EP1188915A2 - Method for regulating the regeneration of a NOx storage catalyst - Google Patents

Method for regulating the regeneration of a NOx storage catalyst Download PDF

Info

Publication number
EP1188915A2
EP1188915A2 EP01119751A EP01119751A EP1188915A2 EP 1188915 A2 EP1188915 A2 EP 1188915A2 EP 01119751 A EP01119751 A EP 01119751A EP 01119751 A EP01119751 A EP 01119751A EP 1188915 A2 EP1188915 A2 EP 1188915A2
Authority
EP
European Patent Office
Prior art keywords
regeneration
catalytic converter
storage catalytic
storage
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01119751A
Other languages
German (de)
French (fr)
Other versions
EP1188915A3 (en
EP1188915B1 (en
Inventor
Ekkehard Dr. Pott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1188915A2 publication Critical patent/EP1188915A2/en
Publication of EP1188915A3 publication Critical patent/EP1188915A3/en
Application granted granted Critical
Publication of EP1188915B1 publication Critical patent/EP1188915B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0808NOx storage capacity, i.e. maximum amount of NOx that can be stored on NOx trap

Definitions

  • the invention relates to a method for controlling a NO x regeneration of a NO x storage catalytic converter with the features mentioned in the preamble of claim 1.
  • the same catalyst systems for cleaning an exhaust gas from internal combustion engines, it is known to arrange the same catalyst systems in the exhaust line, which decompose the pollutant components of the exhaust gas into less environmentally relevant products.
  • the pollutant components are reducing agents such as carbon monoxide CO or incompletely burned hydrocarbons, they can, if there is sufficient oxygen, be oxidized to carbon dioxide and water in so-called oxidation catalysts. It is also known to convert nitrogen oxides NO x formed during the combustion process back to nitrogen using the reducing agents.
  • reduction catalysts have been developed which, if the reducing agents are provided to a sufficient extent, allow the NO x to be converted almost completely.
  • a mass flow of reducing agent as well as an extent of NO x formation during the combustion process depend strongly on the mixture ratios prevailing during the combustion. In phases of rich or stoichiometric operation, a largely complete implementation on the NO x is guaranteed. If, however, the system is switched to lean operation, the NO x reduction is reduced due to an excess of oxygen. Since lean operation has proven to be particularly economical, but high NO x emissions should be avoided for environmental reasons, NO x storage components have been developed to remedy this. Such storage components sorb NO x in phases of lean operation and store this as nitrate. When changing to rich or stoichiometric operation, the NO x is desorbed again.
  • the catalyst component for reducing the NO x and the storage component can be combined to form a so-called NO x storage catalyst.
  • a storage capacity of the NO x storage catalytic converter is naturally limited. Such a NO x storage catalytic converter must therefore be regenerated at regular intervals. The NO x regeneration takes place by changing to stoichiometric or rich operation, the stored nitrate being desorbed again as NO x and reduced to nitrogen on the catalyst component with the aid of the reducing agents.
  • the NO x regeneration in NO x storage catalytic converter systems is initiated, for example, after reaching a predefined NO x loading state or after exceeding a predefined NO x concentration downstream of the NO x storage catalytic converter. If there is a need for regeneration, a mass flow of reducing agent is increased by a motor intervention, for example in the area of the throttle valves or the injection system. The increase is usually achieved by lowering a lambda value upstream of the NO x storage catalytic converter to a predetermined rich setpoint.
  • the NO x regeneration is generally terminated when the lambda value, or a lambda proportional voltage correlating therewith, on a gas probe arranged downstream of the NO x storage catalytic converter exceeds a predetermined threshold value (regeneration termination voltage threshold).
  • a predetermined threshold value (regeneration termination voltage threshold).
  • Both the regeneration termination voltage threshold and the rich target value for lambda during NO x regeneration are defined in the prior art regardless of the catalytic converter state. This is associated with the risk that the NO x regeneration of aged, ie damaged, NO x storage catalytic converters is not carried out as required.
  • very large reducing agent mass flows and low regeneration termination voltage thresholds only a partial regeneration of the NO x storage catalytic converter can be expected.
  • the high reducing agent mass flow is only partially used for NO x regeneration and thus shortly after the start of the NO x regeneration, a slightly rich exhaust gas passes through the NO x storage catalytic converter and leads to the termination of the NO x regeneration.
  • this object is achieved by the method for regulating a NO x regeneration of a NO x storage catalytic converter arranged in the exhaust line of a lean-burn internal combustion engine with the features mentioned in claim 1.
  • a damage state of the NO x storage catalytic converter is detected and, depending on the damage condition, a reducing agent mass flow during the NO x regeneration and / or a regeneration termination voltage threshold of a determining lambda gas probe arranged downstream of the NO x storage catalytic converter are specified.
  • the parameters determining the NO x regeneration can be adapted to the actual catalyst state and an almost complete NO x regeneration can be ensured.
  • the damage state of the NO x storage catalytic converter is assessed on the basis of a current NO x storage capacity in comparison to an NO x storage capacity of an undamaged NO x storage catalytic converter.
  • the NO x storage capacity can be determined using known models on the basis of the signals of the exhaust gas cleaning system provided by the sensors. Here, variables such as a current NO x loading state and a remaining NO x storage capacity can be taken into account.
  • the regeneration termination voltage threshold can be increased. The former measure reduces the likelihood of reducing agent mass breakthroughs, since an almost complete conversion in the NO x storage catalytic converter is still ensured even at high space velocities of the exhaust gas. By increasing the regeneration termination voltage threshold, a higher NO x breakthrough emission can be tolerated in addition or in combination.
  • the exhaust gas purification system 12 comprises at least one NO x storage catalytic converter 14 and a suitable sensor system for detecting operating parameters in the exhaust line 16.
  • This sensor system includes downstream and upstream of the NO x Storage catalytic converter 14 arranged gas probes, here the lambda probes 18, 20 and a NO x sensitive measuring device 22.
  • the signals provided by the sensors are fed into an engine control unit 24 imported and evaluated there using stored algorithms.
  • About the Engine control unit 24 can then perform a control intervention to change the during a Combustion process of the internal combustion engine 10 prevailing conditions respectively.
  • a throttle valve 26 in an intake duct is an example of an actuator here 28 shown.
  • a change can then be made by changing a throttle valve angle Intake volume of the internal combustion engine 10 are influenced.
  • interventions in the combustion process especially one not here shown injection system - by varying injection parameters, such as one Injection duration, injection angle, injection volume and the like. Procedure and Devices for carrying out such control interventions are well known and are therefore not explained in more detail here. All that remains to be said is that in this way, a reducing agent mass flow is specifically increased or decreased can be.
  • the engine control unit 24 is also integrated into a control unit 30, with which one Adaptation of a regeneration termination voltage threshold and / or the Reductant mass flow depending on a catalyst state can. For this purpose, a corresponding algorithm is stored in the control unit 30.
  • the Control unit 30 can of course also be implemented as an independent unit become.
  • the catalyst state can also be quantified using a model and made available to the further process, for example, as a percentage degree of damage.
  • a current NO x storage capacity that is to say the NO x mass, which can be maximally sorbed by the NO x storage catalytic converter 14, serves in particular as the evaluation criteria.
  • the NO x storage capacity can in turn be determined with the aid of known models in which a NO x mass flow upstream of the NO x storage catalytic converter 14 is detected and a NO x breakthrough emission downstream of the NO x storage catalytic converter is checked.
  • the current catalytic converter state can then be characterized, for example, as 85% of a fresh NO x storage catalytic converter.
  • FIG. 2 shows, for a fresh and a damaged NO x storage catalytic converter 14, on the one hand a voltage curve at the downstream lambda probe 20 and on the other hand target values SV i for lambda upstream of the NO x storage catalytic converter 14 and regeneration termination voltage thresholds S i .
  • the voltage curve at the lambda probe 20 during the NO x regeneration of a fresh NO x storage catalytic converter is given by the curve 40 (bold solid line) and for the already damaged NO x storage catalytic converter by the curve 42 (dashed line).
  • the internal combustion engine 10 then changes to a rich working mode, so that the NO x storage catalytic converter 14 is subjected to an increased mass flow of reducing agent.
  • the target specifications SV i which are specified during this rich regeneration phase of the internal combustion engine 10 by suitably influencing the actuators for the lambda value upstream of the NO x storage catalytic converter 14, are dependent on the catalytic converter state. The same applies to the regeneration termination voltage thresholds S i , when they reach lambda probe 20, lean operation of internal combustion engine 10 is resumed.
  • a curve 44 shows the target profile of lambda during NO x regeneration of a fresh NO x storage catalytic converter 14 (double, solid line).
  • the curve 40 for the voltage signal at the lambda probe 20 shows a rapid increase, which results from the sudden increase in the reducing agent breakthrough emission. If the voltage reaches a regeneration termination voltage threshold S 1 , for example at 650 mV (time T E, 1 ), the internal combustion engine 10 is switched back to lean operation.
  • the mass flow of reducing agent is reduced. This is done by appropriately specifying a target specification SV 2 for the rich regeneration phase - here, for example, to a lambda value of approximately 0.92. As a result of this, the mass flow of reducing agent also drops, so that it can be prevented that a slightly rich exhaust gas passes through the NO x storage catalytic converter 14 shortly after the start of the NO x regeneration and that the NO x regeneration is possibly incompletely terminated. Furthermore, the regeneration termination voltage threshold S 2 is also raised for this catalyst state in the present case.

