EP1299923B1 - Multiband planar antenna - Google Patents

Multiband planar antenna Download PDF

Info

Publication number
EP1299923B1
EP1299923B1 EP01954073A EP01954073A EP1299923B1 EP 1299923 B1 EP1299923 B1 EP 1299923B1 EP 01954073 A EP01954073 A EP 01954073A EP 01954073 A EP01954073 A EP 01954073A EP 1299923 B1 EP1299923 B1 EP 1299923B1
Authority
EP
European Patent Office
Prior art keywords
slot
frequency
slots
point
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01954073A
Other languages
German (de)
French (fr)
Other versions
EP1299923A1 (en
Inventor
Françoise Le Bolzer
Ali Louzir
Henri Fourdeux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Priority to EP01954073A priority Critical patent/EP1299923B1/en
Publication of EP1299923A1 publication Critical patent/EP1299923A1/en
Application granted granted Critical
Publication of EP1299923B1 publication Critical patent/EP1299923B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas

Definitions

  • the present invention relates to a multiband planar antenna and / or broadband, more particularly an antenna suitable for networks without mobile or domestic wires.
  • equipment laptops that can be used as a mobile phone when one is away from home and as part of household equipment home network when you get home, namely equipment cellular network / home network compatible.
  • annular slot 1 operating at a frequency f given.
  • This annular slot 1 is supplied by a line microstrip 2.
  • I'm represents the length of microstrip line necessary to make an adaptation to 50 ⁇
  • W s and W m being respectively the width of the slit and the width of the microstrip line.
  • the present invention provides a new multiband and / or broadband planar antenna structure of simple and space-saving design.
  • the subject of the present invention is a planar antenna of the type comprising a first slot dimensioned to operate at a first frequency f1 and supplied by a supply line positioned so that the slot is in a short-circuit plane of the supply line, characterized in that it comprises at least a second slot dimensioned to operate at a second frequency f2, the second slot being supplied by said supply line.
  • the second slot is in a plane power line short circuit.
  • this antenna has N slots, each dimensioned to operate at a frequency f i with i varying from 1 to N, each slot being supplied by said supply line so as to be in a short-circuit plane of the feeder.
  • the two slots are cotangent in one point, the supply line being located either at this point or at the opposite of this point where the two slots are concentric.
  • each slot is chosen so that the slot resonates at said frequency f i .
  • Each slot may be of identical shape or not, symmetrical with respect to a point.
  • each slot is circular or square.
  • the slot may be provided with means allowing the radiation of a circularly polarized wave. These means are constituted, for example, by notches. In this case, depending on the position of the supply line, a wave with right or left circular polarization will be generated.
  • a dual-frequency antenna in accordance with the present invention comprises a first annular slot 10 whose radius R1 is chosen to operate at a first fundamental frequency f1. Therefore, the radius R1 is equal to ⁇ s1 / 2 ⁇ where ⁇ s1 is the wavelength in the slot 10.
  • the slot 10 has a width W S1 .
  • the antenna also includes a second annular slot 11 whose radius R2 is chosen to operate at a second fundamental frequency f2, the radius R2 being equal to ⁇ s2 / 2 ⁇ .
  • f2 is chosen close to 2f1 but other relationships can be envisaged.
  • the two annular slots 10 and 11 are supplied by a single microstrip line 12.
  • the length Im ' represents the line length necessary to adapt the Zant impedance to 50 ⁇ which is approximately 300 ⁇ .
  • This line has a width Wm.
  • the length of the line so that the slit is in a short circuit plane is equal to k ⁇ m / 4 with ⁇ m the wavelength below the microstrip line at the frequency defined for the slot and k an odd whole number.
  • FIG 5 there is shown an embodiment operating in tribandes.
  • three annular slots 21, 22, 23 operating at fundamental frequencies f1, f2, f3 are powered by the same microstrip line 20.
  • the length l'm is used for adaptation to 50 ⁇ .
  • FIGS. 6a, 6b and 6c another mode of production of a planar antenna in accordance with the present invention.
  • the two annular slots R'1 and R'2 come confuse in one point. They are sized to operate at neighboring frequencies.
  • the antenna has two annular slots R'1 and R'2 cotangent at point A.
  • the two slots R'1 and R'2 are supplied by a common line on the side of point A.
  • the two slots lie substantially in a line short-circuit plane feed and lengths l'm and I'm 'are chosen from tette so that l'm equal to k ⁇ 'm / 4 where ⁇ 'm is the wavelength under the microstrip line and k an odd whole number and l'm 'allows adaptation to 50 ⁇ .
  • the two slots annulars are cotangent at point B and are supplied by a line supply side opposite point B.
  • the lengths I "m2 and I" m1 are chosen so that the slots R'1 and R'2 lie substantially in a short-circuit plane of the power line.
  • the length I "m ' is chosen to realize adaptation to 50 ⁇ .
  • the two annular slots R'1 and R'2 are concentric. They are supplied by a line common power supply in microstrip technology for example.
  • the lengths Im1 and Im2 are chosen so that the slots R'1 and R'2 are find close to a line short circuit plan and lm 'allows adaptation to 50 ⁇ .
  • the slot is constituted by a square 30 supplied by a line 31.
  • the slot 1 is circular. It is supplied by a line 2 and it radiates a linearly polarized wave.
  • the circular slot 1 ' is provided with notches 1 ". It is fed by a line 2.
  • the slot radiates a circular polarization which can be left or right depending on the positioning of the line.
  • the slit must comply with the design rules given above. In general, the slit must be symmetrical with respect to a point and present a length such that it radiates at the chosen fundamental frequency.
  • the present invention has been described with supply lines produced in microstrip technology, however the lines can be produced in coplanar technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention relates to a multiband planar antenna comprising a first slot 1 a dimensioned (R 1 ) to operate at a first frequency f 1 and fed by a feed line 12 positioned (Im 1 ) in such a way that the slot lies in a short-circuit plane of the feed line, and at least one second slot 11 dimensioned (R 2 ) to operate at a second frequency f 2 , the second slot being fed by the said feed line (Im 2 ).

