EP1299923B1 - Multiband planar antenna - Google Patents
Multiband planar antenna Download PDFInfo
- Publication number
- EP1299923B1 EP1299923B1 EP01954073A EP01954073A EP1299923B1 EP 1299923 B1 EP1299923 B1 EP 1299923B1 EP 01954073 A EP01954073 A EP 01954073A EP 01954073 A EP01954073 A EP 01954073A EP 1299923 B1 EP1299923 B1 EP 1299923B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slot
- frequency
- slots
- point
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/28—Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/206—Microstrip transmission line antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/106—Microstrip slot antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/357—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
- H01Q5/364—Creating multiple current paths
- H01Q5/371—Branching current paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/06—Details
- H01Q9/065—Microstrip dipole antennas
Definitions
- the present invention relates to a multiband planar antenna and / or broadband, more particularly an antenna suitable for networks without mobile or domestic wires.
- equipment laptops that can be used as a mobile phone when one is away from home and as part of household equipment home network when you get home, namely equipment cellular network / home network compatible.
- annular slot 1 operating at a frequency f given.
- This annular slot 1 is supplied by a line microstrip 2.
- I'm represents the length of microstrip line necessary to make an adaptation to 50 ⁇
- W s and W m being respectively the width of the slit and the width of the microstrip line.
- the present invention provides a new multiband and / or broadband planar antenna structure of simple and space-saving design.
- the subject of the present invention is a planar antenna of the type comprising a first slot dimensioned to operate at a first frequency f1 and supplied by a supply line positioned so that the slot is in a short-circuit plane of the supply line, characterized in that it comprises at least a second slot dimensioned to operate at a second frequency f2, the second slot being supplied by said supply line.
- the second slot is in a plane power line short circuit.
- this antenna has N slots, each dimensioned to operate at a frequency f i with i varying from 1 to N, each slot being supplied by said supply line so as to be in a short-circuit plane of the feeder.
- the two slots are cotangent in one point, the supply line being located either at this point or at the opposite of this point where the two slots are concentric.
- each slot is chosen so that the slot resonates at said frequency f i .
- Each slot may be of identical shape or not, symmetrical with respect to a point.
- each slot is circular or square.
- the slot may be provided with means allowing the radiation of a circularly polarized wave. These means are constituted, for example, by notches. In this case, depending on the position of the supply line, a wave with right or left circular polarization will be generated.
- a dual-frequency antenna in accordance with the present invention comprises a first annular slot 10 whose radius R1 is chosen to operate at a first fundamental frequency f1. Therefore, the radius R1 is equal to ⁇ s1 / 2 ⁇ where ⁇ s1 is the wavelength in the slot 10.
- the slot 10 has a width W S1 .
- the antenna also includes a second annular slot 11 whose radius R2 is chosen to operate at a second fundamental frequency f2, the radius R2 being equal to ⁇ s2 / 2 ⁇ .
- f2 is chosen close to 2f1 but other relationships can be envisaged.
- the two annular slots 10 and 11 are supplied by a single microstrip line 12.
- the length Im ' represents the line length necessary to adapt the Zant impedance to 50 ⁇ which is approximately 300 ⁇ .
- This line has a width Wm.
- the length of the line so that the slit is in a short circuit plane is equal to k ⁇ m / 4 with ⁇ m the wavelength below the microstrip line at the frequency defined for the slot and k an odd whole number.
- FIG 5 there is shown an embodiment operating in tribandes.
- three annular slots 21, 22, 23 operating at fundamental frequencies f1, f2, f3 are powered by the same microstrip line 20.
- the length l'm is used for adaptation to 50 ⁇ .
- FIGS. 6a, 6b and 6c another mode of production of a planar antenna in accordance with the present invention.
- the two annular slots R'1 and R'2 come confuse in one point. They are sized to operate at neighboring frequencies.
- the antenna has two annular slots R'1 and R'2 cotangent at point A.
- the two slots R'1 and R'2 are supplied by a common line on the side of point A.
- the two slots lie substantially in a line short-circuit plane feed and lengths l'm and I'm 'are chosen from tette so that l'm equal to k ⁇ 'm / 4 where ⁇ 'm is the wavelength under the microstrip line and k an odd whole number and l'm 'allows adaptation to 50 ⁇ .
- the two slots annulars are cotangent at point B and are supplied by a line supply side opposite point B.
- the lengths I "m2 and I" m1 are chosen so that the slots R'1 and R'2 lie substantially in a short-circuit plane of the power line.
- the length I "m ' is chosen to realize adaptation to 50 ⁇ .
- the two annular slots R'1 and R'2 are concentric. They are supplied by a line common power supply in microstrip technology for example.
- the lengths Im1 and Im2 are chosen so that the slots R'1 and R'2 are find close to a line short circuit plan and lm 'allows adaptation to 50 ⁇ .
- the slot is constituted by a square 30 supplied by a line 31.
- the slot 1 is circular. It is supplied by a line 2 and it radiates a linearly polarized wave.
- the circular slot 1 ' is provided with notches 1 ". It is fed by a line 2.
- the slot radiates a circular polarization which can be left or right depending on the positioning of the line.
- the slit must comply with the design rules given above. In general, the slit must be symmetrical with respect to a point and present a length such that it radiates at the chosen fundamental frequency.
- the present invention has been described with supply lines produced in microstrip technology, however the lines can be produced in coplanar technology.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
La présente invention concerne une antenne planaire multibandes et/ou large bande, plus particulièrement une antenne adaptée aux réseaux sans fils mobiles ou domestiques.The present invention relates to a multiband planar antenna and / or broadband, more particularly an antenna suitable for networks without mobile or domestic wires.
