EP1305504A1 - Suspension - Google Patents

Suspension

Info

Publication number
EP1305504A1
EP1305504A1 EP01962582A EP01962582A EP1305504A1 EP 1305504 A1 EP1305504 A1 EP 1305504A1 EP 01962582 A EP01962582 A EP 01962582A EP 01962582 A EP01962582 A EP 01962582A EP 1305504 A1 EP1305504 A1 EP 1305504A1
Authority
EP
European Patent Office
Prior art keywords
sliding
guide
angle
secondary structure
sliding guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01962582A
Other languages
German (de)
French (fr)
Other versions
EP1305504B1 (en
Inventor
Klemens Hain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1305504A1 publication Critical patent/EP1305504A1/en
Application granted granted Critical
Publication of EP1305504B1 publication Critical patent/EP1305504B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation

Definitions

  • the invention relates to the suspension of an annular secondary structure on a primary structure, in particular a stator structure subjected to hot gas on a housing structure of a gas turbine, in the form of a so-called spoke centering, according to the preamble of claim 1.
  • Spoke centers are used to hang ring-shaped secondary structures centrally on mostly ring-shaped or tubular primary structures. Radial relative movements of the structures with respect to one another should largely be possible without constraining forces and deformations, while maintaining the concentricity. The principle is particularly useful when very different thermal expansions of two concentric structures have to be compensated for. If the secondary structure is relatively elastic, i.e. is not dimensionally stable, it should be stabilized and stiffened as much as possible via the suspension.
  • a turbomachine with a rotor and stator which has at least one specially designed guide vane ring.
  • the latter is designed as a self-supporting component with reinforcement on the inner shroud and with a segmented, outer shroud.
  • the guide vane ring is positioned via a spoke centering with at least three "spokes" in the housing of the turbomachine.
  • the sliding guides of the spoke centering have bearing journals in bearing bushes, the linear direction of movement running radially in each slide guide, based on the guide vane ring and housing.
  • the object of the invention is to find a suspension for a ring-shaped secondary structure on a primary structure in the manner of a spoke centering with at least three differently oriented sliding guides, which prevents or largely reduces constraining forces and deformations as well as wear and tear and which stiffeners flexible secondary structures regardless of whether the number of sliding guides is even or odd.
  • each sliding guide is inclined by an angle ⁇ to the radial direction of the structures, so that the relative movement receives a radial and a tangential component.
  • guide clamps with all of their disadvantages are avoided with a high degree of certainty.
  • rotationally symmetrical expansion or contraction of the secondary structure this also makes a small relative rotation to the primary structure due to kinematics, which is tolerable in most cases.
  • non-homogeneous locally different expansion or contraction of the secondary structure, it is elastically deformed to a certain extent, in deviation from the circular ring shape.
  • the resulting the sliding guide forces are much smaller than when clamping a conventional radial spoke centering.
  • the shape deviations will also be kept within tolerable limits.
  • the shape stability increasing effect of the invention can lead to the fact that the secondary structure can be made more elastic and lighter than with a conventional spoke centering.
  • FIG. 1 shows a cross-section through a suspension with 8 sliding guides, showing two different, rotationally symmetrical expansion states of the secondary structure
  • FIG. 2 shows a partial cross section through the suspension according to FIG. 1 with an asymmetrical stretching state of the secondary structure
  • FIG. 3 shows a sliding guide with rigid sliding block and groove
  • FIG. 4 shows a sliding guide with pivotable sliding block and groove
  • FIG. 5 shows a sliding guide with pin and bush.
  • the representations according to FIGS. 1 and 2 are largely schematic in order to reproduce the invention as simply and understandably as possible.
  • the suspension 1 in the form of a so-called spoke centering comprises eight sliding guides 10 which are evenly distributed over the circumference and whose angular spacing is therefore 45 ° in each case.
  • the structures coupled by means of the suspension 1, primary structure 2 and secondary structure 6, are specifically only indicated as hatched fragments in the upper area of FIG. 1.
  • a closed polygon with rigid chords S 1 to S8 and with joints between the chords in the slide guides 10 is considered here.
  • the eight radial straight lines starting from the center of the structure and each offset by 45 ° only show the structure-related radial direction R to or in the tendon joints and are not to be understood as structural elements.
  • the sliding guide 10 on the bisector (45 °) of the right upper quadrant shows that the linear direction of motion device L of the sliding guide 10 deviates by an angle ⁇ from the radial direction R and thus has in fact a radial and a tangential movement component.
  • the angle ⁇ is preferably chosen to be greater than the maximum friction angle to be expected in the sliding guide 10, so that there is no fear of the sliding pair jamming with high certainty.
  • the sliding guides 10 of which are inclined clockwise by an angle ⁇ to the radial direction R the change in length (extension, contraction) of a tendon leads to a sliding movement in the sliding guide at the clockwise end of the tendon, since only one slide guide is inclined by more than the friction angle to the transverse direction of the tendon per tendon, whereas the other slide guide is approximately transverse to the tendon.
  • the slide guide 10 is provided with additional information at the top right in FIG. 1.
  • the linear direction of movement L of the sliding guide 10 and the angle ⁇ between R and L, the straight extension V of the chord S8, the transverse direction / transverse direction T - at a 90 ° angle - to the chord can be recognized by dash-dotted lines S8 and the angle ßeff between L and T.
  • the so-called friction cone of the sliding guide 10 is indicated by dots, the tip angle of which is twice as large as the friction angle ⁇ .
  • the tendons S1 to S8 are each shown twice, namely as a solid and a dashed line.
  • the solid tendon polygen stands for a "cold” contracted state of the secondary structure 6.
  • the dashed, larger tendon polygon stands for a "hot”, evenly stretched state of the secondary structure 6.
  • the primary structure 2 should - for the sake of simplicity - remain geometrically unchanged so that the part of the sliding guides 10 belonging to the primary structure does not move. With the same stretch - or contraction - all The tendon joint angles of the tendon polygon remain unchanged. For the real secondary structure 6, this means that its diameter changes, but not its shape (circular ring), the concentric position to the primary structure 2 also remaining.
  • chord polygon - and thus the secondary structure - executes a small rotary movement by an angle ⁇ in the clockwise direction during the transition from the solid position to the dashed position, specifically as a result of the angle ⁇ of the sliding guides 10. In practical applications, this is due to the invention , little twist for the structural function usually irrelevant.
  • FIG. 2 shows an asymmetrical stretching of the tendon polygon.
  • FIG. 2 shows an asymmetrical stretching of the tendon polygon.
  • the sliding guide 10 in the "joint” between S1 and S8 makes an evasive movement at an angle ⁇ obliquely upward to the right.
  • the tendon S8 is pivoted about its right “joint” to the tendon S7, but its length is practically not changed.
  • the kinematics predefined by the slide guides 10 means that a movement in the slide guide 10 between S1 and S8 upward to the right with a constant chord length of S8 only results in a negligibly small movement in the slide guide between S8 and S7 - to the bottom left - which is practically not representable in Figure 2.
  • the tendon S8 de facto only swivels around its "joint” to S7, the tendon S7 remains in its position, just like the tendon S2.
  • the "joint angle" between the tendons S2 / S 1 Change S 1 / S8 and S8 / S7.
  • Figures 3 to 5 show specific embodiments of sliding guides 1 1 to 13 with the inclined position ⁇ according to the invention.
  • FIG. 3 shows a sliding guide 11 with a sliding block 14 in a groove 17.
  • the groove 17 is integrated in the primary structure 3, the sliding block 14 is firmly connected to the secondary structure 7 or machined out of it.
  • the sliding block 14 is deliberately shown with rounded corners and with sliding surface play in the groove 17.
  • play and corner rounding being intended to prevent excessive friction, wear and clamping.
  • FIG. 4 also shows a sliding guide 12 with a groove 18 integrated in the primary structure 4 and with a sliding block 15, the latter, however - in contrast to FIG. 3 - being pivotable about an axis 16 which is firmly connected to the secondary structure 8.
  • a sliding guide 12 with a groove 18 integrated in the primary structure 4 and with a sliding block 15, the latter, however - in contrast to FIG. 3 - being pivotable about an axis 16 which is firmly connected to the secondary structure 8.
  • FIG. 5 finally shows a sliding guide 13 with a pin 19 in a bushing 21.
  • the pin 19 is here firmly connected to the primary structure 5, the circular cylindrical bushing 21 is integrated in a thickening of the secondary structure 9.
  • the lateral surface 20 of the pin 19 is spherical and rotationally symmetrical in shape in order to avoid edge wear or jamming during structural rotation. In extreme cases, the spherical shape can correspond to a spherical shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sliding-Contact Bearings (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Springs (AREA)
  • Vehicle Body Suspensions (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

