EP1307926A2 - Discharge-resistant outer-space solar generator - Google Patents

Discharge-resistant outer-space solar generator

Info

Publication number
EP1307926A2
EP1307926A2 EP01969567A EP01969567A EP1307926A2 EP 1307926 A2 EP1307926 A2 EP 1307926A2 EP 01969567 A EP01969567 A EP 01969567A EP 01969567 A EP01969567 A EP 01969567A EP 1307926 A2 EP1307926 A2 EP 1307926A2
Authority
EP
European Patent Office
Prior art keywords
solar cells
solar
conductive
layers
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01969567A
Other languages
German (de)
French (fr)
Inventor
Günther LA ROCHE
Brigitte Hoesselbarth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium GmbH filed Critical Astrium GmbH
Publication of EP1307926A2 publication Critical patent/EP1307926A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • B64G1/443Photovoltaic cell arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Solar generators of space vehicles are exposed to a constantly varying electron proton current, which can amount to a few nA / cm 2 , due to the charged particles trapped in the earth's magnetic field, the particle radiation from solar flares and magnetic substorms.
  • the electrons which are much more common due to their speed, negatively charge spacecraft without suitable protective measures.
  • the i.a. the solar generator conductively connected to the spacecraft body assumes the potential of the spacecraft.
  • Most solar cell coverslips are mounted electrically insulated on the solar generator. In addition to their conductivity, their charge depends on the incident particle stream and the electrons generated by the photo effect and secondary electron emission. In general, inverted charges with voltages up to over 1000 V are generated on the cover glasses, which generally occur at regular intervals. discharged onto the solar cells connected to the satellite mass via the negative pole. The resulting spark ionizes the solar cell material, which can lead to a longer-lasting arc discharge if a correspondingly high electrical field accelerates the released electrons and the discharge is maintained by impact ionization.
  • the required electric field can e.g. be caused by the voltage difference between two adjacent solar cells when high operating voltages are achieved, for example, by a u-shaped arrangement of the solar cells.
  • plastic foils used to insulate against a solar generator substrate can be carbonized and create a conductive connection between the solar cells. Although this conductive connection extinguishes the discharge, it closes At the same time, the solar cells are short, so that entire solar generator circuits can fail.
  • the cause of the short circuits is the primary discharge of the coverslips on the solar cells.
  • This primary discharge can be prevented by making the cover glasses conductive and electrically connecting them to the solar generator mass either directly or via the solar cells.
  • a thin, optically adapted layer of indium tin oxide (ITO) on the outside has proven particularly useful for the cover glasses.
  • ITO indium tin oxide
  • the connection of this conductive layer to the solar generator structure is problematic because it is either very complex or not reliable enough.
  • the charges are conducted from the cover slip to the cell contact or cell connector, either by a “wrap-around” technique of a conductive ITO layer (ie the ITO layer partially encloses the cover slip) or by cover slip edge vapor deposition, which is carried out with
  • the cell connector is connected with the aid of a conductive epoxy resin bead, but the problem here is how the contact with the cell electrode comes about, how the epoxy resin bead is made, without the cell being short-circuited or the cell connector being unable to survive.
  • a "wrap-around” technique can only be implemented with great effort.
  • the teaching of EP 0 938 141 does not prevent primary discharge, but rather reduces the formation of a secondary arc discharge.
  • a filler is provided in the inter-cell space that is not conductive.
  • the object of the present invention is therefore to provide a solar generator and a production method therefor, which enables production to be carried out in a simple manner and furthermore guarantees effective prevention of primary discharges.
  • the solar generator according to the invention has a plurality of solar cells which are applied at a distance from one another on a carrier material. Gaps are therefore provided between adjacent solar cells, the number of which depends on how many adjacent solar cells a certain solar cell is surrounded by.
  • the solar cells are covered by cover layers at least on the side facing away from the carrier material. Such cover layers are particularly insulating and can consist of glass or another suitable material. Only one cover layer can be provided per solar cell, but in principle several cover layers are also possible. Conductive layers covering at least part of the cover layer are applied to the cover layers. You can cover them, for example, in the form of individual conductors or a grid, with a correspondingly minor impairment of the function of the solar cell, a complete covering is also conceivable.
  • At least one of the interspaces per solar cell is now filled with a conductive adhesive which extends from the carrier material to the conductive layers.
  • the adhesive In the direction of the longitudinal extent of the intermediate space, that is to say in the direction parallel to the edges of the solar cells forming the intermediate space, the adhesive need not completely fill the intermediate space. It is sufficient that the space in this direction is filled in only in a partial area. It can only be guaranteed that the conductive adhesive with one edge of the solar cell and with the conductive Layers is connected to make a conductive connection between these two. However, it is particularly advantageous that this conductive connection between the solar cell and the conductive layer can be achieved simultaneously for two solar cells by filling in the spaces.
  • the conductive layers cover at least partial areas of the surfaces of the cover layers facing away from the solar cells.
  • the conductive layers additionally cover at least partial areas of the edge surfaces of the cover layers. This simplifies the production of the contact with the conductive adhesive, since there is now a larger contact area also on the part of the cover layers. On the part of the solar cells, the contact is made anyway via the edge surfaces, that is to say usually through the semiconductor material of the solar cell (a specially designed electrode does not have to be provided for this).
  • any suitable material can be provided for the conductive adhesive.