Abstract

A process for controlling nitrogen oxide (NOx) regeneration in a NOx storage catalyst, located in the exhaust gas of a lean burn combustion engine, comprises establishing the catalyst damage and then controlling the flow of a reducing agent during regeneration. Regeneration is stopped once a voltage threshold in an exhaust gas probe downstream of the catalyst has been reached.

Description

Die Erfindung betrifft ein Verfahren zur Regelung einer NOx-Regeneration eines NOx-Speicherkatalysators mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a method for controlling a NO x regeneration of a NO x storage catalytic converter with the features mentioned in the preamble of claim 1.

Zur Reinigung eines Abgases von Verbrennungskraftmaschinen ist es bekannt, im Abgasstrang derselben Katalysatorsysteme anzuordnen, die die Schadstoffkomponenten des Abgases in weniger umweltrelevante Produkte zersetzen. Handelt es sich bei den Schadstoffkomponenten um Reduktionsmittel wie Kohlenmonoxid CO oder unvollständig verbrannte Kohlenwasserstoffe, so können diese, sofern ausreichend Sauerstoff vorhanden ist, in sogenannten Oxidationskatalysatoren zu Kohlendioxid und Wasser aufoxidiert werden. Weiterhin ist es bekannt, während des Verbrennungsprozesses gebildete Stickoxide NOx mit Hilfe der Reduktionsmittel wieder zu Stickstoff umzusetzen. Dazu sind Reduktionskatalysatoren entwickelt worden, die, sofern die Reduktionsmittel in einem ausreichenden Maße zur Verfügung gestellt werden, eine nahezu vollständige Umsetzung des NOx erlauben.For cleaning an exhaust gas from internal combustion engines, it is known to arrange the same catalyst systems in the exhaust line, which decompose the pollutant components of the exhaust gas into less environmentally relevant products. If the pollutant components are reducing agents such as carbon monoxide CO or incompletely burned hydrocarbons, they can, if there is sufficient oxygen, be oxidized to carbon dioxide and water in so-called oxidation catalysts. It is also known to convert nitrogen oxides NO x formed during the combustion process back to nitrogen using the reducing agents. For this purpose, reduction catalysts have been developed which, if the reducing agents are provided to a sufficient extent, allow the NO x to be converted almost completely.