Dans le cadre du déploiement des réseaux sans fils mobiles ou
domestiques, la conception d'antennes est confrontée à un problème
particulier qui découle des différentes fréquences allouées à ces réseaux. En
effet, comme le montre la liste non-exhaustive ci-après, les technologies
sans fils sont nombreuses et les fréquences sur lesquelles est réalisée leur
exploitation le sont plus encore.
Ces 20 dernières années ont ainsi vu se mettre en place différents systèmes de téléphones mobiles portés sur des bandes de fréquences dépendant à la fois de l'opérateur et du pays d'exploitation. Plus récemment, on assiste au développement des réseaux domestiques sans fil avec, pour certaines technologies, une spécification toujours en cours et des bandes de fréquences qui diffèrent d'un continent à l'autre. These last 20 years have seen the establishment of different mobile phone systems carried on bands of frequencies depending on both the operator and the country of operation. More recently, we are witnessing the development of wireless home networks with, for certain technologies, a specification still in progress and frequency bands that differ from continent to continent.
Du point de vue de l'usager, cette multitude de bandes peut constituer un obstacle à l'obtention de leurs services dans la mesure où elle implique l'utilisation de dispositifs de connexion différents pour chaque réseau. C'est pourquoi la tendance actuelle du côté des constructeurs vise à réduire le parc des dispositifs en les rendant compatibles avec plusieurs technologies ou standards. C'est ainsi qu'on a vu apparaítre, il y a maintenant quelques années, des téléphones bi-bandes qui assurent la connexion aussi bien au GSM 900 MHz qu'au DCS 1,8 GHz. D'autre part, la multiplication des standards dans le domaine des réseaux domestiques sans fils débouche sur une répartition des bandes de fréquences qui sont, soit très éloignées, soit adjacentes, suivant les standards que l'on considère.From the user's point of view, this multitude of bands can constitute an obstacle to obtaining their services insofar as it involves the use of different connection devices for each network. This is why the current trend on the side of manufacturers aims to reduce the number of devices by making them compatible with several technologies or standards. This is how we saw appear, there are now for a few years, dual-band phones that provide connection to both GSM 900 MHz and DCS 1.8 GHz. On the other hand, the multiplication of standards in the field of home networks without leads to a distribution of the frequency bands which are either very distant, or adjacent, according to the standards that we consider.
Dans le futur, la demande de plus en plus importante de spectre de fréquences liée à l'explosion des débits numériques, d'une part, et à la rareté des fréquences d'autre part, donneront naissance à des équipements capables de fonctionner dans plusieurs bandes de fréquences et/ou sur une large bande de fréquences.In the future, the growing demand for spectrum frequencies linked to the explosion of digital data rates, on the one hand, and to the frequency scarcity on the other hand, will give rise to equipment capable of operating in multiple frequency bands and / or on one wide frequency band.
Par ailleurs, il serait intéressant de développer des équipements portables qui peuvent être utilisés comme un téléphone mobile quand on est à l'extérieur de chez soi et comme un équipement domestique faisant partie du réseau domestique quand on rentre chez soi, à savoir des équipements compatibles réseau cellulaire / réseau domestique.In addition, it would be interesting to develop equipment laptops that can be used as a mobile phone when one is away from home and as part of household equipment home network when you get home, namely equipment cellular network / home network compatible.
Il apparaít alors nécessaire de développer des antennes fonctionnant sur plusieurs bandes de fréquences pour permettre cette compatibilité et qui soient de plus d'un encombrement réduit.It then appears necessary to develop antennas operating on multiple frequency bands to allow this compatibility and which are more of a reduced bulk.
On connaít actuellement une antenne planaire constituée, comme
représenté sur la figure 1, d'une fente annulaire 1 fonctionnant à une
fréquence f donnée. Cette fente annulaire 1 est alimentée par une ligne
microruban 2.We currently know of a planar antenna, as
shown in Figure 1, an
Il est apparu, suite à des simulations et à des essais, que si la transition ligne microruban / fente rayonnante est réalisée de telle sorte que la fente se trouve dans un plan de court-circuit de ligne, c'est-à-dire dans la zone où les courants sont les plus importants, alors la fente annulaire présentera des résonances à tous les multiples impairs de cette fréquence, ceci contrairement à des structures de type « patch » alimentées par ligne pour lesquelles les résonances apparaissent tous les multiples pairs de la fréquence fondamentale. Ce fonctionnement justifie les règles de conception suivantes qui sont utilisées pour réaliser une antenne telle que représentée à la figure 1.It appeared, following simulations and tests, that if the microstrip line / radiating slit transition is made so that the slot is in a line short-circuit plane, i.e. in the area where the currents are most important, then the annular gap will present resonances to all odd multiples of this frequency, this, unlike patch-type structures supplied by line for which the resonances appear all the multiple peers of the fundamental frequency. This operation justifies the design rules which are used to make an antenna as shown in Figure 1.
