Φ 0 0 ^ Φ rt 01 φ tr 0 P- 0 O: H LP rt 0 0 N t * 0 Φ P- M 0 0 P- 03 Φ Φ tr rt 0 0 Φ rt P- O rt LP o 01 0 CX Φ - Φ
0 ts O cx rt Φ 0 0 ι-i 1 Ö3 Q Φ P- 0 P. Φ Ω P- L 0 P- P> 03 φ Φ 0 P-0 ts O cx rt Φ 0 0 ι-i 1 Ö3 Q Φ P- 0 P. Φ Ω P- L 0 P- P > 03 φ Φ 0 P-
03 ≥! φ H Φ CΛ Φ S 0 « rt CΛ < H O φ Pd 3 tr O P- P- rt rt H < 03 LP03 ≥! φ H Φ CΛ Φ S 0 «rt CΛ <H O φ Pd 3 tr O P- P- rt rt H <03 LP
P- t\J P- 3 0 P- P- 0 << H CΛ 0 o S Φ 0 1 Φ CΛ 0 N X- 0 o φ Φ N P- rtP- t \ J P- 3 0 P- P- 0 << H CΛ 0 o S Φ 0 1 Φ CΛ 0 N X- 0 o φ Φ N P- rt
03 rt 0 rt Ω 0 0 0 03 Q H P- Φ ^ Cd H 0 cx 0 0 tr H <! φ φ03 rt 0 rt Ω 0 0 0 03 Q H P- Φ ^ Cd H 0 cx 0 0 tr H <! φ φ
CΛ 03 X PJ Φ tr H - Ω N er Ω 3 0 0 s: 0 0 o ι-i 3 Z 0 Φ 0 rt >x) Φ H & rt ι<* 0 ri¬ tr s: Φ tr 0 Ω 0 Φ l-i s Hi P- P- LP "1 tu 0 tr tu φ CΛ H N Hi P-CΛ 03 XP J Φ tr H - Ω N er Ω 3 0 0 s: 0 0 o ι-i 3 Z 0 Φ 0 rt> x) Φ H & rt ι <* 0 ri ¬ tr s: Φ tr 0 Ω 0 Φ li s Hi P- P- LP "1 tu 0 tr tu φ CΛ HN Hi P-
0 3 0 Z ιp Φ CX l-i Φ P- 0 0 tr 0 Hi er p- 1-1 0 P- z CΛ 0 1-3 0 0 P- φ rt !*f P- tt Φ CΛ o P- 0 P- φ 0 0 O cx cx φ CX 0: φ p- n a Φ tr 00 3 0 Z ιp Φ CX li Φ P- 0 0 tr 0 Hi er p- 1-1 0 P- z CΛ 0 1-3 0 0 P- φ rt! * F P- tt Φ CΛ o P- 0 P - φ 0 0 O cx cx φ CX 0: φ p- na Φ tr 0
P- O rt φ P- o rt 03 rt Φ iV ! < Φ cx 0 0 CX 1 Φ 0 LP er 1-1 φ £ rt P" P- ωP- O rt φ P- o rt 03 rt Φ iV ! <Φ cx 0 0 CX 1 Φ 0 LP er 1-1 φ £ rt P "P- ω
O P" φ H Φ P- Φ P- P- 0 0 Φ rt φ 0 P- 0 O tr H rt φ Φ cx < CΛ tr N 0 rtO P "φ H Φ P- Φ P- P- 0 0 Φ rt φ 0 P- 0 O tr H rt φ Φ cx <CΛ tr N 0 rt
0 P- 0 φ H P1 tu 01 0 Ω rt 0 H H Ω Λ1 0 L P- 01 l-i ι-i tu φ φ n Φ rt <! 0 H0 P- 0 φ HP 1 tu 01 0 Ω rt 0 HH Ω Λ 1 0 L P- 01 li ι-i tu φ φ n Φ rt <! 0 h
03 0 rt » 0 P1 0 0 Φ tr P- z Z tr 0 tp P- Φ >u X : 0 K H H o LP 0 tu P- 03 Z Φ rt cx rt tu 3 rt o 03 0 P- t er rt φ ι-i 0 H rt Φ CΛ H er 3 03 03 0 03 X03 0 rt »0 P 1 0 0 Φ tr P- z Z tr 0 tp P- Φ> u X: 0 KHH o LP 0 tu P- 03 Z Φ rt cx rt tu 3 rt o 03 0 P- t er rt φ ι-i 0 H rt Φ CΛ H er 3 03 03 0 03 X
CΛ Φ 01 0 CX rt "> P- 0 0 rt 0 l-i φ 0 P- v Φ Φ P- P- 3 0 P- rt P- rtCΛ Φ 01 0 CX rt "> P- 0 0 rt 0 l-i φ 0 P- v Φ Φ P- P- 3 0 P- rt P- rt
P> H Φ 0 φ o 03 ffi P-. CΛ 0 cx - rt H o φ < 0 Ω 0 0 03 0 rt Φ 0 S φ 0 rt 0 cx E CX 0 l-i 0 P- 0 P- 03 rt rt p rt 0 H φ 0 rt tr Φ 03 φ P- P1 CX o 3 l-i er x φ 0 0 0: 03 0 φ * P- Φ Φ Φ 03 O: H P- Φ z rt P- φ ι_ι. P1 er pj:P> H Φ 0 φ o 03 ffi P-. CΛ 0 cx - rt H o φ <0 Ω 0 0 03 0 rt Φ 0 S φ 0 rt 0 cx E CX 0 li 0 P- 0 P- 03 rt rt p rt 0 H φ 0 rt tr Φ 03 φ P- P 1 CX o 3 left x φ 0 0 0: 03 0 φ * P- Φ Φ Φ 03 O: H P- Φ z rt P- φ ι_ι. P 1 er pj:
N P- φ 0 α ι-J rt cx 03 X 03 O P- Hi H cn 03 Z O 0 p- •u 0 0 0 Φ φ P- P Φ z 03 0 P- iP cx φ rt o rt 0 CΛ 0 Hl * rt φ P- 0 CX Φ 0 rt φ • s: 0 er Φ P-N P- φ 0 α ι-J rt cx 03 X 03 O P- Hi H cn 03 ZO 0 p- • u 0 0 0 Φ φ P- P Φ z 03 0 P- iP cx φ rt o rt 0 CΛ 0 Hl * rt φ P- 0 CX Φ 0 rt φ • s: 0 er Φ P-
• rt tu Φ Φ φ 01 l-i 0 < & Φ Φ • es 03 0 3 CΛ Φ 0 P- Φ • Φ <J 0 φ 03 0 P- rt φ X 3 0 03 w 5 Φ rt s: cx Φ 0 φ o < j P- tS! Φ <! Φ tu z i N rt φ 0 N P- H 0 Φ rt φ tu P1 Φ P- φ Hi P- rt CΛ 0 φ φ t-1 S3 P- H Φ 03• rt tu Φ Φ φ 01 li 0 <& Φ Φ • es 03 0 3 CΛ Φ 0 P- Φ • Φ <J 0 φ 03 0 P- rt φ X 3 0 03 w 5 Φ rt s: cx Φ 0 φ o <j P- tS! Φ <! Φ tu zi N rt φ 0 N P- H 0 Φ rt φ tu P 1 Φ P- φ Hi P- rt CΛ 0 φ φ t- 1 S3 P- H Φ 03
CΛ P. 0 P- z Φ 0 CX z O 03 er Φ P- 0 P" 3 ι-i rt O 0 es Z Ω φ H cx CΛ Φ φ 3 H ro P- 03 0 φ φ 0 <i 03 Φ Φ 3 0 03 φ Φ CX • P1 tr φ 0 tr 0 er φ P- tr P- Hl *U φ 0 P- P1 0 P- P- o 0 P- Φ φ P- 0 0 i Φ P-1 0 P- H N rt 0 rt 0 0CΛ P. 0 P- z Φ 0 CX z O 03 er Φ P- 0 P "3 ι-i rt O 0 es Z Ω φ H cx CΛ Φ φ 3 H ro P- 03 0 φ φ 0 <i 03 Φ Φ 3 0 03 φ Φ CX • P 1 tr φ 0 tr 0 er φ P- tr P- Hl * U φ 0 P- P 1 0 P- P- o 0 P- Φ φ P- 0 0 i Φ P- 1 0 P- HN rt 0 rt 0 0
0 P- rt 0 0 tu 0 0 0 P- H 03 σ Φ P- P1 P. P- tu 0 0 Φ rt tr 00 P- rt 0 0 tu 0 0 0 P- H 03 σ Φ P- P 1 P. P- tu 0 0 Φ rt tr 0
0 CJ. 0 φ tu tu CΛ i • Φ 03 3 i P- 0 0 rt φ φ rt CΛ cx tu 3 ι-i P" H X0 CJ. 0 φ tu tu CΛ i • Φ 03 3 i P- 0 0 rt φ φ rt CΛ cx tu 3 ι-i P "H X
03 Φ P- 0 03 P- •u 0 to φ er Φ S3 rt p- Φ 03 03 P- φ 3 rt P1 0 0 P- tr 03 0 Φ 1 0 Z P, 0 03 P- tr P- 03 P- cx P- H φ 0 rt 3 rt φ 0 es 03 0 cn 0 p- Z 0 0 «03 Φ P- 0 03 P- • u 0 to φ er Φ S3 rt p- Φ 03 03 P- φ 3 rt P 1 0 0 P- tr 03 0 Φ 1 0 ZP, 0 03 P- tr P- 03 P - cx P- H φ 0 rt 3 rt φ 0 es 03 0 cn 0 p- Z 0 0 «
Φ Φ φ φ P- 0 0 * P- P- 0 φ iP 03 P- rt Φ Φ 3 0 tu rt ιp P- φ i o tr P- H CΛ 03 cx φ 03 0 Φ 03 Φ rt 03 P- P- P- CJ. H cx 0 Φ tu 03 φ P- i 0 sΦ Φ φ φ P- 0 0 * P- P- 0 φ iP 03 P- rt Φ Φ 3 0 tu rt ιp P- φ io tr P- H CΛ 03 cx φ 03 0 Φ 03 Φ rt 03 P- P- P- CJ. H cx 0 Φ tu 03 φ P- i 0 s
Φ P- 03 0 03 H H 0 φ O 0 0 φ O cx Φ er X CΛ N 03 03 03 CΛ 01 0 3Φ P- 03 0 03 H H 0 φ O 0 0 φ O cx Φ er X CΛ N 03 03 03 CΛ 01 0 3
0 03 ^i JΛ rt tO rt cx Pd 0 0 0 03 cx er P- cn N LP P1 IV) 0 rt rt p- φ rt ≤; 00 03 ^ i JΛ rt tO rt cx Pd 0 0 0 03 cx er P- cn N LP P 1 IV) 0 rt rt p- φ rt ≤; 0
• P- 0 0 πj 0 0 Φ Φ P- 0 0 ^ 0 0 O φ z φ Φ • 0 0 Φ Φ 0• P- 0 0 πj 0 0 Φ Φ P- 0 0 ^ 0 0 O φ z φ Φ • 0 0 Φ Φ 0
N tr rt Φ er P- rt 3 l-i 3 0 φ 3 Ω Φ f ι-< z rt Φ CX P- α 0 • 3 P- 0 P- 03 P- cx 0 01 φ tr 3 <! 0 0= Φ C-l φ P- P- Φ XN tr rt Φ er P- rt 3 li 3 0 φ 3 Ω Φ f ι- <z rt Φ CX P- α 0 • 3 P- 0 P- 03 P- cx 0 01 φ tr 3 <! 0 0 = Φ Cl φ P- P- Φ X