Description

La présente invention concerne une antenne planaire multibandes et/ou large bande, plus particulièrement une antenne adaptée aux réseaux sans fils mobiles ou domestiques.The present invention relates to a multiband planar antenna and / or broadband, more particularly an antenna suitable for networks without mobile or domestic wires.

Dans le cadre du déploiement des réseaux sans fils mobiles ou domestiques, la conception d'antennes est confrontée à un problème particulier qui découle des différentes fréquences allouées à ces réseaux. En effet, comme le montre la liste non-exhaustive ci-après, les technologies sans fils sont nombreuses et les fréquences sur lesquelles est réalisée leur exploitation le sont plus encore. Technologie Application Bande de fréquences (GHz) GSM Téléphone mobile 0,9 DCS 1800 Téléphone mobile 1,8 UMTS Système mobile universel 1,9 - 2,0 - 2,1 DECT - PHS Réseaux domestiques 1,8 Bluetooth Réseaux domestiques 2,4 - 2,48 Home RF Réseaux domestiques 2,4 ISM Europe BRAN / HYPERLAN2 Réseaux domestiques (5,15-5,35) (5,47-5,725) US-IEEE 802.11 Réseaux domestiques 2,4 US-IEEE 802.11a Réseaux domestiques (5,15-5,35) (5,725-5,825) In the context of the deployment of mobile or domestic wireless networks, the design of antennas faces a particular problem which stems from the different frequencies allocated to these networks. Indeed, as the non-exhaustive list below shows, there are many wireless technologies and the frequencies on which they are operated are even more so. Technology Application Frequency band (GHz) GSM Mobile phone 0.9 DCS 1800 Mobile phone 1.8 UMTS Universal mobile system 1.9 - 2.0 - 2.1 DECT - PHS Home networks 1.8 Bluetooth Home networks 2.4 - 2.48 Home RF Home networks 2.4 ISM Europe BRAN / HYPERLAN2 Home networks (5.15-5.35) (5.47-5.725) US-IEEE 802.11 Home networks 2.4 US-IEEE 802.11a Home networks (5.15-5.35) (5.725-5.825)

Ces 20 dernières années ont ainsi vu se mettre en place différents systèmes de téléphones mobiles portés sur des bandes de fréquences dépendant à la fois de l'opérateur et du pays d'exploitation. Plus récemment, on assiste au développement des réseaux domestiques sans fil avec, pour certaines technologies, une spécification toujours en cours et des bandes de fréquences qui diffèrent d'un continent à l'autre. These last 20 years have seen the establishment of different mobile phone systems carried on bands of frequencies depending on both the operator and the country of operation. More recently, we are witnessing the development of wireless home networks with, for certain technologies, a specification still in progress and frequency bands that differ from continent to continent.

Du point de vue de l'usager, cette multitude de bandes peut constituer un obstacle à l'obtention de leurs services dans la mesure où elle implique l'utilisation de dispositifs de connexion différents pour chaque réseau. C'est pourquoi la tendance actuelle du côté des constructeurs vise à réduire le parc des dispositifs en les rendant compatibles avec plusieurs technologies ou standards. C'est ainsi qu'on a vu apparaítre, il y a maintenant quelques années, des téléphones bi-bandes qui assurent la connexion aussi bien au GSM 900 MHz qu'au DCS 1,8 GHz. D'autre part, la multiplication des standards dans le domaine des réseaux domestiques sans fils débouche sur une répartition des bandes de fréquences qui sont, soit très éloignées, soit adjacentes, suivant les standards que l'on considère.From the user's point of view, this multitude of bands can constitute an obstacle to obtaining their services insofar as it involves the use of different connection devices for each network. This is why the current trend on the side of manufacturers aims to reduce the number of devices by making them compatible with several technologies or standards. This is how we saw appear, there are now for a few years, dual-band phones that provide connection to both GSM 900 MHz and DCS 1.8 GHz. On the other hand, the multiplication of standards in the field of home networks without leads to a distribution of the frequency bands which are either very distant, or adjacent, according to the standards that we consider.