  • it can be designed as a silicone adhesive enriched with conductive material.
  • Fixing the solar cells on the side of the cover layers the fixing being able to be carried out by a suitable fixing device such as a tensioning device or a vacuum device or also by means of a suitable adhesive surface,
  • a suitable fixing device such as a tensioning device or a vacuum device or also by means of a suitable adhesive surface
  • the adhesive can be applied to the surfaces of the solar cells facing away from the cover layers and the conductive adhesive can be applied by any suitable technique, preferably using a sieving technique for the adhesive on the surfaces of the solar cells facing away from the cover layers, ideally also for the conductive adhesive , Alternatively, suitable dosing devices can also be used.
  • the gaps can be filled with conductive adhesive and the adhesive applied to the surfaces of the solar cells in a single step, i.e. that the same adhesive is used for both purposes and only once, e.g. by means of a suitable screening technique, glue must be applied to the arrangement.
  • FIGS. 1 and 2 A special exemplary embodiment of the present invention is explained below with reference to FIGS. 1 and 2.
  • FIG. 1 cross section through a solar generator according to the invention, 2 top view of the solar generator of FIG. 1st
  • FIG. 1 shows a cross section through a solar generator, in which a plurality of solar cells 2 are arranged on a carrier material 6. These are glued to the lower surface 10 in FIG. 1 with the carrier material.
  • cover glasses 1 are attached, which are at least partially covered on their surface 8 with a conductive layer 5.
  • the side surface 9 of the cover glasses 1 are shown in FIG. 1 without a coating by a conductive layer 5.
  • these edge surfaces 9 can also be at least partially covered by a conductive layer 5 which is more conductive
  • a conductive adhesive 3 is introduced between the solar cells 2 and extends from the carrier material 6 to the height of the conductive layers 5 on the surface 8. It fills the gaps between the solar cells 2 so that adjacent solar cells 2, their cover glasses 1 and the conductive ones
  • FIG. 2 shows a top view of the solar generator according to FIG. 1, whereby it becomes clear that the spaces 7 between the individual solar cells 2 in the direction parallel to the side surfaces 9 of the cover glasses do not have to be completely filled with the conductive adhesive 3. Not all of them have to either
  • the conductive layers 5 are formed only as individual conductors or as a grid on the cover glasses 1.
  • the solar cells 2 are arranged in rows 13 and columns 2 in FIG. 2.
  • the solar cells 2 of a column 12 are in the example according to FIG. connector 4 connected together in the form of a series connection. It is indicated by points that more than just the three rows 13 shown can be provided. It can now, as shown in Fig. 2, the
  • Individual columns 12 are conductively connected to one another at their ends.
  • the columns 12 can also be independent of each other, so that only the
  • Solar cells 2 are connected within a column 12 in the form of a series connection, but preferably adjacent columns 12 are connected in opposite directions.
  • 2 schematically shows connectors 11 that produce a U-shaped connection of the solar cells 2 or the columns 12 of solar cells 2.
  • the solar cells 2 of the middle column 12 in FIG. 2 are thus connected in series with the solar cells 2 of the left column 12, but in the reverse order.
  • the voltage difference between solar cells 2 of adjacent columns 12 increases toward the bottom row 13 in FIG. 2.
  • a high-resistance conductive adhesive 3 must be provided between these columns 12 so that there is no short circuit between the
  • a cover glass 1 With an electron current of typically 10nA / cm 2, a cover glass 1, for example 25 cm 2 in size, would have to be “grounded” via a resistance of 400 M in order to keep the charge on the cover glass 1 below 100 V. Cover glasses have specific resistances of typically 10 16 cm This does not prevent the cover glasses 1 from being charged.
  • a high-resistance conductor for example in the form of a low-conductivity adhesive 3, is introduced into the space 7 between two adjacent cells 2, which connects the cover glass 1 to the underlying and adjacent solar cells 2. If you fill the long intermediate space 7 between two U-shaped cell chains with an operating voltage of 100 V with a filler 3 (silicone adhesive), for example with a special
  • the invention now consists in that a common silicone adhesive, for example Wacker RTV-S 695 or Dow Corning 93500, is mixed with conductive material such as carbon black or metal powder, so that the adhesive has sufficient conductivity. ability of 10 "9 - 10 " 0 S / cm.
  • a common silicone adhesive for example Wacker RTV-S 695 or Dow Corning 93500
  • conductive material such as carbon black or metal powder
  • the adhesive for the bonding of the solar cells 2 is applied, for example, in a screen printing process with a screen, in such a way that the cell interstices 7 remain free of adhesive.
  • an intermediate step is switched on, which includes the application of the conductive adhesive 3, here also using screening technology.
  • a coarse sieve is used, which only allows an adhesive outlet at the cell interstices 7 which are to be filled with the conductive adhesive 3.
  • the desired positions can be precisely defined using the screen technology.
  • a slight overflow on the back of the cell 10 has no negative influence.
  • the conductive adhesive can also be applied using other means than sieving technology, for example with a metering device. It is important that the adhesive runs down to the cover glasses 1 and cover glass 1 and cell 2 are conductively connected to one another.
  • the cover glasses 1 do not need to be conductive at their edges if the conductive adhesive 3 extends to the surface 8. However, it can also be provided that the conductive layer 5 is at least partially drawn around the edge onto the side surface 9 of the cover glasses 1, which can be achieved without great additional effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a solar generator with several solar cells (2), mounted at a distance from each other on a support (6), covered with sealing layers (1) on a least the side away from the support material (6). Conducting layers (5) are coated on the sealing layers (1) and between each solar cell (2) and the neighbouring solar cells is at least one gap (7), whereby at least one of the gaps (7) per solar cell (2), at least along part of the length thereof between the neighbouring solar cells (2) is filled with a conducting glue (3) from the support material (6) up to the conducting layers (5).