Ein Reduktionsmittel-Massenstrom als auch ein Umfang der NOx-Bildung während des Verbrennungsprozesses hängen stark von den während der Verbrennung herrschenden Gemischverhältnissen ab. In Phasen fetten oder stöchiometrischen Betriebs ist eine weitestgehend vollständige Umsetzung am NOx gewährleistet. Wird allerdings in einen Magerbetrieb geschaltet, so wird wegen eines Sauerstoffüberschusses die NOx-Reduktion verringert. Da sich der Magerbetrieb als besonders verbrauchsgünstig erwiesen hat, aber eine hohe NOx-Emission aus umweltrelevanten Gründen vermieden werden soll, sind zur Abhilfe NOx-Speicherkomponenten entwickelt worden. Derartige Speicherkomponenten sorbieren in Phasen mageren Betriebs NOx und lagern dieses als Nitrat ein. Beim Wechsel in den fetten oder stöchiometrischen Betrieb erfolgt wieder eine Desorption des NOx. Die Katalysatorkomponente zur Reduktion des NOx und die Speicherkomponente können zu einem sogenannten NOx-Speicherkatalysator zusammengefasst werden. A mass flow of reducing agent as well as an extent of NO x formation during the combustion process depend strongly on the mixture ratios prevailing during the combustion. In phases of rich or stoichiometric operation, a largely complete implementation on the NO x is guaranteed. If, however, the system is switched to lean operation, the NO x reduction is reduced due to an excess of oxygen. Since lean operation has proven to be particularly economical, but high NO x emissions should be avoided for environmental reasons, NO x storage components have been developed to remedy this. Such storage components sorb NO x in phases of lean operation and store this as nitrate. When changing to rich or stoichiometric operation, the NO x is desorbed again. The catalyst component for reducing the NO x and the storage component can be combined to form a so-called NO x storage catalyst.

Eine Speicherkapazität des NOx-Speicherkatalysators ist naturgemäß begrenzt. Daher muss ein derartiger NOx-Speicherkatalysator in regelmäßigen Abständen regeneriert werden. Die NOx-Regeneration erfolgt durch Wechsel in den stöchiometrischen oder fetten Betrieb, wobei das eingelagerte Nitrat wieder als NOx desorbiert und an der Katalysatorkomponente mit Hilfe der Reduktionsmittel zu Stickstoff reduziert wird.A storage capacity of the NO x storage catalytic converter is naturally limited. Such a NO x storage catalytic converter must therefore be regenerated at regular intervals. The NO x regeneration takes place by changing to stoichiometric or rich operation, the stored nitrate being desorbed again as NO x and reduced to nitrogen on the catalyst component with the aid of the reducing agents.

Die NOx-Regeneration bei NOx-Speicherkatalysatorsystemen wird beispielsweise nach Erreichen eines vorgegebenen NOx-Beladungszustandes oder nach Überschreiten einer vorgegebenen NOx-Konzentration stromab des NOx-Speicherkatalysators eingeleitet. Besteht Regenerationsnotwendigkeit so wird durch einen motorischen Eingriff, beispielsweise im Bereich der Drosselklappen oder des Einspritzsystems, ein Reduktionsmittel-Massenstrom erhöht. Zumeist erfolgt die Erhöhung dadurch, dass ein Lambdawert vor dem NOx-Speicherkatalysator auf einen vorgegebenen fetten Sollwert abgesenkt wird. Die NOx-Regeneration wird im Allgemeinen dann abgebrochen, wenn der Lambdawert, oder eine damit korrelierende lambdaproportionale Spannung an einer stromab des NOx-Speicherkatalysators angeordneten Gassonde, einen vorgegebenen Schwellenwert übersteigt (Regenerationsabbruch-Spannungsschwelle). Sowohl die Regenerationsabbruch-Spannungsschwelle als auch der fette Sollwert für Lambda während der NOx-Regeneration werden im Stand der Technik unabhängig vom Katalysatorzustand festgelegt. Damit ist das Risiko verbunden, dass bei gealterten, das heißt beschädigten, NOx-Speicherkatalysatoren die NOx-Regeneration nicht bedarfsgerecht durchgeführt wird. So ist bei sehr großen Reduktionsmittel-Massenströmen und niedrigen Regenerationsabbruch-Spannungsschwellen nur mit einer Teilregeneration des NOx-Speicherkatalysators zu rechnen. Der hohe Reduktionsmittel-Massenstrom wird nur teilweise zur NOx-Regeneration genutzt und somit tritt bereits kurz nach Beginn der NOx-Regeneration ein leicht fettes Abgas durch den NOx-Speicherkatalysator und führt zum Abbruch der NOx-Regeneration.The NO x regeneration in NO x storage catalytic converter systems is initiated, for example, after reaching a predefined NO x loading state or after exceeding a predefined NO x concentration downstream of the NO x storage catalytic converter. If there is a need for regeneration, a mass flow of reducing agent is increased by a motor intervention, for example in the area of the throttle valves or the injection system. The increase is usually achieved by lowering a lambda value upstream of the NO x storage catalytic converter to a predetermined rich setpoint. The NO x regeneration is generally terminated when the lambda value, or a lambda proportional voltage correlating therewith, on a gas probe arranged downstream of the NO x storage catalytic converter exceeds a predetermined threshold value (regeneration termination voltage threshold). Both the regeneration termination voltage threshold and the rich target value for lambda during NO x regeneration are defined in the prior art regardless of the catalytic converter state. This is associated with the risk that the NO x regeneration of aged, ie damaged, NO x storage catalytic converters is not carried out as required. With very large reducing agent mass flows and low regeneration termination voltage thresholds, only a partial regeneration of the NO x storage catalytic converter can be expected. The high reducing agent mass flow is only partially used for NO x regeneration and thus shortly after the start of the NO x regeneration, a slightly rich exhaust gas passes through the NO x storage catalytic converter and leads to the termination of the NO x regeneration.

