DE10057936A1 - Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal - Google Patents

Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal

Info

Publication number
DE10057936A1
DE10057936A1 DE2000157936 DE10057936A DE10057936A1 DE 10057936 A1 DE10057936 A1 DE 10057936A1 DE 2000157936 DE2000157936 DE 2000157936 DE 10057936 A DE10057936 A DE 10057936A DE 10057936 A1 DE10057936 A1 DE 10057936A1
Authority
DE
Germany
Prior art keywords
exhaust gas
regeneration
oxygen
signal
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2000157936
Other languages
German (de)
Inventor
Soeren Hinze
Hermann Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE2000157936 priority Critical patent/DE10057936A1/en
Priority to EP20010250407 priority patent/EP1209332B8/en
Priority to DE50114044T priority patent/DE50114044D1/en
Publication of DE10057936A1 publication Critical patent/DE10057936A1/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0806NOx storage amount, i.e. amount of NOx stored on NOx trap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0816Oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Process for regenerating a NOx storage catalyst (18) in the exhaust gas channel (14) of a lean-burn I.C. engine comprises extrapolating an oxygen-dependent signal from an oxygen-sensitive measuring device (20) during NOx regeneration; determining a time point based on the extrapolated signal which does not exceed a prescribed signal threshold value; and determining the end of the regeneration, in which a time spread corresponding to an exhaust gas running time between the engine and the catalyst is subtracted from the theoretical time point. An Independent claim is also included for a device for regenerating a NOx storage catalyst arranged in the exhaust gas channel of a lean-burn I.C. engine. Preferred Features: The oxygen-dependent signal is extrapolated using actual operating parameters of the engine and/or exhaust gas purification device (12).

Description

Die Erfindung betrifft ein Verfahren zur Durchführung einer Regeneration eines NOx Speicherkatalysators in einem Abgasstrang einer Verbrennungskraftmaschine sowie eine Vorrichtung zur Durchführung der Regeneration mit den im Oberbegriff der Ansprüche 1 und 11 genannten Merkmalen.The invention relates to a method for performing a regeneration of a NO x storage catalyst in an exhaust line of an internal combustion engine and a device for performing the regeneration with the features mentioned in the preamble of claims 1 and 11.

Verbrennungskraftmaschinen, die aus Gründen einer Verbrauchsoptimierung wenigstens zeitweise in einem mageren Betriebsmodus, das heißt mit einem sauerstoffreichen Abgas mit λ < 1, betrieben werden, produzieren Stickoxide NOx in einem stöchiometrischen Überschuss. Dies hat zur Folge, dass bei einer katalytischen oxidativen Umsetzung von unverbrannten Kohlenwasserstoffen HC und Kohlenmonoxid CO Stickoxide NOx nicht vollständig zu umweltneutralem Stickstoff umgesetzt werden. Zur Abhilfe ist bekannt, NOx-Speicherkatalysatoren in den Abgaskanälen von Verbrennungskraftmaschinen anzuordnen, die in mageren Betriebsphasen das NOx als Nitrat einlagern. Um NOx-Durchbrüche aufgrund eines vollbeladenen NOx- Speicherkatalysators zu vermeiden, muss der NOx-Speicherkatalysator in wiederkehrenden Abständen regeneriert werden. Zu diesem Zweck wird die Verbrennungskraftmaschine kurzfristig in einen fetten oder stöchiometrischen Arbeitsmodus (λ ≦ 1) umgeschaltet. Infolgedessen steigt ein Reduktionsmittelmassenstrom des Abgases an, die als Nitrat eingelagerten Stickoxide werden desorbiert und katalytisch am NOx-Speicherkatalysator unter gleichzeitiger Oxidation von CO und HC umgesetzt.Internal combustion engines that are operated at least temporarily in a lean operating mode, that is to say with an oxygen-rich exhaust gas with λ <1, for reasons of optimizing consumption, produce nitrogen oxides NO x in a stoichiometric excess. As a result, in a catalytic oxidative conversion of unburned hydrocarbons HC and carbon monoxide CO, nitrogen oxides NO x are not completely converted to environmentally neutral nitrogen. To remedy this, it is known to arrange NO x storage catalytic converters in the exhaust gas channels of internal combustion engines, which store the NO x as nitrate in lean operating phases. In order to avoid NO x breakthroughs due to a fully loaded NO x storage catalytic converter, the NO x storage catalytic converter must be regenerated at recurring intervals. For this purpose, the internal combustion engine is briefly switched to a rich or stoichiometric working mode (λ ≦ 1). As a result, a mass flow of reducing agent in the exhaust gas increases, the nitrogen oxides stored as nitrate are desorbed and converted catalytically on the NO x storage catalytic converter with simultaneous oxidation of CO and HC.

In einfachen Verfahren wird eine Regenerationsdauer, während der der Speicherkatalysator mit der fetten Abgasatmosphäre beaufschlagt wird, fest vorgegeben. Nachteilig hieran ist, dass ein tatsächlicher Beladungszustand des NOx Speicherkatalysators und eine aktuelle Regenerationsrate desselben nicht berücksichtigt wird. Eine solche Vorgehensweise birgt die Gefahr, dass die Regenerationsdauer zu kurz oder zu lang gewählt wird, wobei im ersteren Fall eine unvollständige Regeneration des Speichers und im zweiten Fall ein unnötiger Kraftstoffmehrverbrauch sowie eine Emission umweltschädlicher Reduktionsmittel (HC und CO) in Kauf genommen wird. In simple processes, a regeneration period during which the rich exhaust gas atmosphere is applied to the storage catalytic converter is predefined. The disadvantage of this is that an actual loading state of the NO x storage catalytic converter and a current regeneration rate thereof are not taken into account. Such a procedure harbors the risk that the regeneration period is too short or too long, with in the first case an incomplete regeneration of the storage and in the second case an unnecessary increase in fuel consumption and an emission of environmentally harmful reducing agents (HC and CO).

Verfeinerte Verfahren versuchen einen tatsächlichen Beladungszustand des NOx- Speicherkatalysators anhand bestimmter Betriebsparameter während der letzten Magerphase abzuschätzen und leiten hieraus eine erforderliche Regenerationsdauer ab. Jedoch ist auch dieses Verfahren mit erheblichen Ungenauigkeiten behaftet, so dass sich auch hier unzweckmäßige NOx-Regenerationsdauern mit den genannten Folgen ergeben können.Refined processes attempt to estimate an actual loading state of the NO x storage catalytic converter on the basis of certain operating parameters during the last lean phase and derive a necessary regeneration period from this. However, this method also has considerable inaccuracies, so that unsuitable NO x regeneration times with the mentioned consequences can also result here.