Dans le futur, la demande de plus en plus importante de spectre de fréquences liée à l'explosion des débits numériques, d'une part, et à la rareté des fréquences d'autre part, donneront naissance à des équipements capables de fonctionner dans plusieurs bandes de fréquences et/ou sur une large bande de fréquences.In the future, the growing demand for spectrum frequencies linked to the explosion of digital data rates, on the one hand, and to the frequency scarcity on the other hand, will give rise to equipment capable of operating in multiple frequency bands and / or on one wide frequency band.

Par ailleurs, il serait intéressant de développer des équipements portables qui peuvent être utilisés comme un téléphone mobile quand on est à l'extérieur de chez soi et comme un équipement domestique faisant partie du réseau domestique quand on rentre chez soi, à savoir des équipements compatibles réseau cellulaire / réseau domestique.In addition, it would be interesting to develop equipment laptops that can be used as a mobile phone when one is away from home and as part of household equipment home network when you get home, namely equipment cellular network / home network compatible.

Il apparaít alors nécessaire de développer des antennes fonctionnant sur plusieurs bandes de fréquences pour permettre cette compatibilité et qui soient de plus d'un encombrement réduit.It then appears necessary to develop antennas operating on multiple frequency bands to allow this compatibility and which are more of a reduced bulk.

On connaít actuellement une antenne planaire constituée, comme représenté sur la figure 1, d'une fente annulaire 1 fonctionnant à une fréquence f donnée. Cette fente annulaire 1 est alimentée par une ligne microruban 2.We currently know of a planar antenna, as shown in Figure 1, an annular slot 1 operating at a frequency f given. This annular slot 1 is supplied by a line microstrip 2.

Il est apparu, suite à des simulations et à des essais, que si la transition ligne microruban / fente rayonnante est réalisée de telle sorte que la fente se trouve dans un plan de court-circuit de ligne, c'est-à-dire dans la zone où les courants sont les plus importants, alors la fente annulaire présentera des résonances à tous les multiples impairs de cette fréquence, ceci contrairement à des structures de type « patch » alimentées par ligne pour lesquelles les résonances apparaissent tous les multiples pairs de la fréquence fondamentale. Ce fonctionnement justifie les règles de conception suivantes qui sont utilisées pour réaliser une antenne telle que représentée à la figure 1.It appeared, following simulations and tests, that if the microstrip line / radiating slit transition is made so that the slot is in a line short-circuit plane, i.e. in the area where the currents are most important, then the annular gap will present resonances to all odd multiples of this frequency, this, unlike patch-type structures supplied by line for which the resonances appear all the multiple peers of the fundamental frequency. This operation justifies the design rules which are used to make an antenna as shown in Figure 1.

Dans ce cas, λs = 2ΠR Im = λm/4 Zant. ≈ 300 Ω    avec λs et λm les longueurs d'onde dans la fente et sous la ligne microruban et Zant l'impédance d'entrée de l'antenne. D'autre part, I'm représente la longueur de ligne microruban nécessaire pour réaliser une adaptation à 50 Ω, Ws et Wm étant respectivement la largeur de la fente et la largeur de la ligne microruban.In that case, λ s = 2ΠR Im = λ m / 4 Zant. ≈ 300 Ω with λ s and λ m the wavelengths in the slit and under the microstrip line and Zant the input impedance of the antenna. On the other hand, I'm represents the length of microstrip line necessary to make an adaptation to 50 Ω, W s and W m being respectively the width of the slit and the width of the microstrip line.

Ainsi, dans le cas d'une antenne du type de celle de la figure 1 réalisée sur un substrat « CHUKOH FLO » εr = 2,6 tanδ = 0,002 - h = 0,8 mm - ep cuivre = 15 µm avec R = 7 mm, Ws = 0,25 mm, Im = 9,26 mm et fonctionnant à une fréquence fondamentale f de 5,8 GHz, on observe un fonctionnement en fréquences tel que représenté sur la figure 2. On observe donc une résonance à 5,8 GHz (f) puis une seconde résonance autour de 17 GHz à savoir à 3f, l'allure du coefficient de réflexion restant plate dans la région des 11 GHz.Thus, in the case of an antenna of the type of that of FIG. 1 produced on a “CHUKOH FLO” substrate εr = 2.6 tanδ = 0.002 - h = 0.8 mm - copper ep = 15 µm with R = 7 mm, W s = 0.25 mm, Im = 9.26 mm and operating at a fundamental frequency f of 5.8 GHz, we observe a frequency operation as shown in Figure 2. We therefore observe a resonance at 5 , 8 GHz (f) then a second resonance around 17 GHz, namely at 3f, the shape of the reflection coefficient remaining flat in the 11 GHz region.