Description

Entladungsfester Raumfahrt-SolargeneratorDischarge-proof spacecraft solar generator
Solargeneratoren von Raumfahrzeugen, insbesondere von Satelliten sind aufgrund der im Erdmagnetfeld gefangenen, geladenen Teilchen, der Teilchen- Strahlung solarer Flares sowie magnetischer Substürme einem ständig variierenden Elektronen-Protonenstrom ausgesetzt, der einige nA/cm2 betragen kann. Insbesondere die aufgrund ihrer Geschwindigkeit wesentlich häufigeren Elektronen laden Raumfahrzeuge ohne geeignete Schutzmaßnahmen negativ auf.Solar generators of space vehicles, especially of satellites, are exposed to a constantly varying electron proton current, which can amount to a few nA / cm 2 , due to the charged particles trapped in the earth's magnetic field, the particle radiation from solar flares and magnetic substorms. In particular, the electrons, which are much more common due to their speed, negatively charge spacecraft without suitable protective measures.
Der i.a. mit dem Raumfahrzeugkörper leitend verbundene Solargenerator nimmt das Potential des Raumfahrzeugs an. Auf dem Solargenerator sind meist Solarzellen-Deckgläser elektrisch isoliert angebracht. Ihre Aufladung hängt neben ihrer Leitfähigkeit von dem einfallenden Teilchenstrom sowie den durch Photoeffekt und Sekundärelektronenemission erzeugten Elektronen ab. Im Allgemeinen werden auf den Deckgläsern invertierte Ladungen mit Spannungen bis über 1000 V erzeugt, die sich in regelmäßigen Abständen i.A. auf die über den negativen Pol mit der Satellitenmasse verbundenen Solarzellen entladen. Der entstehende Funken ionisiert das Solarzellenmaterial, was zu einer länger dauernden Bogenentladung führen kann, wenn ein entsprechend ho- hes elektrisches Feld die freigesetzten Elektronen beschleunigt und die Entladung durch Stoßionisation aufrecht erhalten wird. Das erforderliche elektrische Feld kann z.B. durch die Spannungsdifferenz zweier benachbarter Solarzellen entstanden sein, wenn hohe Betriebsspannungen beispielsweise durch u-förmige Anordnung der Solarzellen, erzielt werden.The i.a. the solar generator conductively connected to the spacecraft body assumes the potential of the spacecraft. Most solar cell coverslips are mounted electrically insulated on the solar generator. In addition to their conductivity, their charge depends on the incident particle stream and the electrons generated by the photo effect and secondary electron emission. In general, inverted charges with voltages up to over 1000 V are generated on the cover glasses, which generally occur at regular intervals. discharged onto the solar cells connected to the satellite mass via the negative pole. The resulting spark ionizes the solar cell material, which can lead to a longer-lasting arc discharge if a correspondingly high electrical field accelerates the released electrons and the discharge is maintained by impact ionization. The required electric field can e.g. be caused by the voltage difference between two adjacent solar cells when high operating voltages are achieved, for example, by a u-shaped arrangement of the solar cells.
Eine derartige selbständige Entladung kann sehr hohe Temperaturen erzeugen, wodurch Materialzerstörungen auftreten. So können z.B. der Isolation gegen ein Solargeneratorsubstrat dienende Kunststoff-Folien karbonisiert werden und eine leitende Verbindung zwischen den Solarzellen schaffen. Diese leitende Verbindung lässt zwar die Entladung erlöschen, schließt aber gleichzeitig die Solarzellen kurz, so dass es zum Ausfall ganzer Solargenerator- Stromkreise kommen kann.Such an independent discharge can generate very high temperatures, which leads to material destruction. For example, plastic foils used to insulate against a solar generator substrate can be carbonized and create a conductive connection between the solar cells. Although this conductive connection extinguishes the discharge, it closes At the same time, the solar cells are short, so that entire solar generator circuits can fail.
Die Ursache der Kurzschlüsse ist die Primärentladung der Deckgläser auf die Solarzellen. Diese Primärentladung kann verhindert werden, indem man die Deckgläser leitend macht und sie elektrisch entweder direkt oder über die Solarzellen mit der Solargeneratormasse verbindet. Für die Deckgläser hat sich insbesondere eine dünne, optisch angepasste Schicht von Indium-Zinn-Oxyd (ITO) auf der Außenseite bewährt. Die Verbindung dieser leitenden Schicht mit der Solargeneratorstruktur ist jedoch problematisch, weil entweder sehr aufwändig, oder nicht zuverlässig genug. Einige Verfahren (tab welding, straight or helically shaped metal wire connection, pig tail interconnector plus conductive adhesive) wurden beschrieben von J.W. Koch „A low cost anti- charging connection System for solar generators and its application on ASPERA solar array", Proceedings of the European Space Power Conference, Madrid, Spain, 2-6 October 1989, ESA SP-294, page 587. Weitere Lösungen sind leitende Verbindungen der Deckgläser über die Ecken mittels Metallpads und leitendem Kleber, der durch Auffüllen der Zellzwischenräume mit isolierendem Kleber von den Solarzellen isoliert wurde, bekannt aus DE 197 1 319 oder die Bedampfung der Zeil- und Deckglaskanten mit einer sehr dünnen Goldschicht oder die ITO-Schicht, bekannt aus WO 99/38217.The cause of the short circuits is the primary discharge of the coverslips on the solar cells. This primary discharge can be prevented by making the cover glasses conductive and electrically connecting them to the solar generator mass either directly or via the solar cells. A thin, optically adapted layer of indium tin oxide (ITO) on the outside has proven particularly useful for the cover glasses. However, the connection of this conductive layer to the solar generator structure is problematic because it is either very complex or not reliable enough. Some methods (tab welding, straight or helically shaped metal wire connection, pig tail interconnector plus conductive adhesive) have been described by J.W. Koch "A low cost anti-charging connection system for solar generators and its application on ASPERA solar array", Proceedings of the European Space Power Conference, Madrid, Spain, 2-6 October 1989, ESA SP-294, page 587. Other solutions are conductive connections of the cover glasses over the corners by means of metal pads and conductive adhesive, which was isolated from the solar cells by filling the interstices with insulating adhesive, known from DE 197 1 319 or the vapor deposition of the row and cover glass edges with a very thin gold layer or the ITO Layer, known from WO 99/38217.
In US 5,919,316 werden die Ladungen vom Deckglas zum Zellkontakt bzw. Zellverbinder geleitet, entweder durch eine „Wrap-around"-Technik einer leitenden ITO-Schicht (d.h. die ITO-Schicht umschließt teilweise das Deckglas) oder durch eine Deckglaskanten-Bedampfung, die mit Hilfe eines leitenden Epoxyd-Harz-Wulstes mit dem Zellverbinder verbunden wird. Problematisch ist hierbei, wie der Kontakt zur Zeil-Elektrode zustande kommt, wie man den Epoxyd-Harz-Wulst herstellt, ohne dass man die Zelle kurzschließt oder den Zellverbinder überlebensunfähig macht. Außerdem ist eine „wrap-around"- Technik nur aufwändig zu realisieren. Die Lehre der EP 0 938 141 verhindert eine Primärentladung nicht, sondern reduziert die Ausbildung einer Sekundärbogenentladung. Dabei ist ein Füllstoff in den Zellzwischenräumen vorgesehen, der nicht leitend ist.In US Pat. No. 5,919,316, the charges are conducted from the cover slip to the cell contact or cell connector, either by a “wrap-around” technique of a conductive ITO layer (ie the ITO layer partially encloses the cover slip) or by cover slip edge vapor deposition, which is carried out with The cell connector is connected with the aid of a conductive epoxy resin bead, but the problem here is how the contact with the cell electrode comes about, how the epoxy resin bead is made, without the cell being short-circuited or the cell connector being unable to survive. In addition, a "wrap-around" technique can only be implemented with great effort. The teaching of EP 0 938 141 does not prevent primary discharge, but rather reduces the formation of a secondary arc discharge. A filler is provided in the inter-cell space that is not conductive.