Des Weiteren sind Verfahren bekannt, bei denen mit Hilfe einer stromab des NOx- Speicherkatalysators angeordneten Sensorik, die einen Sauerstoffanteil des Abgases misst, der Regenerationsverlauf überwacht wird. Dabei zeigt ein sinkender Sauerstoffanteil im Abgas einen verminderten Reduktionsmittelumsatz am NOx-Speicher und somit steigende Anteile der Reduktionsmittel im Abgas an. Um Reduktionsmitteldurchbrüche zu vermeiden, wird die NOx-Regeneration abgebrochen, das heißt die Verbrennungskraftmaschine wieder in einen mageren Betriebsmodus umgeschaltet, sobald der gemessene Sauerstoffanteil einen vorgegebenen Grenzwert unterschreitet beziehungsweise eine Sensorspannung eine entsprechende Grenzspannung überschreitet. Dieses Verfahren ist mit dem Nachteil verbunden, dass der Sensor erst reagieren kann, wenn bereits ein gewisser Reduktionsmitteldurchbruch auftritt. Ferner ist zu diesem Zeitpunkt der gesamte Abgasweg zwischen Verbrennungskraftmaschine und NOx-Speicherkatalysator noch mit fettem, das heißt reduktionsmittelhaltigem Abgas gefüllt. Diese Reduktionsmittel (HC und CO) gelangen dann weitgehend unkonvertiert als Schadstoffe in die Umwelt.Furthermore, methods are known in which the regeneration process is monitored with the aid of a sensor system which is arranged downstream of the NO x storage catalytic converter and measures an oxygen fraction of the exhaust gas. A decreasing proportion of oxygen in the exhaust gas indicates a reduced reductant conversion in the NO x store and thus an increasing proportion of the reductant in the exhaust gas. To avoid reductant breakthroughs, the NO x regeneration is terminated, that is, the internal combustion engine is switched back to a lean operating mode as soon as the measured oxygen fraction falls below a predetermined limit value or a sensor voltage exceeds a corresponding limit voltage. This method has the disadvantage that the sensor can only react when a certain reductant breakthrough has already occurred. At this point in time, the entire exhaust gas path between the internal combustion engine and the NO x storage catalytic converter is still filled with rich, that is to say exhaust gas containing the reducing agent. These reducing agents (HC and CO) then reach the environment largely unconverted as pollutants.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur NOx-Regeneration eines NOx-Speicherkatalysators zur Verfügung zu stellen, welches hinsichtlich einer möglichst geringen Reduktionsmittelemission optimiert ist und gleichzeitig eine vollständige Regeneration des Speicherkatalysators gewährleistet. Es soll ferner eine Vorrichtung zur Durchführung des Verfahrens bereitgestellt werden.The invention is therefore based on the object of providing a method for NO x regeneration of a NO x storage catalytic converter which is optimized with regard to the lowest possible reducing agent emission and at the same time ensures complete regeneration of the storage catalytic converter. A device for carrying out the method is also to be provided.

Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung mit den in den unabhängigen Ansprüchen 1 und 11 genannten Merkmalen gelöst. Das erfindungsgemäße Verfahren sieht vor, dass
This object is achieved by a method and a device with the features mentioned in independent claims 1 and 11. The method according to the invention provides that

  • a) während der NOx-Regeneration das sauerstoffabhängige Signal der stromab des NOx-Speicherkatalysators angeordneten Messeinrichtung hochgerechnet wird und auf Basis des hochgerechneten Signals ein theoretischer Zeitpunkt bestimmt wird, an dem ein vorgegebener Signalschwellenwert überschritten wird, unda) during the NO x regeneration, the oxygen-dependent signal of the measuring device arranged downstream of the NO x storage catalytic converter is extrapolated and a theoretical point in time is determined on the basis of the extrapolated signal at which a predetermined signal threshold value is exceeded, and
  • b) das Regenerationsende bestimmt wird, indem eine im wesentlichen einer Abgaslaufzeit zwischen Verbrennungskraftmaschine und NOx- Speicherkatalysator entsprechende Zeitspanne von dem theoretischen Zeitpunkt subtrahiert wird.b) the end of regeneration is determined by subtracting a time period corresponding essentially to an exhaust gas runtime between the internal combustion engine and the NO x storage catalytic converter from the theoretical point in time.

Indem also das Signal der Messeinrichtung hochgerechnet wird, kann mit einer ausreichenden Zuverlässigkeit das Erreichen des vorgegebenen Signalschwellenwertes im Voraus ermittelt werden. Dies ermöglicht die Berücksichtigung der Abgaslaufzeit zwischen Verbrennungskraftmaschine und NOx-Speicherkatalysator, so dass die NOx- Regeneration rechtzeitig, das heißt vor dem Auftreten eines Reduktionsmitteldurchbruches, abgebrochen werden kann. Insgesamt ermöglicht das Verfahren damit eine Verminderung der CO- und HC-Emission und eine Minimierung eines für die NOx-Regeneration notwendigen Kraftstoffmehrverbrauchs.Thus, by extrapolating the signal from the measuring device, the predefined signal threshold value can be determined in advance with sufficient reliability. This enables the exhaust gas runtime between the internal combustion engine and the NO x storage catalytic converter to be taken into account, so that the NO x regeneration can be stopped in good time, that is to say before a reducing agent breakthrough occurs. Overall, the method thus enables a reduction in CO and HC emissions and a minimization of an additional fuel consumption necessary for NO x regeneration.