Suspension of an annular secondary structure on a primary structure, in the form of a spoke-type centering device having at least three sliding guides distributed uniformly over the structure circumference, each sliding guide allowing at least a linear relative movement of the structures transversely to their axial direction. The linear direction of movement of each sliding guide runs, in relation to the structure-related radial direction at the location of the sliding guide, at an angle having a radial and a tangential direction component.

Description

Aufhängung suspension
Die Erfindung betrifft die Aufhängung einer ringförmigen Sekundärstruktur an einer Primärstruktur, insbesondere einer heißgasbeaufschlagten Statorstruktur an einer Gehäusestruktur einer Gasturbine, in Form einer sogenannten Speichenzentrierung, gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to the suspension of an annular secondary structure on a primary structure, in particular a stator structure subjected to hot gas on a housing structure of a gas turbine, in the form of a so-called spoke centering, according to the preamble of claim 1.
Speichenzentrierungen werden verwendet, um ringförmige Sekundärstrukturen zentrisch an zumeist ebenfalls ring- bzw. rohrförmigen Primärstrukturen aufzuhängen. Dabei sollen radiale Relativbewegungen der Strukturen zueinander weitgehend ohne Zwangskräfte und Deformationen möglich sein, unter Beibehaltung der Konzentrizi- tät. Das Prinzip bietet sich insbesondere dann an, wenn stark unterschiedliche, thermische Dehnungen zweier konzentrischer Strukturen zu kompensieren sind. Falls die Sekundärstruktur relativ elastisch, d.h. wenig formstabil ist, sollte diese möglichst über die Aufhängung stabilisiert und versteift werden.Spoke centers are used to hang ring-shaped secondary structures centrally on mostly ring-shaped or tubular primary structures. Radial relative movements of the structures with respect to one another should largely be possible without constraining forces and deformations, while maintaining the concentricity. The principle is particularly useful when very different thermal expansions of two concentric structures have to be compensated for. If the secondary structure is relatively elastic, i.e. is not dimensionally stable, it should be stabilized and stiffened as much as possible via the suspension.
Aus der DE 198 07 247 C2 ist eine Strömungsmaschine mit Rotor und Stator bekannt, die wenigstens einen speziell ausgeführten Leitschaufelkranz aufweist. Letzterer ist als selbsttragendes Bauteil mit einer Verstärkung am inneren Deckband und mit einem segmentierten, äußeren Deckband ausgeführt. Der Leitschaufelkranz ist über eine Speichenzentrierung mit mindestens drei „Speichen" im Gehäuse der Strömungsmaschine positioniert. Die Gleitführungen der Speichenzentrierung weisen Lagerzapfen in Lagerbuchsen auf, wobei die lineare Bewegungsrichtung in jeder Gleitführung radial verläuft, bezogen auf Leitschaufelkranz und Gehäuse.From DE 198 07 247 C2 a turbomachine with a rotor and stator is known, which has at least one specially designed guide vane ring. The latter is designed as a self-supporting component with reinforcement on the inner shroud and with a segmented, outer shroud. The guide vane ring is positioned via a spoke centering with at least three "spokes" in the housing of the turbomachine. The sliding guides of the spoke centering have bearing journals in bearing bushes, the linear direction of movement running radially in each slide guide, based on the guide vane ring and housing.
Es ist ebenso üblich, die Gleitführungen mit in geraden Nuten laufenden Gleitsteinen zu realisieren, wobei die Bewegungsrichtung wie gewohnt, radial bezüglich der gekoppelten Strukturen verläuft. Die Erfahrung zeigt, dass an den Gleitelementen konventioneller Speichenzentrierungen oft starker Verschleiß auftritt. Teilweise wurden bleibende Verformungen der dünnwandigen Sekundärstrukturen festgestellt. Beide Schadensformen deuten darauf hin, dass in den Führungen offensichtlich größere Kräfte entstehen, als sie bei ideal rotationssymmetrischen Verhältnissen auftreten dürften. Die Ursache sind wahrscheinlich nicht-rotationssymmetrische Dehnungszu- stände der Strukturen, welche in Gasturbinen insbesondere durch nicht-homogene Gastemperaturverteilungen hervorgerufen werden können. Besonders bei im Durchmesser großen Strukturen mit einer Vielzahl von Gleitführungen, d.h. von „Speichen", steigt die Gefahr des Auftretens hoher Zwangskräfte. Geometrisch bedingt ändert sich die Orientierung der Bewegungsrichtung von Führung zu Führung nur wenig, so dass bei einer Dehnung des dazwischenliegenden Sekundärstrukturbereichs in beiden Führungen durch Unterschreiten des Reibungswinkels ein Klemmen auftreten kann, wodurch eine freie Strukturdehnung unmöglich wird. Ein weiterer Nachteil der konventionellen, radialen Speichenzentrierungen liegt darin, dass diese „weiche" Sekundärstrukturen nur dann versteifen, wenn die Anzahl der Gleitführungen („Speichen") ungeradzahlig ist.It is also common to realize the sliding guides with sliding blocks running in straight grooves, the direction of movement, as usual, being radial with respect to the coupled structures. Experience shows that heavy wear often occurs on the sliding elements of conventional spoke centers. Permanent deformations of the thin-walled secondary structures were found in some cases. Both types of damage indicate that there are obviously greater forces in the guides than they should occur under ideal rotationally symmetrical conditions. The cause is probably non-rotationally symmetrical expansion states of the structures which can be caused in gas turbines in particular by non-homogeneous gas temperature distributions. Particularly in the case of structures with a large diameter and a large number of sliding guides, ie of "spokes", the risk of high constraining forces increases. Due to the geometry, the orientation of the direction of movement changes only slightly from guide to guide, so that when the secondary structure area in between is stretched, Both guides can become jammed by falling below the friction angle, making free structural expansion impossible. Another disadvantage of conventional radial spoke centering is that these "soft" secondary structures only stiffen if the number of sliding guides ("spokes") is odd is.
