EP1301699B1 - Method for adapting a crude nox concentration - Google Patents

Method for adapting a crude nox concentration Download PDF

Info

Publication number
EP1301699B1
EP1301699B1 EP01955233A EP01955233A EP1301699B1 EP 1301699 B1 EP1301699 B1 EP 1301699B1 EP 01955233 A EP01955233 A EP 01955233A EP 01955233 A EP01955233 A EP 01955233A EP 1301699 B1 EP1301699 B1 EP 1301699B1
Authority
EP
European Patent Office
Prior art keywords
nox
lean
phase
stored
lean phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01955233A
Other languages
German (de)
French (fr)
Other versions
EP1301699A1 (en
Inventor
Corinna Pfleger
Hong Zhang
Wolfgang Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1301699A1 publication Critical patent/EP1301699A1/en
Application granted granted Critical
Publication of EP1301699B1 publication Critical patent/EP1301699B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control

Definitions

  • the invention relates to a method for adapting a NOx raw concentration of a lean and rich phase Internal combustion engine equipped with a NOx storage reduction catalyst is provided in an exhaust duct the, internal combustion engine arranged during the lean phase NOx adsorbed from the exhaust gas and adsorbed during the fatty phase NOx can implement.
  • NOx storage reduction catalysts hereinafter also referred to as NOx storage catalysts used. Due to their coating, these NOx storage catalytic converters are able to adsorb NOx compounds from the exhaust gas during a storage phase.
  • the storage phase of the NOx storage catalyst is also referred to as its loading phase.
  • the adsorbed or stored NO x compounds are catalytically converted into harmless compounds.
  • a reducing agent for the conversion is used in lean-burn gasoline engines CO, H 2 and HC (hydrocarbons).
  • the reducing agents are generated by the short-term operation of the internal combustion engine with a rich mixture and the NOx storage catalyst provided in the form of exhaust gas components, whereby the stored NOx compounds are degraded in the catalyst.
  • the adsorption efficiency of NOx storage catalysts drops with higher NOx loading level.
  • the degree of loading is the quotient of instantaneous NOx loading and maximum NOx storage capacity.
  • the calculated degree of loading can be used for Control of the lean and rich cycles of the internal combustion engine be used. To determine the degree of loading a precise knowledge of both the current load as well as the maximum storage capacity needed.
  • the maximum storage capacity can be on the engine test bench by measuring the amount of NOx stored per unit time until to reach a saturation state. Indeed this storage capacity is subject to an aging process, which requires it during operation to adapt.
  • a method for adapting the corrected NOx concentration is described in international application WO 00/28201.
  • the method stores operating point dependent Values for the raw NOx concentration of the internal combustion engine read a map and an adaptation of the concentration fluctuations on the basis of a downstream of the NOx storage catalyst arranged NOx sensor made.
  • This method gives satisfactory results for the adaptation, however, is mandatory on the use of a Instructed NOx sensor.
  • the invention has for its object to provide a method with the NOx raw concentration of an internal combustion engine adapted as precisely as possible with simple means can be.
  • a first step the duration of a first lean phase so shortened that no NOx emission occurs behind the catalyst during the first lean phase.
  • the NOx emission during a lean phase is qualitative known: takes place in a first section of the lean phase no or essentially no NOx emission behind the catalyst, which rises sharply from one point in time.
  • the Duration of the first lean phase is in the first step chosen so that the lean phase is completed before it to an increase in the NOx concentration after the catalyst comes.
  • the second step of the method according to the invention is the during the lean phase in the NOx storage catalyst stored storage amount calculated.
  • the Storage amount corresponds to the corrected NOx supply, since here no breakthrough share occurs in the first lean phase. Because the first lean phase is over before it becomes one Breakthrough is coming.
  • the calculated Amount of storage with one for the first lean phase with Help of a map modeled depending on the operating conditions NOx loading of the NOx storage catalyst compared. For the first lean phase should be neglected of the breakthrough modeled NOx loading with the amount of storage because there is no NOx emission after the catalyst during the first lean phase.
  • Procedure is the whole process as the repetition of two adaptation cycles with different long lean phases, wherein in the second cycle the first and the second method step for the second Undergo lean phase.
  • the average storage amounts per time i. calculated amount of storage divided by the duration of the lean phase, compared to each other in the case of an approximate Match a lack of NOx emission in the first lean phase determine.
  • mismatch loading is not proportional to time, i.e. during the lean phase is, for example, the NOx concentration after the catalyst already increased and the breakthrough quantity thus not negligible. If missing Consistency becomes the first and second lean phases further shortened, wherein preferably the second adaptation cycle it takes the place of the first as the basic cycle.
  • a lambda probe is preferably arranged downstream of the NOx storage catalytic converter.
  • the lambda probe indicates the air ratio in the exhaust gas flow downstream of the NOx storage catalytic converter and thus makes it possible to detect the completion of the regeneration phase.
  • it is preferably also taken into consideration that both NOx and O 2 , which are released from the reservoir with different characteristics, are stored in the NOx storage catalytic converter.
  • the NOx / O 2 ratio can be taken into account by means of characteristic curves.
  • the change is proportional to the difference between the storage amount and the modeled NOx load. It is also possible to make the change proportional to the difference of 1 and the quotient of the modeled NOx loading and the amount of storage.
  • Fig. 1 shows the time evolution of the NOx concentration in a NOx storage catalyst.
  • the curve marked 10 indicates the NOx concentration after the catalyst.
  • the area marked 14 indicates the NOx storage amount (SM) stored up to t 0 .
  • the area fraction lying below the curve 10 indicates the breakthrough quantity DB, that is to say the quantity which has exited until the time t 0 . If an adaptation of the raw emission now takes place, the threshold 12 is offset at the beginning to 18. For example, for this purpose, the duration of the lean phase can be halved.
  • the lean phase to a point in time 20 shortened. If the amount of memory in the shortened Lean phase in the same proportion to the amount of storage in the longer lean phase 14 is, as the duration of the shorter Lean phase at the time of the longer lean phase, so has no breakthrough occurred and the storage catalyst has stored in proportion to the duration of the lean phase NOx.
  • Calculation of the storage amount SM is based on the in Maps stored NOx raw concentration and the reduction factor the integral of the corrected NOx concentration over the lean phase (IKK) is calculated.
  • the value of the integral is the sum of modeled NOx loading and (modeled) Post-emission.
  • SM should be equal to IKK if the modeled, corrected raw NOx concentration of the actual, reduced by the actual stationary reduction factor, NOx raw concentration corresponds.
  • a correction factor for the raw NOx concentration is calculated.
  • the correction factor (RKKF) is determined as a function of the modeled NOx load (IKK) and the storage amount (SM).
  • the factor becomes: 1-IKK / SM amplified with an amplifier 22 and added with a corresponding correction factor RKKF (N-1) to determine RKKF for the subsequent correction of the NOx raw concentration.
  • the adaptation takes place iteratively, whereby the correction factor of the (n-1) -th adaptation is changed at an n-th adaptation step.
  • the raw NOx concentration is multiplied by the factor (1-RF), where RF is the reduction factor for the raw NOx concentration RK.
  • the reduction factor for example, takes into account the steady-state conversion in the catalyst, depending on the catalyst temperature.
  • the product is referred to as the corrected raw NOx concentration.
  • Fig. 3 shows a flow chart for an alternative determination the corrected NOx raw concentration.
  • the size 1-SM / IKK is amplified by an amplifier 24 and added with a correction factor for the reduction factor.
  • the correction factor for the reduction factor RFKF becomes multiplied by the reduction factor RF, so that a corrected Reduction factor is present.
  • (1-RFKFxRF) From the raw NOx concentration (RK), the corrected raw NOx concentration calculated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Adaptieren einer NOx-Rohkonzentration einer mit Mager- und Fettphasen arbeitenden Brennkraftmaschine, die mit einem NOx-Speicher-Reduktionskatalysator versehen ist, der in einem Abgaskanal der,Brennkraftmaschine angeordnet während der Magerphase NOx aus dem Abgas adsorbiert und während der Fettphase das adsorbierte NOx umsetzen kann.The invention relates to a method for adapting a NOx raw concentration of a lean and rich phase Internal combustion engine equipped with a NOx storage reduction catalyst is provided in an exhaust duct the, internal combustion engine arranged during the lean phase NOx adsorbed from the exhaust gas and adsorbed during the fatty phase NOx can implement.