Die Hochrechnung des sauerstoffabhängigen Signals der Messeinrichtung erfolgt gemäß einer vorteilhaften Ausgestaltung des Verfahrens anhand aktueller Betriebsparameter der Verbrennungskraftmaschine und/oder der Abgasanlage. Dies kann etwa ein aktuelles, der Verbrennungskraftmaschine zugeführtes Luft-Kraftstoff- Gemisch (Verbrennungslambda) und/oder ein Abgasmassenstrom und/oder eine Abgastemperatur und/oder eine Katalysatortemperatur sein. Die Genauigkeit der Hochrechnung kann weiterhin dadurch erhöht werden, dass sie unter Berücksichtigung eines Verhaltensmodells des NOx-Speicherkatalysators erfolgt. Ein solches Verhaltensmodell kann etwa den Verlauf einer Regenerationsrate in Abhängigkeit von dem aktuellen Reduktionsmittelmassenstrom und/oder der Katalysatortemperatur beinhalten. Das Verhaltensmodell kann zudem den während der aktuellen Regeneration gemessenen Signalverlauf berücksichtigen. Eine vorteilhafte Weiterentwicklung des Verfahrens kann ferner erzielt werden, indem das Signal unter Berücksichtigung eines Verhaltensmodells der sauerstoffempfindlichen Messeinrichtung hochgerechnet wird. Dabei kann insbesondere eine Trägheit, also eine Zeitverzögerung, mit der die Messeinrichtung veränderte Abgasbedingungen anzeigt, aber auch eine aktuelle, etwa über einen Innenwiderstand gemessene, Temperatur der Messeinrichtung berücksichtigt werden. According to an advantageous embodiment of the method, the oxygen-dependent signal of the measuring device is extrapolated on the basis of current operating parameters of the internal combustion engine and / or the exhaust system. This can be, for example, a current air / fuel mixture (combustion lambda) fed to the internal combustion engine and / or an exhaust gas mass flow and / or an exhaust gas temperature and / or a catalyst temperature. The accuracy of the extrapolation can be increased further by taking into account a behavior model of the NO x storage catalytic converter. Such a behavior model can include, for example, the course of a regeneration rate depending on the current reducing agent mass flow and / or the catalyst temperature. The behavior model can also take into account the signal curve measured during the current regeneration. An advantageous further development of the method can also be achieved by extrapolating the signal taking into account a behavior model of the oxygen-sensitive measuring device. In particular, an inertia, that is to say a time delay with which the measuring device displays changed exhaust gas conditions, but also a current temperature of the measuring device measured, for example, via an internal resistance, can be taken into account.

Obwohl es prinzipiell möglich ist, die Abgaslaufzeit als Festwert vorzugeben, ist bevorzugt vorgesehen, diese anhand aktueller Betriebsparameter der Verbrennungskraftmaschine zu berechnen. Dabei kann auf bekannte Betriebsparameter wie Motorlast, Drehzahl oder Abgastemperatur oder auch andere geeignete Daten zurückgegriffen werden.Although it is possible in principle to specify the exhaust gas runtime as a fixed value preferably provided, this on the basis of current operating parameters of the Calculate internal combustion engine. It can be based on known operating parameters such as engine load, speed or exhaust gas temperature or other suitable data be resorted to.

Da die Zuverlässigkeit der Hochrechnung des Signalverlaufes unter bestimmten extremen Randbedingungen vermindert werden kann, sieht eine bevorzugte Ausführung des Verfahrens vor, Grenzwerte für verschiedene Betriebsbedingungen der Verbrennungskraftmaschine und/oder der Abgasanlage vorzugeben und die Hochrechnung zu unterdrücken, wenn diese Grenzwerte nicht eingehalten werden. Dabei sind insbesondere Grenzwerte für den Abgasmassenstrom und/oder für die Temperatur des NOx-Speicherkatalysators sinnvoll, da bei zu hohen Abgasmassenströmen oder zu niedrigen Katalysatortemperaturen die Regenerationsraten zu unstetig sind, um mit ausreichender Zuverlässigkeit hochgerechnet werden zu können. Die Signalhochrechnung kann vorteilhafterweise auch dann unterdrückt werden, wenn betriebspunktabhängige Störeinflüsse vorliegen, die eine irreguläre NOX Regeneration beeinflussen. Dies ist beispielsweise bei einer Schubabschaltung der Verbrennungskraftmaschine der Fall.Since the reliability of the extrapolation of the signal curve can be reduced under certain extreme boundary conditions, a preferred embodiment of the method provides for limit values for different operating conditions of the internal combustion engine and / or the exhaust gas system to be specified and for the extrapolation to be suppressed if these limit values are not observed. Limit values for the exhaust gas mass flow and / or for the temperature of the NO x storage catalytic converter are particularly useful, since the regeneration rates are too inconsistent if the exhaust gas mass flows are too high or the catalyst temperatures are too low to be able to be extrapolated with sufficient reliability. The signal projection can advantageously also be suppressed if there are interfering influences dependent on the operating point and which influence irregular NOX regeneration. This is the case, for example, in the case of a fuel cut-off of the internal combustion engine.

Gemäß einer weiteren vorteilhaften Ausgestaltung des Verfahrens erfolgt die Hochrechnung nicht während der gesamten Regenerationsdauer des Speicherkatalysators, sondern erst nach Verstreichen einer vorgegebenen Zeit nach Beginn der Regeneration und/oder nach Durchsatz einer vorgegebenen Abgasmasse und/oder nach Überschreiten einer vorgegebenen Mindestschwelle des Signals der Messeinrichtung. Durch diese Maßnahmen wird gewährleistet, dass der Signalverlauf bereits über eine gewisse Mindestdauer bekannt ist und somit zuverlässiger extrapoliert werden kann. Nach Beginn der Hochrechnung sollte der Signalverlauf weiterhin verfolgt werden, so dass die Hochrechnung ständig aktualisiert werden kann.According to a further advantageous embodiment of the method, the Extrapolation not during the entire regeneration period of the Storage catalytic converter, but only after a specified time has elapsed Start of regeneration and / or after throughput of a predetermined exhaust gas mass and / or after a predetermined minimum threshold of the signal of the Measuring device. These measures ensure that the signal curve is already known for a certain minimum duration and is therefore extrapolated more reliably can be. After the projection has started, the signal curve should continue to be followed so that the projection can be updated continuously.

Die erfindungsgemäße Vorrichtung umfasst Mittel, mit denen die geschilderten Verfahrensschritte ausführbar sind. Die Mittel umfassen eine Steuereinheit, in der ein Algorithmus zur Steuerung der Verfahrensschritte in digitaler Form hinterlegt ist. Diese Steuereinheit kann vorteilhaft auch in ein Motorsteuergerät des Fahrzeuges integriert sein. The device according to the invention comprises means by which the described Process steps are executable. The means comprise a control unit in which a Algorithm for controlling the process steps is stored in digital form. This Control unit can advantageously also be integrated into an engine control unit of the vehicle his.  