Alle Verfahren sind relativ aufwändig und kostenintensiv.All processes are relatively complex and expensive.
Aufgabe der vorliegenden Erfindung ist es daher, einen Solargenerator und ein Herstellungsverfahren dafür bereitzustellen, das eine Herstellung auf einfache Weise ermöglicht und weiterhin eine effektive Verhinderung von Primärentladungen garantiert.The object of the present invention is therefore to provide a solar generator and a production method therefor, which enables production to be carried out in a simple manner and furthermore guarantees effective prevention of primary discharges.
Diese Aufgabe wird gelöst durch die Merkmale der Patentansprüche 1 und 5.This object is achieved by the features of claims 1 and 5.
Der erfindungsgemäße Solargenerator weist mehrere, auf einem Trägermaterial voneinander beabstandet aufgebrachte Solarzellen auf. Zwischen benachbarten Solarzellen sind also Zwischenräume vorgesehen, deren Zahl sich danach richtet, von wie vielen benachbarten Solarzellen eine bestimmte Solarzelle umgeben ist. Die Solarzellen sind durch Deckschichten zumindest auf der dem Trägermaterial abgewandten Seite bedeckt. Solche Deckschichten sind insbesondere isolierend ausgebildet und können aus Glas oder einem anderen geeigneten Material bestehen. Es kann pro Solarzelle lediglich eine Deckschicht vorgesehen sein, grundsätzlich sind jedoch auch mehrere Deckschichten möglich. Auf den Deckschichten sind leitende Schichten aufge- bracht, die zumindest einen Teil der Deckschicht bedecken. Sie können diese beispielsweise in Form einzelner Leiter oder eines Gitters bedecken, bei entsprechend geringer Beeinträchtigung der Funktion der Solarzelle ist auch eine komplette Bedeckung denkbar. Erfindungsgemäß ist nun zumindest einer der Zwischenräume pro Solarzelle mit einem leitfähigen Kleber aufgefüllt, der sich vom Trägermaterial bis zu den leitenden Schichten erstreckt. Der Kleber muss in Richtung der Längserstreckung des Zwischenraums, also in Richtung parallel zu den den Zwischenraum bildenden Kanten der Solarzellen, den Zwischenraum nicht komplett ausfüllen. Es genügt, dass der Zwischenraum in dieser Richtung nur in einem Teilbereich aufgefüllt ist. Es ist lediglich zu garantieren, dass der leitende Kleber mit einer Kante der Solarzelle und mit den leitenden Schichten in Verbindung steht, um eine leitende Verbindung zwischen diesen beiden herzustellen. Besonders vorteilhaft ist jedoch, dass durch das Ausfüllen der Zwischenräume gleichzeitig für zwei Solarzellen diese leitende Verbindung zwischen Solarzelle und leitender Schicht erzielt werden kann.The solar generator according to the invention has a plurality of solar cells which are applied at a distance from one another on a carrier material. Gaps are therefore provided between adjacent solar cells, the number of which depends on how many adjacent solar cells a certain solar cell is surrounded by. The solar cells are covered by cover layers at least on the side facing away from the carrier material. Such cover layers are particularly insulating and can consist of glass or another suitable material. Only one cover layer can be provided per solar cell, but in principle several cover layers are also possible. Conductive layers covering at least part of the cover layer are applied to the cover layers. You can cover them, for example, in the form of individual conductors or a grid, with a correspondingly minor impairment of the function of the solar cell, a complete covering is also conceivable. According to the invention, at least one of the interspaces per solar cell is now filled with a conductive adhesive which extends from the carrier material to the conductive layers. In the direction of the longitudinal extent of the intermediate space, that is to say in the direction parallel to the edges of the solar cells forming the intermediate space, the adhesive need not completely fill the intermediate space. It is sufficient that the space in this direction is filled in only in a partial area. It can only be guaranteed that the conductive adhesive with one edge of the solar cell and with the conductive Layers is connected to make a conductive connection between these two. However, it is particularly advantageous that this conductive connection between the solar cell and the conductive layer can be achieved simultaneously for two solar cells by filling in the spaces.
Wie bereits beschrieben kann vorgesehen werden, dass die leitenden Schichten zumindest Teilbereiche der von den Solarzellen abgewandten Oberflächen der Deckschichten bedecken. Es kann aber auch vorgesehen werden, dass die leitenden Schichten zusätzlich zumindest Teilbereiche der Kantenflächen der Deckschichten bedecken. Damit wird die Herstellung des Kontaktes zu dem leitenden Kleber vereinfacht, da nun eine größere Kontaktfläche auch seitens der Deckschichten besteht. Seitens der Solarzellen wird der Kontakt ohnehin über die Kantenflächen hergestellt, also in der Regel durch das Halbleitermaterial der Solarzelle (eine speziell ausgebildete Elektrode muss hierfür nicht vorgesehen werden).As already described, it can be provided that the conductive layers cover at least partial areas of the surfaces of the cover layers facing away from the solar cells. However, it can also be provided that the conductive layers additionally cover at least partial areas of the edge surfaces of the cover layers. This simplifies the production of the contact with the conductive adhesive, since there is now a larger contact area also on the part of the cover layers. On the part of the solar cells, the contact is made anyway via the edge surfaces, that is to say usually through the semiconductor material of the solar cell (a specially designed electrode does not have to be provided for this).
Für den leitenden Kleber kann jedes geeignete Material vorgesehen werden. Speziell kann er als mit leitendem Material angereicherter Silikonkleber ausgebildet sein.Any suitable material can be provided for the conductive adhesive. In particular, it can be designed as a silicone adhesive enriched with conductive material.
Bei dem erfindungsgemäßen Verfahren zur Herstellung eines Solargenerators, bei dem Solarzellen auf einem Trägermaterial voneinander durch Zwischen- räume beabstandet aufgebracht sind, wobei die Solarzellen durch Deckschichten zumindest auf der dem Trägermaterial abgewandten Seite bedeckt sind und wobei auf den Deckschichten leitende Schichten aufgebracht sind, werden folgende Schritte durchgeführt:In the method according to the invention for producing a solar generator, in which solar cells are applied on a carrier material spaced apart from one another by spaces, the solar cells being covered by cover layers at least on the side facing away from the carrier material and conductive layers being applied to the cover layers Steps taken:
Fixieren der Solarzellen auf der Seite der Deckschichten, wobei das Fixie- ren durch eine geeignete Fixiereinrichtung wie eine Spannvorrichtung o- der eine Vakuum-Einrichtung oder auch durch eine geeignete Klebefläche erfolgen kann,Fixing the solar cells on the side of the cover layers, the fixing being able to be carried out by a suitable fixing device such as a tensioning device or a vacuum device or also by means of a suitable adhesive surface,