Angesichts dieser Nachteile bekannter Speichenzentrierungen besteht die Aufgabe der Erfindung darin, eine Aufhängung für eine ringförmige Sekundärstruktur an einer Primärstruktur nach Art einer Speichenzentrierung mit mindestens drei unterschiedlich orientierten Gleitführungen zu finden, die Zwangskräfte und -deformationen sowie Verschleiß verhindert bzw. weitgehend reduziert und die eine Versteifung nachgiebiger Sekundärstrukturen unabhängig davon ermöglicht, ob die Anzahl der Gleitführungen gerade oder ungerade ist.In view of these disadvantages of known spoke centering, the object of the invention is to find a suspension for a ring-shaped secondary structure on a primary structure in the manner of a spoke centering with at least three differently oriented sliding guides, which prevents or largely reduces constraining forces and deformations as well as wear and tear and which stiffeners flexible secondary structures regardless of whether the number of sliding guides is even or odd.
Diese Aufgabe wird durch die in Anspruch 1 gekennzeichneten Merkmale gelöst, in Verbindung mit den gattungsbildenden Merkmalen in dessen Oberbegriff.This object is achieved by the features characterized in claim 1, in conjunction with the generic features in its preamble.
Erfindungsgemäß ist die lineare Bewegungsrichtung jeder Gleitführung um einen Winkel ß zur Radialrichtung der Strukturen schräggestellt, so dass die Relativbewegung eine radiale und eine tangentiale Komponente erhält. Dadurch wird ein Führungsklemmen mit all seinen Nachteilen mit hoher Sicherheit vermieden. Dies gilt für homogene und nicht-homogene Maßänderungen der Sekundärstruktur. Bei homogener, rotationssymmetrischer Dehnung oder Kontraktion der Sekundärstruktur führt diese kinematisch bedingt auch eine kleine Relativdrehung zur Primärstruktur aus, was in den allermeisten Fällen tolerierbar ist. Bei nicht-homogener, örtlich unterschiedlicher Dehnung bzw. Kontraktion der Sekundärstruktur wird diese abweichend von der Kreisringgestalt in gewissem Maß elastisch verformt. Die daraus resultieren- den Gleitführungskräfte sind aber wesentlich kleiner als bei Klemmung einer konventionellen, radialen Speichenzentrierung. Ebenso werden sich die Formabweichungen in tolerablen Grenzen halten. Die formstabilitätserhöhende Wirkung der Erfindung kann dazu führen, dass die Sekundärstruktur elastischer und leichter ausgeführt werden kann, als bei einer üblichen Speichenzentrierung.According to the invention, the linear direction of movement of each sliding guide is inclined by an angle β to the radial direction of the structures, so that the relative movement receives a radial and a tangential component. As a result, guide clamps with all of their disadvantages are avoided with a high degree of certainty. This applies to homogeneous and non-homogeneous dimensional changes in the secondary structure. In the case of homogeneous, rotationally symmetrical expansion or contraction of the secondary structure, this also makes a small relative rotation to the primary structure due to kinematics, which is tolerable in most cases. In the case of non-homogeneous, locally different expansion or contraction of the secondary structure, it is elastically deformed to a certain extent, in deviation from the circular ring shape. The resulting the sliding guide forces are much smaller than when clamping a conventional radial spoke centering. The shape deviations will also be kept within tolerable limits. The shape stability increasing effect of the invention can lead to the fact that the secondary structure can be made more elastic and lighter than with a conventional spoke centering.
In den Unteransprüchen sind bevorzugte Ausgestaltungen der Aufhängung nach dem Hauptanspruch gekennzeichnet.Preferred embodiments of the suspension according to the main claim are characterized in the subclaims.
Die Erfindung wird anschließend anhand der Figuren noch näher erläutert. Dabei zeigen in vereinfachter, nicht maßstäblicher Darstellung:The invention is subsequently explained in more detail with reference to the figures. Simplified, not to scale, show:
Figur 1 eine Ouerschnitt durch eine Aufhängung mit 8 Gleitführungen unter Wiedergabe zweier verschiedener, rotationssymmetrischer Dehnungszustände der Sekunda rstruktur,FIG. 1 shows a cross-section through a suspension with 8 sliding guides, showing two different, rotationally symmetrical expansion states of the secondary structure,
Figur 2 eine Teilquerschnitt durch die Aufhängung gemäß Figur 1 mit einem asymmetrischen Dehnungszustand der Sekundärstruktur, Figur 3 eine Gleitführung mit starrem Gleitstein und Nut, Figur 4 eine Gleitführung mit schwenkbarem Gleitstein und Nut, und Figur 5 eine Gleitführung mit Zapfen und Buchse.2 shows a partial cross section through the suspension according to FIG. 1 with an asymmetrical stretching state of the secondary structure, FIG. 3 shows a sliding guide with rigid sliding block and groove, FIG. 4 shows a sliding guide with pivotable sliding block and groove, and FIG. 5 shows a sliding guide with pin and bush.