Die sauerstoffsensitive Messeinrichtung kann eine stromab des NOx- Speicherkatalysators angeordnete Lambdasonde, insbesondere eine Breitband- oder eine Sprungantwort-Lambdasonde, sein oder ein NOx-Sensor, der über ein Lambdaausgangssignal verfügt.The oxygen-sensitive measuring device can be a lambda probe arranged downstream of the NO x storage catalytic converter, in particular a broadband or a step response lambda probe, or a NO x sensor that has a lambda output signal.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred refinements of the invention result from the remaining ones in the features mentioned in the subclaims.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:The invention is described below in exemplary embodiments on the basis of the associated Drawings explained in more detail. Show it:

Fig. 1 eine Prinzipdarstellung einer Verbrennungskraftmaschine mit einer Abgasanlage; Figure 1 is a schematic diagram of an internal combustion engine with an exhaust system.

Fig. 2 zeitliche Verläufe verschiedener Abgasparameter während einer herkömmlichen NOx-Regeneration und Fig. 2 temporal profiles of various exhaust gas parameters during a conventional NO x regeneration and

Fig. 3 zeitliche Verläufe verschiedener Abgasparameter während einer NOx- Regeneration gemäß der vorliegenden Erfindung. FIG. 3 is time profiles of various parameters during a exhaust NO x - regeneration according to the present invention.

Der in der Fig. 1 dargestellten Verbrennungskraftmaschine 10 ist eine insgesamt mit 12 bezeichnete Abgasanlage zugeordnet. Die Abgasanlage 12 umfasst einen Abgaskanal 14, in dem ein in einer motornahen Position angeordneter Vorkatalysator 16 sowie ein großvolumiger NOx-Speicherkatalysator 18 angeordnet ist. Neben dem Katalysatorsystem 16, 18 beherbergt der Abgaskanal 14 üblicherweise verschiedene, nicht gezeigte Gas- und/oder Temperatursensoren zur Regelung der Verbrennungskraftmaschine 10. Dargestellt ist hier lediglich eine sauerstoffempfindliche Messeinrichtung 20, die stromab des NOx-Speicherkatalysators 18 angeordnet ist. Die Messeinrichtung 20 kann beispielsweise eine Lambdasonde oder ein NOx-Sensor sein, welcher mit einer Lambdamessfunktion ausgestattet ist. In jedem Fall stellt die Messeinrichtung 20 ein von einem Sauerstoffanteil des Abgases abhängiges Signal Uλ bereit. Dieses Signal Uλ wird an ein Motorsteuergerät 22 übermittelt, in welchem es digitalisiert und weiterverarbeitet wird. Weitere, den Betriebszustand der Verbrennungskraftmaschine 10 betreffende Informationen finden ebenfalls Eingang in das Motorsteuergerät 22. In dem Motorsteuergerät 22 ist eine Steuereinheit 24 integriert, in welcher ein Algorithmus zur Durchführung des Verfahrens zur NOx-Regeneration des NOx-Speicherkatalysators 18 hinterlegt ist. Das Motorsteuergerät 22 und die Steuereinheit 24 sind in der Lage, mindestens einen Betriebsparameter der Verbrennungskraftmaschine 10, insbesondere ein zuzuführendes Luft-Kraftstoff- Gemisch (Verbrennungslambda), in Abhängigkeit von dem Signal Uλ der Messeinrichtung in noch zu erläuternder Weise zu beeinflussen.The internal combustion engine 10 shown in FIG. 1 is assigned an exhaust system, designated overall by 12 . The exhaust system 12 comprises an exhaust duct 14 , in which a pre-catalytic converter 16 arranged in a position close to the engine and a large-volume NO x storage catalytic converter 18 are arranged. In addition to the catalyst system 16 , 18 , the exhaust gas duct 14 usually houses various gas and / or temperature sensors (not shown) for regulating the internal combustion engine 10 . Only an oxygen-sensitive measuring device 20 is shown here, which is arranged downstream of the NO x storage catalytic converter 18 . The measuring device 20 can be, for example, a lambda probe or a NO x sensor which is equipped with a lambda measuring function. In any case, the measuring device 20 provides a signal U λ that is dependent on an oxygen component of the exhaust gas. This signal U λ is transmitted to an engine control unit 22 , in which it is digitized and further processed. Further information relating to the operating state of the internal combustion engine 10 is also input into the engine control unit 22 . A control unit 24 is integrated in the engine control unit 22 , in which an algorithm for carrying out the method for NO x regeneration of the NO x storage catalytic converter 18 is stored. The engine control unit 22 and the control unit 24 are capable of influencing at least one operating parameter of the internal combustion engine 10 , in particular an air-fuel mixture to be supplied (combustion lambda), as a function of the signal U λ of the measuring device to be explained.