0 3 φ o H) 0 H O H rt 0 φ 01 i-i O 0 INI rt P- φ 0 o 0 0 Φ & 00 3 φ o H) 0 H O H rt 0 φ 01 i-i O 0 INI rt P- φ 0 o 0 0 Φ & 0
03 cx 0 0 Φ 0 Ω 0 cx Φ (P 1-1 s: Φ 0 P- 0 3 to 0 cx p- 0 Φ p- 0 0 rt03 cx 0 0 Φ 0 Ω 0 cx Φ ( P 1-1 s: Φ 0 P- 0 3 to 0 cx p- 0 Φ p- 0 0 rt
INI 0 φ y Hi tr Φ φ 0 φ Φ P- 01 0 cx 1 S Φ φ LQ CΛ 3 φ es H P-INI 0 φ y Hi tr Φ φ 0 φ Φ P- 01 0 cx 1 S Φ φ LQ CΛ 3 φ es H P-
CNJ Φ H N 0 rt Φ 0 0 > l-i p, 0 Z * P- 0 cn « 0 CΛ 03 1 03 0 S oCNJ Φ H N 0 rt Φ 0 0> l-i p, 0 Z * P- 0 cn «0 CΛ 03 1 03 0 S o
Φ P- O 0 φ 0 es • P" Cd X X φ P- 0 cx Φ 03 CΛ o 0 ≥: 03 rt o tu φ 10 CΛ P- 0Φ P- O 0 φ 0 es • P "Cd X X φ P- 0 cx Φ 03 CΛ o 0 ≥: 03 rt o tu φ 10 CΛ P- 0
P- rt t t P- φ Hl 0 < INI φ φ Ω Φ 0 S 3 Hi 0 0 o φ o 0 0 O 03 03 rt X) Φ CΛ CΛ Φ P- C-l 0 03 0 φ 0 Cd tr 0 α 1 tr 0 Ω P1 0 0 03 g 0 rt 03P- rt tt P- φ Hl 0 <INI φ φ Ω Φ 0 S 3 Hi 0 0 o φ o 0 0 O 03 03 rt X) Φ CΛ CΛ Φ P- Cl 0 03 0 φ 0 Cd tr 0 α 1 tr 0 Ω P 1 0 0 03 g 0 rt 03
0 0 N X P» * rt φ P1 P- 0 P- P- φ ι-i φ ts 0 CΛ 0 0: Hi tr Ω cn rt P- o LP •0 0 NXP »* rt φ P 1 P- 0 P- P- φ ι-i φ ts 0 CΛ 0 0: Hi tr Ω cn rt P- o LP •
O 0 £ 0 0 tu 0 CX 03 Ω rt 0 i-i o 0 Φ H •< 0 P" er l-i tr H 03 er cx cnO 0 £ 0 0 tu 0 CX 03 Ω rt 0 i-i o 0 Φ H • <0 P "er l-i tr H 03 er cx cn
H ; Φ Ω H Ω φ 01 φ 3 03 CΛ P- Ω 01 P- rt 0 P- φ φ o 03 p- N P- tu rtH ; Φ Ω H Ω φ 01 φ 3 03 CΛ P- Ω 01 P- rt 0 P- φ φ o 03 p- N P- tu rt
3 rt P- rt tu tr Φ tr Φ rt 0 o Ω P- P- cx rt tr rt • 0 Ω p- rt P1 0 φ 03 Φ3 rt P- rt tu tr Φ tr Φ rt 0 o Ω P- P- cx rt tr rt • 0 Ω p- rt P 1 0 φ 03 Φ
0 ω H P- 03 tu P- 0 φ 1 0 tr 3 03 P- 3 Φ 0 Φ tr tu 0 0 S0 ω H P- 03 tu P- 0 φ 1 0 tr 3 03 P- 3 Φ 0 Φ tr tu 0 0 S
\-> 3 rt cn , to o P Φ 0 0 rt P- rt P, H P- φ 0 cx 3 1 rt 0 φ φ rt φ Φ 0 g CΛ\ -> 3 rt cn, to o P Φ 0 0 rt P- rt P , H P- φ 0 cx 3 1 rt 0 φ φ rt φ Φ 0 g CΛ
II Φ Φ 0 1 0 1 Φ P- 0 P- φ 0: Φ H P- ^ Φ 1 H l-i P- ι-i P- 0II Φ Φ 0 1 0 1 Φ P- 0 P- φ 0: Φ H P- ^ Φ 1 H li P- ι-i P- 0
≥; o 1 3 P- H O φ 1 l-i 0 H 1 Φ 0 1 1 1 1 1≥; o 1 3 P- H O φ 1 l-i 0 H 1 Φ 0 1 1 1 1 1
P* 1 0 CΛ 0 1 rt 1 P * 1 0 CΛ 0 1 rt 1
erreicht das Endgerät MS zum Zeitpunkt t=dl/c, wobei dl die Weglänge zwischen der Basisstation BSl und dem Endgerät MS ist. Diese Verzögerung dl/c ist auch der Wert des Timing Ad¬ vance TA1, den das Endgerät MS zum Senden an die Basisstation BSl verwendet.reaches the terminal MS at time t = dl / c, where dl is the path length between the base station BS1 and the terminal MS. This delay dl / c is also the value of the timing ad vance ¬ TA1, which the terminal MS is used for transmitting to the base station BSl.
Die Teilnehmerstation MS verwendet für die zeitliche Steuerung ihrer Aufgaben vor dem Handover eine lokale Zeitskala, die an das von der Basisstation BSl übertragene Zeitnormal angelehnt ist. Man kann den Zeitpunkt des Eintreffens desThe subscriber station MS uses a local time scale for the time control of its tasks before the handover, which is based on the time standard transmitted by the base station BS1. You can see the time of arrival
Zeitnormals Nl an der Teilnehmerstation MS als Nullpunkt tλ=0 ihrer auf die Basisstation BSl bezogenen Zeitskala tx definieren.Define time standard Nl at the subscriber station MS as the zero point t λ = 0 of its time scale t x related to the base station BSl.
Dem Endgerät MS ist ein Zeitintervall zum Senden an die Basisstation BSl zugeteilt, das zu einem Zeitpunkt t=tl beginnt und durch einen schraffierten Abschnitt entlang der Zeitachse der Basisstation BSl symbolisiert ist. Damit das vom Endgerät MS ausgestrahlte Signal die Basisstation BSl innerhalb dieses Zeitfensters erreicht, muß es bereits zu einem Zeitpunkt t=tl-TAl zu senden beginnen. Da die lokale Zeitskala des Endgeräts gegenüber der der Basisstation BSl um TA1 nachgeht, entspricht dies auf der Zeitskala tλ des Endgeräts den Zeitpunkt tΛ=tl-2xTAl.The terminal MS is assigned a time interval for sending to the base station BSl, which begins at a time t = tl and is symbolized by a hatched section along the time axis of the base station BSl. In order for the signal emitted by the terminal MS to reach the base station BS1 within this time window, it must begin to transmit at a time t = tl-TAl. Since the local time scale of the terminal device follows that of the base station BS1 by TA1, this corresponds to the time t Λ = tl-2xTAl on the time scale t λ of the terminal device.
Das Zeitnormal N2 der Basisstation BS2 trifft am Endgerät MS um Δt=(d2-dl)/c später ein als das Zeitnormal Nl, wobei d2 der Abstand zwischen Basisstation BS2 und Endgerät MS ist. Das Eintreffen des Zeitnormals N2 definiert für das Endgerät MS einen neuen Nullpunkt tλ =0 seiner lokalen Zeitskala, von dem aus nun der Zeitpunkt zum Senden an die Basisstation BS2 festgelegt wird.The time standard N2 of the base station BS2 arrives later at the terminal MS by Δt = (d2-dl) / c than the time standard N1, where d2 is the distance between the base station BS2 and the terminal MS. The arrival of the time standard N2 defines for the terminal MS a new zero point t λ = 0 of its local time scale, from which the time for sending to the base station BS2 is now determined.