Aufgabe der vorliegenden Erfindung ist es daher, ein gattungsgemäßes Verfahren zur Verfügung zu stellen, mit dem eine bedarfsgerechte Durchführung der NOx-Regeneration unter Berücksichtigung des Katalysatorzustandes erfolgen kann.It is therefore an object of the present invention to provide a generic method with which the NO x regeneration can be carried out as required, taking into account the state of the catalyst.

Erfindungsgemäß wird diese Aufgabe durch das Verfahren zur Regelung einer NOx-Regeneration eines im Abgasstrang einer magerlauffähigen Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, dass ein Schädigungszustand des NOx-Speicherkatalysators erfasst und in Abhängigkeit von dem Schädigungszustand ein Reduktionsmittel-Massenstrom während der NOx-Regeneration und/oder eine Regenerationsabbruch-Spannungsschwelle einer stromab des NOx-Speicherkatalysators angeordneten, ermittelnden Lambda-Gassonde vorgegeben werden, kann eine Anpassung der die NOx-Regeneration bestimmenden Parameter an den tatsächlichen Katalysatorzustand erfolgen und eine nahezu vollständige NOx-Regeneration sichergestellt werden.According to the invention, this object is achieved by the method for regulating a NO x regeneration of a NO x storage catalytic converter arranged in the exhaust line of a lean-burn internal combustion engine with the features mentioned in claim 1. Characterized in that a damage state of the NO x storage catalytic converter is detected and, depending on the damage condition, a reducing agent mass flow during the NO x regeneration and / or a regeneration termination voltage threshold of a determining lambda gas probe arranged downstream of the NO x storage catalytic converter are specified. the parameters determining the NO x regeneration can be adapted to the actual catalyst state and an almost complete NO x regeneration can be ensured.

Nach einer bevorzugten Ausgestaltung des Verfahrens wird der Schädigungszustand des NOx-Speicherkatalysators anhand einer aktuellen NOx-Speicherkapazität im Vergleich zu einer NOx-Speicherfähigkeit eines ungeschädigten NOx-Speicherkatalysators beurteilt. Die NOx-Speicherkapazität kann mit bekannten Modellen anhand der von der Sensorik bereitgestellten Signale des Abgasreinigungssystems ermittelt werden. Hierbei können Größen, wie ein aktueller NOx-Beladungszustand und eine verbleibende NOx-Speicherfähigkeit, berücksichtigt werden.According to a preferred embodiment of the method, the damage state of the NO x storage catalytic converter is assessed on the basis of a current NO x storage capacity in comparison to an NO x storage capacity of an undamaged NO x storage catalytic converter. The NO x storage capacity can be determined using known models on the basis of the signals of the exhaust gas cleaning system provided by the sensors. Here, variables such as a current NO x loading state and a remaining NO x storage capacity can be taken into account.

Mit zunehmendem Schädigungsgrad des NOx-Speicherkatalysators kann dann zum einen der Reduktionsmittel-Massenstrom durch Regelung des Lambdawertes vor dem NOx-Speicherkatalysator verändert werden, insbesondere der Lambdawert während der NOx-Regeneration in Richtung λ = 1 verschoben werden. Zum anderen kann die Regenerationsabbruch-Spannungsschwelle erhöht werden. Erstere Maßnahme mindert die Wahrscheinlichkeit für Reduktionsmittel-Massendurchbrüche, da selbst bei hohen Raumgeschwindigkeiten des Abgases noch eine nahezu vollständige Umsetzung in dem NOx-Speicherkatalysator sichergestellt ist. Durch die Anhebung der Regenerationsabbruch-Spannungsschwelle kann daneben oder in Kombination eine höhere NOx-Durchbruchsemission toleriert werden.As the degree of damage to the NO x storage catalytic converter increases, the reducing agent mass flow can then be changed by regulating the lambda value upstream of the NO x storage catalytic converter, in particular the lambda value can be shifted in the direction λ = 1 during NO x regeneration. On the other hand, the regeneration termination voltage threshold can be increased. The former measure reduces the likelihood of reducing agent mass breakthroughs, since an almost complete conversion in the NO x storage catalytic converter is still ensured even at high space velocities of the exhaust gas. By increasing the regeneration termination voltage threshold, a higher NO x breakthrough emission can be tolerated in addition or in combination.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred refinements of the invention result from the others in the Characteristics mentioned subclaims.

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine schematische Anordnung eines NOx-Speicherkatalysators im Abgasstrang einer magerlauffähigen Verbrennungskraftmaschine und
Figur 2
Spannungsverläufe einer Lambdasonde während einer NOx-Regeneration eines frischen und eines geschädigten NOx-Speicherkatalysators sowie Sollvorgaben für Lambda stromauf des NOx-Speicherkatalysators und Regenerationsabbruch-Spannungsschwellen.
The invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it:
Figure 1
a schematic arrangement of a NO x storage catalyst in the exhaust line of a lean-burn internal combustion engine and
Figure 2
Voltage curves of a lambda probe during a NO x regeneration of a fresh and a damaged NO x storage catalytic converter as well as target values for lambda upstream of the NO x storage catalytic converter and regeneration termination voltage thresholds.