Um bei Kraftfahrzeugen mit ottomotorischem Antrieb den Kraftstoffverbrauch zu reduzieren, werden immer häufiger Brennkraftmaschinen eingesetzt, die in ausgewählten Betriebsbereichen mit einem mageren Gemisch betrieben werden.To fuel consumption in motor vehicles with ottomotorischem drive to reduce, more and more often internal combustion engines used in selected operating areas be operated with a lean mixture.

Zur Erfüllung von Abgasgrenzwerten wird bei solchen Brennkraftmaschinen eine spezielle Abgasnachbehandlung eingesetzt. Dazu werden NOx-Speicher-Reduktionskatalysatoren, im folgenden kurz auch als NOx-Speicherkatalysatoren bezeichnet, verwendet. Diese NOx-Speicherkatalysatoren sind aufgrund ihrer Beschichtung in der Lage, während einer Speicherphase NOx-Verbindüngen aus dem Abgas zu adsorbieren. Die Speicherphase des NOx-Speicherkatalysators wird auch als dessen Beladungsphase bezeichnet. Während einer sich an die Beladungsphase anschließenden Regenerationsphase werden die adsorbierten bzw. gespeicherten NOx-Verbindungen katalytisch in unschädliche Verbindungen umgewandelt. Als Reduktionsmittel für die Umwandlung wird bei mager betriebenen Otto-Brennkraftmaschinen CO, H2 und HC (Kohlenwasserstoffe) eingesetzt. Die Reduktionsmittel werden durch den kurzzeitigen Betrieb der Brennkraftmaschine mit einem fetten Gemisch erzeugt und dem NOx-Speicherkatalysator in Form von Abgaskomponenten zur Verfügung gestellt, wodurch die gespeicherten NOx-Verbindungen im Katalysator abgebaut werden. In order to meet exhaust emission limits, special internal exhaust aftertreatment is used in such internal combustion engines. For this purpose, NOx storage reduction catalysts, hereinafter also referred to as NOx storage catalysts used. Due to their coating, these NOx storage catalytic converters are able to adsorb NOx compounds from the exhaust gas during a storage phase. The storage phase of the NOx storage catalyst is also referred to as its loading phase. During a regeneration phase following the loading phase, the adsorbed or stored NO x compounds are catalytically converted into harmless compounds. As a reducing agent for the conversion is used in lean-burn gasoline engines CO, H 2 and HC (hydrocarbons). The reducing agents are generated by the short-term operation of the internal combustion engine with a rich mixture and the NOx storage catalyst provided in the form of exhaust gas components, whereby the stored NOx compounds are degraded in the catalyst.