zumindest teilweises Auffüllen in Richtung der Längserstreckung der Zwischenräume von zumindest einem Zwischenraum pro Solarzelle mit ei- nem leitfähigen Kleber von der von den Solarzellen abgewandten Oberflächen der Deckschichten bis zu der von den Deckschichten abgewandten Oberflächen der Solarzellen, so "dass also der leitfähige Kleber mit der von den Solarzellen abgewandten Oberflächen der Deckschich- ten und den Seitenkanten der Solarzellen in Verbindung gebracht wird, jedoch in Richtung parallel zu den Seitenkanten der Solarzellen, welche den Zwischenraum bilden, der Zwischenraum nicht komplett ausgefüllt werden muss,at least partially filling in the direction of the longitudinal extent of the spaces of at least one space per solar cell with a nem conductive adhesive is up to the side remote from the outer layers of the solar cell surface "so that therefore brought from the side facing away from the solar cells surfaces of the outer layers, the conductive adhesive with the side facing away from the solar cells surfaces of the outer layers and the side edges of the solar cell in connection , but in the direction parallel to the side edges of the solar cells which form the intermediate space, the intermediate space does not have to be completely filled,
Aufbringen eines Klebers auf die den Deckschichten abgewandten Ober- flächen der SolarzellenApply an adhesive to the surfaces of the solar cells facing away from the cover layers
Aufbringen eines Trägermaterials auf die von den Deckschichten abgewandten Oberflächen der Solarzellen.Application of a carrier material to the surfaces of the solar cells facing away from the cover layers.
Das Aufbringen des Klebers auf die den Deckschichten abgewandten Oberflächen der Solarzellen und das Aufbringen des leitfähigen Klebers kann durch jede geeignete Technik erfolgen, wobei bevorzugt eine Siebtechnik zumindest für den Kleber auf den den Deckschichten abgewandten Oberflächen der Solarzellen, idealerweise auch für den leitfähigen Kleber verwendet wird. Alternativ können aber auch geeignete Dosiergeräte verwendet werden. Das Auffüllen der Zwischenräume mit leitendem Kleber und des Aufbringen des Kle- bers auf den Oberflächen der Solarzellen kann dabei auch in einem einzigen Arbeitsschritt erfolgen, d.h. dass derselbe Kleber für beide Zwecke verwendet wird und nur ein einziges Mal, z.B. durch eine geeignete Siebtechnik, Kleber auf die Anordnung aufgebracht werden muss.The adhesive can be applied to the surfaces of the solar cells facing away from the cover layers and the conductive adhesive can be applied by any suitable technique, preferably using a sieving technique for the adhesive on the surfaces of the solar cells facing away from the cover layers, ideally also for the conductive adhesive , Alternatively, suitable dosing devices can also be used. The gaps can be filled with conductive adhesive and the adhesive applied to the surfaces of the solar cells in a single step, i.e. that the same adhesive is used for both purposes and only once, e.g. by means of a suitable screening technique, glue must be applied to the arrangement.
Ein spezielles Ausführungsbeispiel der vorliegenden Erfindung wird nachfol- gend anhand der Figuren 1 und 2 erläutert.A special exemplary embodiment of the present invention is explained below with reference to FIGS. 1 and 2.
Es zeigen:Show it:
Fig. 1 Querschnitt durch einen erfindungsgemäßen Solargenerator, Fig. 2 Draufsicht auf den Solargenerator nach Fig. 1.1 cross section through a solar generator according to the invention, 2 top view of the solar generator of FIG. 1st
Fig. 1 zeigt einen Querschnitt durch einen Solargenerator, bei dem auf einem Trägermaterial 6 mehrere Solarzellen 2 angeordnet sind. Diese sind auf der in Fig. 1 unteren Oberfläche 10 mit dem Trägermaterial verklebt. Auf der anderen1 shows a cross section through a solar generator, in which a plurality of solar cells 2 are arranged on a carrier material 6. These are glued to the lower surface 10 in FIG. 1 with the carrier material. On the other
5 Seite der Solarzellen 2 sind Deckgläser 1 angebracht, die auf ihrer Oberfläche 8 zumindest teilweise mit einer leitenden Schicht 5 bedeckt sind. Die Seitenfläche 9 der Deckgläser 1 sind in Fig. 1 ohne eine Beschichtung durch eine leitende Schicht 5 dargestellt. Es können aber auch diese Kantenflächen 9 zumindest teilweise von einer leitenden Schicht 5 bedeckt sein, die in leitenderOn the 5 side of the solar cells 2, cover glasses 1 are attached, which are at least partially covered on their surface 8 with a conductive layer 5. The side surface 9 of the cover glasses 1 are shown in FIG. 1 without a coating by a conductive layer 5. However, these edge surfaces 9 can also be at least partially covered by a conductive layer 5 which is more conductive
10 Verbindung mit den leitenden Schichten 5 auf der Oberfläche 8 stehen. Zwischen die Solarzellen 2 ist ein leitender Kleber 3 eingebracht, der von dem Tragermatenal 6 bis zur Höhe der leitenden Schichten 5 auf der Oberfläche 8 reicht. Er füllt die Zwischenräume zwischen den Solarzellen 2 so aus, dass jeweils benachbarte Solarzellen 2, deren Deckgläser 1 und die leitenden10 are connected to the conductive layers 5 on the surface 8. A conductive adhesive 3 is introduced between the solar cells 2 and extends from the carrier material 6 to the height of the conductive layers 5 on the surface 8. It fills the gaps between the solar cells 2 so that adjacent solar cells 2, their cover glasses 1 and the conductive ones
15 Schichten 5 auf den Deckgläsern miteinander verbunden sind.15 layers 5 are bonded together on the coverslips.
Fig. 2 zeigt eine Draufsicht auf den Solargenerator nach Fig. 1 , wobei hierbei deutlich wird, dass die Zwischenräume 7 zwischen den einzelnen Solarzellen 2 in der Richtung parallel zu den Seitenflächen 9 der Deckgläser nicht komplett mit dem leitenden Kleber 3 ausgefüllt sein müssen. Es müssen auch nicht alleFIG. 2 shows a top view of the solar generator according to FIG. 1, whereby it becomes clear that the spaces 7 between the individual solar cells 2 in the direction parallel to the side surfaces 9 of the cover glasses do not have to be completely filled with the conductive adhesive 3. Not all of them have to either
20 Zwischenräume zwischen benachbarten Solarzellen 2 durch einen leitenden Kleber 3 ausgefüllt sein. Es genügt, dass pro Solarzelle zumindest ein Zwischenraum 7 zu einer benachbarten Solarzelle mit einem leitenden Kleber 3 ausgefüllt ist. Die leitenden Schichten 5 auf den Deckgläsern 1 sind in Fig. 2 schematisch so dargestellt, dass sie die komplette Oberfläche der Deckgläser20 spaces between adjacent solar cells 2 can be filled with a conductive adhesive 3. It is sufficient that at least one space 7 per solar cell to an adjacent solar cell is filled with a conductive adhesive 3. The conductive layers 5 on the cover glasses 1 are shown schematically in FIG. 2 so that they cover the entire surface of the cover glasses
25. bedecken. Dies ist jedoch nur sinnvoll, wenn diese Schichten 5 eine ausreichende Transparenz aufweisen. Als leitende Schicht kann alternativ auch eine auf dem Deckglas aufgebrachte Antireflexionsschicht dienen. In anderen Fällen wird man bevorzugt vorsehen, dass die leitenden Schichten 5 lediglich als einzelne Leiter oder als Gitter auf den Deckgläsern 1 ausgebildet sind.25. cover. However, this only makes sense if these layers 5 have sufficient transparency. Alternatively, an antireflection layer applied to the cover glass can also serve as the conductive layer. In other cases, it will preferably be provided that the conductive layers 5 are formed only as individual conductors or as a grid on the cover glasses 1.