Dans ce cas,
Ainsi, dans le cas d'une antenne du type de celle de la figure 1 réalisée sur un substrat « CHUKOH FLO » εr = 2,6 tanδ = 0,002 - h = 0,8 mm - ep cuivre = 15 µm avec R = 7 mm, Ws = 0,25 mm, Im = 9,26 mm et fonctionnant à une fréquence fondamentale f de 5,8 GHz, on observe un fonctionnement en fréquences tel que représenté sur la figure 2. On observe donc une résonance à 5,8 GHz (f) puis une seconde résonance autour de 17 GHz à savoir à 3f, l'allure du coefficient de réflexion restant plate dans la région des 11 GHz.Thus, in the case of an antenna of the type of that of FIG. 1 produced on a “CHUKOH FLO” substrate εr = 2.6 tanδ = 0.002 - h = 0.8 mm - copper ep = 15 µm with R = 7 mm, W s = 0.25 mm, Im = 9.26 mm and operating at a fundamental frequency f of 5.8 GHz, we observe a frequency operation as shown in Figure 2. We therefore observe a resonance at 5 , 8 GHz (f) then a second resonance around 17 GHz, namely at 3f, the shape of the reflection coefficient remaining flat in the 11 GHz region.
Une antenne de même type est décrite notamment dans le document « STRIPLINE-FED ARBITRARILY SHAPED PRINTED APERTURE ANTENNAS » de CHEN - et al dans IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 45 n° 7 - Juillet 1997, pages 1186-1198 XP000694428. The same type of antenna is described in particular in the document "STRIPLINE-FED ARBITRARILY SHAPED PRINTED APERTURE ANTENNAS ”by CHEN - et al in IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 45 n ° 7 - July 1997, pages 1186-1198 XP000694428.
Basée sur les propriétés décrites ci-dessus, la présente invention
propose une nouvelle structure d'antenne planaire multibandes et/ou large
bande de conception simple et peu encombrante.
Ainsi la présente invention, a pour objet une antenne planaire du type
comportant une première fente dimensionnée pour fonctionner à une
première fréquence f1 et alimentée par une ligne d'alimentation positionnée
de sorte que la fente se trouve dans un plan de court-circuit de la ligne
d'alimentation, caractérisée en ce qu'elle comporte au moins une deuxième
fente dimensionnée pour fonctionner à une deuxième fréquence f2, la
deuxième fente étant alimentée par ladite ligne d'alimentation.Based on the properties described above, the present invention provides a new multiband and / or broadband planar antenna structure of simple and space-saving design.
Thus, the subject of the present invention is a planar antenna of the type comprising a first slot dimensioned to operate at a first frequency f1 and supplied by a supply line positioned so that the slot is in a short-circuit plane of the supply line, characterized in that it comprises at least a second slot dimensioned to operate at a second frequency f2, the second slot being supplied by said supply line.
Selon une caractéristique de l'invention permettant un fonctionnement en multibandes, la deuxième fente se trouve dans un plan de court-circuit de la ligne d'alimentation.According to a characteristic of the invention allowing a multiband operation, the second slot is in a plane power line short circuit.
De préférence, cette antenne comporte N fentes, chacune dimensionnée pour fonctionner à une fréquence fi avec i variant de 1 à N, chaque fente étant alimentée par ladite ligne d'alimentation de manière à se trouver dans un plan de court-circuit de la ligne d'alimentation.Preferably, this antenna has N slots, each dimensioned to operate at a frequency f i with i varying from 1 to N, each slot being supplied by said supply line so as to be in a short-circuit plane of the feeder.
Selon une autre caractéristique de l'invention permettant un fonctionnement en large bande, les deux fentes sont cotangentes en un point, la ligne d'alimentation étant située soit au niveau de ce point, soit à l'opposé de ce point où les deux fentes sont concentriques.According to another characteristic of the invention allowing a broadband operation, the two slots are cotangent in one point, the supply line being located either at this point or at the opposite of this point where the two slots are concentric.
Selon un mode de réalisation, la longueur de chaque fente est choisie pour que la fente résonne à ladite fréquence fi. Chaque fente peut être de forme identique ou non, symétrique par rapport à un point. De préférence, chaque fente est circulaire ou carrée. La fente peut être munie de moyens permettant le rayonnement d'une onde polarisée circulairement. Ces moyens sont constitués, par exemple, par des encoches. Dans ce cas, selon la position de la ligne d'alimentation, on générera une onde à polarisation circulaire droite ou gauche.According to one embodiment, the length of each slot is chosen so that the slot resonates at said frequency f i . Each slot may be of identical shape or not, symmetrical with respect to a point. Preferably, each slot is circular or square. The slot may be provided with means allowing the radiation of a circularly polarized wave. These means are constituted, for example, by notches. In this case, depending on the position of the supply line, a wave with right or left circular polarization will be generated.
D'autres caractéristiques et avantages de la présente invention
apparaítront à la lecture de la description de divers modes de réalisation,
cette description étant faite avec référence aux dessins ci-annexés dans
lesquels :
Pour simplifier la description dans les figures, les mêmes éléments portent les mêmes références.To simplify the description in the figures, the same elements have the same references.
Comme représenté sur la figure 3, une antenne bi-fréquences
conforme à la présente invention comporte une première fente annulaire 10
dont le rayon R1 est choisi pour fonctionner à une première fréquence
fondamentale f1. De ce fait, le rayon R1 est égal à λs1/2Π où λs1 est la
longueur d'onde dans la fente 10. La fente 10 présente une largeur WS1.