Die Figur 1 zeigt in einer schematischen Anordnung eine magerlauffähige Verbrennungskraftmaschine 10 mit einer Abgasreinigungsanlage 12. Die Abgasreinigungsanlage 12 umfasst zumindest einen NOx-Speicherkatalysator 14 sowie eine geeignete Sensorik zur Erfassung von Betriebsparametern im Abgasstrang 16. Diese Sensorik beinhaltet stromab und stromauf des NOx-Speicherkatalysators 14 angeordnete Gassonden, hier die Lambdasonden 18, 20 sowie eine NOx-sensitive Messeinrichtung 22.1 shows a schematic arrangement of a lean-burn internal combustion engine 10 with an exhaust gas purification system 12. The exhaust gas purification system 12 comprises at least one NO x storage catalytic converter 14 and a suitable sensor system for detecting operating parameters in the exhaust line 16. This sensor system includes downstream and upstream of the NO x Storage catalytic converter 14 arranged gas probes, here the lambda probes 18, 20 and a NO x sensitive measuring device 22.

Die von der Sensorik bereitgestellten Signale werden in ein Motorsteuergerät 24 eingelesen und dort anhand hinterlegter Algorithmen bewertet. Über das Motorsteuergerät 24 kann dann ein Regeleingriff zur Änderung der während eines Verbrennungsvorganges der Verbrennungskraftmaschine 10 herrschenden Verhältnisse erfolgen. Beispielhaft ist hier als Stellglied eine Drosselklappe 26 in einem Ansaugkanal 28 dargestellt. Über eine Änderung eines Drosselklappenwinkels kann dann ein Ansaugvolumen der Verbrennungskraftmaschine 10 beeinflusst werden. Denkbar sind auch Eingriffe in den Verbrennungsprozess - insbesondere über ein hier nicht dargestelltes Einspritzsystem - durch Variation von Einspritzparametern, wie eine Einspritzdauer, Einspritzwinkel, Einspritzvolumen und dergleichen. Verfahren und Vorrichtung zur Durchführung derartiger Regeleingriffe sind hinlänglich bekannt und werden daher an dieser Stelle nicht näher erläutert. Festzuhalten bleibt lediglich, dass auf diese Weise auch ein Reduktionsmittel-Massenstrom gezielt erhöht oder erniedrigt werden kann.The signals provided by the sensors are fed into an engine control unit 24 imported and evaluated there using stored algorithms. About the Engine control unit 24 can then perform a control intervention to change the during a Combustion process of the internal combustion engine 10 prevailing conditions respectively. A throttle valve 26 in an intake duct is an example of an actuator here 28 shown. A change can then be made by changing a throttle valve angle Intake volume of the internal combustion engine 10 are influenced. Are conceivable also interventions in the combustion process - especially one not here shown injection system - by varying injection parameters, such as one Injection duration, injection angle, injection volume and the like. Procedure and Devices for carrying out such control interventions are well known and are therefore not explained in more detail here. All that remains to be said is that in this way, a reducing agent mass flow is specifically increased or decreased can be.

Das Motorsteuergerät 24 ist ferner an eine Steuereinheit 30 integriert, mit der eine Adaption einer Regenerationsabbruch-Spannungsschwelle und/oder des Reduktionsmittel-Massenstroms in Abhängigkeit von einem Katalysatorzustand erfolgen kann. Dazu ist in der Steuereinheit 30 ein entsprechender Algorithmus hinterlegt. Die Steuereinheit 30 kann selbstverständlich auch als selbstständige Einheit verwirklicht werden. The engine control unit 24 is also integrated into a control unit 30, with which one Adaptation of a regeneration termination voltage threshold and / or the Reductant mass flow depending on a catalyst state can. For this purpose, a corresponding algorithm is stored in the control unit 30. The Control unit 30 can of course also be implemented as an independent unit become.

Auch der Katalysatorzustand kann mit Hilfe eines Modells quantifiziert werden und beispielsweise als prozentualer Schädigungsgrad dem weiteren Verfahren zur Verfügung gestellt werden. Dazu dient als Beurteilungskriterien insbesondere eine aktuelle NOx-Speicherkapazität, also die NOx-Masse, die maximal von dem NOx-Speicherkatalysator 14 sorbiert werden kann. Die NOx-Speicherkapazität kann wiederum mit Hilfe bekannter Modelle, bei denen ein NOx-Massenstrom stromauf des NOx-Speicherkatalysators 14 erfasst sowie eine NOx-Durchbruchsemission stromab des NOx-Speicherkatalysators überprüft wird, ermittelt werden. Letztendlich lässt sich dann der aktuelle Katalysatorzustand beispielsweise als 85 % eines frischen NOx-Speicherkatalysators charakterisieren.The catalyst state can also be quantified using a model and made available to the further process, for example, as a percentage degree of damage. A current NO x storage capacity, that is to say the NO x mass, which can be maximally sorbed by the NO x storage catalytic converter 14, serves in particular as the evaluation criteria. The NO x storage capacity can in turn be determined with the aid of known models in which a NO x mass flow upstream of the NO x storage catalytic converter 14 is detected and a NO x breakthrough emission downstream of the NO x storage catalytic converter is checked. Ultimately, the current catalytic converter state can then be characterized, for example, as 85% of a fresh NO x storage catalytic converter.