Der Abstand Δt zwischen den EintreffZeitpunkten der zwei Zeitnormale bezeichnet das Maß, um das das Endgerät MS seinen Timing Advance-Wert korrigieren muß, um sich mit der Basisstation BS korrekt verständigen zu können: Das Endgerät MS 00 oo ro ro P> P1 The distance .DELTA.t between the arrival times of the two time standards denotes the amount by which the terminal MS must correct its timing advance value in order to be able to communicate correctly with the base station BS: the terminal MS 00 oo ro ro P> P 1
0π o cπ o Cn o Cπ0π o cπ o Cn o Cπ
CΛ x es > LP 0 * 1 S p. cx 0 OJ. φ 0 P" x t rt cx cs tu LP cx ≥i H tr P- cx •U (X N er P1 CΛ x es> LP 0 * 1 S p. cx 0 OJ. φ 0 P "xt rt cx cs tu LP cx ≥i H tr P- cx • U (XN er P 1
Φ 0 Φ et Φ 0 P- p- p- φ P- Φ p- P P- 0 0 ^ φ Φ oι φ Φ Φ P1 φ tr φ P- φ 0 Φ P-Φ 0 Φ et Φ 0 P- p- p- φ P- Φ p- P P- 0 0 ^ φ Φ oι φ Φ Φ P 1 φ tr φ P- φ 0 Φ P-
0 tr P- rt Φ iP X φ 3 Ω cx 0 P" Φ π 03 II H p- ^ l-i H 0 ^ 0 rt H 0 P l-i 10 φ0 tr P- rt Φ iP X φ 3 Ω cx 0 P "Φ π 03 II H p- ^ li H 0 ^ 0 rt H 0 P li 10 φ
CX Φ rt cx • P- φ • tr o Φ LQ Ω P- rt rt 0 pi: P- N • 03 P-CX Φ rt cx • P- φ • tr o Φ LQ Ω P- rt rt 0 pi: P- N • 03 P-
Φ H P- Φ Ω 0 s g Φ rt Ω H . rt tr 03 *U 03 Ω rt 0 t ≥! N rs tu tu Φ 0 rtΦ H P- Φ Ω 0 s is Ω H. rt tr 03 * U 03 Ω rt 0 t ≥! N rs tu tu Φ 0 rt
0 p- H ö tr O Mi> tr 3 ~> tr Φ CΛ 1 P- X LP 0 IV) N 0 Φ 0 oo 0 00 p- Hö tr O Mi> tr 3 ~> tr Φ CΛ 1 P- X LP 0 IV ) N 0 Φ 0 oo 0 0
N Hi 0 ö PJ 03 X < 03 0 Φ rt ro P 0 N S 03 Z H p- 03 03 CX rt 0 er 0 Hi Cd 03 N N Φ Ω Hi 03 cx Φ 3 P- 0 X . P1 0 CΛ 0 P- 0 P- rt P- N P- φ P1 N Hi 0 ö P J 03 X <03 0 Φ rt ro P 0 NS 03 ZH p- 03 03 CX rt 0 er 0 Hi Cd 03 NN Φ Ω Hi 03 cx Φ 3 P- 0 X. P 1 0 CΛ 0 P- 0 P- rt P- N P- φ P 1
Φ Φ P- 0 φ φ tr 0 O P- H tu rt t-3 0 0 03 P- 03 u 0 03 Φ 01 0 0 cnΦ Φ P- 0 φ φ tr 0 O P- H tu rt t-3 0 0 03 P- 03 u 0 03 Φ 01 0 0 cn
LP 10 H tu H 0 P- N pj: 0 Hi Φ 03 0 tu Φ P- ro ?V er CΛ 03 Ω Ω o o 03 P- CΛ • erLP 10 H tu H 0 P- N pj: 0 Hi Φ 03 0 tu Φ P- ro? V er CΛ 03 Ω Ω o o 03 P- CΛ • er
P- l-i Φ rt 0 "« LP Φ rt LP Φ X P. 03 O ro cx Φ Hi rt tr tr P" i- rt rt 0P- li Φ rt 0 " « LP Φ rt LP Φ X P. 03 O ro cx Φ Hi rt tr tr P "i- rt rt 0
0 o 0 H x tu rt P- N Φ H 0: ιp >< CΛ 0 Φ Φ H : 0 rt φ LP 3 0 rt 0 ö rt φ0 o 0 H x tu rt P- N Φ H 0: ιp> <CΛ 0 Φ Φ H: 0 rt φ LP 3 0 rt 0 ö rt φ
0 EP N Φ 0 CX rt 0 0 0 0 rt Φ 0 Ω P1 X 03 P- Φ P1 rt 0 φ 0 rt rt φ ^ 0 rt Hi φ 01 0 cx PJ 0 φ 03 0 PS 0 tr tu H- φ 0 Ω P* P- p- P- p- H II φ0 EP N Φ 0 CX rt 0 0 0 0 rt Φ 0 Ω P 1 X 03 P- Φ P 1 rt 0 φ 0 rt rt φ ^ 0 rt Hi φ 01 0 cx P J 0 φ 03 0 PS 0 tr tu H - φ 0 Ω P * P- p- P- p- H II φ
• > Hi H P- EP Φ P- LP 0 CX z 0 0= H CΛ Φ l-i tu • tr rt O P- cx O Φ O rt 0•> Hi H P- EP Φ P- LP 0 CX z 0 0 = H CΛ Φ l-i tu • tr rt O P- cx O Φ O rt 0
3 et N 0: 03 0 Ω P- φ LP rt Hi 0 ro LP 0 0 • 0 φ φ X g 0 0 0 tu P1 3 et N 0: 03 0 Ω P- φ LP rt Hi 0 ro LP 0 0 • 0 φ φ X g 0 0 0 tu P 1
CΛ P- Φ rt 03 CX tr P. tu φ i-i 03 H Hi rt <ι cx ü Φ Φ 0 0 3 Φ 0 1 HlCΛ P- Φ rt 03 CX tr P. tu φ i-i 03 H Hi rt <ι cx ü Φ Φ 0 0 3 Φ 0 1 Hl
Φ rt er P- et P- Φ Φ 0 rt <! 0: Hi Hi O iP φ rt ö 0 rt EP 0 lU tu H to P-Er rt he P- et P- Φ Φ 0 rt <! 0: Hi Hi O iP φ rt ö 0 rt EP 0 lU tu H to P-
P- Φ et S 0 φ 0 H H tu 0 O S tr 0 0: 0 0 φ H Φ φ 0 t Cd 0 CΛ 03 3P- Φ et S 0 φ 0 H H tu 0 O S tr 0 0: 0 0 φ H Φ φ 0 t Cd 0 CΛ 03 3
0 cx H X CΛ rt et 0 03 0 0 0 CΛ φ n ι-i 3 l-i l-i N rt P- CX 03 tu H ro rt Pd P-0 cx H X CΛ rt et 0 03 0 0 0 CΛ φ n ι-i 3 l-i l-i N rt P- CX 03 tu H ro rt Pd P-
Φ Φ 0 P- t ι 01 CΛ et 01 P l-i x 0: 0 0 01 0 p- • CΛ P- Je 0Φ Φ 0 P- t ι 01 CΛ et 01 P l-i x 0: 0 0 01 0 p- • CΛ P- 0 each
CΛ H Ω 0 3 O 0 Φ N 1< P- ro rt 0 cx d Φ rt 0 Φ 0 3 pi: rt Φ 0 P1 Φ rt to LPCΛ H Ω 0 3 O 0 Φ N 1 <P- ro rt 0 cx d Φ rt 0 Φ 0 3 pi: rt Φ 0 P 1 Φ rt to LP
P- t P- 0 03 iP 0 3 , 03 cx X H 0 0 0 CΛ 3 03 CΛ 0 0 Ω H Ω Φ p- H P |* et E P- Φ l-i C 1 Φ 01 φ tu P- P1 03 •< LP Φ tr tu tr Φ < 0 P- 0 P-P- t P- 0 03 iP 0 3, 03 cx XH 0 0 0 CΛ 3 03 CΛ 0 0 Ω H Ω Φ p- HP | * et E P- Φ li C 1 Φ 01 φ tu P- P 1 03 • <LP Φ tr tu tr Φ <0 P- 0 P-
0 tu 0 0 0 Hi o Hl 0 0 • >0 tu 0 0 0 Hi o Hl 0 0 •>
0 o Φ Φ rt tu 01 0 P- O cn rt 03 CΛ Hi 03 cx H) φ cx0 o Φ Φ rt tu 01 0 P- O cn rt 03 CΛ Hi 03 cx H) φ cx
0 rt CΛ 03 LP Ω P1 01 0 *< Hi φ CΛ Ω 0 P- 0 S3 0 cx P- Hi 0 H P- Φ Hi P- <0 rt CΛ 03 LP Ω P 1 01 0 * <Hi φ CΛ Ω 0 P- 0 S3 0 cx P- Hi 0 H P- Φ Hi P- <
LP φ P- p. P» rt φ tr Φ Φ rt CΛ 0 rt x 1-1 P- Φ φ L Ω N 0: 03 rt 0 0 φ H Φ 0 0 03 rt 0 P- P- Ω 0 L0 03 LP i 01 H φ tr φ x tr tu φ 0 er H tr 3 rt Φ φ cx O <P cx 03 ts 0 X Φ rt X rt H Φ P- φ Φ CΛ CΛ N 0 ΩLP φ P- p. P »rt φ tr Φ Φ rt CΛ 0 rt x 1-1 P- Φ φ L Ω N 0: 03 rt 0 0 φ H Φ 0 0 03 rt 0 P- P- Ω 0 L0 03 LP i 01 H φ tr φ x tr tu φ 0 er H tr 3 rt Φ φ cx O <P cx 03 ts 0 X Φ rt X rt H Φ P- φ Φ CΛ CΛ N 0 Ω
Φ s3 Φ P- P- rt φ S 0 0 φ 0 φ 0 0: i-i 0 P- 0: rt 3 P> ro 0 Φ φ ts H rt O N 03 P- 0 P- tr cx P- P1 rt 0: c; 0 H φ rt ö X • > 0 H tu 1Φ s3 Φ P- P- rt φ S 0 0 φ 0 φ 0 0: ii 0 P- 0: rt 3 P> ro 0 Φ φ ts H rt ON 03 P- 0 P- tr cx P- P 1 rt 0: c; 0 H φ rt ö X •> 0 H tu 1
P- 0 H Φ 0 rt cx tu 0 Φ φ rt φ rt 3 X CΛ P- 0 tu 0 Ω 0 s!P- 0 H Φ 0 rt cx tu 0 Φ φ rt φ rt 3 X CΛ P- 0 tu 0 Ω 0 s!
0 EP rt P- Φ Φ Φ φ 0 CΛ 03 H H 0 cx l-i rt ro Φ 0 Hi 0 0 ö tr i-i φ0 EP rt P- Φ Φ Φ φ 0 CΛ 03 H H 0 cx l-i rt ro Φ 0 Hi 0 0 ö tr i-i φ
0 cr P- P- t 0 3 g ro Ω φ • £ tu H 0 Hi cx 03 P- ι-i Φ 03 H rt P- P. 0 0 0 CΛ X r P- Cd 0 t tr 03 CΛ 03 rt cx P Φ rt iP φ o Z rt rt0 cr P- P- t 0 3 g ro Ω φ • £ tu H 0 Hi cx 03 P- ι-i Φ 03 H rt P- P. 0 0 0 CΛ X r P- Cd 0 t tr 03 CΛ 03 rt cx P Φ rt iP φ o Z rt rt
0 Φ O Φ Φ ro l Hl 0 0 p- 0 0 03 ö < φ ö P- H Φ φ P. 0 : cx 01 03 ι-i ι-i 0 0 Φ O H φ 03 φ t 0 er 0 II 03 P- er Φ 0 i-i P- tu P- 0 0 H0 Φ O Φ Φ ro l Hl 0 0 p- 0 0 03 ö <φ ö P- H Φ φ P. 0: cx 01 03 ι-i ι-i 0 0 Φ OH φ 03 φ t 0 er 0 II 03 P- er Φ 0 ii P- tu P- 0 0 H
0 3 N p- 0 Ω Ω 03 CX P- 0 03 Φ Ω σ Hi rt 0 0: Φ 0 03 03 0 > tr t Pd 0 0 < tr >P N tr tr Φ φ CΛ cx cx l-i Pd Hi N CX rt 03 0 Ω t0 3 N p- 0 Ω Ω 03 CX P- 0 03 Φ Ω σ Hi rt 0 0: Φ 0 03 03 0> tr t Pd 0 0 <tr> PN tr tr Φ φ CΛ cx cx li Pd Hi N CX rt 03 0 Ω t
Φ 0 P- Φ H Φ 0 i 03 Φ LP tu Φ Hi P- Φ Φ tu P- rt tr CX IIΦ 0 P- Φ H Φ 0 i 03 Φ LP tu Φ Hi P- Φ Φ tu P- rt tr CX II
H cx 3 φ L H Φ N 0 P- α < rt H φ 3 Ω l-i φ 3 H 03 P, ι-i S 01 P- rt P- . — .H cx 3 φ L H Φ N 0 P- α <rt H φ 3 Ω l-i φ 3 H 03 P, ι-i S 01 P- rt P-. -.