L'antenne comporte aussi une deuxième fente annulaire 11 dont le rayon R2
est choisi pour fonctionner à une deuxième fréquence fondamentale f2, le
rayon R2 étant égal à λs2/2Π. Dans le mode de réalisation, on choisit f2
proche de 2f1 mais d'autres rapports peuvent être envisagés.As shown in FIG. 3, a dual-frequency antenna in accordance with the present invention comprises a first
Conformément à la présente invention, les deux fentes annulaires
10 et 11 sont alimentées par une seule ligne microruban 12. Cette ligne
microruban est placée de sorte que les fentes se trouvent dans un plan de
court-circuit de la ligne d'alimentation. De ce fait, la ligne d'alimentation 12
déborde la fente 11 d'une longueur Im2 égale à k(λm2/4) et la fente 10 d'une
longueur Im1 égale à k(3λm2/4) = k(λm1/4) où λm2 est la longueur d'onde
sous la ligne microruban à la fréquence f2 et λm1 à la fréquence f1 et k est
un entier impair. D'autre part, la longueur Im' représente la longueur de ligne
nécessaire pour adapter à 50Ω l'impédance Zant qui est d'environ 300Ω.
Cette ligne présente une largeur Wm. De manière générale, la longueur de
la ligne pour que la fente se trouve dans un plan de court-circuit est égale à
kλm/4 avec λm la longueur d'onde sous la ligne microruban à la fréquence
de fonctionnement définie pour la fente et k un nombre entier impair.According to the present invention, the two
Sur la figure 4, on a représenté le coefficient de réflexion d'une
structure telle que représentée sur la figure 3 avec les caractéristiques
suivantes :
R1 = 16,4 mm WS1 = 0,4 mm Im1 = 20 mm f1 = 2,4 GHz
R2 = 7,4 mm WS2 = 0,4 mm Im2 = 9,25 mm f2 = 5,2 GHzIn FIG. 4, the reflection coefficient of a structure as shown in FIG. 3 is shown with the following characteristics:
R1 = 16.4 mm W S1 = 0.4 mm Im1 = 20 mm f1 = 2.4 GHz
R2 = 7.4 mm W S2 = 0.4 mm Im2 = 9.25 mm f2 = 5.2 GHz
Dans ce cas, la ligne microruban présente une largeur Wm = 0,3 mm et une longueur l'm = 20 mm. L'ensemble a été réalisé sur un substrat R4003 (εr = 3,38, h = 0,81 mm).In this case, the microstrip line has a width Wm = 0.3 mm and a length l'm = 20 mm. The whole was done on a substrate R4003 (εr = 3.38, h = 0.81 mm).
Les résultats de la simulation obtenus avec la structure ci-dessus sont représentés sur la figure 4. On note ainsi le fonctionnement bi-fréquences de la nouvelle topologie avec une très bonne adaptation à 2,4 GHz (S11 = -22dB) et un S11 tout à fait correct à 5,2 GHz (S11 = -12dB).The results of the simulation obtained with the above structure are shown in Figure 4. We thus note the dual-frequency operation new topology with very good adaptation to 2.4 GHz (S11 = -22dB) and a perfectly correct 5.2 GHz S11 (S11 = -12dB).
D'autre part, avec la structure ci-dessus, on observe ainsi que le rayonnement à 2,4 GHz est semblable à celui de la fente seule et parfaitement symétrique. A 5,2 GHz, on note une légère dissymétrie du rayonnement mais qui reste très limitée.On the other hand, with the above structure, we observe that the 2.4 GHz radiation is similar to that of the slot alone and perfectly symmetrical. At 5.2 GHz, there is a slight asymmetry of the influence but which remains very limited.
Sur la figure 5, on a représenté un mode de réalisation
fonctionnant en tribandes. Dans ce cas, trois fentes annulaires 21, 22, 23
fonctionnant à des fréquences fondamentales f1, f2, f3 sont alimentées par
une même ligne microruban 20. Les fentes sont réalisées en utilisant les
règles de conception données ci-dessus. Ainsi le rayon de chaque fente
annulaire est tel que Ri ( i= 1,2,3) =λsi/2Π où λsi est la longueur d'onde de
chaque fente. De même, les plans de court-circuit sont positionnés de telle
sorte que Im3= k(λ3/4), Im2=k(λ2/4) et Im1=k(λ1//4) où λ1, λ2, λ3 sont
respectivement les longueurs d'onde sous la ligne microruban aux
fréquences f1, f2 et f3 et où k est un entier impair. La longueur l'm est
utilisée pour l'adaptation à 50Ω.In Figure 5, there is shown an embodiment
operating in tribandes. In this case, three
Sur les figures 6a, 6b et 6c, on a représenté un autre mode de réalisation d'une antenne planaire conforme à la présente invention. Dans le cas des figures 6a et 6b, les deux fentes annulaires R'1 et R'2 viennent se confondre en un point. Elles sont dimensionnées pour fonctionner à des fréquences voisines. Ainsi, comme représenté sur la figure 6a, l'antenne comporte deux fentes annulaires R'1 et R'2 cotangentes au point A.In FIGS. 6a, 6b and 6c, another mode of production of a planar antenna in accordance with the present invention. In the case of Figures 6a and 6b, the two annular slots R'1 and R'2 come confuse in one point. They are sized to operate at neighboring frequencies. Thus, as shown in FIG. 6a, the antenna has two annular slots R'1 and R'2 cotangent at point A.
Dans ce mode de réalisation, les deux fentes R'1 et R'2 sont alimentées par une ligne commune sur le côté du point A. Les deux fentes se trouvent sensiblement dans un plan de court-circuit de la ligne d'alimentation et les longueurs l'm et I'm' sont choisies de tette sorte que l'm égale à kλ'm/4 où λ'm est la longueur d'onde sous la ligne microruban et k un nombre entier impair et l'm' permet l'adaptation à 50Ω.In this embodiment, the two slots R'1 and R'2 are supplied by a common line on the side of point A. The two slots lie substantially in a line short-circuit plane feed and lengths l'm and I'm 'are chosen from tette so that l'm equal to kλ'm / 4 where λ'm is the wavelength under the microstrip line and k an odd whole number and l'm 'allows adaptation to 50Ω.