Die Darstellungen gemäß Figur 1 und 2 sind weitestgehend schematisch ausgeführt, um die Erfindung möglichst einfach und verständlich wiederzugeben. Die Aufhängung 1 in Form einer sogenannten Speichenzentrierung umfasst acht gleichmäßig über den Umfang verteilte Gleitführungen 10, deren Winkelabstand somit jeweils 45° beträgt. Die mittels der Aufhängung 1 gekoppelten Strukturen, Primärstruktur 2 und Sekundärstruktur 6, sind konkret nur als schraffierte Bruchstücke im oberen Bereich von Figur 1 angedeutet. Anstelle der realen, ringförmigen Sekundärstruktur 6 wird hier ein geschlossenes Polygon mit starren Sehnen S 1 bis S8 und mit Gelenken zwischen den Sehnen in den Gleitführungen 10 betrachtet. Die acht von der Strukturmitte ausgehenden, um jeweils 45° versetzten, radialen Geraden zeigen nur die strukturbezogene Radialrichtung R zu den bzw. in den Sehnengelenken an und sind nicht als Strukturelemente zu verstehen. Die Gleitführung 10 auf der Winkelhalbierenden (45°) des rechten, oberen Quadranten zeigt, dass die lineare Bewegungsrich- tung L der Gleitführung 10 um einen Winkel ß von der Radialrichtung R abweicht und somit de facto eine radiale und eine tangentiale Bewegungskomponente aufweist. Der Winkel ß ist bevorzugt größer gewählt, als der in der Gleitführung 10 maximal zu erwartende Reibungswinkel , so dass mit hoher Sicherheit kein Klemmen der Gleitpaarung zu befürchten ist. Bei der vorliegenden gedanklich vereinfachten Aufhängung 1 mit gelenkigem Sehnenpolygon, deren Gleitführungen 10 um einen Winkel ß im Uhrzeigersinn zur Radialrichtung R schräggestellt sind, führt die Längenänderung (Dehnung, Kontraktion) einer Sehne zu einer Gleitbewegung in der Gleitführung an dem im Uhrzeigersinn vorne liegenden Sehnenende, da je Sehne jeweils nur eine Gleitführung um deutlich mehr als den Reibungswinkel zur Sehnenquerrichtung schräggestellt ist, wohingegen die andere Gleitführung etwa quer zur Sehne steht.The representations according to FIGS. 1 and 2 are largely schematic in order to reproduce the invention as simply and understandably as possible. The suspension 1 in the form of a so-called spoke centering comprises eight sliding guides 10 which are evenly distributed over the circumference and whose angular spacing is therefore 45 ° in each case. The structures coupled by means of the suspension 1, primary structure 2 and secondary structure 6, are specifically only indicated as hatched fragments in the upper area of FIG. 1. Instead of the real, ring-shaped secondary structure 6, a closed polygon with rigid chords S 1 to S8 and with joints between the chords in the slide guides 10 is considered here. The eight radial straight lines starting from the center of the structure and each offset by 45 ° only show the structure-related radial direction R to or in the tendon joints and are not to be understood as structural elements. The sliding guide 10 on the bisector (45 °) of the right upper quadrant shows that the linear direction of motion device L of the sliding guide 10 deviates by an angle β from the radial direction R and thus has in fact a radial and a tangential movement component. The angle β is preferably chosen to be greater than the maximum friction angle to be expected in the sliding guide 10, so that there is no fear of the sliding pair jamming with high certainty. In the present mentally simplified suspension 1 with an articulated tendon polygon, the sliding guides 10 of which are inclined clockwise by an angle β to the radial direction R, the change in length (extension, contraction) of a tendon leads to a sliding movement in the sliding guide at the clockwise end of the tendon, since only one slide guide is inclined by more than the friction angle to the transverse direction of the tendon per tendon, whereas the other slide guide is approximately transverse to the tendon.
Zum besseren Verständnis dieser Kinematik ist die Gleitführung 10 rechts oben in Figur 1 mit zusätzlichen Angaben versehen. Neben der strukturbezogenen Radialrichtung R am Ort der Gleitführung, der linearen Bewegungsrichtung L der Gleitführung 10 und dem Winkel ß zwischen R und L erkennt man strichpunktiert die gerade Verlängerung V der Sehne S8, die Querrichtung/Transversalrichtung T - im 90°-Winkel - zur Sehne S8 sowie den Winkel ßeff zwischen L und T. Des weiteren ist gepunktet der sogenannte Reibkegel der Gleitführung 10 angedeutet, dessen Spitzenwinkel doppelt so groß wie der Reibungswinkel α ist. Da die Bewegungsrichtung L hier senkrecht zur angrenzenden Sehne S7 verläuft, ist der Reibkegel spiegelsymmetrisch bezüglich S7. Da die Verlängerung V deutlich außerhalb des Reibkegels liegt, führt eine Längenänderungen von S8 zu einer definierten, klemmungsfreien Bewegung des „Gelenks" zwischen S8 und S7 in L-Richtung. Somit würde es theoretisch genügen, den Winkel ßeff größer als α zu wählen. Da eine reale, homogene Sekundärstruktur sich anders verhält, als das einfache, gelenkige Sehnenpolygon, sollte sicherheitshalber bereits der Winkel ß größer als α sein.For better understanding of this kinematics, the slide guide 10 is provided with additional information at the top right in FIG. 1. In addition to the structure-related radial direction R at the location of the sliding guide, the linear direction of movement L of the sliding guide 10 and the angle β between R and L, the straight extension V of the chord S8, the transverse direction / transverse direction T - at a 90 ° angle - to the chord can be recognized by dash-dotted lines S8 and the angle ßeff between L and T. Furthermore, the so-called friction cone of the sliding guide 10 is indicated by dots, the tip angle of which is twice as large as the friction angle α. Since the direction of movement L here runs perpendicular to the adjacent chord S7, the friction cone is mirror-symmetrical with respect to S7. Since the extension V lies clearly outside the friction cone, a change in length of S8 leads to a defined, jamming-free movement of the “joint” between S8 and S7 in the L direction. Thus, it would theoretically be sufficient to choose the angle βeff larger than α a real, homogeneous secondary structure behaves differently than the simple, articulated tendon polygon, for safety's sake the angle ß should be larger than α.