Une antenne de même type est décrite notamment dans le document « STRIPLINE-FED ARBITRARILY SHAPED PRINTED APERTURE ANTENNAS » de CHEN - et al dans IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 45 n° 7 - Juillet 1997, pages 1186-1198 XP000694428. The same type of antenna is described in particular in the document "STRIPLINE-FED ARBITRARILY SHAPED PRINTED APERTURE ANTENNAS ”by CHEN - et al in IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 45 n ° 7 - July 1997, pages 1186-1198 XP000694428.

Basée sur les propriétés décrites ci-dessus, la présente invention propose une nouvelle structure d'antenne planaire multibandes et/ou large bande de conception simple et peu encombrante.
Ainsi la présente invention, a pour objet une antenne planaire du type comportant une première fente dimensionnée pour fonctionner à une première fréquence f1 et alimentée par une ligne d'alimentation positionnée de sorte que la fente se trouve dans un plan de court-circuit de la ligne d'alimentation, caractérisée en ce qu'elle comporte au moins une deuxième fente dimensionnée pour fonctionner à une deuxième fréquence f2, la deuxième fente étant alimentée par ladite ligne d'alimentation.
Based on the properties described above, the present invention provides a new multiband and / or broadband planar antenna structure of simple and space-saving design.
Thus, the subject of the present invention is a planar antenna of the type comprising a first slot dimensioned to operate at a first frequency f1 and supplied by a supply line positioned so that the slot is in a short-circuit plane of the supply line, characterized in that it comprises at least a second slot dimensioned to operate at a second frequency f2, the second slot being supplied by said supply line.

Selon une caractéristique de l'invention permettant un fonctionnement en multibandes, la deuxième fente se trouve dans un plan de court-circuit de la ligne d'alimentation.According to a characteristic of the invention allowing a multiband operation, the second slot is in a plane power line short circuit.

De préférence, cette antenne comporte N fentes, chacune dimensionnée pour fonctionner à une fréquence fi avec i variant de 1 à N, chaque fente étant alimentée par ladite ligne d'alimentation de manière à se trouver dans un plan de court-circuit de la ligne d'alimentation.Preferably, this antenna has N slots, each dimensioned to operate at a frequency f i with i varying from 1 to N, each slot being supplied by said supply line so as to be in a short-circuit plane of the feeder.

Selon une autre caractéristique de l'invention permettant un fonctionnement en large bande, les deux fentes sont cotangentes en un point, la ligne d'alimentation étant située soit au niveau de ce point, soit à l'opposé de ce point où les deux fentes sont concentriques.According to another characteristic of the invention allowing a broadband operation, the two slots are cotangent in one point, the supply line being located either at this point or at the opposite of this point where the two slots are concentric.

Selon un mode de réalisation, la longueur de chaque fente est choisie pour que la fente résonne à ladite fréquence fi. Chaque fente peut être de forme identique ou non, symétrique par rapport à un point. De préférence, chaque fente est circulaire ou carrée. La fente peut être munie de moyens permettant le rayonnement d'une onde polarisée circulairement. Ces moyens sont constitués, par exemple, par des encoches. Dans ce cas, selon la position de la ligne d'alimentation, on générera une onde à polarisation circulaire droite ou gauche.According to one embodiment, the length of each slot is chosen so that the slot resonates at said frequency f i . Each slot may be of identical shape or not, symmetrical with respect to a point. Preferably, each slot is circular or square. The slot may be provided with means allowing the radiation of a circularly polarized wave. These means are constituted, for example, by notches. In this case, depending on the position of the supply line, a wave with right or left circular polarization will be generated.