Der Adsorptionswirkungsgrad von NOx-Speicherkatalysatoren fällt mit höherem NOx-Beladungsgrad ab. Der Beladungsgrad ist der Quotient aus momentaner NOx-Beladung und maximaler NOx-Speicherkapazität. Der errechnete Beladungsgrad kann zur Steuerung der Mager- und Fettzyklen der Brennkraftmaschine herangezogen werden. Zur Ermittlung des Beladungsgrades ist eine möglichst genaue Kenntnis sowohl der momentanen Beladung als auch der maximalen Speicherkapazität nötig.The adsorption efficiency of NOx storage catalysts drops with higher NOx loading level. The degree of loading is the quotient of instantaneous NOx loading and maximum NOx storage capacity. The calculated degree of loading can be used for Control of the lean and rich cycles of the internal combustion engine be used. To determine the degree of loading a precise knowledge of both the current load as well as the maximum storage capacity needed.

Die maximale Speicherkapazität kann auf dem Motorprüfstand durch Messung der eingelagerten NOx-Menge pro Zeiteinheit bis zum Erreichen eines Sättigungszustands ermittelt werden. Allerdings unterliegt diese Speicherfähigkeit einem Alterungsprozeß, der es erforderlich macht, sie während der Betriebszeit zu adaptieren.The maximum storage capacity can be on the engine test bench by measuring the amount of NOx stored per unit time until to reach a saturation state. Indeed this storage capacity is subject to an aging process, which requires it during operation to adapt.

Es sind Verfahren bekannt, die maximale Speicherkapazität im Fahrbetrieb zu adaptieren. Allerdings benötigen diese Verfahren die Kenntnis entweder der momentanen Beladung und/oder einer korrigierten NOx-Rohkonzentration. Mit korrigierter NOx-Rohkonzentration wird die um eine Stationärumsatz-Konzentration verminderte NOx-Rohkonzentration bezeichnet. Die möglichst genaue Kenntnis der korrigierten NOx-Rohkonzentration ist neben der Altersadaption der Speicherkapazität auch zur Katalysatorsteuerung über die Berechnung des Beladungsgrades erforderlich.Methods are known which have maximum storage capacity in the Adapt driving operation. However, these procedures require the knowledge of either the current load and / or a corrected NOx raw concentration. With corrected NOx raw concentration is the order of a stationary conversion concentration denoted reduced NOx raw concentration. The most accurate knowledge of the corrected NOx raw concentration is next to the age adaptation of the storage capacity also for the catalyst control via the calculation of the Degree of loading required.

Ein Verfahren zur Adaption der korrigierten NOx-Konzentration ist in der internationalen Anmeldung WO 00/28201 beschrieben. Bei dem Verfahren werden betriebspunktabhängig gespeicherte Werte für die NOx-Rohkonzentration der Brennkraftmaschine aus einem Kennfeld ausgelesen und eine Adaption der Konzentrationsschwankungen auf der Basis eines stromabwärts des NOx-Speicherkatalysators angeordneten NOx-Sensors vorgenommen. Dieses Verfahren liefert zufriedenstellende Ergebnisse für die Adaption, ist jedoch zwingend auf die Verwendung eines NOx-Sensors angewiesen. A method for adapting the corrected NOx concentration is described in international application WO 00/28201. The method stores operating point dependent Values for the raw NOx concentration of the internal combustion engine read a map and an adaptation of the concentration fluctuations on the basis of a downstream of the NOx storage catalyst arranged NOx sensor made. This method gives satisfactory results for the adaptation, however, is mandatory on the use of a Instructed NOx sensor.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren bereitzustellen, mit dem die NOx-Rohkonzentration einer Brennkraftmaschine mit einfachen Mitteln möglichst genau adaptiert werden kann.The invention has for its object to provide a method with the NOx raw concentration of an internal combustion engine adapted as precisely as possible with simple means can be.

Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is solved by the features of patent claim 1. Advantageous developments of the invention are in the Subclaims specified.

Das oben genannte Verfahren führt während eines Adaptionsvorgangs für die NOx-Rohkonzentration die folgenden vier Verfahrensschritte aus. In einem ersten Schritt wird die Dauer einer ersten Magerphase derart verkürzt, daß keine NOx-Emission hinter dem Katalysator während der ersten Magerphase auftritt. Der NOx-Ausstoß im Verlaufe einer Magerphase ist qualitativ bekannt: In einem ersten Abschnitt der Magerphase erfolgt keine oder im wesentlichen keine NOx-Emission hinter dem Katalysator, die ab einem Zeitpunkt stark ansteigt. Die Dauer der ersten Magerphase wird in dem ersten Verfahrensschritt so gewählt, daß die Magerphase beendet ist, bevor es zu einem Anstieg der NOx-Konzentration nach dem Katalysator kommt. In dem zweiten Schritt des erfindungsgemäßen Verfahrens wird die während der Magerphase in den NOx-Speicherkatalysator eingelagerte Speichermenge berechnet. Die Speichermenge entspricht dem korrigierten NOx-Angebot, da hier kein Durchbruchanteil in der ersten Magerphase auftritt. Denn die erste Magerphase ist beendet, bevor es zu einem Durchbruch kommt. In einem weiteren Schritt, der auch gleichzeitig zu dem zweiten Schritt erfolgen kann, wird die berechnete Speichermenge mit einer für die erste Magerphase mit Hilfe eines Kennfeldes abhängig von den Betriebszuständen modellierten NOx-Beladung des NOx-Speicherkatalysators verglichen. Für die erste Magerphase sollte die unter Vernachlässigung des Durchbruchs modellierte NOx-Beladung mit der Speichermenge übereinstimmen, da keine NOx-Emission nach dem Katalysator während der ersten Magerphase stattgefunden hat. The above method leads during an adaptation process for the raw NOx concentration, the following four process steps out. In a first step, the duration of a first lean phase so shortened that no NOx emission occurs behind the catalyst during the first lean phase. The NOx emission during a lean phase is qualitative known: takes place in a first section of the lean phase no or essentially no NOx emission behind the catalyst, which rises sharply from one point in time. The Duration of the first lean phase is in the first step chosen so that the lean phase is completed before it to an increase in the NOx concentration after the catalyst comes. In the second step of the method according to the invention is the during the lean phase in the NOx storage catalyst stored storage amount calculated. The Storage amount corresponds to the corrected NOx supply, since here no breakthrough share occurs in the first lean phase. Because the first lean phase is over before it becomes one Breakthrough is coming. In a further step, also at the same time to the second step, the calculated Amount of storage with one for the first lean phase with Help of a map modeled depending on the operating conditions NOx loading of the NOx storage catalyst compared. For the first lean phase should be neglected of the breakthrough modeled NOx loading with the amount of storage because there is no NOx emission after the catalyst during the first lean phase.