Fig. 2 zeigt den zeitlichen Verlauf verschiedener Parameter der Verbrennungskraftmaschine 10 sowie der Abgasanlage 12 während einer NOx- Regeneration des NOx-Speicherkatalysators 18, die nach einem herkömmlichen Verfahren durchgeführt wird. Zunächst befindet sich die Verbrennungskraftmaschine 10 in einem mageren Betriebsmodus, in dem ihr ein sauerstoffreiches Luft-Kraftstoff- Gemisch mit λM » 1 zugeführt wird (Graph 100). In dieser Phase enthält das Abgas einen Überschuss an Stickoxiden NOx, die durch den Vorkatalysator 16 nicht vollständig konvertiert werden können. NOx wird daher in den NOx-Speicherkatalysator 18 eingelagert, dessen NOx-Beladung dabei kontinuierlich zunimmt (Graph 102). Anhand eines geeigneten Kriteriums wird zu einem Zeitpunkt tA eine NOx- Regenerationsnotwendigkeit erkannt. Dies kann beispielsweise ein, durch die Messeinrichtung 20 detektierter NOx-Durchbruch sein. Infolgedessen wird die Verbrennungskraftmaschine 10 durch Einflussnahme des Motorsteuergerätes 22 in einen fetten Betriebsmodus umgeschaltet mit λF < 1. Infolge des nunmehr erhöhten Massenstroms der Reduktionsmittel CO und HC im Abgas wird das im NOx- Speicherkatalysator 18 eingelagerte NOx desorbiert und zu Stickstoff reduziert. Eine Abnahme der NOx-Beladung (Graph 102) des Speicherkatalysators 18 ist jedoch erst nach einer gewissen zeitlichen Verzögerung nach Umschaltung der Verbrennungskraftmaschine 10 zu verzeichnen, da zum Zeitpunkt tA der Abgaskanal 14 noch mit magerem Abgas gefüllt ist, welches zunächst noch den Speicherkatalysator 18 passieren muss, ehe die Reduktionsmittel diesen erreichen. Der Verlauf der NOx- Regeneration wird währenddessen mit Hilfe des von der Messeinrichtung 20 bereitgestellten Signals Uλ - in der Regel eine Spannung - verfolgt. Die Sondenspannung Uλ (Graph 104) verhält sich umgekehrt proportional zu einer Sauerstoffkonzentration des Abgases stromab des Speicherkatalysators 18. Da mit fortschreitender Regeneration die Reduktionsmittel in immer geringerem Ausmaß verbraucht werden, steigt das Signal Uλ der Messeinrichtung 20 langsam an. Zu einem Zeitpunkt tE erreicht das Signal Uλ einen vorgegebenen Schwellenwert US, woraufhin die Verbrennungskraftmaschine 10 im Allgemeinen wieder in einen mageren Betriebsmodus mit λM » 1 umgeschaltet wird. Zum Zeitpunkt des Regenerationsendes tE befindet sich jedoch noch Abgas mit einem hohen Reduktionsmittelanteil in dem Abgaskanal 14 zwischen der Verbrennungskraftmaschine 10 und dem Speicherkatalysator 18. Dieses durchströmt den nunmehr praktisch NOx-freien Speicherkatalysator 18 und gelangt unkonvertiert in die Umwelt. Der Verlauf der stromab des Katalysators gemessenen Konzentration von Kohlenmonoxid CO und unverbrannten Kohlenwasserstoffen HC (Graph 106) zeigt daher nach Regenerationsende tE noch einen unerwünscht hohen Anstieg. Fig. 2 shows the time course of various parameters of the internal combustion engine 10 and the exhaust system 12 during an NO x - regeneration of the NO x storing catalyst 18, which is carried out by a conventional method. Initially, the internal combustion engine 10 is in a lean operating mode, in which an oxygen-rich air-fuel mixture with λ M »1 is fed to it (graph 100 ). In this phase, the exhaust gas contains an excess of nitrogen oxides NO x , which cannot be completely converted by the pre-catalyst 16 . NO x is therefore stored in the NO x storage catalytic converter 18 , the NO x load of which increases continuously in the process (graph 102 ). On the basis of a suitable criterion, a need for regeneration of NO x is recognized at a point in time t A. This can be, for example, a NO x breakthrough detected by the measuring device 20 . As a result, the internal combustion engine 10 is switched by influencing the engine control unit 22 in a rich operating mode with λ F <1. As a result of the now increased mass flow of reducing agents CO and HC in the exhaust gas which the NO x is - embedded storage catalyst 18 NO reduction x desorbed and nitrogen. A decrease in the NO x loading (graph 102 ) of the storage catalytic converter 18 can, however, only be recorded after a certain time delay after switching over the internal combustion engine 10 , since at time t A the exhaust gas duct 14 is still filled with lean exhaust gas, which initially still contains the storage catalytic converter 18 must happen before the reducing agents reach it. The course of the NO x regeneration is meanwhile tracked with the aid of the signal U λ provided by the measuring device 20 - usually a voltage. The probe voltage U λ (graph 104 ) is inversely proportional to an oxygen concentration of the exhaust gas downstream of the storage catalytic converter 18 . Since the reducing agents are consumed to an ever lesser extent as regeneration progresses, the signal U λ of the measuring device 20 rises slowly. At a time t E , the signal U λ reaches a predetermined threshold value U S , whereupon the internal combustion engine 10 is generally switched back to a lean operating mode with λ M »1. At the time of the regeneration end t E , however, there is still exhaust gas with a high proportion of reducing agent in the exhaust gas duct 14 between the internal combustion engine 10 and the storage catalytic converter 18 . This flows through the now practically NO x -free storage catalytic converter 18 and reaches the environment unconverted. The course of the concentration of carbon monoxide CO and unburned hydrocarbons HC (graph 106 ) measured downstream of the catalyst therefore shows an undesirably high increase after the end of regeneration t E.

Um diese Emission von Schadstoffen zu verringern, wird erfindungsgemäß ein anderer Ansatz verfolgt, um das Regenerationsende tE zu bestimmen. Dieser ist in Fig. 3 dargestellt, wobei der zeitliche Verlauf der gleichen Parameter wie in Fig. 2 gezeigt ist. Nach Beginn der Regeneration zum Zeitpunkt tA wird zunächst das Signal Uλ der Messeinrichtung 20 (Graph 104) in bekannter Weise gemessen und aufgezeichnet. Nach Verstreichen einer vorgegebenen Zeitspanne beginnt die Steuereinheit 24 zu einem Zeitpunkt tAH mit einer Hochrechnung des Signals Uλ. Dies geschieht anhand verschiedener Betriebsparameter der Verbrennungskraftmaschine 10 sowie der Abgasanlage 12. Ferner können Verhaltensmodelle des Speicherkatalysators 18 sowie der Messeinrichtung 20 bei der Hochrechnung berücksichtigt werden. Auf Basis des hochgerechneten Signalverlaufes wird ein Zeitpunkt tS bestimmt, an dem der vorgegebene Signalschwellenwert US theoretisch erreicht wird. Anhand ausgewählter Betriebsparameter berechnet die Steuereinheit 24 ferner eine Zeitspanne Δt, die der aktuellen Abgaslaufzeit, die das Abgas bis zum Erreichen des Speicherkatalysators benötigt, entspricht. Durch Subtraktion der Abgaslaufzeit Δt von dem Zeitpunkt tS wird dann der Zeitpunkt des Regenerationsendes tE bestimmt. Während des Zeitraumes TH wird anhand aktueller Betriebsparameter und anhand des tatsächlichen Signalverlaufes Uλ die Hochrechnung und damit das Regenerationsende tE ständig aktualisiert. Ist das so bestimmte Regenerationsende tE erreicht, wird die Verbrennungskraftmaschine 10 wieder in den mageren Betriebsmodus mit λM umgeschaltet. Zu diesem Zeitpunkt liegt in dem Speicherkatalysator 18 noch eine geringe Menge eingelagertes NOx vor (Graph 102), welches ausreicht, um die restlichen, im Abgas enthaltenen Reduktionsmittel zu konvertieren. Folglich werden stromab des Speicherkatalysators 18 nach dem Regenerationsende tE nur noch sehr geringe Anteile an Schadstoffen gemessen (Graph 106). In order to reduce this emission of pollutants, another approach is used according to the invention to determine the end of regeneration t E. This is shown in FIG. 3, the time course of the same parameters as shown in FIG. 2. After the start of the regeneration at time t A , the signal U λ of the measuring device 20 (graph 104 ) is first measured and recorded in a known manner. After a predetermined period of time has elapsed, the control unit 24 begins at a time t AH with an extrapolation of the signal U λ . This is done on the basis of various operating parameters of the internal combustion engine 10 and the exhaust system 12 . In addition, behavioral models of the storage catalytic converter 18 and the measuring device 20 can be taken into account in the extrapolation. On the basis of the extrapolated signal curve, a point in time t S is determined at which the predetermined signal threshold value U S is theoretically reached. On the basis of selected operating parameters, the control unit 24 also calculates a time span Δt that corresponds to the current exhaust gas runtime that the exhaust gas requires until the storage catalytic converter is reached. The time of the end of regeneration t E is then determined by subtracting the exhaust gas runtime Δt from the time t S. During the period T H , the extrapolation and thus the end of regeneration t E are continuously updated on the basis of current operating parameters and on the basis of the actual signal profile U λ . When the end of regeneration t E determined in this way is reached, the internal combustion engine 10 is switched back to the lean operating mode with λ M. At this point in time, there is still a small amount of stored NO x in the storage catalytic converter 18 (graph 102 ), which is sufficient to convert the remaining reducing agents contained in the exhaust gas. Consequently, only very small amounts of pollutants are measured downstream of the storage catalytic converter 18 after the regeneration end t E (graph 106 ).