Zum besseren Verständnis soll an dieser Stelle kurz auf Begriffe wie Reibungszahl und Reibungswinkel eingegangen werden. Der Zusammenhang zwischen der Reibungszahl f und dem Reibungswinkel α ist wie folgt: f = tan Somit ist α die Umkehrfunktion des Tangens von f: α = inv tan f Aus technischen Lexika sind folgende Werte für f zu entnehmen:For a better understanding, terms such as the coefficient of friction and the angle of friction will be briefly discussed here. The relationship between the coefficient of friction f and the angle of friction α is as follows: f = tan Thus α is the inverse function of the tangent of f: α = inv tan f The following values for f can be found in technical dictionaries:
Festkörperreibung fSolid friction f
Metall/Metall 0,3 - 1,5Metal / metal 0.3 - 1.5
Keramik/Keramik 0,2 ^ - 1,5Ceramic / ceramic 0.2 ^ - 1.5
Kunststoff/Metall 0,2 * 1,5Plastic / metal 0.2 * 1.5
Grenzreibung 0,1 - 0,2Limit friction 0.1 - 0.2
Mischreibung 0,01 - 0,1Mixed friction 0.01-0.1
Flüssigkeitsreibung » 0,01Fluid friction »0.01
Bei Vorgabe konkreter Reibungszahlen ergeben sich folgende Reibungswinkel:When specifying specific coefficients of friction, the following friction angles result:
f αf α
0,2 1 1,3°0.2 1 1.3 °
0,3 16,7°0.3 16.7 °
0,5 26,6°0.5 26.6 °
1,0 45,0°1.0 45.0 °
Im Falle der dargestellten Aufhängung 1 mit 8 „Speichen" beträgt der Winkel ß 22,5°. Diese Schrägstellung wäre voraussichtlich ausreichend für eine maximale Reibungszahl f < 0,4. Bei höherer Reibung müsste die Schrägstellung ß zur Radialen entsprechend vergrößert werden.In the case of the suspension 1 shown with 8 “spokes”, the angle β is 22.5 °. This inclined position would presumably be sufficient for a maximum coefficient of friction f <0.4. With higher friction, the inclined position β to the radial would have to be increased accordingly.
In Figur 1 sind die Sehnen S1 bis S8 jeweils zweifach dargestellt, nämlich als durchgezogene und als gestrichelte Geraden. Das durchgezogene Sehnenpolygen steht für einen „kalten" kontrahierten Zustand der Sekundärstruktur 6. Das gestrichelte, größere Sehnenpolygon steht für einen „heißen", gleichmäßig gedehnten Zustand der Sekundärstruktur 6. Die Primärstruktur 2 soll dabei - der Einfachheit halber - geometrisch unverändert bleiben, so dass der primärstrukturzugehörige Teil der Gleitführungen 10 sich nicht bewegt. Bei gleicher Dehnung - oder Kontraktion - aller Sehnen bleiben die Gelenkwinkel des Sehnenpolygons ersichtlich unverändert. Für die reale Sekundärstruktur 6 bedeutet dies, dass sich zwar ihr Durchmesser, aber nicht ihre Form (Kreisring ) ändert, wobei auch die konzentrische Lage zur Primärstruktur 2 bleibt. Es ist auch zu erkennen, dass das Sehnenpolygon - und damit die Sekundärstruktur - beim Übergang von der durchgezogenen zur gestrichelten Position eine kleine Drehbewegung um einen Winkel γ im Uhrzeigersinn ausführt, und zwar infolge des Winkels ß der Gleitführungen 10. Bei praktischen Anwendungen ist diese erfindungsbedingte, geringe Verdrehung für die Strukturfunktion in der Regel ohne Belang.In Figure 1, the tendons S1 to S8 are each shown twice, namely as a solid and a dashed line. The solid tendon polygen stands for a "cold" contracted state of the secondary structure 6. The dashed, larger tendon polygon stands for a "hot", evenly stretched state of the secondary structure 6. The primary structure 2 should - for the sake of simplicity - remain geometrically unchanged so that the part of the sliding guides 10 belonging to the primary structure does not move. With the same stretch - or contraction - all The tendon joint angles of the tendon polygon remain unchanged. For the real secondary structure 6, this means that its diameter changes, but not its shape (circular ring), the concentric position to the primary structure 2 also remaining. It can also be seen that the chord polygon - and thus the secondary structure - executes a small rotary movement by an angle γ in the clockwise direction during the transition from the solid position to the dashed position, specifically as a result of the angle β of the sliding guides 10. In practical applications, this is due to the invention , little twist for the structural function usually irrelevant.