Die Figur 2 zeigt für einen frischen und einen geschädigten NOx-Speicherkatalysator 14 zum einen einen Spannungsverlauf an der stromab liegenden Lambdasonde 20 und zum anderen Sollvorgaben SVi für Lambda stromauf des NOx-Speicherkatalysators 14 und Regenerationsabbruch-Spannungsschwellen Si. Der Spannungsverlauf an der Lambdasonde 20 während der NOx-Regeneration eines frischen NOx-Speicherkatalysators ist durch die Kurve 40 (fette durchgezogene Linie) und für den bereits geschädigten NOx-Speicherkatalysator durch die Kurve 42 (gestrichelte Linie) gegeben. Zunächst liegt für gealterte NOx-Speicherkatalysatoren zu einem Zeitpunkt TR eine Regenerationsnotwendigkeit vor. Diese kann beispielsweise mit Hilfe der NOx-sensitiven Messeinrichtung 22 in bekannter Weise anhand einer detektierten NOx-Durchbruchsemission ermittelt werden. Anschließend wechselt die Verbrennungskraftmaschine 10 in einen fetten Arbeitsmodus, so dass der NOx-Speicherkatalysator 14 mit einem erhöhten Reduktionsmittel-Massenstrom beaufschlagt wird. Die Sollvorgaben SVi, die während dieser fetten Regenerationsphase der Verbrennungskraftmaschine 10 durch geeignete Beeinflussung der Stellglieder für den Lambdawert vor dem NOx-Speicherkatalysator 14 vorgegeben werden, sind abhängig vom Katalysatorzustand. Ebenso verhält es sich mit den Regenerationsabbruch-Spannungsschwellen Si, bei deren Erreichen an der Lambdasonde 20 wieder ein Magerbetrieb der Verbrennungskraftmaschine 10 aufgenommen wird.FIG. 2 shows, for a fresh and a damaged NO x storage catalytic converter 14, on the one hand a voltage curve at the downstream lambda probe 20 and on the other hand target values SV i for lambda upstream of the NO x storage catalytic converter 14 and regeneration termination voltage thresholds S i . The voltage curve at the lambda probe 20 during the NO x regeneration of a fresh NO x storage catalytic converter is given by the curve 40 (bold solid line) and for the already damaged NO x storage catalytic converter by the curve 42 (dashed line). First of all, there is a need for regeneration for aged NO x storage catalysts at a time T R. This can be determined, for example, using the NO x -sensitive measuring device 22 in a known manner on the basis of a detected NO x breakthrough emission. The internal combustion engine 10 then changes to a rich working mode, so that the NO x storage catalytic converter 14 is subjected to an increased mass flow of reducing agent. The target specifications SV i , which are specified during this rich regeneration phase of the internal combustion engine 10 by suitably influencing the actuators for the lambda value upstream of the NO x storage catalytic converter 14, are dependent on the catalytic converter state. The same applies to the regeneration termination voltage thresholds S i , when they reach lambda probe 20, lean operation of internal combustion engine 10 is resumed.

Eine Kurve 44 zeigt den Sollverlauf von Lambda bei NOx-Regeneration eines frischen NOx-Speicherkatalysators 14 (doppelte, durchgezogene Linie). Um die NOx-Regeneration möglichst zügig durchzuführen, wird eine relativ niedrige Sollvorgabe SV1, beispielsweise bei λ = 0,85, gewählt. Gegen Ende der NOx-Regeneration zeigt die Kurve 40 für das Spannungssignal an der Lambdasonde 20 einen rasanten Anstieg, der aus dem schlagartigen Anstieg der Reduktionsmittel-Durchbruchsemission resultiert. Erreicht die Spannung eine Regenerationsabbruch-Spannungsschwelle S1, beispielsweise bei 650 mV (Zeitpunkt TE,1), so wird die Verbrennungskraftmaschine 10 wieder in den Magerbetrieb geschaltet.A curve 44 shows the target profile of lambda during NO x regeneration of a fresh NO x storage catalytic converter 14 (double, solid line). In order to carry out the NO x regeneration as quickly as possible, a relatively low setpoint SV 1 , for example at λ = 0.85, is selected. Towards the end of the NO x regeneration, the curve 40 for the voltage signal at the lambda probe 20 shows a rapid increase, which results from the sudden increase in the reducing agent breakthrough emission. If the voltage reaches a regeneration termination voltage threshold S 1 , for example at 650 mV (time T E, 1 ), the internal combustion engine 10 is switched back to lean operation.

Ist der NOx-Speicherkatalysator 14 bereits geschädigt, so wird der Reduktionsmittel-Massenstrom gemindert. Dies erfolgt durch entsprechende Festlegung einer Sollvorgabe SV2 für die fette Regenerationsphase - hier beispielsweise auf einen Lambdawert von zirka 0,92. Damit einhergehend sinkt auch der Reduktionsmittel-Massenstrom, so dass verhindert werden kann, dass bereits kurz nach Beginn der NOx-Regeneration ein leicht fettes Abgas durch den NOx-Speicherkatalysator 14 durchtritt und gegebenenfalls die NOx-Regeneration unvollständig abgebrochen wird. Weiterhin wird im vorliegenden Fall auch die Regenerationsabbruch-Spannungsschwelle S2 für diesen Katalysatorzustand angehoben. Hierdurch verlängert sich zusätzlich die fette Regenerationsphase, so dass eine nahezu vollständige NOx-Regeneration des NOx-Speicherkatalysators 14 sichergestellt ist und erst zu einem Zeitpunkt TE,2 ein Wechsel in den Magerbetrieb erfolgt (Kurve 46; doppelte, gestrichelte Linie). If the NO x storage catalytic converter 14 is already damaged, the mass flow of reducing agent is reduced. This is done by appropriately specifying a target specification SV 2 for the rich regeneration phase - here, for example, to a lambda value of approximately 0.92. As a result of this, the mass flow of reducing agent also drops, so that it can be prevented that a slightly rich exhaust gas passes through the NO x storage catalytic converter 14 shortly after the start of the NO x regeneration and that the NO x regeneration is possibly incompletely terminated. Furthermore, the regeneration termination voltage threshold S 2 is also raised for this catalyst state in the present case. This also extends the rich regeneration phase, so that an almost complete NO x regeneration of the NO x storage catalytic converter 14 is ensured and a change to the lean operation takes place only at a time T E, 2 (curve 46; double, dashed line).