Selon le mode de réalisation de la figure 6b, les deux fentes annulaires sont cotangentes au point B et sont alimentées par une ligne d'alimentation du côté opposé au point B.According to the embodiment of Figure 6b, the two slots annulars are cotangent at point B and are supplied by a line supply side opposite point B.
Dans ce cas, les longueurs I"m2 et I"m1 sont choisies pour que les fentes R'1 et R'2 se trouvent sensiblement dans un plan de court-circuit de la ligne d'alimentation. La longueur I"m' est choisie pour réaliser l'adaptation à 50Ω. Dans le cas de la figure 6c, les deux fentes annulaires R'1 et R'2 sont concentriques. Elles sont alimentées par une ligne d'alimentation commune en technologie microruban par exemple. Dans ce cas, les longueurs Im1 et Im2 sont choisies pour que les fentes R'1 et R'2 se trouvent proche d'un plan de court-circuit de la ligne et lm' permet l'adaptation à 50Ω.In this case, the lengths I "m2 and I" m1 are chosen so that the slots R'1 and R'2 lie substantially in a short-circuit plane of the power line. The length I "m 'is chosen to realize adaptation to 50Ω. In the case of FIG. 6c, the two annular slots R'1 and R'2 are concentric. They are supplied by a line common power supply in microstrip technology for example. In this case, the lengths Im1 and Im2 are chosen so that the slots R'1 and R'2 are find close to a line short circuit plan and lm 'allows adaptation to 50Ω.
L'étude des différentes topologies décrites ci-dessus a été
réalisée à l'aide d'un logiciel de simulation connu sous la référence IE3D.
Dans tous les cas, la taille du plan de masse et du substrat est supposée
infinie. Les caractéristiques géométriques des différentes configurations
testées sont présentées dans le tableau ci-après. On note ainsi que
l'utilisation des topologies multi-fentes s'accompagne d'une augmentation
notable de la bande passante. Celle-ci passe en effet de 380MHz pour la
fente simple, à 470MHz et 450MHz pour les structures doubles fentes
concentriques et imbriquées.
concentriques
R'2=6,5
concentriques
R2=6,5
R3=7,7
I'm3=9,75
I"m=8,8
imbriquées côté opposé à la ligne d'alimentation
R'2 = 6,5
imbriquées
R2=6,5
R3=7,7
I"m3=10,34
I"m'=8,25
concentric
R'2 = 6.5
concentric
R2 = 6.5
R3 = 7,7
I'm3 = 9.75
I "= 8.8 m
nested opposite side of supply line
R'2 = 6.5
nested
R2 = 6.5
R3 = 7,7
I "m3 = 10.34
I "m '= 8.25
Elle peut être encore augmentée par addition d'une troisième fente. On obtient alors une bande de l'ordre de 9% contre 6,55% pour la fente seule. Dans tous les cas, le maximum de bande est obtenu avec la configuration de fentes concentriques. Cette topologie fait toutefois apparaítre une résonance parasite à 1 GHz en dessous de la fréquence de fonctionnement de la structure (voir Figure 7). Ce n'est pas le cas pour la configuration en fentes imbriquées qui pourrait alors être préférée aux fentes concentriques suivant les contraintes spectrales imposées par l'application. Du point de vue du rayonnement, les différentes topologies conservent des diagrammes et des rendements classiquement obtenus avec une fente annulaire simple.It can be further increased by adding a third slot. We then obtain a band of the order of 9% against 6.55% for the lunge alone. In all cases, the maximum band is obtained with the configuration of concentric slots. However, this topology appear a parasitic resonance at 1 GHz below the frequency of operation of the structure (see Figure 7). This is not the case for the nested slot configuration which could then be preferred to slots concentric according to the spectral constraints imposed by the application. From the point of view of radiation, the different topologies retain diagrams and yields conventionally obtained with a slot simple ring finger.
Ainsi, le caractère large bande des structures multi-fentes a été validé sur les nouvelles topologies décrites ci-dessus. Le rayonnement n'est pas perturbé par les agencements proposés. La topologie la plus efficace en terme de bande correspond à une configuration de fentes concentriques. Cette dernière fait cependant apparaítre une fréquence de résonance parasite. Ce n'est pas le cas pour la topologie multi-fentes imbriquées. Bien que celle-ci ne soit pas aussi large bande que la solution concentrique, elle permet tout de même d'obtenir des bandes de fréquences appréciables par rapport à la fente seule.Thus, the broadband character of multi-slot structures has been validated on the new topologies described above. The radiation is not disturbed by the proposed arrangements. The most efficient topology in strip term corresponds to a configuration of concentric slots. The latter however shows a resonant frequency parasite. This is not the case for the nested multi-slot topology. Well that this is not as broad as the concentric solution, it still allows to obtain appreciable frequency bands by compared to the slot alone.
On décrira maintenant avec référence aux figures 8a,8b,8c,
différents modes de réalisation des fentes. Sur la figure 8a, la fente est
constituée par un carré 30 alimenté par une ligne 31. Sur la figure 8b, la
fente 1 est circulaire. Elle est alimentée par une ligne 2 et elle rayonne une
onde polarisée linéairement. Sur la figure 8c, la fente circulaire 1' est munie
d'encoches 1". Elle est alimentée par une ligne 2. Dans ce cas, la fente
rayonne une polarisation circulaire qui peut être gauche ou droite suivant le
positionnement de la ligne d'alimentation. Il est évident pour l'homme de l'art
que quelle que soit la forme de la fente, elle doit respecter les règles de
conception données ci-dessus. De manière générale, la fente doit être
symétrique par rapport à un point et présenter une longueur telle qu'elle
rayonne à la fréquence fondamentale choisie.