Im Unterschied zu Figur 1 zeigt Figur 2 eine asymmetrische Dehnung des Sehnenpolygons. In der Praxis von Turbomaschinen können Betriebszustände mit stark asymmetrischer Temperaturverteilung über den Strömungsquerschnitt auftreten. So soll gemäß Figur 2 im wesentlichen nur die Sehne S1 thermisch gedehnt werden. Dabei macht die Gleitführung 10 im „Gelenk" zwischen S1 und S8 eine Ausweichbewegung im Winkel ß schräg nach oben rechts. Die Sehne S8 wird dabei um ihr rechtes „Gelenk" zur Sehne S7 mitgeschwenkt, in ihrer Länge aber praktisch nicht verändert. Die durch die Gleitführungen 10 vorgegebene Kinematik führt dazu, dass eine Bewegung in der Gleitführung 10 zwischen S1 und S8 nach oben rechts bei gleichbleibender Sehnenlänge von S8 nur eine vernachlässigbar kleine Bewegung in der Gleitführung zwischen S8 und S7 - nach links unten - zur Folge hat, welche in Figur 2 praktisch nicht darstellbar ist. Somit macht die Sehne S8 de facto nur eine Schwenkbewegung um ihr „Gelenk" zu S7, die Sehne S7 bleibt in ihrer Lage, ebenso wie die Sehne S2. Man erkennt aber, dass sich die „Gelenkwinkel" zwischen den Sehnen S2/S 1, S 1/S8 und S8/S7 ändern. Für die reale Sekundärstruktur 6 bedeutet dies, dass sie asymmetrisch verformt wird und nicht mehr exakt kreisrund ist. Die tatsächlichen Maß- und Formänderungen sind dabei aber in der Regel so klein, dass ihre Auswirkungen auf die Funktion und die mechanische Belastung vernachlässigt werden können. Die ohne die vorliegende Erfindung auftretenden Zwangskräfte und -Verformungen wären in aller Regel schädlicher. Die Figuren 3 bis 5 zeigen konkrete Ausführungsbeispiele von Gleitführungen 1 1 bis 13 mit erfindungsgemäßer Schrägstellung ß.In contrast to FIG. 1, FIG. 2 shows an asymmetrical stretching of the tendon polygon. In the practice of turbomachinery, operating states with a strongly asymmetrical temperature distribution over the flow cross-section can occur. According to FIG. 2, essentially only the tendon S1 is to be thermally stretched. The sliding guide 10 in the "joint" between S1 and S8 makes an evasive movement at an angle β obliquely upward to the right. The tendon S8 is pivoted about its right "joint" to the tendon S7, but its length is practically not changed. The kinematics predefined by the slide guides 10 means that a movement in the slide guide 10 between S1 and S8 upward to the right with a constant chord length of S8 only results in a negligibly small movement in the slide guide between S8 and S7 - to the bottom left - which is practically not representable in Figure 2. Thus, the tendon S8 de facto only swivels around its "joint" to S7, the tendon S7 remains in its position, just like the tendon S2. However, it can be seen that the "joint angle" between the tendons S2 / S 1, Change S 1 / S8 and S8 / S7. For the real secondary structure 6, this means that it is deformed asymmetrically and is no longer exactly circular. However, the actual changes in size and shape are usually so small that their effects on function and mechanical stress can be neglected. The constraining forces and deformations occurring without the present invention would generally be more harmful. Figures 3 to 5 show specific embodiments of sliding guides 1 1 to 13 with the inclined position β according to the invention.
Figur 3 zeigt eine Gleitführung 11 mit einem Gleitstein 14 in einer Nut 17. Die Nut 17 ist in die Primärstruktur 3 integriert, der Gleitstein 14 ist fest mit der Sekundärstruktur 7 verbunden bzw. aus dieser herausgearbeitet. Der Gleitstein 14 ist bewusst mit gerundeten Ecken und mit Gleitflächenspiel in der Nut 17 dargestellt. Im Betrieb, z.B. bei asymmetrischer Strukturverformung, kann es zu kleinen Kippbewegungen des Gleitsteins 14 in der Nut 17 kommen, wobei Spiel und Eckenrundung übermäßige Reibung, Verschleiß und Klemmung verhindern sollen.FIG. 3 shows a sliding guide 11 with a sliding block 14 in a groove 17. The groove 17 is integrated in the primary structure 3, the sliding block 14 is firmly connected to the secondary structure 7 or machined out of it. The sliding block 14 is deliberately shown with rounded corners and with sliding surface play in the groove 17. In operation, e.g. in the case of asymmetrical structural deformation, there can be small tilting movements of the sliding block 14 in the groove 17, play and corner rounding being intended to prevent excessive friction, wear and clamping.
Figur 4 zeigt ebenfalls eine Gleitführung 12 mit einer in die Primärstruktur 4 integrierten Nut 18 und mit einem Gleitstein 15, wobei letzterer aber - im Unterschied zu Figur 3 - um eine Achse 16 schwenkbar ist, die fest mit der Sekundärstruktur 8 verbunden ist. Dadurch sind kleine Relativerdrehungen der Strukturen 4,8 problemlos möglich. Die Passung des Gleitsteins 15 in der Nut 18 kann präzise und weitgehend spielfrei ausgeführt werden.FIG. 4 also shows a sliding guide 12 with a groove 18 integrated in the primary structure 4 and with a sliding block 15, the latter, however - in contrast to FIG. 3 - being pivotable about an axis 16 which is firmly connected to the secondary structure 8. As a result, small relative rotations of the structures 4, 8 are possible without any problems. The fit of the sliding block 15 in the groove 18 can be carried out precisely and largely without play.
Figur 5 schließlich zeigt eine Gleitführung 13 mit einem Zapfen 19 in einer Buchse 21. Der Zapfen 19 ist hier fest mit der Primärstruktur 5 verbunden, die kreiszylindrische Buchse 21 ist in eine Verdickung der Sekundärstruktur 9 integriert. Die Mantelfläche 20 des Zapfens 19 ist ballig sowie rotationssymmetrisch geformt, um Kantentragen bzw. Klemmen bei Strukturdrehung zu vermeiden. Die ballige Form kann im Extremfall einer Kugelform entsprechen. FIG. 5 finally shows a sliding guide 13 with a pin 19 in a bushing 21. The pin 19 is here firmly connected to the primary structure 5, the circular cylindrical bushing 21 is integrated in a thickening of the secondary structure 9. The lateral surface 20 of the pin 19 is spherical and rotationally symmetrical in shape in order to avoid edge wear or jamming during structural rotation. In extreme cases, the spherical shape can correspond to a spherical shape.