LP P- » H 03 0 Φ P- 0 P- Φ t 0 H X tr : t-i P- Φ O Φ CΛ 03 01 o Φ Φ CXLP P- »H 03 0 Φ P- 0 P- Φ t 0 H X tr: t-i P- Φ O Φ CΛ 03 01 o Φ Φ CX
3 φ 0 O X 0 cx Φ H rt tu pj: Hl 0 tr 0 0 0 H N P- rt 0 0 P1 3 φ 0 OX 0 cx Φ H rt tu pj: Hl 0 tr 0 0 0 HN P- rt 0 0 P 1
P- l-i LP Cd EP 0: SO •u φ cx 03 03 P- 0 rt 0 Φ φ 0 LP N XP- l-i LP Cd EP 0: SO • u φ cx 03 03 P- 0 rt 0 Φ φ 0 LP N X
X P- 0 03 03 0 rt l-i 0 φ t-1 φ z LP 03 0 ω tu \ rt pj: P- Φ rt 0 P- tu 0 Φ tu Φ 03 rt Hi es 0 Ω et > 0 0 0/ iP 0 et l-i 0 pi: 03 0 P- "• LP Φ Hi JP > l-i 0 P- 3 rt P- Φ Φ 03 —' φ cx ES 0 3 • ι-i P- 03 rt 03 ω 03 0 > rt 0 0 Φ 0 O tr P- P-X P- 0 03 03 0 rt li 0 φ t- 1 φ z LP 03 0 ω tu \ rt pj: P- Φ rt 0 P- tu 0 Φ tu Φ 03 rt Hi es 0 Ω et> 0 0 0 / iP 0 et li 0 pi: 03 0 P- "• LP Φ Hi JP> li 0 P- 3 rt P- Φ Φ 03 - 'φ cx ES 0 3 • ι-i P- 03 rt 03 ω 03 0> rt 0 0 Φ 0 O tr P- P-
P- +P- +
S < 0 Φ LP φ 03 Hi tu P- 0 rt tu Λ CΛ Hi CΛ H t <! Hi t 03 rt 0 P" rt 03 >S <0 Φ LP φ 03 Hi tu P- 0 rt tu Λ CΛ Hi CΛ H t <! Hi t 03 rt 0 P "rt 03>
0 CΛ 0 0 P- 00 rt P- 0 ω 0 CΛ rt ι< Φ φ 01 CΛ 0 N φ cn P- Φ 01 rt φ 0 03 et tu • 03 N LP 01 iP rt P1 0 g 0 0 to 0 o 3 Φ P- φ O t H rt0 CΛ 0 0 P- 00 rt P- 0 ω 0 CΛ rt ι <Φ φ 01 CΛ 0 N φ cn P- Φ 01 rt φ 0 03 et tu • 03 N LP 01 iP rt P 1 0 g 0 0 to 0 o 3 Φ P- φ O t H rt
H N o cx 03 P- P- φ rt p- • rt T 03 cx P- o P- rt 0 CΛ 03 er 0 HιH N o cx 03 P- P- φ rt p- • rt T 03 cx P- o P- rt 0 CΛ 03 er 0 Hι
0 φ X P- ^ 3 t 0 φ 0 <! O P- O rt φ 3 er φ tu rt 0 Φ ro rt Φ es P- Hi CΛ 0 H P- rt Φ 0 σ O Φ N Φ α 03 Φ O tu N rt P- 030 φ X P- ^ 3 t 0 φ 0 <! O P- O rt φ 3 er φ tu rt 0 Φ ro rt Φ es P- Hi CΛ 0 H P- rt Φ 0 σ O Φ N Φ α 03 Φ O tu N rt P- 03
Φ Hi d Φ Hi Ω < Φ 01 P- t-i 0 P- l-i φ •u N P- Φ * 0 H ü CΛ 01 z II O rtΦ Hi d Φ Hi Ω <Φ 01 P- t-i 0 P- l-i φ • u N P- Φ * 0 H ü CΛ 01 z II O rt
P- H CΛ Φ Φ Ξ P- 0 rt O tr tu 03 CΛ P- 0 o 03 3 0 3 p- P1 φ P- rt 0 • rt 0: to Φ H 03 H P- P- 0 P- CΛ tu P- α rt P1 L rt Ω <i 0 Hi • 0 03 P1 P- H CΛ Φ Φ Ξ P- 0 rt O tr tu 03 CΛ P- 0 o 03 3 0 3 p- P 1 φ P- rt 0 • rt 0: to Φ H 03 H P- P- 0 P- CΛ tu P- α rt P 1 L rt Ω <i 0 Hi • 0 03 P 1
<i tr H Φ φ 1 ι-i φ 0 ro CΛ CΛ Φ φ X 1 Φ tu o ^ Hi α Ω tu tu<i tr H Φ φ 1 ι-i φ 0 ro CΛ CΛ Φ φ X 1 Φ tu o ^ Hi α Ω tu tu
Φ P- 0 0 CX 03 0 P- tu cx P- ro H ι-i 0 φ 0 P 0 N 0 Φ Φ ö Φ tr 0 CΛ 03 i-i 03 N 1 Φ cx 0 CΛ Φ 3 LP • rt 0 Φ 0 1 P- rt Φ 0 t 1 0 rt H ro H P- 1 0 1 φ 0 rt rt rt 03 Φ P- 0 0 CX 03 0 P- tu cx P- ro H ι-i 0 φ 0 P 0 N 0 Φ Φ ö Φ tr 0 CΛ 03 ii 03 N 1 Φ cx 0 CΛ Φ 3 LP • rt 0 Φ 0 1 P- rt Φ 0 t 1 0 rt H ro H P- 1 0 1 φ 0 rt rt rt 03
oo oo ro t P> P1 oo oo ro t P> P 1
Cπ o Cn o Cπ o Cπ o o cn cx 3 03 cn tu ö 0 Φ α et P- 0 L£> rs t cn Hi P- & CΛ tu Q 0 d s: N CΛ CX ffi 03 Φ cnCπ o Cn o Cπ o Cπ o o cn cx 3 03 cn tu ö 0 Φ α et P- 0 L £> rs t cn Hi P- & CΛ tu Q 0 d s: N CΛ CX ffi 03 Φ cn
0 φ P- φ P- rt Φ 0 Φ P- P- P- Φ φ P- Cπ Φ φ 03 0: 0 rt 0 Φ 0 3 Φ 0 P- 0 P- P- P- Ω0 φ P- φ P- rt Φ 0 Φ P- P- P- Φ φ P- Cπ Φ φ 03 0: 0 rt 0 Φ 0 3 Φ 0 P- 0 P- P- P- Ω
I 03 0 rt 0 0 03 3 Ω >P φ K rt o\o P- rt H 01 tr pi: cx 01 H *ö P- LQ -3 φ φ 0 tr tu -3 03 et 0 P- tr Φ 01 pj: rt i-i 0 0 0 LQ rt Hi 03 0 cT H l-i Φ P-I 03 0 rt 0 0 03 3 Ω> P φ K rt o \ o P- rt H 01 tr pi: cx 01 H * ö P- LQ -3 φ φ 0 tr tu -3 03 et 0 P- tr Φ 01 pj: rt ii 0 0 0 LQ rt Hi 03 0 cT H li Φ P-
CΛ Φ rt t tu P- 0 03 t et 0 Φ 0 CΛ rt 0 *Ö Ω P. Φ 0 P- Φ O: P- 0 Φ O 0 P1 rt φ ro l-i 0 P- Φ O P- 03 0 rt 0 ^ P- 0 LP 0 H cx φ l-i l-i φ 0 g P1 φ P- Φ CΛ er rt rt 0 N 0 LP rt cx ιp Cd cx 0 cn Ω 0 cx 01 Hl 0 pi: rt H LP Φ 3 03 0 Ω 0CΛ Φ rt t tu P- 0 03 t et 0 Φ 0 CΛ rt 0 * Ö Ω P. Φ 0 P- Φ O: P- 0 Φ O 0 P 1 rt φ ro li 0 P- Φ O P- 03 0 rt 0 ^ P- 0 LP 0 H cx φ li li φ 0 g P 1 φ P- Φ CΛ er rt rt 0 N 0 LP rt cx ιp Cd cx 0 cn Ω 0 cx 01 Hl 0 pi: rt H LP Φ 3 03 0 Ω 0
0 P- rt 0 Φ 0 L Φ P- ι-i Ω ω tr CX φ P- < rt 03 P- φ 0 rt tr 00 P- rt 0 Φ 0 L Φ P- ι-i Ω ω tr CX φ P- <rt 03 P- φ 0 rt tr 0
0 Pd O ι-i L 0 Φ rt φ N Ω 3 P- tr << et rt Φ l-i >τ) 0 o <! Φ P- Cd N 0 0 P- o INI i-i LQ0 Pd O ι-i L 0 Φ rt φ N Ω 3 P- tr << et rt Φ l-i> τ) 0 o <! Φ P- Cd N 0 0 P- o INI i-i LQ
Ω > 0 Φ P- P- H Φ tr P- tr H 0 01 0 cx 0 Φ 01 ω 3 Φ φ Ω n cx Φ 0 tr k> Φ Hi 0 03 rt O pi: P- Φ rt H o Ω 0: 3 CΛ 0 H • rt X P- 3 tr 1-1 P- P- Hl <!Ω> 0 Φ P- P- H Φ tr P- tr H 0 01 0 cx 0 Φ 01 ω 3 Φ φ Ω n cx Φ 0 tr k> Φ Hi 0 03 rt O pi: P- Φ rt H o Ω 0 : 3 CΛ 0 H • rt X P- 3 tr 1-1 P- P- Hl <!