La présente invention a été décrite avec des lignes d'alimentation réalisées
en technologie microruban, toutefois les lignes peuvent être réalisées en
technologie coplanaire.We will now describe with reference to Figures 8a, 8b, 8c, different embodiments of the slots. In FIG. 8a, the slot is constituted by a square 30 supplied by a
The present invention has been described with supply lines produced in microstrip technology, however the lines can be produced in coplanar technology.
Claims (7)
- Multiband planar antenna of the type comprising on a substrate a first slot (10) of the slot annular type or of symmetrical shape with respect to a point, the perimeter of which is dimensioned (R1,R'1) to operate at a first frequency f1, characterized in that it comprises at least one second slot (11) of the slot annular type or of symmetrical shape with respect to a point, the perimeter of which is dimensioned (R2,R'2) to operate at a second frequency f2, and overlapped in said first slot (10), the first and the second slot being fed by a common feed line (12) (Im1,Im2 ; I'm; I'm1,I'm2) positioned in a way that it crosses each slot in a short-circuit plane of the feed line.
- Antenna according to Claim 1, characterized in that it comprises N overlapped slots (21,22,23) of the slot annular type or of symmetrical shape with respect to a point, the perimeter of each slot being dimensioned to operate at a frequency fi with i varying from 1 to N, each slot being fed by the said feed line (20) in such a way as to lie in a short-circuit plane of the feed line.
- Antenna according to Claim 1, characterized in that the slots (R'1,R'2) are cotangent at a point with a feed situated at this point or at the diametrically opposite point.
- Antenna according to Claim 1, characterized in that the slots are concentric.
- Antenna according to one of Claims 1 to 4, characterized in that the slots are furnished with means (1") allowing the radiation of a circularly polarized wave.
- Antenna according to Claim 5, characterized in that the means consist of notches made in the slot.
- Antenna according to one of Claims 1 to 6, characterized in that the feed line is a microstrip line or a line made in coplanar technology.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01954073A EP1299923B1 (en) | 2000-07-13 | 2001-07-11 | Multiband planar antenna |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0009378 | 2000-07-13 | ||
FR0009378 | 2000-07-13 | ||
EP00460072 | 2000-12-19 | ||
EP00460072 | 2000-12-19 | ||
EP01954073A EP1299923B1 (en) | 2000-07-13 | 2001-07-11 | Multiband planar antenna |
PCT/FR2001/002233 WO2002007261A1 (en) | 2000-07-13 | 2001-07-11 | Multiband planar antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1299923A1 EP1299923A1 (en) | 2003-04-09 |
EP1299923B1 true EP1299923B1 (en) | 2004-10-13 |
Family
ID=26073646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01954073A Expired - Lifetime EP1299923B1 (en) | 2000-07-13 | 2001-07-11 | Multiband planar antenna |
Country Status (11)
Country | Link |
---|---|
US (1) | US6914574B2 (en) |
EP (1) | EP1299923B1 (en) |
JP (1) | JP5010794B2 (en) |
KR (1) | KR100777792B1 (en) |
CN (1) | CN100358183C (en) |
AT (1) | ATE279795T1 (en) |
AU (1) | AU2001276428A1 (en) |
DE (1) | DE60106452T2 (en) |
ES (1) | ES2230344T3 (en) |
MX (1) | MXPA02012930A (en) |
WO (1) | WO2002007261A1 (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD666178S1 (en) | 2008-02-29 | 2012-08-28 | Antennas Direct, Inc. | Antenna |
US7839347B2 (en) * | 2007-12-05 | 2010-11-23 | Antennas Direct, Inc. | Antenna assemblies with tapered loop antenna elements and reflectors |
USD868045S1 (en) | 2008-02-29 | 2019-11-26 | Antennas Direct, Inc. | Antenna |
USD809490S1 (en) | 2008-02-29 | 2018-02-06 | Antennas Direct, Inc. | Antenna |
US7609222B2 (en) * | 2007-12-05 | 2009-10-27 | Antennas Direct, Inc. | Antenna assemblies with antenna elements and reflectors |
US10957979B2 (en) | 2018-12-06 | 2021-03-23 | Antennas Direct, Inc. | Antenna assemblies |
US8368607B2 (en) * | 2007-12-05 | 2013-02-05 | Antennas Direct, Inc. | Antenna assemblies with antenna elements and reflectors |
USD881172S1 (en) | 1975-11-03 | 2020-04-14 | Antennas Direct, Inc. | Antenna and base stand |
US20140292597A1 (en) | 2007-12-05 | 2014-10-02 | Antennas Direct, Inc. | Antenna assemblies with tapered loop antenna elements |
USD867347S1 (en) | 2008-02-29 | 2019-11-19 | Antennas Direct, Inc. | Antenna |
FR2833764B1 (en) * | 2001-12-19 | 2004-01-30 | Thomson Licensing Sa | DEVICE FOR RECEIVING AND / OR TRANSMITTING CIRCULARLY POLARIZED ELECTROMAGNETIC SIGNALS |
FR2840456A1 (en) * | 2002-05-31 | 2003-12-05 | Thomson Licensing Sa | IMPROVEMENT TO SLOT PLANAR ANTENNAS |
FR2861222A1 (en) * | 2003-10-17 | 2005-04-22 | Thomson Licensing Sa | Dual-band planar antenna for use in wireless mobile network, has outer and inner annular slots supplied by two common supply line that cuts across slots in directions of respective protrusions |