30. Die Solarzellen 2 sind in Fig. 2 in Reihen 13 und Spalten 2 angeordnet. Die Solarzellen 2 einer Spalte 12 sind im Beispiel nach Fig. 2 durch übliche Zeil- verbinder 4 in Form einer Serienschaltung miteinander verbunden. Es ist durch Punkte angedeutet, dass noch mehr als nur die dagestellten drei Reihen 13 vorgesehen sein können. Es können nun, wie in Fig. 2 dargestellt, auch die30. The solar cells 2 are arranged in rows 13 and columns 2 in FIG. 2. The solar cells 2 of a column 12 are in the example according to FIG. connector 4 connected together in the form of a series connection. It is indicated by points that more than just the three rows 13 shown can be provided. It can now, as shown in Fig. 2, the
- einzelnen Spalten 12 an ihren Enden miteinander leitend verbunden sein. Die Spalten 12 können aber auch voneinander unabhängig sein, so dass nur die- Individual columns 12 are conductively connected to one another at their ends. The columns 12 can also be independent of each other, so that only the
Solarzellen 2 innerhalb einer Spalte 12 in Form einer Serienschaltung verbunden sind, wobei jedoch bevorzugt benachbarte Spalten 12 gegenläufig verschaltet sind. In Fig. 2 sind hierzu Verbinder 11 schematisch dargestellt, die ein U-förmige Verschaltung der Solarzellen 2 bzw. der Spalten 12 von Solarzellen - 2 herstellen. Damit sind die Solarzellen 2 der mittleren Spalte 12 in Fig. 2 mit den Solarzellen 2 der linken Spalte 12 in Serie geschaltet, allerdings in umgekehrter Abfolge. Dadurch steigt der Spannungsunterschied zwischen Solarzellen 2 benachbarter Spalten 12 zur untersten Reihe 13 in Fig. 2 hin an. Es muss daher in diesem Fall ein hochohmiger leitfähiger Kleber 3 zwischen die- sen Spalten 12 vorgesehen werden, damit kein Kurzschluss zwischen denSolar cells 2 are connected within a column 12 in the form of a series connection, but preferably adjacent columns 12 are connected in opposite directions. 2 schematically shows connectors 11 that produce a U-shaped connection of the solar cells 2 or the columns 12 of solar cells 2. The solar cells 2 of the middle column 12 in FIG. 2 are thus connected in series with the solar cells 2 of the left column 12, but in the reverse order. As a result, the voltage difference between solar cells 2 of adjacent columns 12 increases toward the bottom row 13 in FIG. 2. In this case, therefore, a high-resistance conductive adhesive 3 must be provided between these columns 12 so that there is no short circuit between the
- Spalten 12 entsteht.- Columns 12 are created.
Bei einem Elektronenstrom von typisch 10nA/cm2 müsste ein beispielsweise 25 cm2 großes Deckglas 1 über einen Widerstand von 400 M „geerdet" werden, um die Aufladung des Deckglases 1 unter 100 V zu halten. Deckgläser besitzen spezifische Widerstände von typisch 1016 cm. Dies verhindert nicht eine Aufladung der Deckgläser 1. Nun wird in den Zwischenraum 7 zwischen zwei benachbarten Zellen 2 ein hochohmigerb Leiter z.B. in Form eines gering leitenden Klebers 3, eingebracht, der das Deckglas 1 mit der darunter liegenden und den benachbarten Solarzellen 2 verbindet. Füllt man den langen Zwi- schenraum 7 zwischen zwei u-förmig angeordneten Zellketten mit einer Operationsspannung 100 V mit einem Füllstoff 3 (Silikonkleber) z.B. mit einem spe-With an electron current of typically 10nA / cm 2, a cover glass 1, for example 25 cm 2 in size, would have to be “grounded” via a resistance of 400 M in order to keep the charge on the cover glass 1 below 100 V. Cover glasses have specific resistances of typically 10 16 cm This does not prevent the cover glasses 1 from being charged. Now a high-resistance conductor, for example in the form of a low-conductivity adhesive 3, is introduced into the space 7 between two adjacent cells 2, which connects the cover glass 1 to the underlying and adjacent solar cells 2. If you fill the long intermediate space 7 between two U-shaped cell chains with an operating voltage of 100 V with a filler 3 (silicone adhesive), for example with a special
- zifischen Widerstand von 109 cm auf, so bleibt die Deckglasaufladung stets unter 100 V und der Modul verliert durch die Leitfähigkeit des Füllstoffs 3 nur ca. 10 uA, was bei einem typischen Zellstrom von 1 A vernachlässigbar ist.- Specific resistance of 10 9 cm, so the cover slip always remains below 100 V and the module loses only about 10 uA due to the conductivity of the filler 3, which is negligible at a typical cell current of 1 A.
Die Erfindung besteht nun darin, dass ein gebräuchlicher Silikonkleber, z.B. Wacker RTV-S 695 oder Dow Corning 93500, mit leitendem Material wie Ruß oder Metallpulver vermengt wird, dass der Kleber eine ausreichende Leitfä- higkeit z.B. von 10"9 - 10" 0 S/cm besitzt. Bei der Vorbereitung der Verklebung von Solarzellenmodulen mit einer Panelstruktur als Trägermaterial 6 liegen die Solarzellen 2 mit der Rückseite 10 nach oben beispielsweise auf einer Klebefolie, die ausreichend, z.B. auf einem Positionierblech, fixiert ist. Der Kleber für die Klebung der Solarzellen 2 wird beispielsweise im Siebdruckverfahren mit einem Sieb aufgebracht und zwar so, dass die Zellzwischenräume 7 frei von Kleber bleiben. Vor diesem Schritt wird jedoch ein Zwischenschritt eingeschaltet, der die Applikation des leitenden Klebers 3, hier ebenfalls mittels Siebtechnik, beinhaltet. Dazu wird ein grobes Sieb benutzt, das lediglich einen Kleberaustritt an den Zellzwischenräumen 7 erlaubt, die mit dem leitenden Kleber 3 gefüllt werden sollen. Mittels der Siebtechnik lassen sich die gewünschten Stel-Ien ganz exakt definieren. Ein geringes Überlaufen auf die Zellrückseite 10 hat keinen negativen Einfluss. Die Applikation des leitenden Klebers kann natürlich auch mit anderen Mitteln als der Siebtechnik erfolgen, z.B. mit Dosiergerät. Wichtig ist, dass der Kleber bis zu den Deckgläsern 1 hinunterläuft und Deckglas 1 und Zelle 2 leitend miteinander verbunden werden.The invention now consists in that a common silicone adhesive, for example Wacker RTV-S 695 or Dow Corning 93500, is mixed with conductive material such as carbon black or metal powder, so that the adhesive has sufficient conductivity. ability of 10 "9 - 10 " 0 S / cm. When preparing the bonding of solar cell modules with a panel structure as carrier material 6, the solar cells 2 lie with the rear side 10 upward, for example on an adhesive film which is adequately fixed, for example on a positioning plate. The adhesive for the bonding of the solar cells 2 is applied, for example, in a screen printing process with a screen, in such a way that the cell interstices 7 remain free of adhesive. Before this step, however, an intermediate step is switched on, which includes the application of the conductive adhesive 3, here also using screening technology. For this purpose, a coarse sieve is used, which only allows an adhesive outlet at the cell interstices 7 which are to be filled with the conductive adhesive 3. The desired positions can be precisely defined using the screen technology. A slight overflow on the back of the cell 10 has no negative influence. Of course, the conductive adhesive can also be applied using other means than sieving technology, for example with a metering device. It is important that the adhesive runs down to the cover glasses 1 and cover glass 1 and cell 2 are conductively connected to one another.
Die Deckgläser 1 brauchen an ihren Rändern nicht leitend zu sein, wenn der Leitkleber 3 bis an die Oberfläche 8 reicht. Es kann aber auch vorgesehen werden, dass die leitende Schicht 5 um die Kante wenigstens teilweise auf die Seitenfläche 9 der Deckgläser 1 herumgezogen wird, was ohne großen Mehraufwand erzielt werden kann. The cover glasses 1 do not need to be conductive at their edges if the conductive adhesive 3 extends to the surface 8. However, it can also be provided that the conductive layer 5 is at least partially drawn around the edge onto the side surface 9 of the cover glasses 1, which can be achieved without great additional effort.