Die Abweichung dieser beiden Größen voneinander wird in einem vierten Schritt für die Adaption verwendet. Nach Adaption der NOx-Rohkonzentration kann die Brennkraftmaschine wieder nach bekannten Verfahren betrieben werden. Vorteilhaft an dem vorliegenden Verfahren ist, daß durch die Verkürzung der ersten Magerphase mit einfachen Mitteln eine genaue Bestimmung der NOx-Beladung möglich ist.The deviation of these two sizes from each other is in one fourth step used for the adaptation. After adaptation of the NOx raw concentration, the internal combustion engine again after operated methods known. Advantageous to the present Procedure is that by shortening the first Lean phase with simple means an accurate determination of NOx loading is possible.

Um festzustellen, daß in dem ersten Schritt eine hinreichend kurze Magerphase der Betrachtung zugrunde liegt, wird in dem zweiten Schritt zusätzlich die Speichermenge in einer zweiten Magerphase bestimmt, deren Dauer gegenüber der der ersten Magerphase weiter verkürzt ist. Hierzu werden im wesentlichen die Verfahrensschritte aus dem Adaptionszyklus mit der ersten Magerphase wiederholt. In dieser Weiterführung des erfindungsgemäßen Verfahrens stellt sich der gesamte Verfahrensablauf als die Wiederholung von zwei Adaptionszyklen mit unterschiedlich langen Magerphasen dar, wobei in dem zweiten Zyklus der erste und der zweite Verfahrensschritt für die zweite Magerphase durchlaufen werden. Für die erste und die zweite Magerphase werden die mittleren Speichermengen pro Zeit, d.h. berechnete Speichermenge dividiert durch die Dauer der Magerphase, miteinander verglichen, um im Fall einer ungefähren Übereinstimmung eine fehlende NOx-Emission in der ersten Magerphase festzustellen. Im Falle der fehlenden Übereinstimmung erfolgt die Beladung nicht proportional mit der Zeit, d.h. während der Magerphase ist beispielsweise die NOx-Konzentration nach dem Katalysator bereits angestiegen und die Durchbruchmenge somit nicht vernachlässigbar. Bei fehlender Übereinstimmung werden die erste und die zweite Magerphase weiter verkürzt, wobei bevorzugt der zweite Adaptionszyklus dabei als Basis-Zyklus an die Stelle des ersten tritt.To conclude that in the first step a sufficient short lean phase of consideration is based in the second step additionally the amount of memory in a second Lean phase determined, whose duration compared to the first lean phase is further shortened. These are essentially the process steps from the adaptation cycle with the first Lean phase repeated. In this continuation of the invention Procedure is the whole process as the repetition of two adaptation cycles with different long lean phases, wherein in the second cycle the first and the second method step for the second Undergo lean phase. For the first and the second Lean phase, the average storage amounts per time, i. calculated amount of storage divided by the duration of the lean phase, compared to each other in the case of an approximate Match a lack of NOx emission in the first lean phase determine. In case of mismatch loading is not proportional to time, i.e. during the lean phase is, for example, the NOx concentration after the catalyst already increased and the breakthrough quantity thus not negligible. If missing Consistency becomes the first and second lean phases further shortened, wherein preferably the second adaptation cycle it takes the place of the first as the basic cycle.

In einer zweckmäßigen Weiterführung des Verfahrens wird bei einer Verkürzung der Magerphasen bis unterhalb einer vorbestimmten Mindestdauer ein Signal ausgelöst, das eine fehlende Tauglichkeit des NOx-Katalysators für den Magerbetrieb anzeigt. Bei einem nicht für den Magerbetrieb tauglichen NOx-Speicherkatalysator erfolgt selbst bei einer hinreichend kurzen Magerphase keine NOx-Beladung, die proportional zur Dauer der Magerphase ist.In an expedient continuation of the method is at a shortening of the lean phases to below a predetermined Minimum duration of a signal that is missing Indicates the suitability of the NOx catalyst for lean operation. In a not suitable for lean operation NOx storage catalytic converter takes place even with a sufficiently short Lean phase no NOx loading proportional to the duration the lean phase is.

Um die Speichermenge des NOx-Speicherkatalysators hinreichend genau bestimmen zu können, wird diese in einer Fettphase für die zurückliegende Magerphase bestimmt. Es wird also darauf verzichtet, die Speichermenge direkt während der Magerphase zu berechnen, mithin wird auf den Einsatz eines NOx-Sensors verzichtet.To the amount of storage of the NOx storage catalyst sufficient To be able to determine exactly, this is in a fat phase for determines the past lean phase. It will be so omitted, the amount of storage directly during the lean phase Therefore, it is based on the use of a NOx sensor waived.