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010

Verbrennungskraftmaschine
Internal combustion engine

1212

Abgasanlage
exhaust system

1414

Abgaskanal
exhaust duct

1616

Vorkatalysator
precatalyzer

1818

NOx NO x

-Speicherkatalysator
storage catalyst

2020

sauerstoffempfindliche Messeinrichtung
oxygen sensitive measuring device

2222

Motorsteuergerät
Engine control unit

2424

Steuereinheit
control unit

100100

Verbrennungslambda
combustion lambda

102102

NOx NO x

-Beladung des NOx Loading of the NO x

-Speicherkatalysators
storage catalyst

104104

Signalverlauf (Uλ Waveform (U λ

) der Messeinrichtung
) of the measuring device

106106

Reduktionsmittelgehalt im Abgas
tA
Reducing agent content in the exhaust gas
t A

Regenerationsbeginn
tE
regeneration start
t E

Regenerationsende
tS
regeneration end
t p

Zeitpunkt der Schwellenwertüberschreitung
tAH
When the threshold was exceeded
t AH

Hochrechnungsbeginn
TH
Extrapolation beginning
T H

Hochrechnungsdauer
Δt Abgaslaufzeit
Uλ
Extrapolation time
Δt exhaust gas runtime
U λ

Signal der Messeinrichtung
US
Signal from the measuring device
U S

Schwellenwert
λM
threshold
λ M

Lambdamagerwert
λF
Lambda lean value
λ F

Lambdafettwert
Lambda fat value

Claims (14)