Claims

Patentansprüche claims
1. Solargenerator mit mehreren, auf einem Trägermaterial (6) voneinander beabstandet aufgebrachten Solarzellen (2)', welche durch Deckschichten (1 ) zumindest auf der dem Trägermaterial (6) abgewandten Seite bedeckt sind, wobei auf den Deckschichten (1) leitende Schichten (5) aufgebracht sind und zwischen jeder Solarzelle (2) und ihr benachbarten Solarzellen zumindest ein Zwischenraum (7) besteht, dadurch gekennzeichnet, dass zumindest einer der Zwischenräume (7) pro Solarzelle (2) zumindest auf einem Teil seiner Längserstreckung zwischen den benachbarten Solarzellen (2) mit einem hoch- ohmigen leitfähigen Kleber (3) vom Trägermaterial (6) bis zu den leitenden Schichten (5) aufgefüllt ist.1. Solar generator with a plurality of solar cells (2) ' which are spaced apart from one another on a carrier material (6) and which are covered by cover layers (1) at least on the side facing away from the carrier material (6), with conductive layers (1) on the cover layers (1). 5) and there is at least one intermediate space (7) between each solar cell (2) and its adjacent solar cells, characterized in that at least one of the intermediate spaces (7) per solar cell (2) extends at least over part of its longitudinal extent between the adjacent solar cells ( 2) is filled with a high-ohmic conductive adhesive (3) from the carrier material (6) to the conductive layers (5).
2. Solargenerator nach Anspruch 1 , dadurch gekennzeichnet, dass die leitenden Schichten (5) zumindest Teilbereiche der von den Solarzellen (2) abgewandten Oberflächen (8) der Deckschichten (1) bedecken.2. Solar generator according to claim 1, characterized in that the conductive layers (5) cover at least partial areas of the surfaces (8) of the cover layers (1) facing away from the solar cells (2).
3. Solargenerator nach Anspruch 2, dadurch gekennzeichnet, dass die leitenden Schichten (5) zusätzlich zumindest Teilbereiche der Kantenflächen (9) der Deckschichten (1 ) bedecken.3. Solar generator according to claim 2, characterized in that the conductive layers (5) additionally cover at least partial areas of the edge surfaces (9) of the cover layers (1).
4. Solargeneratör nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der leitfähige Kleber (3) als mit leitendem Material angereicherter Silikonkleber ausgebildet ist. 4. Solar generator according to one of claims 1 to 3, characterized in that the conductive adhesive (3) is designed as a silicone adhesive enriched with conductive material.
5. Verfahren zur Herstellung eines Solargenerators mit auf einem Trägermaterial (6) voneinander durch Zwischenräume (7) beabstandet aufgebrachten Solarzellen (2), welche durch Deckschichten (1) zumindest auf der dem Trägermaterial (6) abgewandten Seite bedeckt sind, wobei auf den Deckschichten (1 ) leitende Schichten (5) aufgebracht sind, mit den Schritten:5. A method for producing a solar generator with on a carrier material (6) spaced apart from one another by spaces (7) applied solar cells (2), which are covered by cover layers (1) at least on the side facing away from the carrier material (6), with the cover layers (1) conductive layers (5) are applied, with the steps:
Fixieren der Solarzellen auf der Seite der Deckschichten (1 )Fixing the solar cells on the side of the cover layers (1)
Aufbringen eines Klebers auf die den Deckschichten (1) abgewandten Oberflächen (1 Ö) der Solarzellen (2)Applying an adhesive to the surfaces (1 Ö) of the solar cells (2) facing away from the cover layers (1)
Aufbringen eines Trägermaterials (6) auf die von den Deckschichten (1 ) abgewandten Oberflächen (10) der Solarzellen (2),Applying a carrier material (6) to the surfaces (10) of the solar cells (2) facing away from the cover layers (1),
dadurch gekennzeichnet,characterized,
dass nach dem Fixieren der Solarzellen (2) ein zumindest teilweises Auffüllen in Richtung der Längserstreckung der Zwischenräume (7) von zumindest einem Zwischenraum (7) pro Solarzelle (2) mit einem leitfähigen Kleber (3) von der von den Solarzellen (2) abgewandten Oberflächen (8) der Deckschichten (1) bis zu der von den Deckschichten (1 ) abgewandten Oberflächen (10) der Solarzellen (2) erfolgt.that after fixing the solar cells (2), at least partially filling in the direction of the longitudinal extent of the spaces (7) of at least one space (7) per solar cell (2) with a conductive adhesive (3) from that facing away from the solar cells (2) Surfaces (8) of the cover layers (1) up to the surface (10) of the solar cells (2) facing away from the cover layers (1).
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Aufbringen der Kleber durch eine Siebtechnik erfolgt. 6. The method according to claim 5, characterized in that the application of the adhesive is carried out by a sieving technique.
EP01969567A 2000-08-08 2001-08-03 Discharge-resistant outer-space solar generator Withdrawn EP1307926A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10054776 2000-08-08
DE10054776A DE10054776A1 (en) 2000-08-08 2000-08-08 Solar generator used for spacecraft comprises several solar cells mounted on a support and covered with sealing layers on the side facing away from the support material
PCT/EP2001/009004 WO2002013278A2 (en) 2000-08-08 2001-08-03 Discharge-resistant outer-space solar generator