0 Hi 0 P- 0 rt LP et Φ er P- CΛ > H 0 »u 3 Hl rt cx et φ Φ rt Hi o cx Hl • N Hi ιP CX rt H p- ?v Φ rt "< 0 L P- P- Cd 0 03 0 0 X Hi 0 0 φ : φ 0 Φ tu S • K 0 03 0 H 0 Ω tu 03 LP φ P- 03 0 Ω EP CX rt t Φ H0 Hi 0 P- 0 rt LP et Φ er P- CΛ> H 0 » u 3 Hl rt cx et φ Φ rt Hi o cx Hl • N Hi ιP CX rt H p-? V Φ rt"<0 L P- P- Cd 0 03 0 0 X Hi 0 0 φ: φ 0 Φ tu S • K 0 03 0 H 0 Ω tu 03 LP φ P- 03 0 Ω EP CX rt t Φ H
H H M P- l 0 ι-i CΛ CΛ 0 0 πj P- 0 03 Φ Ω tr CΛ LP • x 0 O iP tr P_ Φ 0 0 roHHM P- l 0 ι-i CΛ CΛ 0 0 πj P- 0 03 Φ Ω tr CΛ LP • x 0 O iP tr P_ Φ 0 0 ro
P- rt P- P1 P> i-i Φ 0 Ω P- tr ι-i P1 φ φ Φ 0 φ CX 3 N 03 01 0 X f - Φ X LP P- CΛ P- pj: 1-1 tr 0 P, o • 3 Cπ 0 cx cx P- l-i p- 0 P- rt 0 t o P- H 0 • 03 •< N cx o ? N 0 cx i-i Φ o 0 pj: 01 φ φ rt Φ φ tu 03 Φ 01 ι-i φ 0 0 P- 0 0 0 < 0 P- 0 0 Φ ι-i P- tu E z z o H 01 N 0 P- 03 H P- ><P- rt P- P 1 P> ii Φ 0 Ω P- tr ι-i P 1 φ φ Φ 0 φ CX 3 N 03 01 0 X f - Φ X LP P- CΛ P- pj: 1-1 tr 0 P, o • 3 Cπ 0 cx cx P- li p- 0 P- rt 0 to P- H 0 • 03 • <N cx o? N 0 cx ii Φ o 0 pj: 01 φ φ rt Φ φ tu 03 Φ 01 ι-i φ 0 0 P- 0 0 0 <0 P- 0 0 Φ ι-i P- tu E zzo H 01 N 0 P - 03 H P-><
3 0 X to φ Ω H 03 Φ 0 01 LP l-i P- P- rt CΛ Φ P- φ H 0 tu cx cx rt 03 Φ 0 φ « 03 rt M tr H 0 P- Ω et <i rt pi: to ι-i l-J Ω CX N tu 0 L φ 0 - 1-1 Ω -> o Φ er rt H tu P- O P- tr Φ o : rt < x cx tr 0 Φ 0 0 03 φ 0 rt y er 0 Φ • O 0 3 03 N 0 φ 0 l-i rt <! Φ Φ Φ 0 0 LP α P- i-i rt p- 0 es <3 0 X to φ Ω H 03 Φ 0 01 LP li P- P- rt CΛ Φ P- φ H 0 tu cx cx rt 03 Φ 0 φ «03 rt M tr H 0 P- Ω et <i rt pi: to ι-i lJ Ω CX N tu 0 L φ 0 - 1-1 Ω - > o Φ er rt H tu P- O P- tr Φ o: rt <x cx tr 0 Φ 0 0 03 φ 0 rt y er 0 Φ • O 0 3 03 N 0 φ 0 left <! Φ Φ Φ 0 0 LP α P- ii rt p- 0 es <
5 Φ cn 0 03 et 0 H K LP oi Φ o l-i er Ω Φ LP 03 0: P- O 0 Φ o5 Φ cn 0 03 et 0 H K LP oi Φ o l-i er Ω Φ LP 03 0: P- O 0 Φ o
0 H CX Ω ö P- P- tu 0 l Φ z φ Hi i 0 Hi Φ • CΛ tr K rt φ 03 rt Hi 0 p- l-i0 H CX Ω ö P- P- tu 0 l Φ z φ Hi i 0 Hi Φ • CΛ tr K rt φ 03 rt Hi 0 p- l-i
0 Φ Φ tr 0 rt 03 φ et Φ Φ N 03 P- iP Φ 3 0 03 P- Φ H rt P- cx rt p- Ω H ι-i 03 pj: 03 10 rt P- LP Z 03 ι-i Φ tr P- tu tr Ω rt p. 0 P- 0: 0 S N 0 φ 0 tu i r tr P- et rt 1-1 Hi 0 Φ Φ 0 cx er P1 rt 0 H tr 0 φ cx rt rt CΛ P- P- l-i Ω φ0 Φ Φ tr 0 rt 03 φ et Φ Φ N 03 P- iP Φ 3 0 03 P- Φ H rt P- cx rt p- Ω H ι-i 03 pj: 03 10 rt P- LP Z 03 ι-i Φ tr P- tu tr Ω rt p. 0 P- 0: 0 SN 0 φ 0 tu ir tr P- et rt 1-1 Hi 0 Φ Φ 0 cx er P 1 rt 0 H tr 0 φ cx rt rt CΛ P- P- li Ω φ
0 0 t Φ t 0 P- P- Φ er P- 0 Φ Φ rt 03 Φ i-i 0 ι-( o rt p- Φ Ω tr er ^ rt Φ Φ 0 cn et Hi 0 3 Φ LP 0 H Φ P- 0 P- et < N O N H tr tu 030 0 t Φ t 0 P- P- Φ er P- 0 Φ Φ rt 03 Φ ii 0 ι- (o rt p- Φ Ω tr er ^ rt Φ Φ 0 cn et Hi 0 3 Φ LP 0 H Φ P- 0 P- et <NONH tr tu 03
P- et P- Φ cx CΛ P- Hi CX 0 t φ σ Φ 01 (- 03 Φ P- φ Φ P- 0 0 0 Φ et 0 Φ t 0 o rt 0 LP * O Φ er Φ 0 0 P- 0 rt 03 <i er O P- l 03 O O 0 03 0P- et P- Φ cx CΛ P- Hi CX 0 t φ σ Φ 01 (- 03 Φ P- φ Φ P- 0 0 0 Φ et 0 Φ t 0 o rt 0 LP * O Φ er Φ 0 0 P - 0 rt 03 <i er O P- l 03 OO 0 03 0
0 Φ 0 φ 0 0 P- 0 Φ 0 03 Φ tu rt Φ Φ 0 rt H tu H 3 P- CX0 Φ 0 φ 0 0 P- 0 Φ 0 03 Φ tu rt Φ Φ 0 rt H tu H 3 P- CX
CΛ O l-i Ω 03 P" H P- φ 03 s; 03 0 l-i 0 Φ cx X CΛ , φ 03 Φ cxCΛ O l-i Ω 03 P "H P- φ 03 s; 03 0 l-i 0 Φ cx X CΛ, φ 03 Φ cx
3 ü cx pi: tu rt P- 0 01 ι-i φ 0 >< CX rt 3 3 01 0 0 to 0 03 tr 03 l-i φ p- Φ 3 P- rt <! CΛ 03 φ PJ 03 3 tr 0 • P- p- 0 H 3 Φ Φ O l-f rt oi rt P- 0 φ O IV) P- er P1 rt P- Q l-i 0 tr o Φ Z E 0 Ω P- rt >α 0 0 tu3 ü cx pi: tu rt P- 0 01 ι-i φ 0><CX rt 3 3 01 0 0 to 0 03 tr 03 li φ p- Φ 3 P- rt <! CΛ 03 φ P J 03 3 tr 0 • P- p- 0 H 3 Φ Φ O lf rt oi rt P- 0 φ O IV ) P- er P 1 rt P- Q li 0 tr o Φ ZE 0 Ω P- rt> α 0 0 tu
0 S 0 φ Φ P- 03 0 rt Φ 01 • 0 cx P- 0 tr rt 0 CX P- rt 0 P-0 S 0 φ Φ P- 03 0 rt Φ 01 • 0 cx P- 0 tr rt 0 CX P- rt 0 P-
P- φ Φ ü CΛ 0 P- ιp et rt 0 o N Φ φ φ P- , Hi CΛ X 0 0 P- 03 trP- φ Φ ü CΛ 0 P- ιp et rt 0 o N Φ φ φ P-, Hi CΛ X 0 0 P- 03 tr
Φ 0 P- Φ 0 0 P- Φ 0 P- Φ 0 tr 0 Φ 0 0 0 Φ 0: CX CX 0 EP O P- nΦ 0 P- Φ 0 0 P- Φ 0 P- Φ 0 tr 0 Φ 0 0 0 Φ 0: CX CX 0 EP O P- n
H ≥! Hi 3 P- 03 φ 03 0 0 O }-• 0 Φ P- cx tr H tr φ Φ CΛ 0 cx 0 03H ≥! Hi 3 P- 03 φ 03 0 0 O} - • 0 Φ P- cx tr H tr φ Φ CΛ 0 cx 0 03
0 P1 Hi P- 0 N 0 rt Ω 0 et P- P- Φ 0 Φ z P- Φ Φ H H 3 P- 0 03 φ 01 N0 P 1 Hi P- 0 N 0 rt Ω 0 et P- P- Φ 0 Φ z P- Φ Φ HH 3 P- 0 03 φ 01 N
N φ Φ EP φ 0 INI tr Φ ιp 0 P- P- P- Φ l-i 0 φ LQ • p- l-i tu rt 0 s: 0 H et l-i Hi ffi , Φ 0 O X P1 0 cn 0 H CΛ 0 ιu Φ 0 φ CΛ L φ ≥! Φ 0: 0 P- er CX Φ P- Φ l-i φ CX Φ 0 O P- 0 t t-1 IV) rt ΦN φ Φ EP φ 0 INI tr Φ ιp 0 P- P- P- Φ li 0 φ LQ • p- li tu rt 0 s: 0 H et li Hi ffi, Φ 0 OXP 1 0 cn 0 H CΛ 0 ιu Φ 0 φ CΛ L φ ≥! Φ 0: 0 P- er CX Φ P- Φ li φ CX Φ 0 O P- 0 t t- 1 IV) rt Φ
P- 0 IV) 0 0 X tr 0 tr rt Φ <! Φ P- Ω 3 Φ 0 0 φ i-1 0 P1 03 CX 0 P- rt rt N 0 Φ H cx Φ X l-i φ H rt tr 0 cn cn rt 0 0 LP 0 LP Φ 0 ΦP- 0 IV) 0 0 X tr 0 tr rt Φ <! Φ P- Ω 3 Φ 0 0 φ i- 1 0 P 1 03 CX 0 P- rt rt N 0 Φ H cx Φ X li φ H rt tr 0 cn cn rt 0 0 LP 0 LP Φ 0 Φ
Φ Pd cx 0 H Φ o ι-( 0 Φ l-i x LQ N Φ es Φ Φ er φ <l Hl T cn φ P- 0 P-Φ Pd cx 0 H Φ o ι- (0 Φ l-i x LQ N Φ es Φ Φ er φ <l Hl T cn φ P- 0 P-
0 P- φ > 0 < 0 Ω z P- CX Φ φ z 0 0 Hi ι-i Φ Cd O pj: 0 0 P1 0 P- φ> 0 <0 Ω z P- CX Φ φ z 0 0 Hi ι-i Φ Cd O pj: 0 0 P 1
3 H et N φ P- e tr φ 0 Φ P- LQ φ 0 0 0 et 0 H P1 0 φ N t rt tu P- Z ≤: l-i et 0 0 H rt φ l-i 0 0: tr 0 φ cx cx tr 01 0 3 ex 0 CΛ Φ3 H et N φ P- e tr φ 0 Φ P- LQ φ 0 0 0 et 0 HP 1 0 φ N t rt tu P- Z ≤: li et 0 0 H rt φ li 0 0: tr 0 φ cx cx tr 01 0 3 ex 0 CΛ Φ
0 0 N N P- Φ Z Φ . tϊ er et P- Ω l-i P1 P- LP 0 Φ Ω X P- rt t 00 0 NN P- Φ Z Φ. tϊ er et P- Ω li P 1 P- LP 0 Φ Ω X P- rt t 0
01 LP z Z φ P- P- <! IU < rt φ Φ CΛ < Φ ** ιp tr P1 φ EP ι-( tr 03 Hi Φ ι-i01 LP z Z φ P- P- <! I U <rt φ Φ CΛ <Φ ** ιp tr P 1 φ EP ι- (tr 03 Hi Φ ι-i
P- φ P- H o P- O rt 0 *< o X 01 cx Φ P- H P O 0 Φ 01P- φ P- H o P- O rt 0 * <o X 01 cx Φ P- H P O 0 Φ 01
01 > P- 03 er t CX 0 LQ l-i z Φ 0 0 0 Φ CX φ rt 0 0 Q 0: 0 Φ P- 10 0 S Hi CX01> P- 03 er t CX 0 LQ l-i z Φ 0 0 0 Φ CX φ rt 0 0 Q 0: 0 Φ P- 10 0 S Hi CX
01 x Ω Φ • φ 0 rt ^01 x Ω Φ • φ 0 rt ^
Ω 0 Φ P- 1-1 rt rt P- tr Ω 0 P- Hi 3 0 rt < tu tr H 03 CX CX CX H 0 tr N 0 rt Z Ω Φ 03 Ω φ tr H Φ 1 Φ 1 HΩ 0 Φ P- 1-1 rt rt P- tr Ω 0 P- Hi 3 0 rt <tu tr H 03 CX CX CX H 0 tr N 0 rt Z Ω Φ 03 Ω φ tr H Φ 1 Φ 1 H
0 0 0 Φ Φ P- P- φ Cn Φ cx S P- H • P- tr 3 0 tr 0 Φ 0 0 0 Ω rt 0 1 0 P- CΛ Φ ι-i 3 φ p- 03 o tu cx i-i 1 g rt cx H CX φ • tr0 0 0 Φ Φ P- P- φ Cn Φ cx S P- H • P- tr 3 0 tr 0 Φ 0 0 0 Ω rt 0 1 0 P- CΛ Φ ι-i 3 φ p- 03 o tu cx ii 1 g rt cx H CX φ • tr