D'autres caractéristiques et avantages de la présente invention apparaítront à la lecture de la description de divers modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :

  • figure 1 déjà décrite représente une vue de dessus schématique d'une antenne à fente annulaire connue,
  • figure 2 est une courbe donnant le coefficient de réflexion en fonction de la fréquence dans le cas d'une antenne telle que représentée à la figure 1,
  • figure 3 est une vue de dessus schématique d'une antenne planaire bi-fréquences conforme à la présente invention,
  • figure 4 est une courbe donnant le coefficient de réflexion en fonction de la fréquence dans le cas d'une antenne selon la figure 3,
  • figure 5 est une vue de dessus schématique d'une antenne planaire tri-fréquences conforme à la présente invention,
  • figures 6a à 6c sont des vues de dessus schématiques d'antennes planaires large-bande selon un autre mode de réalisation de la présente invention,
  • figure 7 représente différentes courbes donnant la bande passante des antennes des figures 1, 3, 5 et 6
  • figures 8a, 8b et 8c représentent schématiquement différentes formes de fente utilisables dans les antennes de la présente invention.
  • Other characteristics and advantages of the present invention will appear on reading the description of various embodiments, this description being made with reference to the attached drawings in which:
  • FIG. 1 already described represents a schematic top view of a known annular slot antenna,
  • FIG. 2 is a curve giving the reflection coefficient as a function of the frequency in the case of an antenna as shown in FIG. 1,
  • FIG. 3 is a schematic top view of a planar dual-frequency antenna in accordance with the present invention,
  • FIG. 4 is a curve giving the reflection coefficient as a function of the frequency in the case of an antenna according to FIG. 3,
  • FIG. 5 is a schematic top view of a three-frequency planar antenna according to the present invention,
  • FIGS. 6a to 6c are schematic top views of wideband planar antennas according to another embodiment of the present invention,
  • Figure 7 shows different curves giving the bandwidth of the antennas of Figures 1, 3, 5 and 6
  • Figures 8a, 8b and 8c schematically show different forms of slot usable in the antennas of the present invention.
  • Pour simplifier la description dans les figures, les mêmes éléments portent les mêmes références.To simplify the description in the figures, the same elements have the same references.

    Comme représenté sur la figure 3, une antenne bi-fréquences conforme à la présente invention comporte une première fente annulaire 10 dont le rayon R1 est choisi pour fonctionner à une première fréquence fondamentale f1. De ce fait, le rayon R1 est égal à λs1/2Π où λs1 est la longueur d'onde dans la fente 10. La fente 10 présente une largeur WS1. L'antenne comporte aussi une deuxième fente annulaire 11 dont le rayon R2 est choisi pour fonctionner à une deuxième fréquence fondamentale f2, le rayon R2 étant égal à λs2/2Π. Dans le mode de réalisation, on choisit f2 proche de 2f1 mais d'autres rapports peuvent être envisagés.As shown in FIG. 3, a dual-frequency antenna in accordance with the present invention comprises a first annular slot 10 whose radius R1 is chosen to operate at a first fundamental frequency f1. Therefore, the radius R1 is equal to λ s1 / 2Π where λ s1 is the wavelength in the slot 10. The slot 10 has a width W S1 . The antenna also includes a second annular slot 11 whose radius R2 is chosen to operate at a second fundamental frequency f2, the radius R2 being equal to λ s2 / 2Π. In the embodiment, f2 is chosen close to 2f1 but other relationships can be envisaged.

    Conformément à la présente invention, les deux fentes annulaires 10 et 11 sont alimentées par une seule ligne microruban 12. Cette ligne microruban est placée de sorte que les fentes se trouvent dans un plan de court-circuit de la ligne d'alimentation. De ce fait, la ligne d'alimentation 12 déborde la fente 11 d'une longueur Im2 égale à k(λm2/4) et la fente 10 d'une longueur Im1 égale à k(3λm2/4) = k(λm1/4) où λm2 est la longueur d'onde sous la ligne microruban à la fréquence f2 et λm1 à la fréquence f1 et k est un entier impair. D'autre part, la longueur Im' représente la longueur de ligne nécessaire pour adapter à 50Ω l'impédance Zant qui est d'environ 300Ω. Cette ligne présente une largeur Wm. De manière générale, la longueur de la ligne pour que la fente se trouve dans un plan de court-circuit est égale à kλm/4 avec λm la longueur d'onde sous la ligne microruban à la fréquence de fonctionnement définie pour la fente et k un nombre entier impair.According to the present invention, the two annular slots 10 and 11 are supplied by a single microstrip line 12. This line microstrip is placed so that the slots lie in a plane of short supply line. Therefore, the supply line 12 extends beyond the slot 11 by a length Im2 equal to k (λm2 / 4) and the slot 10 by a length Im1 equal to k (3λm2 / 4) = k (λm1 / 4) where λm2 is the wavelength under the microstrip line at frequency f2 and λm1 at frequency f1 and k is an odd integer. On the other hand, the length Im 'represents the line length necessary to adapt the Zant impedance to 50Ω which is approximately 300Ω. This line has a width Wm. Generally, the length of the line so that the slit is in a short circuit plane is equal to kλm / 4 with λm the wavelength below the microstrip line at the frequency defined for the slot and k an odd whole number.