Um die Speichermenge für die vorangegangene Magerphase hinreichend genau berechnen zu können, wird diese abhängig von der eingelagerten Sauerstoffmenge, von der Zeitdauer zwischen Beginn der Fettphase und einem Erkennen einer vollständigen NOx-Regeneration, von dem Kraftstoffmassenstrom sowie dem Stoffmengenverhältnis der Reaktion Kraftstoff und NOx bestimmt. Hierbei wird angenommen, daß der zusätzliche, zur stöchiometrischen Verbrennung nicht benötigte Kraftstoffmassenstrom zur Reduktion der gespeicherten NOx-Masse sowie zum Aufbrauchen des eingelagerten Sauerstoffs verwendet wird. Ist die gespeicherte Sauerstoffmenge, die Zeitdauer zwischen Einsetzen der Fettphase bis zum Erkennen einer vollständigen NOx-Regeneration des Speicherkatalysators, der zusätzliche Kraftstoffmassenstrom sowie das Stoffmengenverhältnis der Reaktion Kraftstoff plus NOx bekannt, kann die eingespeicherte NOx-Masse berechnet werden.To the amount of storage for the previous lean phase sufficient to be able to calculate exactly, this becomes dependent on the amount of oxygen stored, from the period between Beginning of the fat phase and a recognition of a complete NOx regeneration, from the fuel mass flow and the Substance ratio of the reaction fuel and NOx determined. It is assumed that the additional, for stoichiometric combustion unused fuel mass flow for the reduction of the stored NOx mass as well as for Exploitation of the stored oxygen is used. is the amount of stored oxygen, the time between onset the fat phase until recognizing a complete NOx regeneration of the storage catalyst, the additional Fuel mass flow and the molar ratio of the reaction Fuel plus NOx known, the stored NOx mass can be calculated.

Um die vollständige NOx-Regeneration zu erkennen, wird bevorzugt stromabwärts von dem NOx-Speicherkatalysator eine Lambda-Sonde angeordnet. Die Lambda-Sonde zeigt die Luftzahl in dem Abgasstrom nach dem NOx-Speicherkatalysator an und ermöglicht so den Abschluß der Regenerationsphase zu erkennen. Bevorzugt wird bei diesem Verfahren noch berücksichtigt, daß in dem NOx-Speicherkatalysator sowohl NOx als auch O2 eingelagert werden, die mit unterschiedlicher Charakteristik von dem Speicher freigesetzt werden. Berücksichtigt werden kann das NOx/O2-Verhältnis mit Hilfe von Kennlinien.In order to detect the complete NOx regeneration, a lambda probe is preferably arranged downstream of the NOx storage catalytic converter. The lambda probe indicates the air ratio in the exhaust gas flow downstream of the NOx storage catalytic converter and thus makes it possible to detect the completion of the regeneration phase. In this method, it is preferably also taken into consideration that both NOx and O 2 , which are released from the reservoir with different characteristics, are stored in the NOx storage catalytic converter. The NOx / O 2 ratio can be taken into account by means of characteristic curves.

Alternativ zu der Verwendung eines O2-Sensors ist es ebenfalls möglich, einen NOx-Sensor stromabwärts von dem NOx-Speicherkatalysator zu verwenden.As an alternative to using an O 2 sensor, it is also possible to use a NOx sensor downstream of the NOx storage catalyst.

Zweckmäßigerweise erfolgt das Adaptieren der NOx-Rohkonzentration in dem vierten Schritt über einen Korrekturfaktor für einen Reduktionsfaktor der NOx-Rohkonzentration oder für einen Korrekturfaktor direkt für die NOx-Rohkonzentration.Appropriately, the adaptation of the NOx raw concentration in the fourth step via a correction factor for a reduction factor of the raw NOx concentration or for a correction factor directly for the raw NOx concentration.

Bevorzugt erfolgt die Änderung proportional zur Differenz zwischen der Speichermenge und der modellierten NOx-Beladung. Ebenfalls ist es möglich, die Änderung proportional zur Differenz von 1 und dem Quotienten aus der modellierten NOx-Beladung und der Speichermenge vorzunehmen.Preferably, the change is proportional to the difference between the storage amount and the modeled NOx load. It is also possible to make the change proportional to the difference of 1 and the quotient of the modeled NOx loading and the amount of storage.

Eine bevorzugte Ausgestaltung des Verfahrens wird nachfolgend an einem Ausführungsbeispiel näher beschrieben. Es zeigt:

Fig. 1
die NOx-Konzentration stromabwärts eines NOx-Speicherkatalysators abhängig von der Zeit,
Fig. 2
die Berechnung eines Korrekturfaktors für die NOx-Rohkonzentration und
Fig. 3
die Berechnung eines Korrekturfaktors für einen Reduktionsfaktor der NOx-Rohkonzentration.
A preferred embodiment of the method is described in more detail below using an exemplary embodiment. It shows:
Fig. 1
the NOx concentration downstream of a NOx storage catalyst depending on the time
Fig. 2
the calculation of a correction factor for the NOx raw concentration and
Fig. 3
the calculation of a correction factor for a reduction factor of the raw NOx concentration.