Publications (1)

Publication Number Publication Date
EP1307926A2 true EP1307926A2 (en) 2003-05-07

Family

ID=7662185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01969567A Withdrawn EP1307926A2 (en) 2000-08-08 2001-08-03 Discharge-resistant outer-space solar generator

Country Status (5)

Country Link
US (1) US20050028859A1 (en)
EP (1) EP1307926A2 (en)
JP (1) JP2004506329A (en)
DE (1) DE10054776A1 (en)
WO (1) WO2002013278A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021568B4 (en) * 2004-05-03 2009-04-30 Hts - Hoch Technologie Systeme Gmbh Method for producing flexible thin-film solar cell arrangements
DE102009031982A1 (en) * 2009-07-06 2011-01-13 Schott Solar Ag Photovoltaic module and photovoltaic device
DE102009044142A1 (en) 2009-09-30 2011-03-31 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Thin-film component on glass, a process for its production and its use
JP5459766B2 (en) * 2009-10-01 2014-04-02 Nec東芝スペースシステム株式会社 Solar cell panel, method for suppressing electrification of solar cell panel, and solar power generator for artificial satellite
DE102010007131A1 (en) * 2010-02-05 2011-08-11 Reinhausen Plasma GmbH, 93057 Solar cell string and method for its production
JP5611460B2 (en) * 2010-07-08 2014-10-22 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic device having elastic electrode and method of manufacturing the same
CN110880542A (en) * 2019-11-27 2020-03-13 浙江爱旭太阳能科技有限公司 Novel solar cell string connection method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941169B2 (en) * 1975-12-25 1984-10-05 シチズン時計株式会社 Elastomer
GB2045522B (en) * 1979-04-03 1983-03-16 Standard Telephones Cables Ltd Piezo-electric film manufacture
JPS60257579A (en) * 1984-06-04 1985-12-19 Matsushita Electric Ind Co Ltd Module of solar cell
JPS61202475A (en) * 1985-03-05 1986-09-08 Mitsubishi Electric Corp Solar battery array for space
DE3733645A1 (en) * 1987-10-05 1989-04-20 Telefunken Electronic Gmbh SPACE SOLAR CELL
US4982184A (en) * 1989-01-03 1991-01-01 General Electric Company Electrocrystallochromic display and element
DE3935826A1 (en) * 1989-02-17 1990-06-13 Gen Electric Solar plate structure for spacecraft - has conductive bead between elements to conductive coat on glass reducing undesired electrostatic fields
DE3914315A1 (en) * 1989-04-29 1990-10-31 Telefunken Systemtechnik Leakage path for charge carriers - on cover panels off solar generators joined by conductive adhesive
DE19711319C1 (en) * 1997-03-18 1998-03-12 Daimler Benz Aerospace Ag Solar module for space satellite
US5919316A (en) * 1997-06-27 1999-07-06 The United States Of America As Represented By The Secretary Of The Air Force Spacecraft solar array design to control differential charging
JPH11163379A (en) * 1997-12-02 1999-06-18 Citizen Watch Co Ltd Amorphous silicon solar cell
US6248950B1 (en) * 1998-02-21 2001-06-19 Space Systems/Loral, Inc. Solar array augmented electrostatic discharge for spacecraft in geosynchronous earth orbit
US6177629B1 (en) * 1999-06-11 2001-01-23 Maxwell Technologies Spacecraft solar array charging control device
US6713670B2 (en) * 2001-08-17 2004-03-30 Composite Optics, Incorporated Electrostatically clean solar array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0213278A2 *

Also Published As

Publication number Publication date
JP2004506329A (en) 2004-02-26
WO2002013278A2 (en) 2002-02-14
US20050028859A1 (en) 2005-02-10
DE10054776A1 (en) 2002-02-28
WO2002013278A3 (en) 2002-04-18

Similar Documents

Publication Publication Date Title
DE112005001252B4 (en) Connection of solar cells in a solar cell module
DE3604917C2 (en)
DE4023152C2 (en) Solar cell panel and method for assembling a solar cell panel
WO2000079589A1 (en) Electronic component with flexible contact structures and method for the production of said component
DE112009001168T5 (en) Method for producing a thin film solar battery module and thin film solar battery module
DE3819671C2 (en)
WO1999038217A1 (en) Electrostatic derivation for solar cells
DE102007052971A1 (en) Contacting and module interconnection of thin-film solar cells on polymeric substrates
WO2002013278A2 (en) Discharge-resistant outer-space solar generator
WO2007128342A1 (en) Solar cell module and procedure for the manufacture of solar cell modules
DE2342923C2 (en) Method for producing a two-phase charge transfer arrangement and two-phase charge transfer arrangement produced according to this method
DE3617675C2 (en)
EP2452365B1 (en) Photovoltaic module and photovoltaic device
EP2577739A2 (en) Solar cell module and production method therefor
DE3328869A1 (en) PHOTOVOLTAIC CELL AND METHOD FOR PRODUCING THE SAME
DE3935826A1 (en) Solar plate structure for spacecraft - has conductive bead between elements to conductive coat on glass reducing undesired electrostatic fields
EP2852976B1 (en) Method for producing interconnected optoelectronic components, and interconnected optoelectronic components
DE102020209167A1 (en) Thin-film solar module with serial cell connection and manufacturing process
WO1999059210A1 (en) Solar element
AT518892B1 (en) Method for producing a photovoltaic component and photovoltaic module
DE19800715A1 (en) Semiconductor element consists of a wafer segmented into isolated individual elements
DE4114821B4 (en) Semiconductor detector
WO2016078882A1 (en) Optoelectronic device with a fuse
DE1564935C3 (en) Method for manufacturing a solar element
EP4252283A1 (en) Field-width adjustment of cells in a photovoltaic element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030227

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS ASTRIUM GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050301