    Sur la figure 4, on a représenté le coefficient de réflexion d'une structure telle que représentée sur la figure 3 avec les caractéristiques suivantes :
    R1 = 16,4 mm   WS1 = 0,4 mm   Im1 = 20 mm   f1 = 2,4 GHz
    R2 = 7,4 mm   WS2 = 0,4 mm   Im2 = 9,25 mm   f2 = 5,2 GHz
    In FIG. 4, the reflection coefficient of a structure as shown in FIG. 3 is shown with the following characteristics:
    R1 = 16.4 mm W S1 = 0.4 mm Im1 = 20 mm f1 = 2.4 GHz
    R2 = 7.4 mm W S2 = 0.4 mm Im2 = 9.25 mm f2 = 5.2 GHz

    Dans ce cas, la ligne microruban présente une largeur Wm = 0,3 mm et une longueur l'm = 20 mm. L'ensemble a été réalisé sur un substrat R4003 (εr = 3,38, h = 0,81 mm).In this case, the microstrip line has a width Wm = 0.3 mm and a length l'm = 20 mm. The whole was done on a substrate R4003 (εr = 3.38, h = 0.81 mm).

    Les résultats de la simulation obtenus avec la structure ci-dessus sont représentés sur la figure 4. On note ainsi le fonctionnement bi-fréquences de la nouvelle topologie avec une très bonne adaptation à 2,4 GHz (S11 = -22dB) et un S11 tout à fait correct à 5,2 GHz (S11 = -12dB).The results of the simulation obtained with the above structure are shown in Figure 4. We thus note the dual-frequency operation new topology with very good adaptation to 2.4 GHz (S11 = -22dB) and a perfectly correct 5.2 GHz S11 (S11 = -12dB).

    D'autre part, avec la structure ci-dessus, on observe ainsi que le rayonnement à 2,4 GHz est semblable à celui de la fente seule et parfaitement symétrique. A 5,2 GHz, on note une légère dissymétrie du rayonnement mais qui reste très limitée.On the other hand, with the above structure, we observe that the 2.4 GHz radiation is similar to that of the slot alone and perfectly symmetrical. At 5.2 GHz, there is a slight asymmetry of the influence but which remains very limited.

    Sur la figure 5, on a représenté un mode de réalisation fonctionnant en tribandes. Dans ce cas, trois fentes annulaires 21, 22, 23 fonctionnant à des fréquences fondamentales f1, f2, f3 sont alimentées par une même ligne microruban 20. Les fentes sont réalisées en utilisant les règles de conception données ci-dessus. Ainsi le rayon de chaque fente annulaire est tel que Ri ( i= 1,2,3) =λsi/2Π où λsi est la longueur d'onde de chaque fente. De même, les plans de court-circuit sont positionnés de telle sorte que Im3= k(λ3/4), Im2=k(λ2/4) et Im1=k(λ1//4) où λ1, λ2, λ3 sont respectivement les longueurs d'onde sous la ligne microruban aux fréquences f1, f2 et f3 et où k est un entier impair. La longueur l'm est utilisée pour l'adaptation à 50Ω.In Figure 5, there is shown an embodiment operating in tribandes. In this case, three annular slots 21, 22, 23 operating at fundamental frequencies f1, f2, f3 are powered by the same microstrip line 20. The slits are made using the design rules given above. So the radius of each slot annular is such that Ri (i = 1,2,3) = λsi / 2Π where λsi is the wavelength of each slot. Similarly, the short-circuit planes are positioned in such a way so that Im3 = k (λ3 / 4), Im2 = k (λ2 / 4) and Im1 = k (λ1 // 4) where λ1, λ2, λ3 are respectively the wavelengths under the microstrip line at frequencies f1, f2 and f3 and where k is an odd integer. The length l'm is used for adaptation to 50Ω.

    Sur les figures 6a, 6b et 6c, on a représenté un autre mode de réalisation d'une antenne planaire conforme à la présente invention. Dans le cas des figures 6a et 6b, les deux fentes annulaires R'1 et R'2 viennent se confondre en un point. Elles sont dimensionnées pour fonctionner à des fréquences voisines. Ainsi, comme représenté sur la figure 6a, l'antenne comporte deux fentes annulaires R'1 et R'2 cotangentes au point A.In FIGS. 6a, 6b and 6c, another mode of production of a planar antenna in accordance with the present invention. In the case of Figures 6a and 6b, the two annular slots R'1 and R'2 come confuse in one point. They are sized to operate at neighboring frequencies. Thus, as shown in FIG. 6a, the antenna has two annular slots R'1 and R'2 cotangent at point A.