P- 1 rr 1 0 rt 1 • φ P- CΛ φ 1 0 P- 1 03 1 ι-i ι-i 1 1 P- 1 rr 1 0 rt 1 • φ P- CΛ φ 1 0 P- 1 03 1 ι-i ι-i 1 1
TA2=TAl+Δt-2Gsync Dies hat in dem Fall, daß die zwei Basisstationen BSl, BS2 perfekt synchronisiert sind, zur Folge, daß das Signal des Endgeräts MS an der Basisstation BS2 in einem Zeitintervall Fo ankommt, das gegen das schraffiert dargestellte Empfangs¬ zeitfenster um 2xGsync verspätet ist.TA2 = TAl + Δt-2Gsync In the event that the two base stations BS1, BS2 are perfectly synchronized, this means that the signal from the terminal MS arrives at the base station BS2 in a time interval F o which is counter to the hatched reception ¬ the time window is delayed by 2xGsync.
Wenn man annimmt, daß die Basisstation BS2 im Vergleich zur Basisstation BSl um Gsync verfrüht sendet, was in der Fig. der strichpunktierten Zeitnormal-Linie N2a entspricht, so mißt das Endgerät MS eine Zeitdifferenz Δta= ( (d2-dl ) /c) -Gsync; es ergibt sich ein Timing Advance-Wert TA2a = TAl+Δta-2Gsync = TA1+ ( (d2-dl) /c) -3Gsync.If one assumes that the base station BS2 is sending Gsync prematurely compared to the base station BS1, which corresponds to the dash-dotted time normal line N2a in the figure, the terminal MS measures a time difference Δt a = ((d2-dl) / c) -Gsync; there is a timing advance value TA2 a = TAl + Δt a -2Gsync = TA1 + ((d2-dl) / c) -3Gsync.
Der Timing Advance-Wert ist also um 3Gsync kleiner als im Falle von Fig. 2; gleichzeitig ist das Empfangsfenster für das Signal des Endgeräts MS an der Basisstation BS2 um Gsync verfrüht, so daß das Signal des Endgeräts MS um insgesamt 4Gsync gegen sein Empfangsfenster verzögert im Zeitintervall Fa an der Basisstation BS2 eintrifft.The timing advance value is thus 3Gsync smaller than in the case of FIG. 2; At the same time, the reception window for the signal of the terminal MS at the base station BS2 is premature by Gsync, so that the signal of the terminal MS arrives at the base station BS2 with a delay of 4Gsync against its reception window in the time interval F a .
Nimmt man hingegen an, daß die Basisstation BS2 eine Verspätung von Gsync gegenüber der Basisstation BSl hat, was der strichpunktierten Zeitnormal-Linie N2d in Fig. 5 entspricht, so ergibt sich eine Differenz zwischen den Zeitnormalen Δtd=( (d2-dl) /c)+Gsync.On the other hand, if one assumes that the base station BS2 has a delay of Gsync compared to the base station BS1, which corresponds to the dash-dotted time normal line N2d in FIG. 5, there is a difference between the time standards Δt d = ((d2-dl) / c) + Gsync.
Der Timing Advance-Wert berechnet sich somit zu TA2d = TAl+Δtd-2Gsync = TA1+ ( (d2-dl) /c) -Gsync. Der Timing-Advance-Wert ist also um Gsync kleiner als bei perfekter Snchronität. Andererseits ist auch das Empfangsfenster der Basisstation BS2 gegenüber dem der Basisstation BSl um Gsync verzögert, so daß das Signal des Endgeräts MS an der Basisstation BS2 exakt mit dem ihm zugeteilten Empfangs- fenster Fd zusammenfällt. Die Gefahr, daß das Signal des Endgeräts MS an der Basissta¬ tion BS2 zu früh eintrifft, um korrekt ausgewertet zu werden, ist somit unabhängig vom Betrag und Richtung des tatsächlichen Synchronitätsfehlers Esync ausgeräumt.The timing advance value is thus calculated as TA2 d = TAl + Δt d -2Gsync = TA1 + ((d2-dl) / c) -Gsync. The timing advance value is therefore smaller by Gsync than with perfect synchronization. On the other hand, the reception window of the base station BS2 is also delayed by Gsync compared to that of the base station BS1, so that the signal of the terminal MS at the base station BS2 coincides exactly with the reception window F d assigned to it. The risk that the signal of the terminal MS at the Basissta ¬ tion BS2 arrives too early to be evaluated to correct, is thus eliminated regardless of the amount and direction of the actual synchronization error Esync.
Falls die Synchronisation der Basisstationen BSl, BS2 schlecht ist, Gsync also große Werte von z.B. 2,5 μs annimmt, so kann die Anwendung des oben beschriebenen Verfahrens zu ganz erheblichen Verminderungen des Timing Advance-Werts füh- ren und könnte sogar ergeben, daß der Timing Advance-Wert negativ wird. Ein solcher Wert entspräche einem negativen Abstand zwischen Endgerät MS und zweiter Basisstation BS2, was offensichtlich nicht physikalisch sinnvoll ist. Falls die o- ben beschriebene Berechnung einen Wert TA2<0 liefert, wird deshalb immer TA2=0 gesetzt. Um übermäßige Verminderungen des Timing Advance-Werts zu vermeiden, ist es ferner zweckmäßig, einen oberen Grenzwert für die Genauigkeit der Synchronitat zu definieren, und die Anwendung des oben beschriebenen Verfahrens nur auf solche Paare von Basisstationen innerhalb ei- nes Funk-Kommunikationssystems zu beschränken, deren Synchronitat besser als dieser Grenzwert ist. Beim Handover zwischen Basisstationen, bei denen die Synchronitat schlechter als dieser Grenzwert ist, verwendet das Endgerät MS für die Kommunikation mit der zweiten Basisstation einen Timing Advance- Wert TA2=0 so lange, bis die Basisstation BS2 einen Befehl zum Einstellen eines von ihr gemessenen Werts übermittelt.If the synchronization of the base stations BS1, BS2 is bad, Gsync thus large values of e.g. Assuming 2.5 μs, the use of the method described above can lead to very considerable reductions in the timing advance value and could even result in the timing advance value becoming negative. Such a value would correspond to a negative distance between the terminal MS and the second base station BS2, which is obviously not physically meaningful. If the calculation described above returns a value TA2 <0, TA2 = 0 is therefore always set. In order to avoid excessive reductions in the timing advance value, it is furthermore expedient to define an upper limit for the accuracy of the synchronicity, and to limit the application of the method described above to only those pairs of base stations within a radio communication system, whose synchronicity is better than this limit. When handover between base stations where the synchronicity is worse than this limit value, the terminal MS uses a timing advance value TA2 = 0 for the communication with the second base station until the base station BS2 issues a command to set a value measured by it transmitted.