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
VerbrennungskraftmaschineInternal combustion engine
1212
Abgasreinigungsanlageemission control system
1414
NOx-SpeicherkatalysatorNO x storage catalytic converter
1818
Abgasstrangexhaust gas line
18, 2018, 20
Lambdasondenlambda probes
2222
NOx-sensitive MesseinrichtungNO x sensitive measuring device
2424
MotorsteuergerätEngine control unit
2626
Drosselklappethrottle
2828
Ansaugkanalintake port
3030
Steuereinheitcontrol unit
4040
Kurve für den Spannungsverlauf während der NOx-Regeneration eines frischen NOx-SpeicherkatalysatorsCurve for the voltage curve during the NO x regeneration of a fresh NO x storage catalytic converter
4242
Kurve für den Spannungsverlauf während der NOx-Regeneration eines beschädigten NOx-SpeicherkatalysatorsCurve for the voltage curve during the NO x regeneration of a damaged NO x storage catalytic converter
4444
Kurve für die Sollvorgaben von Lambda während der NOx-Regeneration eines frischen NOx-SpeicherkatalysatorsCurve for the target values of lambda during the NO x regeneration of a fresh NO x storage catalytic converter
4646
Kurve für die Sollvorgaben von Lambda während der NOx-Regeneration eines beschädigten NOx-SpeicherkatalysatorsCurve for the target values of lambda during the NO x regeneration of a damaged NO x storage catalytic converter
SVi SV i
Sollvorgabe für Lambda im fetten ArbeitsmodusTarget specification for lambda in rich working mode
Si S i
Regenerationsabbruch-SpannungsschwelleRegeneration termination voltage threshold
TR T R
Zeitpunkt des Vorliegens der RegenerationsnotwendigkeitTime of the need for regeneration
TE,i T E, i
Zeitpunkte des Vorliegens der Regenerationsabbruch-SpannungsschwellenTimes of the existence of the regeneration termination voltage thresholds

Claims (6)

Verfahren zur Regelung einer NOx-Regeneration eines im Abgasstrang einer magerlauffähigen Verbrennungskraftmaschine angeordneten NOx- Speicherkatalysators, dadurch gekennzeichnet, dass ein Schädigungszustand des NOx-Speicherkatalysators (14) erfasst und in Abhängigkeit von dem Schädigungszustand ein Reduktionsmittel-Massenstrom während der NOx-Regeneration und/oder eine Regenerationsabbruch-Spannungsschwelle (Si) an einer stromab des NOx-Speicherkatalysators (14) angeordneten, ermittelnden Abgassonde (20) vorgegeben werden.Method for regulating a NO x regeneration of a NO x storage catalytic converter arranged in the exhaust line of a lean-burn internal combustion engine, characterized in that a damage state of the NO x storage catalytic converter (14) is detected and, depending on the damage condition, a reducing agent mass flow during the NO x Regeneration and / or a regeneration termination voltage threshold (S i ) can be specified on an ascertaining exhaust gas probe (20) arranged downstream of the NO x storage catalytic converter (14). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schädigungszustand des NOx-Speicherkatalysators (14) anhand einer aktuellen NOx-Speicherkapazität im Vergleich zu einer NOx-Speicherfähigkeit eines ungeschädigten NOx-Speicherkatalysators beurteilt wird.Method according to Claim 1, characterized in that the damage state of the NO x storage catalytic converter (14) is assessed on the basis of a current NO x storage capacity in comparison with an NO x storage capacity of an undamaged NO x storage catalytic converter. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Reduktionsmittel-Massenstrom durch Regelung eines Lambdawertes vor dem NOx-Speicherkatalysator (14) beeinflusst wird.Method according to one of claims 1 or 2, characterized in that the reducing agent mass flow is influenced by regulating a lambda value upstream of the NO x storage catalytic converter (14). Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Lambdawert während der NOx-Regeneration mit zunehmendem Schädigungsgrad des NOx-Speicherkatalysators (14) in Richtung λ = 1 verschoben wird.Method according to Claim 3, characterized in that the lambda value is shifted in the direction λ = 1 during the NO x regeneration with increasing degree of damage to the NO x storage catalytic converter (14). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regenerationsabbruch-Spannungsschwelle (Si) mit zunehmendem Schädigungsgrad des NOx-Speicherkatalysators (14) erhöht wird.Method according to one of the preceding claims, characterized in that the regeneration termination voltage threshold (S i ) is increased with increasing degree of damage to the NO x storage catalytic converter (14). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abgassonde (20) eine Lambda-Sonde und/oder ein NOx-Sensor ist.Method according to one of the preceding claims, characterized in that the exhaust gas probe (20) is a lambda probe and / or a NO x sensor.
EP20010119751 2000-09-15 2001-08-28 Method for regulating the regeneration of a NOx storage catalyst Expired - Lifetime EP1188915B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10045610 2000-09-15
DE2000145610 DE10045610A1 (en) 2000-09-15 2000-09-15 Method for controlling a NOx regeneration of a NOx storage catalytic converter

Publications (3)

Publication Number Publication Date
EP1188915A2 true EP1188915A2 (en) 2002-03-20
EP1188915A3 EP1188915A3 (en) 2004-01-07
EP1188915B1 EP1188915B1 (en) 2005-11-16