Fig. 1 zeigt die zeitliche Entwicklung der NOx-Konzentration in einem NOx-Speicherkatalysator. Die mit 10 gekennzeichnete Kurve gibt die NOx-Konzentration nach dem Katalysator an. Zum Zeitpunkt t0, der mit 12 gekennzeichnet ist, beginnt im normalen Speicher-/Regenerationsbetrieb die Regeneration des NOx-Speicherkatalysators. Die mit 14 gekennzeichnete Fläche gibt dabei die bis t0 eingelagerte NOx-Speichermenge (SM) an. Der unterhalb der Kurve 10 liegende Flächenanteil gibt die Durchbruchmenge DB an, also die Menge, die bis zum Zeitpunkt t0 ausgetreten ist. Soll nun eine Adaption der Rohemission erfolgen, so wird die Schwelle 12 zu Beginn nach 18 versetzt. Beispielsweise kann hierzu die Dauer der Magerphase halbiert werden.Fig. 1 shows the time evolution of the NOx concentration in a NOx storage catalyst. The curve marked 10 indicates the NOx concentration after the catalyst. At the time t 0 , which is marked with 12, begins in the normal storage / regeneration operation, the regeneration of the NOx storage catalyst. The area marked 14 indicates the NOx storage amount (SM) stored up to t 0 . The area fraction lying below the curve 10 indicates the breakthrough quantity DB, that is to say the quantity which has exited until the time t 0 . If an adaptation of the raw emission now takes place, the threshold 12 is offset at the beginning to 18. For example, for this purpose, the duration of the lean phase can be halved.

Um zu überprüfen, ob bei der Dauer 18 der Magerphase eine vernachlässigbare Durchbruchmenge DB vorliegt, wird in einem weiteren Adaptionszyklus die Magerphase bis zu einem Zeitpunkt 20 verkürzt. Wenn die Speichermenge in der verkürzten Magerphase im selben Verhältnis zu der Speichermenge in der längeren Magerphase 14 steht, wie die Zeitdauer der kürzeren Magerphase zu der Zeitdauer der längeren Magerphase, so hat kein Durchbruch stattgefunden und der Speicherkatalysator hat proportional zur Dauer der Magerphase NOx eingelagert.To check if at the duration 18 of the lean phase one negligible breakthrough amount DB is present in one another adaptation cycle, the lean phase to a point in time 20 shortened. If the amount of memory in the shortened Lean phase in the same proportion to the amount of storage in the longer lean phase 14 is, as the duration of the shorter Lean phase at the time of the longer lean phase, so has no breakthrough occurred and the storage catalyst has stored in proportion to the duration of the lean phase NOx.

Allgemein kann die während einer Magerphase einer Brennkraftmaschine emittierte NOx-Menge in folgende Teile aufgesplittet werden:

  • ein erster Teil wird auch im Magerbetrieb von der Abgasreinigungsanlage in unschädliche Substanzen umgewandelt,
  • ein zweiter Teil wird im NOx-Speicherkatalysator gespeichert (SM) und
  • ein dritter Teil wird an die Umgebung abgegeben (DB)(Durchbruch).
In general, the amount of NOx emitted during a lean phase of an internal combustion engine can be split into the following parts:
  • a first part is converted into harmless substances even in lean operation by the emission control system,
  • a second part is stored in the NOx storage catalyst (SM) and
  • a third part is delivered to the environment (DB) (breakthrough).

Unabhängig von dem erfindungsgemäß verwendeten Verfahren zur Berechnung der Speichermenge SM wird basierend auf der in Kennfeldern abgelegten NOx-Rohkonzentration und dem Reduktionsfaktor das Integral der korrigierten NOx-Konzentration über die Magerphase (IKK) berechnet. Der Wert des Integrals ist die Summe aus modellierter NOx-Beladung und (modellierter) Nachkat-Emission. Für die Magerphasen, in denen kein Durchbruch erfolgt, sollte SM gleich IKK sein, falls die modellierte, korrigierte NOx-Rohkonzentration der tatsächlichen, um den tatsächlichen stationären Reduktionsfaktor verminderten, NOx-Rohkonzentration entspricht.Regardless of the method used according to the invention Calculation of the storage amount SM is based on the in Maps stored NOx raw concentration and the reduction factor the integral of the corrected NOx concentration over the lean phase (IKK) is calculated. The value of the integral is the sum of modeled NOx loading and (modeled) Post-emission. For the lean phases in which no Breakthrough, SM should be equal to IKK if the modeled, corrected raw NOx concentration of the actual, reduced by the actual stationary reduction factor, NOx raw concentration corresponds.

In dem in Fig. 2 dargestellten Flußdiagramm wird ein Korrekturfaktor für die NOx-Rohkonzentration (RK) berechnet. Der Korrekturfaktor (RKKF) wird dabei abhängig von der modellierten NOx-Beladung (IKK) und der Speichermenge (SM) ermittelt. In dem in Fig. 2 dargestellten Ablaufdiagramm wird der Faktor: 1-IKK / SM mit einem Verstärker 22 verstärkt und mit einem entsprechenden Korrekturfaktor RKKF (N-1) addiert, um RKKF für die nachfolgende Korrektur der NOx-Rohkonzentration zu ermitteln. Die Adaption erfolgt iterativ, wobei bei einem n-ten Adaptionsschritt der Korrekturfaktor der (n-1)-ten Adaption geändert wird. Die NOx-Rohkonzentration wird mit dem Faktor (1-RF) multipliziert, wobei RF den Reduktionsfaktor für die NOx-Rohkonzentration RK bezeichnet. Der Reduktionsfaktor berücksichtigt beispielsweise abhängig von der Katalysatortemperatur den stationären Umsatz in dem Katalysator. Das Produkt wird als die korrigierte NOx-Rohkonzentration bezeichnet.In the flow chart shown in Fig. 2, a correction factor for the raw NOx concentration (RK) is calculated. The correction factor (RKKF) is determined as a function of the modeled NOx load (IKK) and the storage amount (SM). In the flowchart shown in Fig. 2, the factor becomes: 1-IKK / SM amplified with an amplifier 22 and added with a corresponding correction factor RKKF (N-1) to determine RKKF for the subsequent correction of the NOx raw concentration. The adaptation takes place iteratively, whereby the correction factor of the (n-1) -th adaptation is changed at an n-th adaptation step. The raw NOx concentration is multiplied by the factor (1-RF), where RF is the reduction factor for the raw NOx concentration RK. The reduction factor, for example, takes into account the steady-state conversion in the catalyst, depending on the catalyst temperature. The product is referred to as the corrected raw NOx concentration.