Claims

Patentansprüche claims
1. Aufhängung einer ringförmigen Sekundärstruktur an einer Primärstruktur, insbesondere einer heißgasbeaufschlagten Statorstruktur an einer Gehäusestruktur einer Gasturbine, in Form einer sogenannten Speichenzentrierung mit wenigstens drei, in gleichen Winkelabständen über den Strukturumfang verteilten Gleitführungen, von denen jede zumindest eine lineare Relativbewegung zwischen Primär- und Sekundärstruktur quer zu deren Axialrichtung zulässt, wobei die lineare Bewegungsrichtung sich von einer Gleitführung zur nächsten um einen Winkel ändert, der dem Winkelabstand der Gleitführungen entspricht, dadurch gekennzeichnet, dass die lineare Bewegungsrichtung (L) jeder Gleitführung (10 bis 13) zur strukturbezogenen Radialrichtung ( R ) am Ort der Gleitführung unter einem Winkel (ß) mit radialer und tangentialer Richtungskomponente verläuft.1. Suspension of an annular secondary structure on a primary structure, in particular a stator structure subjected to hot gas on a housing structure of a gas turbine, in the form of a so-called spoke centering with at least three sliding guides distributed at equal angular intervals over the structural circumference, each of which has at least one linear relative movement between the primary and secondary structure transversely to their axial direction, the linear movement direction changing from one slide guide to the next by an angle which corresponds to the angular distance of the slide guides, characterized in that the linear movement direction (L) of each slide guide (10 to 13) to the structure-related radial direction (R ) at the location of the sliding guide at an angle (ß) with radial and tangential direction components.
2. Aufhängung nach Anspruch 1, dadurch gekennzeichnet, dass der Winkel (ß) in Abhängigkeit von dem in jeder Gleitführung (10 bis 13) zu erwartenden, maximalen Reibungswinkel (α) definiert ist.2. Suspension according to claim 1, characterized in that the angle (β) is defined as a function of the maximum friction angle (α) to be expected in each sliding guide (10 to 13).
3. Aufhängung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jede Gleitführung (10 bis 13) einen Gleitstein (14,15) und eine Nut (17,18) oder einen Zapfen ( 19) und eine Buchse (21 ) umfasst, wobei der Gleitstein ( 14, 15) oder der Zapfen (19) mit der einen, die Nut (17,18) oder die Buchse (21) mit der jeweils anderen der beiden Strukturen (2 bis 5; 6 bis 9) verbunden ist.3. Suspension according to claim 1 or 2, characterized in that each sliding guide (10 to 13) comprises a sliding block (14, 15) and a groove (17, 18) or a pin (19) and a bushing (21), wherein the sliding block (14, 15) or the pin (19) is connected to one, the groove (17, 18) or the bushing (21) to the other of the two structures (2 to 5; 6 to 9).
4. Aufhängung nach Anspruch 3, dadurch gekennzeichnet, dass der Gleitstein jeder Gleitführung konvex gekrümmte Gleitflächen aufweist, oder dass der Zapfen (19) jeder Gleitführung (13) eine ballige Mantelfläche (20) aufweist.4. Suspension according to claim 3, characterized in that the sliding block of each sliding guide has convexly curved sliding surfaces, or that the pin (19) of each sliding guide (13) has a spherical outer surface (20).
5. Aufhängung nach Anspruch 3, dadurch gekennzeichnet, dass der Gleitstein5. Suspension according to claim 3, characterized in that the sliding block
( 15) jeder Gleitführung ( 12) um eine in Axialrichtung der Primär- und Sekundärstruktur (4; 8) orientierte Achse (16) schwenkbar angeordnet ist. Aufhängung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass wenigstens eines der beiden, aufeinander gleitenden Elemente Gleitstein (14,15), Nut (17, 18) oder Zapfen (19), Buchse (21) eine verschleißfeste, metallische und/oder keramische Gleitflächenbeschichtung aufweist. (15) each slide guide (12) is arranged to be pivotable about an axis (16) oriented in the axial direction of the primary and secondary structure (4; 8). Suspension according to one of claims 3 to 5, characterized in that at least one of the two sliding elements (14, 15), groove (17, 18) or pin (19), bushing (21), a wear-resistant, metallic and / or has ceramic sliding surface coating.
EP01962582A 2000-08-03 2001-08-01 Suspension Expired - Lifetime EP1305504B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10037837A DE10037837C2 (en) 2000-08-03 2000-08-03 suspension
DE10037837 2000-08-03
PCT/DE2001/002888 WO2002012680A1 (en) 2000-08-03 2001-08-01 Suspension

Publications (2)

Publication Number Publication Date
EP1305504A1 true EP1305504A1 (en) 2003-05-02
EP1305504B1 EP1305504B1 (en) 2005-10-19

Family

ID=7651191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962582A Expired - Lifetime EP1305504B1 (en) 2000-08-03 2001-08-01 Suspension

Country Status (8)