1. Verfahren zur NOx-Regeneration eines in einem Abgaskanal einer magerlauffähigen Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators, wobei der NOx-Speicherkatalysator bis zum Erreichen eines Regenerationsendes mit einer fetten bis stöchiometrischen Abgasatmosphäre mit λ ≦ 1 beaufschlagt wird und ein Regenerationsverlauf anhand eines durch eine stromab des NOx- Speicherkatalysators angeordnete sauerstoffsensitive Messeinrichtung bereitgestellten sauerstoffabhängigen Signals verfolgt wird, dadurch gekennzeichnet, dass
  • a) während der NOx-Regeneration das sauerstoffabhängige Signal (Uλ) der Messeinrichtung (20) hochgerechnet wird und auf Basis des hochgerechneten Signals ein theoretischer Zeitpunkt (tS) bestimmt wird, an dem ein vorgegebener Signalschwellenwert (US) überschritten wird, und
  • b) das Regenerationsende (tE) bestimmt wird, indem eine im wwesentlichen einer Abgaslaufzeit zwischen Verbrennungskraftmaschine (10) und NOx- Speicherkatalysator (18) entsprechende Zeitspanne (Δt) von dem theoretischen Zeitpunkt (tS) subtrahiert wird.
1. Method for NO x regeneration of a NO x storage catalytic converter arranged in an exhaust gas duct of a lean-running internal combustion engine, wherein the NO x storage catalytic converter is subjected to a rich to stoichiometric exhaust gas atmosphere with λ ≦ 1 until a regeneration end is reached, and a regeneration course based on a an oxygen-dependent signal provided downstream of the NO x storage catalytic converter is provided, characterized in that
  • a) during the NO x regeneration, the oxygen-dependent signal (U λ ) from the measuring device ( 20 ) is extrapolated and, based on the extrapolated signal, a theoretical point in time (t S ) is determined at which a predetermined signal threshold value (U S ) is exceeded, and
  • b) the end of regeneration (t E ) is determined by subtracting a time period (Δt) corresponding essentially to an exhaust gas runtime between the internal combustion engine ( 10 ) and NO x storage catalytic converter ( 18 ) from the theoretical point in time (t S ).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das sauerstoffabhängige Signal (Uλ) anhand aktueller Betriebsparameter der Verbrennungskraftmaschine (10) und/oder der Abgasanlage (12) hochgerechnet wird.2. The method according to claim 1, characterized in that the oxygen-dependent signal (U λ ) is extrapolated based on current operating parameters of the internal combustion engine ( 10 ) and / or the exhaust system ( 12 ). 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das sauerstoffabhängige Signal (Uλ) in Abhängigkeit eines der Verbrennungskraftmaschine (10) zugeführten Luft-Kraftstoff-Gemisches und/oder eines Abgasmassenstromes und/oder einer Abgastemperatur und/oder einer Katalysatortemperatur hochgerechnet wird. 3. The method according to claim 2, characterized in that the oxygen-dependent signal (U λ ) is extrapolated depending on an air-fuel mixture supplied to the internal combustion engine ( 10 ) and / or an exhaust gas mass flow and / or an exhaust gas temperature and / or a catalyst temperature. 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das sauerstoffabhängige Signal (Uλ) unter Berücksichtigung eines Verhaltensmodells des NOx-Speicherkatalysators (18) hochgerechnet wird.4. The method according to claim 2 or 3, characterized in that the oxygen-dependent signal (U λ ) is extrapolated taking into account a behavior model of the NO x storage catalyst ( 18 ). 5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das sauerstoffabhängige Signal (Uλ) unter Berücksichtigung eines Verhaltensmodells der sauerstoffempfindlichen Messeinrichtung (20), insbesondere einer Trägheit der Messeinrichtung (20), hochgerechnet wird.5. The method according to any one of claims 2 to 4, characterized in that the oxygen-dependent signal (U λ ) is extrapolated taking into account a behavior model of the oxygen-sensitive measuring device ( 20 ), in particular an inertia of the measuring device ( 20 ). 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochrechnung nach einem Verstreichen einer vorgegebenen Zeit nach Beginn der Regeneration und/oder nach Durchsatz einer vorgegebenen Abgasmasse und/oder nach Überschreiten einer vorgegebenen Schwelle des Signals (Uλ) beginnt.6. The method according to any one of the preceding claims, characterized in that the extrapolation begins after an elapse of a predetermined time after the start of regeneration and / or after throughput of a predetermined exhaust gas mass and / or after exceeding a predetermined threshold of the signal (U λ ). 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abgaslaufzeit (Δt) anhand aktueller Betriebsparameter der Verbrennungskraftmaschine (10) berechnet wird oder vorgegeben wird.7. The method according to any one of the preceding claims, characterized in that the exhaust gas runtime (Δt) is calculated or specified based on current operating parameters of the internal combustion engine ( 10 ). 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochrechnung des Signals (Uλ) unterbleibt, wenn vorgegebene Grenzwerte für Betriebsbedingungen der Verbrennungskraftmaschine (10) und/oder der Abgasanlage (12) nicht eingehalten werden.8. The method according to any one of the preceding claims, characterized in that the extrapolation of the signal (U λ ) is omitted if predetermined limit values for operating conditions of the internal combustion engine ( 10 ) and / or the exhaust system ( 12 ) are not met. 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass Grenzwerte für den Abgasmassenstrom und/oder für die Temperatur des NOx-Speicherkatalysators (18) vorgegeben werden.9. The method according to claim 8, characterized in that limit values for the exhaust gas mass flow and / or for the temperature of the NO x storage catalytic converter ( 18 ) are specified. 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Hochrechnung des Signals (Uλ) bei einer Schubabschaltung während der NOx- Regeneration unterbleibt.10. The method according to claim 8 or 9, characterized in that the extrapolation of the signal (U λ ) is omitted in the event of a fuel cut-off during the NO x regeneration. 11. Vorrichtung zur Durchführung einer Regeneration eines in einem Abgaskanal einer magerlauffähigen Verbrennungskraftmaschine angeordneten NOx- Speicherkatalysators, wobei der NOx-Speicherkatalysator bis zum Erreichen eines Regenerationsendes mit einer fetten bis stöchiometrischen Abgasatmosphäre mit λ ≦ 1 beaufschlagt wird und ein Regenerationsverlauf anhand eines durch eine stromab des NOx-Speicherkatalysators angeordnete sauerstoffsensitive Messeinrichtung bereitgestellten sauerstoffabhängigen Signals verfolgt wird, dadurch gekennzeichnet, dass Mittel vorhanden sind, mit denen die Verfahrensschritte
  • a) Hochrechnung des sauerstoffabhängigen Signals (Uλ) der Messeinrichtung (20) während der NOx-Regeneration und Bestimmung eines theoretischen Zeitpunktes (tS) auf Basis des hochgerechneten Signals, an dem ein vorgegebener Signalschwellenwert (US) überschritten wird, und
  • b) Bestimmung des Regenerationsendes (tE), indem eine im wesentlichen einer Abgaslaufzeit zwischen Verbrennungskraftmaschine (10) und NOx- Speicherkatalysator (18) entsprechende Zeitspanne (Δt) von dem theoretischen Zeitpunkt (tS) subtrahiert wird, ausführbar sind.
11. Apparatus for carrying out regeneration of a arranged in an exhaust passage of a lean executable internal combustion engine NOx - storage catalyst, wherein the NO x storage catalytic converter until it reaches a regeneration end with a fat is subjected to a stoichiometric exhaust gas atmosphere with λ ≦ 1, and a regeneration process on the basis of a by oxygen-sensitive signal provided downstream of the NO x storage catalytic converter is provided, characterized in that means are available with which the method steps
  • a) extrapolation of the oxygen-dependent signal (U λ ) from the measuring device ( 20 ) during the NO x regeneration and determination of a theoretical point in time (t S ) on the basis of the extrapolated signal at which a predetermined signal threshold value (U S ) is exceeded, and
  • b) Determination of the end of regeneration (t E ) by subtracting a time period (.DELTA.t) substantially corresponding to an exhaust gas runtime between internal combustion engine ( 10 ) and NO x storage catalytic converter ( 18 ) from the theoretical time (t S ).
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Mittel eine Steuereinheit (24) umfassen, in der ein Algorithmus zur Steuerung der Verfahrensschritte in digitaler Form hinterlegt ist.12. The device according to claim 11, characterized in that the means comprise a control unit ( 24 ) in which an algorithm for controlling the method steps is stored in digital form. 13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Steuereinheit (24) in ein Motorsteuergerät (22) integriert ist.13. The apparatus according to claim 12, characterized in that the control unit ( 24 ) is integrated in an engine control unit ( 22 ). 14. Vorrichtung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die sauerstoffsensitive Messeinrichtung (20) eine Breitband- oder Sprungantwort- Lambdasonde oder einen NOx-Sensor umfasst.14. Device according to one of claims 11 to 13, characterized in that the oxygen-sensitive measuring device ( 20 ) comprises a broadband or step response lambda probe or a NO x sensor.
DE2000157936 2000-11-22 2000-11-22 Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal Ceased DE10057936A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2000157936 DE10057936A1 (en) 2000-11-22 2000-11-22 Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal
EP20010250407 EP1209332B8 (en) 2000-11-22 2001-11-21 Method and device for regenerating an NOx storage catalytic converter
DE50114044T DE50114044D1 (en) 2000-11-22 2001-11-21 Process and devices for the regeneration of a NOx storage catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2000157936 DE10057936A1 (en) 2000-11-22 2000-11-22 Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal

Publications (1)