Einer bevorzugten Ausgestaltung des Verfahrens zufolge wird beim Handover zwischen zwei Basisstationen nicht notwendiger- weise die Genauigkeit der Synchronitat an das Endgerät signalisiert, die für die zwei Basisstationen ermittelt worden ist, sondern es wird lediglich eine Angabe über die Zugehörigkeit des betreffenden Paares von Basisstationen zu einer von mehreren Genauigkeitsklassen übertragen. Auf diese Weise reduziert sich die für die Signalisierung der Genauigkeit erforderliche Bitzahl auf den Zweierlogarithmus der Zahl der Klassen. In der Praxis sind vier oder sogar nur drei Klassen ausreichend: Eine erste Klasse, zu der streng gekoppelte Paa¬ re von Stationen mit einer Genauigkeit der Synchronitat von typischer Weise ca. ± 100 ns gehören. Beim Handover zwischen zwei solchen Stationen kann die oben beschriebene Berücksich- tigung der Genauigkeit Gsync bei der Festlegung des neuen Timing Advance-Werts TA2 im ungünstigsten Falle zu einer Verzögerung des Signals um 400 ns führen, was z.B. bei einem UMTS- Funk-Kommunikationssystem mit einem Spreizfaktor von 16 weniger als die Dauer von zwei Chips (1 Chip = ca. 250 ns) ist. Beim Handover zwischen Paaren von Basisstationen, die dieser Genauigkeitsklasse angehören, kann daher von der Berücksichtigung der Genauigkeit der Synchronitat bei der Festlegung des neuen Timing Advance-Werts vollends abgesehen werden, da daraus resultierende Zeitverschiebungen die Erkennung der - Midamble und damit die Symbolabschätzung an der Basisstation BS2 nicht beeinträchtigen können.According to a preferred embodiment of the method, the handover between two base stations does not necessarily signal the accuracy of the synchronicity to the terminal that has been determined for the two base stations, but rather only an indication of the affiliation of the relevant pair of base stations to one transferred from several accuracy classes. In this way, the number of bits required for signaling the accuracy is reduced to the two-logarithm of the number of classes. In practice there are four or even three classes sufficient: a first class, to which strictly coupled pairs of stations with an accuracy of synchronicity of typically approx. ± 100 ns belong. When handover between two such stations, taking into account the accuracy Gsync described above when determining the new timing advance value TA2 can in the worst case lead to a delay of the signal by 400 ns, which is the case, for example, in a UMTS radio communication system with a Spreading factor of 16 is less than the duration of two chips (1 chip = approx. 250 ns). When handovering between pairs of base stations that belong to this accuracy class, the accuracy of the synchronicity when determining the new timing advance value can therefore be completely dispensed with, since the resulting time shifts result in the detection of the - midamble and thus the symbol estimate at the base station Can not affect BS2.
Eine zweite Klasse umfaßt Paare von Basisstationen mit einer mittleren Genauigkeit der Synchronitat Gsync von typischer- weise ± 500 ns . Bei einem solchen Wert von Gsync kann dessen Berücksichtigung bei der Festlegung von TA2 im schlimmsten Fall zu einem um 2 μs verzögerten Eintreffen des Signals an der Basisstation BS2 führen.A second class comprises pairs of base stations with an average accuracy of the synchronicity Gsync of typically ± 500 ns. With such a value of Gsync, taking it into account when determining TA2 in the worst case can lead to a delayed arrival of the signal at the base station BS2 by 2 μs.
Ein dritte Genauigkeitsklasse enthält jene bereits oben schon angesprochenen Paare von Basisstationen, bei den die Genauigkeit der Synchronitat so schlecht ist, daß deren Berücksichtigung bei der Festlegung von TA2 zu unzweckmäßig großen Verspätungen des Signals an der Basisstation BS2 führen kann.A third accuracy class contains those pairs of base stations already mentioned above in which the accuracy of the synchronicity is so poor that taking them into account when determining TA2 can lead to unusually large delays in the signal at the base station BS2.
Wenn dem Endgerät MS die Zugehörigkeit der Basisstationen BSl und BS2 zu der zweiten Klasse signalisiert worden ist, so legt es den oberen Genauigkeitsgrenzwert dieser Klasse als Gsync der Bestimmung von TA2 zugrunde.If the terminal MS has been signaled that the base stations BS1 and BS2 belong to the second class, it uses the upper accuracy limit of this class as Gsync to determine TA2.
Bei Verwendung von drei Klassen können beispielsweise alle Paare von Basisstationen mit Gsync < 200 ns in die erste Klasse, solche mit 200 ns < Gsync < 1 μs in die zweite und alle mit Gsync > 1 μs in die dritte Klasse eingeteilt werden. Um die sich durch Berücksichtigung von Gsync ergebenen Signalverzögerungen im Einzelfall möglichst klein zu halten, kann es wünschenswert sein, die zweite Klasse feiner zu unterteilen. So ist z.B. auch eine Unterteilung denkbar, wo eine Klasse 2a alle Paare von Stationen mit 200 ns < Gsync < 500 ns und an der Klasse 2b die Paare mit 500 ns < Gsync < 1,5 μs enthält. In einem solchen Fall würde das Endgerät MS beim Handover zwischen Stationen der Klasse 2a eine Genauigkeit = 500 ns, im Falle von Stationen der Klasse 2b eine Genauigkeit Gsync = 1,5 μs der Bestimmung von TA2 zugrunde legen. If three classes are used, for example, all pairs of base stations with Gsync <200 ns can enter the first Class, those with 200 ns <Gsync <1 μs in the second and all with Gsync> 1 μs in the third class. In order to keep the signal delays resulting from Gsync as small as possible in individual cases, it may be desirable to subdivide the second class. For example, a subdivision is also conceivable where a class 2a contains all pairs of stations with 200 ns <Gsync <500 ns and in class 2b the pairs with 500 ns <Gsync <1.5 μs. In such a case, the terminal MS would base the determination of TA2 on the handover between stations of class 2a, an accuracy = 500 ns, in the case of stations of class 2b, an accuracy Gsync = 1.5 μs.

Claims

Patentansprüche claims
1. Verfahren zum Anpassen des Timing Advance (TA1, TA2) eines mobilen Endgeräts (MS) beim synchronen Handover von einer ersten zu einer zweiten Basistation (BSl; BS2) eines Funk- Kommunikationssystems, bei dem eine Zeitverschiebung (Δt) zwischen Zeitnormalen (Nl, N2, N2a, N2d) , die das Endgerät (MS) von den zwei Basisstationen (BSl, BS2) empfängt, gemessen wird und ein von dem Endgerät (MS) vor dem Handover zum Senden an die erste Basisstation (BSl) verwendeter Timing- Advance-Wert (TA1) anhand der gemessenen Zeitverschiebung (Δt, Δta, Δtd) korrigiert wird, dadurch gekennzeichnet, daß der korrigierte Timing-Advance-Wert um einen von der Genauigkeit (Gsync) der Synchronitat der zwei Basisstationen (BSl, BS2) abgeleiteten Wert vermindert und als Timing-Advance-Wert (TA2) zum Senden an die zweite Basisstation (BS2) verwendet wird.1. Method for adapting the timing advance (TA1, TA2) of a mobile terminal (MS) during synchronous handover from a first to a second base station (BSl; BS2) of a radio communication system, in which a time shift (Δt) between time standards (Nl , N2, N2a, N2d), which the terminal (MS) receives from the two base stations (BSl, BS2), is measured and a timing used by the terminal (MS) before the handover for transmission to the first base station (BSl) Advance value (TA1) is corrected on the basis of the measured time shift (Δt, Δt a , Δtd), characterized in that the corrected timing advance value by one of the accuracy (Gsync) of the synchronicity of the two base stations (BS1, BS2) derived value is reduced and used as timing advance value (TA2) for transmission to the second base station (BS2).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der abgeleitete Wert das Zweifache der in Zeiteinheiten angegebenen Genauigkeit (Gsync) der Synchronitat ist.2. The method according to claim 1, characterized in that the derived value is twice the accuracy (Gsync) of synchronicity specified in time units.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenn die Genauigkeit (Gsync) der Synchronitat einen vorgegebenen Grenzwert übersteigt, der zum Senden an die zweite Basisstation verwendete Timing-Advance- Wert (TA2) auf Null gesetzt wird.3. The method according to any one of the preceding claims, characterized in that when the accuracy (Gsync) of the synchronicity exceeds a predetermined limit value, the timing advance value (TA2) used for transmission to the second base station is set to zero.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Genauigkeit (Gsync) der Synchronitat dem Endgerät (MS) signalisiert wird.4. The method according to any one of the preceding claims, characterized in that the accuracy (Gsync) of the synchronicity is signaled to the terminal (MS).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Paar der zwei Basisstationen (BSl, BS2) je nach Genauig- keit ihrer Synchronitat in eine von mehreren Klassen eingeordnet wird, und daß dem Endgerät (MS) die Klasse signalisiert wird, zu der das Paar gehört. 5. The method according to claim 4, characterized in that the pair of the two base stations (BS1, BS2) is classified into one of several classes depending on the accuracy of their synchronicity, and that the terminal (MS) is signaled to the class to which the couple heard.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Zahl der Klassen wenigstens drei beträgt.6. The method according to claim 5, characterized in that the number of classes is at least three.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß ein erster Grenzwert der Genauigkeit, der eine erste und eine zweite Klasse voneinander trennt, zwischen 100 und 500 ns beträgt, und daß, falls die Genauigkeit der Synchronitat besser als der erste Grenzwert ist, der von der Genauig- keit der Synchronitat abgeleitete Wert gleich 0 gesetzt wird.7. The method according to claim 5 or 6, characterized in that a first limit value of accuracy, which separates a first and a second class from each other, is between 100 and 500 ns, and that if the accuracy of the synchronicity is better than the first limit value , the value derived from the accuracy of the synchronicity is set to 0.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß ein zweiter Grenzwert der Genauigkeit, der eine zweite von einer dritten Klasse trennt, zwischen 500 ns und 2,5 μs beträgt, und daß falls die Genauigkeit der Synchronitat in die zweite Klasse unterhalb des zweiten Grenzwertes fällt, der von der Genauigkeit der Synchronitat abgeleitete Wert gleich dem Zweifachen des zweiten Grenzwertes gesetzt wird.8. The method according to any one of claims 5 to 7, characterized in that a second limit of accuracy, which separates a second from a third class, is between 500 ns and 2.5 μs, and that if the accuracy of the synchronicity in the second Class falls below the second limit, the value derived from the accuracy of the synchronicity is set equal to twice the second limit.