Country Link
US (1) US6752591B2 (en)
EP (1) EP1305504B1 (en)
JP (1) JP2004506113A (en)
AT (1) ATE307270T1 (en)
CA (1) CA2391082A1 (en)
DE (2) DE10037837C2 (en)
ES (1) ES2250458T3 (en)
WO (1) WO2002012680A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359730A1 (en) * 2003-12-19 2005-07-14 Mtu Aero Engines Gmbh Turbomachine, in particular gas turbine
JP4801373B2 (en) * 2005-05-16 2011-10-26 三菱重工業株式会社 Turbine cabin structure
US7523616B2 (en) * 2005-11-30 2009-04-28 General Electric Company Methods and apparatuses for assembling a gas turbine engine
DE07872523T1 (en) * 2006-06-09 2009-07-30 Bell Helicopter Textron, Inc., Fort Worth MOTOR EXHAUST SYSTEM
EP2032829B1 (en) * 2006-06-09 2014-03-05 Bell Helicopter Textron Inc. Engine exhaust system with directional nozzle
US9551238B2 (en) * 2012-09-28 2017-01-24 United Technologies Corporation Pin connector for ceramic matrix composite turbine frame
FR3005120A1 (en) * 2013-04-24 2014-10-31 Aircelle Sa FLOW RECOVERY STRUCTURE FOR NACELLE
EP3228837B1 (en) * 2016-04-08 2019-08-28 Ansaldo Energia Switzerland AG Assembly of turboengine components
US11028944B2 (en) * 2018-05-31 2021-06-08 Textron Innovations Inc. Duct support
DE102020203840A1 (en) * 2020-03-25 2021-09-30 MTU Aero Engines AG Gas turbine component

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE716219C (en) 1934-09-18 1942-07-03 Siemens Ag Coating material resulting in non-flammable coatings
FR957575A (en) * 1946-10-02 1950-02-23
DE1004201B (en) * 1955-09-27 1957-03-14 Siemens Ag Arrangement for the centric, heat-movable support of turbine parts via radial bolts
US2996279A (en) * 1956-07-16 1961-08-15 English Electric Co Ltd Gas turbines
US2938336A (en) * 1956-12-06 1960-05-31 United Aircraft Corp Gas flow straightening vanes
CH363661A (en) * 1958-02-14 1962-08-15 Int Stal Company Ab Connection between two ring-shaped machine elements
US3529904A (en) * 1968-10-28 1970-09-22 Westinghouse Electric Corp Diaphragm seal structure
US3965066A (en) * 1974-03-15 1976-06-22 General Electric Company Combustor-turbine nozzle interconnection
FR2469566A1 (en) 1979-11-12 1981-05-22 Snecma IMPROVEMENTS ON FIXING DEVICES FOR MULTIFLUX TURBOREACTORS
US5088279A (en) * 1990-03-30 1992-02-18 General Electric Company Duct support assembly
US5076049A (en) 1990-04-02 1991-12-31 General Electric Company Pretensioned frame
FR2677953B1 (en) * 1991-06-19 1993-09-10 Snecma REAR SUSPENSION STRUCTURE OF A TURBOREACTOR.
FR2728015B1 (en) * 1994-12-07 1997-01-17 Snecma SECTORIZED MONOBLOCK DISTRIBUTOR OF A TURBOMACHINE TURBINE STATOR
DE19807247C2 (en) * 1998-02-20 2000-04-20 Mtu Muenchen Gmbh Turbomachine with rotor and stator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0212680A1 *

Also Published As

Publication number Publication date
WO2002012680A1 (en) 2002-02-14
DE50107765D1 (en) 2006-03-02
ATE307270T1 (en) 2005-11-15
DE10037837A1 (en) 2002-03-28
CA2391082A1 (en) 2002-02-14
US6752591B2 (en) 2004-06-22
ES2250458T3 (en) 2006-04-16
JP2004506113A (en) 2004-02-26
US20030021689A1 (en) 2003-01-30
DE10037837C2 (en) 2002-08-01
EP1305504B1 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
EP3293406B1 (en) Hydrodynamic bearing and turbocharger
DE102006024085B4 (en) Turbo compressor in axial design
EP0289697B1 (en) Actuator for the variable guide vanes of an axial turbo machine
DE3233753A1 (en) CV DRIVE JOINT
CH703871B1 (en) Verstellleitapparatanordnung for a compressor.
EP3199758B1 (en) Rotor in blisk or bling structure of an aircraft engine
EP2045444A1 (en) Rotor blade, method for producing a rotor blade, and compressor with such a rotor blade
EP1305504A1 (en) Suspension
EP1653049B1 (en) Vane ring assembly for gas turbines and method to modify the same
EP2884055A1 (en) Variable guide vanes with cone frustum in a bearing arrangement
EP2356319A1 (en) Guide blade arrangement for an axial turbo-machine
EP0131719B1 (en) Adjustable guiding apparatus
EP3203035B1 (en) Blade system for a flow machine
EP3159505B1 (en) Intermediate casing for a gas turbine
EP2310634B1 (en) Rotating blade system for a row of rotating blades of a turbomachine
EP1515001B1 (en) Blade to blade connection in a turbomachine
EP1717466A2 (en) Slide bearing with an enlarging bearing gap in the end zone
DE3728039A1 (en) Spring suspension element for a bearing
DE102017211316A1 (en) Turbomachinery sealing ring
DE10002757B4 (en) ball joint
WO2016146190A1 (en) Hydrodynamic sliding bearing
DE1303537B (en) Homokinetic universal joint coupling
WO1999060283A1 (en) Elastic shaft coupling
EP1870605A1 (en) Workpiece, especially a crankshaft, with an improved dynamic strength
EP2725202A1 (en) Inner ring seal support arrangement for an adjustable stator blade assembly of a turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020321

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060107

REF Corresponds to:

Ref document number: 50107765

Country of ref document: DE

Date of ref document: 20060302

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060320

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2250458

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060815

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060817

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060824

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060831

Year of fee payment: 6

26N No opposition filed

Effective date: 20060720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

BERE Be: lapsed

Owner name: MTU AERO ENGINES G.M.B.H.

Effective date: 20060831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060814

Year of fee payment: 6

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130823

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107765

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107765

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150303