Publication Number Publication Date
DE10057936A1 true DE10057936A1 (en) 2002-05-23

Family

ID=7664243

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2000157936 Ceased DE10057936A1 (en) 2000-11-22 2000-11-22 Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal

Country Status (1)

Country Link
DE (1) DE10057936A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843044A1 (en) * 2002-07-31 2004-02-06 Renault Sa METHOD AND DEVICE FOR MANAGING THE OPERATION OF A NITROGEN OXIDE TRAP FOR AN INTERNAL COMBUSTION ENGINE OPERATING IN POOR MIXTURES.
DE10318210B4 (en) * 2003-04-22 2006-06-14 Siemens Ag Operating method for an internal combustion engine with a pre-catalyst and a storage catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705335C1 (en) * 1997-02-12 1998-09-17 Siemens Ag Process for the regeneration of a storage catalytic converter
DE19747222C1 (en) * 1997-10-25 1999-03-04 Daimler Benz Ag Lean burn internal combustion engine with periodic nitrogen oxide(s) storage catalyst regeneration control
DE19802631C1 (en) * 1998-01-24 1999-07-22 Daimler Chrysler Ag Method and device for cleaning exhaust gases from an internal combustion engine
DE19844082C1 (en) * 1998-09-25 1999-10-14 Siemens Ag Regeneration of a nitrogen oxides storage catalyst used with lean burn engine
DE19850786A1 (en) * 1998-08-05 2000-02-17 Volkswagen Ag Regulation of a NOx storage catalytic converter
DE19851843A1 (en) * 1998-11-10 2000-05-11 Siemens Ag Process for sulfate regeneration of a NOx storage catalyst comprises regulating the reductant amount for desulfatizing by changing parameters of a two-point lambda regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19705335C1 (en) * 1997-02-12 1998-09-17 Siemens Ag Process for the regeneration of a storage catalytic converter
DE19747222C1 (en) * 1997-10-25 1999-03-04 Daimler Benz Ag Lean burn internal combustion engine with periodic nitrogen oxide(s) storage catalyst regeneration control
DE19802631C1 (en) * 1998-01-24 1999-07-22 Daimler Chrysler Ag Method and device for cleaning exhaust gases from an internal combustion engine
DE19850786A1 (en) * 1998-08-05 2000-02-17 Volkswagen Ag Regulation of a NOx storage catalytic converter
DE19844082C1 (en) * 1998-09-25 1999-10-14 Siemens Ag Regeneration of a nitrogen oxides storage catalyst used with lean burn engine
DE19851843A1 (en) * 1998-11-10 2000-05-11 Siemens Ag Process for sulfate regeneration of a NOx storage catalyst comprises regulating the reductant amount for desulfatizing by changing parameters of a two-point lambda regulator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843044A1 (en) * 2002-07-31 2004-02-06 Renault Sa METHOD AND DEVICE FOR MANAGING THE OPERATION OF A NITROGEN OXIDE TRAP FOR AN INTERNAL COMBUSTION ENGINE OPERATING IN POOR MIXTURES.
WO2004012846A2 (en) * 2002-07-31 2004-02-12 Renault S.A.S. Method and device for controlling the functioning of a nitrogen oxide trap for an internal combustion engine running on a lean mixture
WO2004012846A3 (en) * 2002-07-31 2004-04-08 Renault Sa Method and device for controlling the functioning of a nitrogen oxide trap for an internal combustion engine running on a lean mixture
DE10318210B4 (en) * 2003-04-22 2006-06-14 Siemens Ag Operating method for an internal combustion engine with a pre-catalyst and a storage catalyst

Similar Documents

Publication Publication Date Title
EP1060003B1 (en) CONTROL OF AN NOx-ABSORBING CATALYTIC CONVERTER
EP1250524B1 (en) METHOD FOR DESULPHURISATION OF AN NOx ACCUMULATOR-CATALYST ARRANGED IN AN EXHAUST SYSTEM OF AN INTERNAL COMBUSTION ENGINE
EP1090220B1 (en) METHOD FOR REGENERATING AN NOx STORAGE CATALYST FOR AN INTERNAL COMBUSTION ENGINE
DE10226187B4 (en) Method and device for quantifying oxygen stored in an emission-limiting device
EP1131549A1 (en) METHOD FOR ADAPTING THE NOx CONCENTRATION OF AN INTERNAL COMBUSTION ENGINE OPERATED WITH AN EXCESS OF AIR
DE10003219A1 (en) Method and device for controlling a NOx storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine
EP1193376A2 (en) Control of an NOx-storage catalyst
DE10361286B4 (en) Process for the regeneration of a nitrogen oxide storage catalyst
EP1203144B1 (en) Method of regulating the operational mode of an internal combustion engine
DE10003228A1 (en) Measurement of exhaust nitrogen oxide downstream of storage catalyst, includes stage in which minimum value is found, forming sensor zero calibration signal
EP1209332B1 (en) Method and device for regenerating a NOx catalytic converter
DE10057938A1 (en) Regenerating nitrogen oxides storage catalyst in I.C. engine involves extrapolating oxygen-dependent signal from oxygen-sensitive measuring device
DE10057936A1 (en) Regenerating nitrogen oxides storage catalyst in exhaust gas channel of lean-burn I.C. engine involves using extrapolated oxygen-dependent signal
DE10023079B4 (en) Device and method for controlling a NOx regeneration of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst
DE102016216062B4 (en) Optimized LNT diagnostics
EP1102922B1 (en) REGULATION OF A NOx ABSORPTION CATALYTIC CONVERTER
DE10125759A1 (en) Process for acquiring a charged state of a nitrogen oxides storage catalyst arranged in an exhaust gas channel of a lean-burn internal combustion engine comprises determining the nitrogen oxides
EP1235977B1 (en) Method and device for controlling a heating phase of at least one catalytic converter in an exhaust channel of an internal combustion engine
EP1365131B1 (en) Method for controling a NOx storage catalyst
DE10036390B4 (en) Method and device for desulphurizing a NOx storage catalytic converter
DE10305635B4 (en) Emission control method for lean-burn engines
DE10114523B4 (en) Method for controlling a NOx regeneration of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst
DE10223385B4 (en) Method and device for controlling a sensor
EP1188915A2 (en) Method for regulating the regeneration of a NOx storage catalyst
EP1471222B1 (en) Regeneration method for a storage catalyst of an internal combustion engine

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8110 Request for examination paragraph 44
8131 Rejection