9. Funk-Kommunikationssystem mit einer Mehrzahl von mit einer bekannten Genauigkeit miteinander synchronisierten Zellen9. Radio communication system with a plurality of cells synchronized with one another with a known accuracy
(ZI, Z2) , dadurch gekennzeichnet, daß es bei einem Handover eines Endgeräts (MS) zwischen zwei seiner Zellen (ZI, Z2) dem Endgerät (MS) eine Angabe über die Synchronitat dieser zwei Zellen (ZI, Z2) signalisiert. (ZI, Z2), characterized in that when a handover of a terminal (MS) between two of its cells (ZI, Z2) signals an indication of the synchronicity of these two cells (ZI, Z2) to the terminal (MS).
EP01964898A 2000-08-16 2001-08-10 Adaptation of the timing advance in synchronous handover Withdrawn EP1310133A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10039967 2000-08-16
DE10039967A DE10039967B4 (en) 2000-08-16 2000-08-16 Adjustment of the timing advance for synchronous handover
PCT/DE2001/003079 WO2002015624A1 (en) 2000-08-16 2001-08-10 Adaptation of the timing advance in synchronous handover

Publications (1)

Publication Number Publication Date
EP1310133A1 true EP1310133A1 (en) 2003-05-14

Family

ID=7652581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01964898A Withdrawn EP1310133A1 (en) 2000-08-16 2001-08-10 Adaptation of the timing advance in synchronous handover

Country Status (7)

Country Link
US (1) US20040128095A1 (en)
EP (1) EP1310133A1 (en)
JP (1) JP2004506392A (en)
CN (1) CN1470146A (en)
CA (1) CA2419615A1 (en)
DE (1) DE10039967B4 (en)
WO (1) WO2002015624A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60231105D1 (en) 2002-03-27 2009-03-26 Ericsson Telefon Ab L M Frame clock control to pass on
CN1643968B (en) * 2002-03-27 2010-09-01 艾利森电话股份有限公司 Method and device for establishing uplink transmit frame time sequence
KR100827105B1 (en) 2004-02-13 2008-05-02 삼성전자주식회사 Method and apparatus for ranging to support fast handover in broadband wireless communication system
JP4417765B2 (en) * 2004-04-14 2010-02-17 株式会社エヌ・ティ・ティ・ドコモ Wireless transmission system, wireless relay system, and communication apparatus
IL170925A (en) * 2005-09-18 2010-12-30 Alvarion Ltd Method and device for transmission power control in wireless communications networks
TW200729990A (en) * 2005-12-22 2007-08-01 Interdigital Tech Corp Method and system for adjusting uplink transmission timing immediately for long term evolution handover
TW200818956A (en) * 2006-10-06 2008-04-16 Interdigital Tech Corp Autonomous timing advance adjustment during handover
JP4828372B2 (en) * 2006-10-27 2011-11-30 京セラ株式会社 Wireless communication terminal and base station selection method
US20080182579A1 (en) * 2007-01-26 2008-07-31 Industrial Technology Research Institute Methods and Systems for Handover Process in Wireless Communication Networks
EP2160860A4 (en) * 2007-06-25 2014-01-08 Ericsson Telefon Ab L M Time-alignment at handover
US20090097452A1 (en) * 2007-10-12 2009-04-16 Qualcomm Incorporated Femto cell synchronization and pilot search methodology
BRPI0819206B1 (en) * 2007-11-05 2020-05-05 Telefonaktiebolaget LM Ericsson publi method for use on a user terminal in a cellular communications system, and, transceiver
ATE528939T1 (en) * 2008-02-15 2011-10-15 Mitsubishi Electric Corp METHOD AND DEVICE FOR DECISING WHETHER A HANDOVER NEEDS TO BE PERFORMED FOR A TERMINAL
ATE515909T1 (en) * 2008-02-15 2011-07-15 Mitsubishi Electric Corp METHOD AND DEVICE FOR DECISING WHETHER A HANDOVER NEEDS TO BE PERFORMED FOR A TERMINAL
JP5233454B2 (en) * 2008-07-08 2013-07-10 富士通株式会社 Mobile terminal station and reception quality measuring method
US20100074219A1 (en) * 2008-09-22 2010-03-25 Qualcomm Incorporated Methods and Apparatus for Reverse Link Timing Correction
WO2010093299A1 (en) * 2009-02-13 2010-08-19 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for real-time difference determination for mobile terminal positioning
JP2011004099A (en) * 2009-06-18 2011-01-06 Fujitsu Ltd Mobile station of mobile communication system, transmission timing adjustment device and transmission timing adjustment method
EP2448343A4 (en) * 2009-06-22 2015-07-22 Sharp Kk Communication system, mobile station, base station, and communication method
US8885614B2 (en) * 2009-12-17 2014-11-11 Qualcomm Incorporated Avoidance of synchronization oscillation in TD-SCDMA uplink synchronization
US9055527B2 (en) 2010-05-06 2015-06-09 Telefonaktiebolaget L M Ericsson (Publ) Method and system for determining a time synchronization offset between radio base stations
US9559822B2 (en) 2011-09-30 2017-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and mobile node for determining a point in time for transmissions
US20130294418A1 (en) * 2012-05-04 2013-11-07 Nokia Siemens Networks Oy Switching Between Remote Radio Heads
US20170041841A1 (en) * 2014-02-28 2017-02-09 Nokia Solutions And Networks Oy Techniques for rach (random access channel)-less synchronized handover for wireless networks
BR112017021433A2 (en) 2015-04-07 2018-07-03 Qualcomm Inc adjustment of timing anticipation values on mobile devices
KR102272844B1 (en) * 2015-06-23 2021-07-06 삼성전자주식회사 Method and apparatus for control timing advance
US11943725B2 (en) * 2020-01-24 2024-03-26 Qualcomm Incorporated Techniques for timing advance group per subset of synchronization signal blocks in a wireless communication system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI96157C (en) * 1992-04-27 1996-05-10 Nokia Mobile Phones Ltd Digital cellular radio telephone network based on time multiplexing to move a radio connection from the base station to a new base station
FR2695777B1 (en) * 1992-09-15 1994-10-14 Alcatel Radiotelephone Method for transmitting time advance information to a mobile moving in cells of a GSM network with asynchronous BTS.
SE9300681D0 (en) * 1993-03-01 1993-03-01 Ericsson Telefon Ab L M A METHOD AND APPARATUS FOR HANDING OFF A MOBILE STATION FROM A FIRST TO A SECOND CHANNEL IN A MOBILE COMMUNICATION SYSTEM
FR2702320B1 (en) * 1993-03-03 1995-04-14 Alcatel Radiotelephone Method for allocating a time interval within a frame to a mobile accessing a communication cell and base transceiver station implementing this method.
FR2705514B1 (en) * 1993-05-14 1995-06-23 Alcatel Mobile Comm France Method of handover, or handover, between two cells of a GSM network.
AU677079B2 (en) * 1993-06-14 1997-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Time alignment of transmission in a down-link of a CDMA system
FI97594C (en) * 1993-07-05 1997-01-10 Nokia Telecommunications Oy Time division multiple access radio system, method for allocating capacity within a cell and method for performing intra-cell handover
FR2739244B1 (en) * 1995-09-26 1997-11-14 Alcatel Mobile Comm France BASE STATION FOR CELLULAR MOBILE RADIOCOMMUNICATIONS SYSTEM AND SYSTEM FOR SYNCHRONIZING SUCH BASE STATIONS
FR2765763B1 (en) * 1997-07-07 1999-09-24 Alsthom Cge Alcatel PROCESS FOR DETERMINING A TIME ADVANCE INFORMATION IN A CELLULAR RADIOCOMMUNICATION SYSTEM, CORRESPONDING INTERCELLULAR TRANSFER PROCESS AND LOCATION PROCESS
GB9819482D0 (en) * 1998-09-07 1998-10-28 Nokia Telecommunications Oy Communication system
AU4985701A (en) * 2000-04-06 2001-10-23 Interdigital Tech Corp Synchronization of timing advance and deviation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0215624A1 *

Also Published As

Publication number Publication date
JP2004506392A (en) 2004-02-26
US20040128095A1 (en) 2004-07-01
CN1470146A (en) 2004-01-21
DE10039967B4 (en) 2004-11-18
CA2419615A1 (en) 2003-02-14
WO2002015624A1 (en) 2002-02-21
DE10039967A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
WO2002015624A1 (en) Adaptation of the timing advance in synchronous handover
EP1234355B1 (en) Method for calibrating an electronically phase-controlled group antenna in radio-communications systems
DE69433072T2 (en) Random access satellite transmission system in which random numbers are generated that lie in a range dependent on the channel load
DE69822402T2 (en) Transmission method, transmission method, reception method base station and terminal
DE69631367T2 (en) METHOD AND DEVICE FOR INDIVIDUALLY SYNCHRONIZING BASE STATIONS IN A MESSAGE TRANSMISSION SYSTEM
DE69837354T2 (en) TDMA terminal with adjustment of the transmission clock by using measured delay
DE3012513A1 (en) METHOD FOR MONITORING ANALOG AND DIGITAL MOBILE RADIO CONNECTIONS
DE19813564A1 (en) Method and device for measuring the transmission quality in cells of mobile radio networks
DE19808103A1 (en) Timer synchronisation apparatus for cyclic communication system
WO1999016204A1 (en) Method and base station system for voice transmission via a radio interface in a digital radiotelephone communication system
EP1319290A1 (en) Method for frequency acquisition, especially for initial frequency acquisition, of a mobile communications device
EP1260037A1 (en) Method, mobile radiotelephone system, and station for determining a timing advance for a connection between two stations
EP1358777A1 (en) Method and device for localising packet data service enabled radio stations in a communication system
DE19819235C2 (en) Circuit and method for providing simultaneous transmission of paging data in a paging system
DE602004004186T2 (en) System and method for testing handover in a mobile network and displaying the results
DE19818325A1 (en) Operating method for radio communications system with TDD subscriber separation
DE3133120A1 (en) METHOD FOR AUTOMATICALLY DETERMINING RUNNING COMPENSATION IN A SAME-WAVE NETWORK
EP2041991B8 (en) Method and system for determining the relationship between device parameters of a cellular device and signal parameters
WO2021122110A1 (en) Method for the fault monitoring of an antenna installation of a base station, monitoring system, testing device, base station and computer program therefor
WO1994010769A1 (en) Muting of a cordless telephone with adpcm coding
WO1999008462A1 (en) Method, mobile station and base station for packet oriented information transmission
DE60033938T2 (en) DEVICE AND METHOD FOR CORRECTING TIME-OUT
EP1060579A1 (en) Method, radio communication system and mobile station for data transmission
DE2306244C3 (en) Control device for multiple transmission from an earth station to a SateUiten message transmitter
DE3131406A1 (en) Circuit for synchronising a transceiver station with the data network of a digital communications system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030207

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040423