    Dans ce mode de réalisation, les deux fentes R'1 et R'2 sont alimentées par une ligne commune sur le côté du point A. Les deux fentes se trouvent sensiblement dans un plan de court-circuit de la ligne d'alimentation et les longueurs l'm et I'm' sont choisies de tette sorte que l'm égale à kλ'm/4 où λ'm est la longueur d'onde sous la ligne microruban et k un nombre entier impair et l'm' permet l'adaptation à 50Ω.In this embodiment, the two slots R'1 and R'2 are supplied by a common line on the side of point A. The two slots lie substantially in a line short-circuit plane feed and lengths l'm and I'm 'are chosen from tette so that l'm equal to kλ'm / 4 where λ'm is the wavelength under the microstrip line and k an odd whole number and l'm 'allows adaptation to 50Ω.

    Selon le mode de réalisation de la figure 6b, les deux fentes annulaires sont cotangentes au point B et sont alimentées par une ligne d'alimentation du côté opposé au point B.According to the embodiment of Figure 6b, the two slots annulars are cotangent at point B and are supplied by a line supply side opposite point B.

    Dans ce cas, les longueurs I"m2 et I"m1 sont choisies pour que les fentes R'1 et R'2 se trouvent sensiblement dans un plan de court-circuit de la ligne d'alimentation. La longueur I"m' est choisie pour réaliser l'adaptation à 50Ω. Dans le cas de la figure 6c, les deux fentes annulaires R'1 et R'2 sont concentriques. Elles sont alimentées par une ligne d'alimentation commune en technologie microruban par exemple. Dans ce cas, les longueurs Im1 et Im2 sont choisies pour que les fentes R'1 et R'2 se trouvent proche d'un plan de court-circuit de la ligne et lm' permet l'adaptation à 50Ω.In this case, the lengths I "m2 and I" m1 are chosen so that the slots R'1 and R'2 lie substantially in a short-circuit plane of the power line. The length I "m 'is chosen to realize adaptation to 50Ω. In the case of FIG. 6c, the two annular slots R'1 and R'2 are concentric. They are supplied by a line common power supply in microstrip technology for example. In this case, the lengths Im1 and Im2 are chosen so that the slots R'1 and R'2 are find close to a line short circuit plan and lm 'allows adaptation to 50Ω.

    L'étude des différentes topologies décrites ci-dessus a été réalisée à l'aide d'un logiciel de simulation connu sous la référence IE3D. Dans tous les cas, la taille du plan de masse et du substrat est supposée infinie. Les caractéristiques géométriques des différentes configurations testées sont présentées dans le tableau ci-après. On note ainsi que l'utilisation des topologies multi-fentes s'accompagne d'une augmentation notable de la bande passante. Celle-ci passe en effet de 380MHz pour la fente simple, à 470MHz et 450MHz pour les structures doubles fentes concentriques et imbriquées. Caractéristiques géométriques et électromagnétiques des antennes Type d'antenne Dimension des fentes (mm) Caractéristiques de la ligne microruban (mm) Fréquence (GHz) Bande passante -10dB (MHz) Fente simple R=6,5 Im=8,25 5,88 380 (6,55%) 2 fentes
    concentriques
    R'1=7,1
    R'2=6,5
    Im1=9,1 - Im2=8,25-Im'=8,8 5,84 470 (8%)
    3 fentes
    concentriques
    R1=7,1
    R2=6,5
    R3=7,7
    I'm1=9,15 - I'm2=8,55
    I'm3=9,75
    I"m=8,8
    5,8 550 (9,8%)
    2 fentes
    imbriquées côté opposé à la ligne d'alimentation
    R'1=7,1
    R'2 = 6,5
    I"m1=9,15 - I"m2=7,95-I"m'=8,25 5,72 450 (7,8%)
    3 fentes
    imbriquées
    R1=7,1
    R2=6,5
    R3=7,7
    I"m1=9,15 - I"m2=7,95
    I"m3=10,34
    I"m'=8,25
    5,59 500 (8,9%)
    The study of the different topologies described above was carried out using simulation software known under the reference IE3D. In all cases, the size of the ground plane and the substrate is assumed to be infinite. The geometric characteristics of the different configurations tested are presented in the table below. It is thus noted that the use of multi-slot topologies is accompanied by a notable increase in bandwidth. This goes from 380MHz for the single slot, to 470MHz and 450MHz for the concentric and nested double slot structures. Geometric and electromagnetic characteristics of antennas Type of antenna Slot size (mm) Characteristics of the microstrip line (mm) Frequency (GHz) Bandwidth -10dB (MHz) Single slot R = 6.5 Im = 8.25 5.88 380 (6.55%) 2 slots
    concentric
    R '1 = 7.1
    R'2 = 6.5
    Im1 = 9.1 - Im2 = 8.25-Im '= 8.8 5.84 470 (8%)
    3 slots
    concentric
    R1 = 7,1
    R2 = 6.5
    R3 = 7,7
    I'm1 = 9.15 - I'm2 = 8.55
    I'm3 = 9.75
    I "= 8.8 m
    5.8 550 (9.8%)
    2 slots
    nested opposite side of supply line
    R '1 = 7.1
    R'2 = 6.5
    I "m1 = 9.15 - I" m2 = 7.95-I "m '= 8.25 5.72 450 (7.8%)
    3 slots
    nested
    R1 = 7,1
    R2 = 6.5
    R3 = 7,7
    I "m1 = 9.15 - I" m2 = 7.95
    I "m3 = 10.34
    I "m '= 8.25
    5.59 500 (8.9%)