Fig. 3 zeigt ein Flußdiagramm für eine alternative Bestimmung der korrigierten NOx-Rohkonzentration. Bei diesem Verfahren wird die Größe 1-SM / IKK mit einem Verstärker 24 verstärkt und mit einem Korrekturfaktor für den Reduktionsfaktor addiert. Der Korrekturfaktor für den Reduktionsfaktor RFKF wird mit dem Reduktionsfaktor RF multipliziert, so daß ein korrigierter Reduktionsfaktor vorliegt. Mit dem Faktor (1-RFKFxRF) wird aus der NOx-Rohkonzentration (RK) die korrigierte NOx-Rohkonzentration berechnet.Fig. 3 shows a flow chart for an alternative determination the corrected NOx raw concentration. In this process For example, the size 1-SM / IKK is amplified by an amplifier 24 and added with a correction factor for the reduction factor. The correction factor for the reduction factor RFKF becomes multiplied by the reduction factor RF, so that a corrected Reduction factor is present. With the factor (1-RFKFxRF) From the raw NOx concentration (RK), the corrected raw NOx concentration calculated.

In beiden Verfahren kann alternativ zu dem Quotienten aus SM und IKK auch die Differenz der Werte verwendet werden.In both methods, as an alternative to the quotient of SM and IKK also used the difference of the values.

Claims (12)

  1. Method for adapting a crude NOx concentration (RK) in an internal combustion engine operating with lean or rich phases, which is provided with a NOx storage reduction catalyser, which absorbs the NOx arranged in an exhaust-gas duct of the internal combustion engine from the exhaust gas during the lean phase, and can convert the absorbed NOx during the rich phase,
    characterised in that
    during an adaptation process for the crude NOx concentration, the following steps are executed;
    in a first step the duration of a first lean phase is reduced such that no NOx emission occurs behind the catalyser during the first lean phase,
    in a second step the quantity stored during the first lean phase (SM) is calculated,
    in a third step, a comparison value is calculated from the quantity stored (SM) and from a NOx loading (IKK) for the lean phase, modelled with the aid of characteristic fields,
    in a fourth step an adaptation of the crude Nox concentration (RK) is executed as a function of the comparison value
  2. Method according to Claim 1
    characterised in that
    in the second step, the quantity stored (SM) in the second lean phase is additionally determined, the duration of which is reduced in comparison with the duration of the first lean phase, whereby the average stored quantities are compared with one another each time in the first and second lean phases, in order to determine an absence of NOx emission in the first lean phase in the case of approximate correspondence, and in order to repeat the method with a shorter duration for the first and second lean phases in the case of a lack of correspondence.
  3. Method according to Claim 2
    characterised in that
    a signal is generated with a reduction in the lean phases to below a predetermined minimal duration, said signal indicating a lack of suitability of the NOx storage catalyser for the lean operation.
  4. Method according to one of the Claims 1 to 3
    characterised in that
    in the second step, the stored quantity of the Nox storage reduction catalyser is determined in a rich phase for the previous lean phase.
  5. Method according to Claim 4,
    characterised in that
    in the second step, the stored quantity for the preceding lean phase is calculated as a function of the length of time taken between the start of the rich phase and a detection of a complete NOX regeneration, the stored oxygen quantity, the fuel mass flow and the ratio of substances from the fuel and NOx reaction.
  6. Method according to Claim 5
    characterised in that
    the complete NOx regeneration is detected by means of an O 2 sensor arranged downstream from the NOx storage catalyser.
  7. Method according to Claim 5,
    characterised in that
    the complete NOx regeneration is recognised by means of a NOx sensor arranged downstream from the NOx storage reduction catalyser.
  8. Method according to one of Claims 1 to 5
    characterised in that
    in the fourth step, a correction factor (RFKR) is determined for a reduction factor (RF) of the NOx crude concentration.
  9. Method according to one of Claims 1 to 7,
    characterised in that
    in the fourth step, a correction factor (RKKF) is determined for the crude NOx concentration (RK).
  10. Method according to one of the Claims 1 to 9,
    characterised in that
    in the fourth step, the difference between the stored quantity (SM) and the modelled NOx loading functions as a comparison value.
  11. Method according to one of Claims 1 to 9,
    characterised in that
    in the fourth step, the difference between the stored quantity (SM) and the modelled NOx loading divided by the stored quantity (SM) functions as a comparison value.
  12. Method according to Claim 8,
    characterised in that
    in the fourth step, the difference between the modelled NOx loading and the stored quantity (SM) divided by the modelled NOx loading functions as a comparison value.
EP01955233A 2000-07-18 2001-07-10 Method for adapting a crude nox concentration Expired - Lifetime EP1301699B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10034874 2000-07-18
DE10034874A DE10034874B4 (en) 2000-07-18 2000-07-18 Method for adapting a raw NOx concentration
PCT/DE2001/002577 WO2002006653A1 (en) 2000-07-18 2001-07-10 Method for adapting a crude nox concentration

Publications (2)

Publication Number Publication Date
EP1301699A1 EP1301699A1 (en) 2003-04-16
EP1301699B1 true EP1301699B1 (en) 2005-03-23