Family

ID=7656276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20010119751 Expired - Lifetime EP1188915B1 (en) 2000-09-15 2001-08-28 Method for regulating the regeneration of a NOx storage catalyst

Country Status (2)

Country Link
EP (1) EP1188915B1 (en)
DE (2) DE10045610A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475636A1 (en) * 2003-05-07 2004-11-10 DaimlerChrysler AG A method of determining the concentration of a gas component in the exhaust gas of an internal combustion engine
WO2008029256A3 (en) * 2006-09-06 2008-05-22 Toyota Motor Co Ltd Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019200367A1 (en) * 2019-01-15 2020-07-16 Ford Global Technologies, Llc Method for determining regeneration parameter values of a multiple LNT catalyst system and device for data processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903479A2 (en) * 1997-09-19 1999-03-24 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an internal combustion engine
EP0928890A2 (en) * 1998-01-10 1999-07-14 Degussa Aktiengesellschaft Method for operating an NOx storage catalytic converter
WO1999035386A1 (en) * 1998-01-09 1999-07-15 Ford Global Technologies, Inc. Method for regenerating a nitrogen oxide trap in the exhaust system of an internal combustion engine
DE19918875A1 (en) * 1998-04-27 1999-10-28 Denso Corp Air fuel ratio control system for lean burn engine with oxygen and nitrogen oxides storage catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903479A2 (en) * 1997-09-19 1999-03-24 Toyota Jidosha Kabushiki Kaisha An exhaust gas purification device for an internal combustion engine
WO1999035386A1 (en) * 1998-01-09 1999-07-15 Ford Global Technologies, Inc. Method for regenerating a nitrogen oxide trap in the exhaust system of an internal combustion engine
EP0928890A2 (en) * 1998-01-10 1999-07-14 Degussa Aktiengesellschaft Method for operating an NOx storage catalytic converter
DE19918875A1 (en) * 1998-04-27 1999-10-28 Denso Corp Air fuel ratio control system for lean burn engine with oxygen and nitrogen oxides storage catalysts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475636A1 (en) * 2003-05-07 2004-11-10 DaimlerChrysler AG A method of determining the concentration of a gas component in the exhaust gas of an internal combustion engine
WO2008029256A3 (en) * 2006-09-06 2008-05-22 Toyota Motor Co Ltd Air-fuel ratio control apparatus and air-fuel ratio control method for internal combustion engine

Also Published As

Publication number Publication date
DE50108067D1 (en) 2005-12-22
DE10045610A1 (en) 2002-04-18
EP1188915A3 (en) 2004-01-07
EP1188915B1 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
DE19961165A1 (en) Process for the desulfurization of a NO¶x¶ storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine
EP1086741B1 (en) Process for controlling the regeneration of a particulate filter and the desulphurisation of a NOx storage catalyst
EP1106798B1 (en) Apparatus and method for NOx- and/or SOx-regeneration of an NOx storage catalyst
DE102017115399A1 (en) Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine
EP1224385B1 (en) METHOD FOR DIAGNOSING THE LEVEL OF DETERIORATION OF AN NOx CATALYST LOCATED IN THE EXHAUST CHANNEL OF AN INTERNAL COMBUSTION ENGINE
EP1450937A1 (en) Method and system for regenerating, particularly desulfating, a storage-type catalytic converter during the purification of exhaust gases
EP1204815B1 (en) Method for regulating the exhaust gas temperature of a lean combustion engine during the desulphurization of a catalyst
EP1188915B1 (en) Method for regulating the regeneration of a NOx storage catalyst
EP1303690B1 (en) Method for adapting a required catalyst temperature range for a no x? storage catalyst
DE10160704A1 (en) Process for operating exhaust gas purification devices
DE10023079B4 (en) Device and method for controlling a NOx regeneration of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst
DE102016210897A1 (en) Control of nitrogen oxide emissions during high load operation
DE19939988A1 (en) Method for operating a diesel engine
EP1365131B1 (en) Method for controling a NOx storage catalyst
DE10036390B4 (en) Method and device for desulphurizing a NOx storage catalytic converter
DE10010031B4 (en) Method and device for carrying out a NOx regeneration of an arranged in an exhaust passage of an internal combustion engine NOx storage catalyst
DE10260886B4 (en) Method for carrying out a NOx regeneration and multi-cylinder engine with multi-flow exhaust gas purification system
DE10018062A1 (en) Multiple cylinder engine used for vehicles comprises multiple flooding exhaust gas purifier consisting of exhaust gas pipes into which one or more cylinders open, nitrogen oxides storage catalysts and gas sensor, and suction device
EP1210509B1 (en) Method for regulating a combustion process in an internal combustion engine during the regeneration of a storage catalyst
DE102005018497A1 (en) Twin in-line cylinder automotive twin-pipe exhaust system has lambda sensors after each nitrogen oxide storage catalytic converter
EP1320409B1 (en) Method for nox regeneration of a nox storage catalyst
EP1471222B1 (en) Regeneration method for a storage catalyst of an internal combustion engine
DE10010032A1 (en) Method and device for carrying out a NO¶x¶ regeneration of a NO¶x¶ storage catalytic converter arranged in an exhaust gas duct of an internal combustion engine
WO2004109081A1 (en) Method for operating an internal combustion engine
DE10010033A1 (en) Regeneration of nitrogen oxides storage catalyst involves carrying out regeneration during at least portion of regeneration time with reduced exhaust gas return rate and/or with exhaust gas return

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040707

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040909

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051116

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108067

Country of ref document: DE

Date of ref document: 20051222

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060817

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50108067

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170830

Year of fee payment: 17

Ref country code: DE

Payment date: 20170831

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108067

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828