FR2866987A1 (en) * | 2004-03-01 | 2005-09-02 | Thomson Licensing Sa | MULTIBAND PLANAR ANTENNA |
JP2006033652A (en) * | 2004-07-21 | 2006-02-02 | Japan Radio Co Ltd | Multi-band antenna |
JP4325532B2 (en) * | 2004-10-19 | 2009-09-02 | 日立電線株式会社 | Antenna, manufacturing method thereof, and wireless terminal using the antenna |
US7659860B2 (en) * | 2004-12-27 | 2010-02-09 | Telefonaktiebolaget L M Ericsson (Publ) | Triple polarized slot antenna |
KR100781933B1 (en) * | 2005-12-16 | 2007-12-04 | 주식회사 이엠따블유안테나 | Single layer dual band antenna with circular polarization and single feed point |
FR2903216A1 (en) * | 2006-06-28 | 2008-01-04 | Thomson Licensing Sa | IMPROVING DATA MEDIA SUCH AS OPTICAL MEDIA |
US20080291345A1 (en) * | 2007-05-23 | 2008-11-27 | Antennas Direct, Inc. | Picture frame antenna assemblies |
KR100932008B1 (en) * | 2007-07-04 | 2009-12-15 | 전남대학교산학협력단 | CPU Feed Slot Antenna with Dual Resonance Characteristics |
US7990335B2 (en) * | 2007-12-05 | 2011-08-02 | Antennas Direct, Inc. | Antenna assemblies with antenna elements and reflectors |
US11929562B2 (en) | 2007-12-05 | 2024-03-12 | Antennas Direct, Inc. | Antenna assemblies with tapered loop antenna elements |
US7710302B2 (en) * | 2007-12-21 | 2010-05-04 | International Business Machines Corporation | Design structures and systems involving digital to analog converters |
US7868809B2 (en) * | 2007-12-21 | 2011-01-11 | International Business Machines Corporation | Digital to analog converter having fastpaths |
USD815073S1 (en) * | 2008-02-29 | 2018-04-10 | Antennas Direct, Inc. | Antenna |
USD804459S1 (en) | 2008-02-29 | 2017-12-05 | Antennas Direct, Inc. | Antennas |
USD883264S1 (en) | 2008-02-29 | 2020-05-05 | Antennas Direct, Inc. | Antenna |
USD920962S1 (en) | 2008-02-29 | 2021-06-01 | Antennas Direct, Inc. | Base stand for antenna |
USD883265S1 (en) * | 2008-02-29 | 2020-05-05 | Antennas Direct, Inc. | Antenna |
US8542153B2 (en) | 2009-11-16 | 2013-09-24 | Skyware Antennas, Inc. | Slot halo antenna device |
US8797227B2 (en) | 2009-11-16 | 2014-08-05 | Skywave Antennas, Inc. | Slot halo antenna with tuning stubs |
USD664126S1 (en) | 2010-08-26 | 2012-07-24 | Antennas Direct, Inc. | Antenna |
JP6480751B2 (en) * | 2015-02-18 | 2019-03-13 | パナソニック株式会社 | Array antenna device |
USD827620S1 (en) | 2015-10-08 | 2018-09-04 | Antennas Direct, Inc. | Antenna element |
US10128575B2 (en) | 2015-09-02 | 2018-11-13 | Antennas Direct, Inc. | HDTV antenna assemblies |
USD824884S1 (en) | 2015-10-08 | 2018-08-07 | Antennas Direct, Inc. | Antenna element |
US9761935B2 (en) | 2015-09-02 | 2017-09-12 | Antennas Direct, Inc. | HDTV antenna assemblies |
USD811752S1 (en) | 2015-10-08 | 2018-03-06 | Antennas Direct, Inc. | Picture frame antenna |
KR102557031B1 (en) * | 2018-12-28 | 2023-07-19 | 삼성전자주식회사 | Antenna module using metal bezel and electronic device including thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208660A (en) * | 1977-11-11 | 1980-06-17 | Raytheon Company | Radio frequency ring-shaped slot antenna |
JPH01189208A (en) * | 1988-01-22 | 1989-07-28 | Sony Corp | Microstrip antenna |
US4947178A (en) * | 1988-05-02 | 1990-08-07 | Lotfollah Shafai | Scanning antenna |
JPH0229007A (en) * | 1988-07-18 | 1990-01-31 | Mitsubishi Electric Corp | Antenna system |
EP0407145B1 (en) * | 1989-07-06 | 1994-12-14 | Harada Industry Co., Ltd. | Broad band mobile telephone antenna |
FR2651926B1 (en) * | 1989-09-11 | 1991-12-13 | Alcatel Espace | FLAT ANTENNA. |
ES2021522A6 (en) | 1990-04-20 | 1991-11-01 | Consejo Superior Investigacion | microstrip radiator for circular polarization free of welds and floating potentials. |
FR2672437B1 (en) * | 1991-02-01 | 1993-09-17 | Alcatel Espace | RADIANT DEVICE FOR FLAT ANTENNA. |
EP0632523B1 (en) * | 1993-07-01 | 1999-03-17 | Commonwealth Scientific And Industrial Research Organisation | A planar antenna |
FR2725561B1 (en) | 1994-10-10 | 1996-11-08 | Thomson Consumer Electronics | INTEGRATED MULTIPLE SOURCE ANTENNA SYSTEM WITH LOW NOISE FREQUENCY CONVERTER |
JPH11215218A (en) * | 1998-01-21 | 1999-08-06 | Matsushita Electric Ind Co Ltd | Portable radio communication equipment |
FR2866987A1 (en) * | 2004-03-01 | 2005-09-02 | Thomson Licensing Sa | MULTIBAND PLANAR ANTENNA |
-
2001
- 2001-07-11 MX MXPA02012930A patent/MXPA02012930A/en active IP Right Grant
- 2001-07-11 AT AT01954073T patent/ATE279795T1/en not_active IP Right Cessation
- 2001-07-11 DE DE60106452T patent/DE60106452T2/en not_active Expired - Lifetime
- 2001-07-11 US US10/332,431 patent/US6914574B2/en not_active Expired - Fee Related
- 2001-07-11 KR KR1020027018018A patent/KR100777792B1/en not_active IP Right Cessation
- 2001-07-11 EP EP01954073A patent/EP1299923B1/en not_active Expired - Lifetime
- 2001-07-11 WO PCT/FR2001/002233 patent/WO2002007261A1/en active IP Right Grant