Family

ID=7649303

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01955233A Expired - Lifetime EP1301699B1 (en) 2000-07-18 2001-07-10 Method for adapting a crude nox concentration

Country Status (3)

Country Link
EP (1) EP1301699B1 (en)
DE (2) DE10034874B4 (en)
WO (1) WO2002006653A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249609B4 (en) * 2002-10-18 2011-08-11 Volkswagen AG, 38440 Method for controlling a NOx storage catalytic converter
DE10305635B4 (en) * 2003-02-11 2011-01-13 Continental Automotive Gmbh Emission control method for lean-burn engines
DE10307457B4 (en) * 2003-02-21 2006-10-26 Audi Ag Method for operating a nitrogen oxide storage catalytic converter of an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19808382A1 (en) * 1998-02-27 1999-09-02 Volkswagen Ag Control of a NOx absorber catalytic converter
DE19836955A1 (en) * 1998-08-14 2000-03-09 Siemens Ag Method for detecting and maintaining the operational readiness of a NO¶x¶ storage catalytic converter
DE19844082C1 (en) * 1998-09-25 1999-10-14 Siemens Ag Regeneration of a nitrogen oxides storage catalyst used with lean burn engine
DE19847874A1 (en) * 1998-10-16 2000-04-20 Volkswagen Ag Use of on-board diagnosis apparatus for monitoring nitrogen oxide absorption catalyst regeneration, includes examination of reliability-critical components on detection of anomalies
FR2785331B1 (en) * 1998-10-28 2000-12-22 Renault METHOD FOR CONTROLLING THE PURGE OF NITROGEN OXIDES FROM A CATALYTIC EXHAUST TREATMENT POT OF AN INTERNAL COMBUSTION ENGINE
DE59910023D1 (en) * 1998-11-09 2004-08-26 Siemens Ag METHOD FOR ADAPTING THE NOx RAW CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE WORKING WITH EXCESS AIR
DE19859176C2 (en) * 1998-12-21 2003-07-10 Siemens Ag Procedure for checking the functionality of a lambda sensor
DE19951544C1 (en) * 1999-10-26 2000-12-07 Siemens Ag Operation of nitrogen oxides storage catalyst treating exhaust from lean burn engine, measures downstream exhaust gas oxygen concentration in strategy determining useful capacity to optimize rich regeneration extent

Also Published As

Publication number Publication date
DE10034874B4 (en) 2004-01-22
DE50105704D1 (en) 2005-04-28
WO2002006653A1 (en) 2002-01-24
EP1301699A1 (en) 2003-04-16
DE10034874A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
EP1214511B1 (en) METHOD FOR MONITORING THE FUNCTIONING OF A NOx SENSOR ARRANGED IN AN EXHAUST GAS CHANNEL OF AN INTERNAL COMBUSTION ENGINE
EP1060003B1 (en) CONTROL OF AN NOx-ABSORBING CATALYTIC CONVERTER
EP1098694B1 (en) METHOD FOR REGENERATING AN NOx STORAGE CATALYST
DE69933424T2 (en) Method and device for removing nitrogen oxides from the exhaust pipe of an internal combustion engine
DE19844082C1 (en) Regeneration of a nitrogen oxides storage catalyst used with lean burn engine
DE19801626A1 (en) Catalyst diagnostics process for testing nitrogen oxide(s) storage capacity of i. c. engine exhaust gas catalyst
DE102005034880B4 (en) Method and device for the diagnosis of an emission control system
EP1117909A1 (en) Method and device for catalytically removing a pollutant from the exhaust gas of an internal combustion system
EP3608519A1 (en) Method and device for exhaustion treatment of a combustion engine
DE102006014249A1 (en) Lambda value pre-controlling method for use during pre-heating phase of catalyzer, involves partially loading lambda-characteristic of lambda-pre-control, so that temporal lambda-center value is provided and lambda-value is obtained
EP0943786B1 (en) Method to control the exhaust gas treating of a direct injection Otto engine and of a lean-burn engine
EP1224385B1 (en) METHOD FOR DIAGNOSING THE LEVEL OF DETERIORATION OF AN NOx CATALYST LOCATED IN THE EXHAUST CHANNEL OF AN INTERNAL COMBUSTION ENGINE
EP1301699B1 (en) Method for adapting a crude nox concentration
EP1096125B1 (en) Method for controlling the operation of a NOx storage catalytic converter
DE19926305C2 (en) Method for controlling the operation of a NOx storage catalytic converter
DE19932715A1 (en) Process for the detection of the condition of a catalyst system
DE10125759A1 (en) Process for acquiring a charged state of a nitrogen oxides storage catalyst arranged in an exhaust gas channel of a lean-burn internal combustion engine comprises determining the nitrogen oxides
DE102017219047B3 (en) Method for operating an exhaust aftertreatment device
DE10059791B4 (en) Method and device for desulfurization of a precatalyst
DE10057938A1 (en) Regenerating nitrogen oxides storage catalyst in I.C. engine involves extrapolating oxygen-dependent signal from oxygen-sensitive measuring device
EP1331374B1 (en) Method and device to diagnose the storing properties of a NOx storage catalyst
EP1331372B1 (en) Method and apparatus for operating a NOx storage catalyst according to exhaust gas norms and for aging diagnosis of the catalyst
EP1365131A2 (en) Method for controling a NOx storage catalyst
DE102021116698A1 (en) Controlling a desulfurization of a nitrogen oxide storage catalyst
DE10057936A1 (en) Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030109

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50105704

Country of ref document: DE

Date of ref document: 20050428

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180731

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105704

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201