- 2001-07-11 CN CNB018125204A patent/CN100358183C/en not_active Expired - Fee Related
- 2001-07-11 AU AU2001276428A patent/AU2001276428A1/en not_active Abandoned
- 2001-07-11 JP JP2002513050A patent/JP5010794B2/en not_active Expired - Fee Related
- 2001-07-11 ES ES01954073T patent/ES2230344T3/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2002007261A1 (en) | 2002-01-24 |
AU2001276428A1 (en) | 2002-01-30 |
US6914574B2 (en) | 2005-07-05 |
MXPA02012930A (en) | 2003-10-14 |
ATE279795T1 (en) | 2004-10-15 |
ES2230344T3 (en) | 2005-05-01 |
EP1299923A1 (en) | 2003-04-09 |
US20040090379A1 (en) | 2004-05-13 |
KR100777792B1 (en) | 2007-11-22 |
JP2004504747A (en) | 2004-02-12 |
KR20030016320A (en) | 2003-02-26 |
DE60106452D1 (en) | 2004-11-18 |
JP5010794B2 (en) | 2012-08-29 |
DE60106452T2 (en) | 2006-02-02 |
CN1441981A (en) | 2003-09-10 |
CN100358183C (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1299923B1 (en) | Multiband planar antenna | |
EP1081849B1 (en) | Dual band amplifier circui and radio frequency receiving unit | |
EP0888647B1 (en) | Helix antenna with a built-in broadband power supply, and manufacturing methods therefor | |
EP1849213B1 (en) | Multiband printed dipole antenna | |
EP2345104B1 (en) | Differential dipole antenna system with a coplanar radiating structure and transceiver device | |
EP1805848B1 (en) | Multiband printed helical slot antenna | |
FR3070224A1 (en) | PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA | |
FR2752646A1 (en) | PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS | |
WO2015140127A1 (en) | Frequency-tunable planar antenna supplied with power via a slot, and satellite-based positioning receiver including such an antenna | |
FR2727250A1 (en) | MONOPOLY BROADBAND ANTENNA IN UNIPLANAR PRINTED TECHNOLOGY AND TRANSMITTING AND / OR RECEIVING DEVICE INCORPORATING SUCH ANTENNA | |
EP3146593B1 (en) | Antenna system for reducing the electromagnetic coupling between antennas | |
EP0604338A1 (en) | Space-saving broadband antenna with corresponding transceiver | |
FR2966986A1 (en) | RADIANT ELEMENT OF ANTENNA | |
WO2002054538A1 (en) | Multiband antenna for mobile appliances | |
EP2643886B1 (en) | Planar antenna having a widened bandwidth | |
EP0888648B1 (en) | Helical antenna with built-in duplexing means, and manufacturing methods therefore | |
FR2760132A1 (en) | ANTENNA SUPPLIED BY SIDE-BY-SIDE COILS FOR A PORTABLE RADIO SET | |
EP1540768B1 (en) | Broadband helical antenna | |
FR2866987A1 (en) | MULTIBAND PLANAR ANTENNA | |
FR2833764A1 (en) | Domestic wire less transmission wide frequency band circular polarization transmitter/receiver having feed line annular slot antenna connected and feed line two points connected. | |
FR2861222A1 (en) | Dual-band planar antenna for use in wireless mobile network, has outer and inner annular slots supplied by two common supply line that cuts across slots in directions of respective protrusions | |
EP2879234B1 (en) | Electronic apparatus with radio antenna folded in a housing | |
FR2949611A1 (en) | SELF-DIRECTIVE CIRCULAR POLARIZATION ANTENNA | |
FR2958805A1 (en) | Compact planar antenna for e.g. nomad or mobile terminals, has slot supplied with power by supply line, and variable capacitance elements mounted between supply line and end of slot radiator | |
EP1226626A1 (en) | Printed antenna with an enlarged bandwidth and a low level of cross polarisation, and corresponding antenna network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030106 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20030725 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041013 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60106452 Country of ref document: DE Date of ref document: 20041118 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050113 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050113 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050113 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050110 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20041013 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2230344 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050711 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050731 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050714 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: S.A. *THOMSON LICENSING Effective date: 20050731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050313 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150611 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150728 Year of fee payment: 15 Ref country code: DE Payment date: 20150723 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150720 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150727 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60106452 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160712 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180628 |