    Elle peut être encore augmentée par addition d'une troisième fente. On obtient alors une bande de l'ordre de 9% contre 6,55% pour la fente seule. Dans tous les cas, le maximum de bande est obtenu avec la configuration de fentes concentriques. Cette topologie fait toutefois apparaítre une résonance parasite à 1 GHz en dessous de la fréquence de fonctionnement de la structure (voir Figure 7). Ce n'est pas le cas pour la configuration en fentes imbriquées qui pourrait alors être préférée aux fentes concentriques suivant les contraintes spectrales imposées par l'application. Du point de vue du rayonnement, les différentes topologies conservent des diagrammes et des rendements classiquement obtenus avec une fente annulaire simple.It can be further increased by adding a third slot. We then obtain a band of the order of 9% against 6.55% for the lunge alone. In all cases, the maximum band is obtained with the configuration of concentric slots. However, this topology appear a parasitic resonance at 1 GHz below the frequency of operation of the structure (see Figure 7). This is not the case for the nested slot configuration which could then be preferred to slots concentric according to the spectral constraints imposed by the application. From the point of view of radiation, the different topologies retain diagrams and yields conventionally obtained with a slot simple ring finger.

    Ainsi, le caractère large bande des structures multi-fentes a été validé sur les nouvelles topologies décrites ci-dessus. Le rayonnement n'est pas perturbé par les agencements proposés. La topologie la plus efficace en terme de bande correspond à une configuration de fentes concentriques. Cette dernière fait cependant apparaítre une fréquence de résonance parasite. Ce n'est pas le cas pour la topologie multi-fentes imbriquées. Bien que celle-ci ne soit pas aussi large bande que la solution concentrique, elle permet tout de même d'obtenir des bandes de fréquences appréciables par rapport à la fente seule.Thus, the broadband character of multi-slot structures has been validated on the new topologies described above. The radiation is not disturbed by the proposed arrangements. The most efficient topology in strip term corresponds to a configuration of concentric slots. The latter however shows a resonant frequency parasite. This is not the case for the nested multi-slot topology. Well that this is not as broad as the concentric solution, it still allows to obtain appreciable frequency bands by compared to the slot alone.

    On décrira maintenant avec référence aux figures 8a,8b,8c, différents modes de réalisation des fentes. Sur la figure 8a, la fente est constituée par un carré 30 alimenté par une ligne 31. Sur la figure 8b, la fente 1 est circulaire. Elle est alimentée par une ligne 2 et elle rayonne une onde polarisée linéairement. Sur la figure 8c, la fente circulaire 1' est munie d'encoches 1". Elle est alimentée par une ligne 2. Dans ce cas, la fente rayonne une polarisation circulaire qui peut être gauche ou droite suivant le positionnement de la ligne d'alimentation. Il est évident pour l'homme de l'art que quelle que soit la forme de la fente, elle doit respecter les règles de conception données ci-dessus. De manière générale, la fente doit être symétrique par rapport à un point et présenter une longueur telle qu'elle rayonne à la fréquence fondamentale choisie.
    La présente invention a été décrite avec des lignes d'alimentation réalisées en technologie microruban, toutefois les lignes peuvent être réalisées en technologie coplanaire.
    We will now describe with reference to Figures 8a, 8b, 8c, different embodiments of the slots. In FIG. 8a, the slot is constituted by a square 30 supplied by a line 31. In FIG. 8b, the slot 1 is circular. It is supplied by a line 2 and it radiates a linearly polarized wave. In FIG. 8c, the circular slot 1 'is provided with notches 1 ". It is fed by a line 2. In this case, the slot radiates a circular polarization which can be left or right depending on the positioning of the line. It is obvious to a person skilled in the art that whatever the shape of the slit, it must comply with the design rules given above. In general, the slit must be symmetrical with respect to a point and present a length such that it radiates at the chosen fundamental frequency.
    The present invention has been described with supply lines produced in microstrip technology, however the lines can be produced in coplanar technology.

    Claims (7)

    1. Multiband planar antenna of the type comprising on a substrate a first slot (10) of the slot annular type or of symmetrical shape with respect to a point, the perimeter of which is dimensioned (R1,R'1) to operate at a first frequency f1, characterized in that it comprises at least one second slot (11) of the slot annular type or of symmetrical shape with respect to a point, the perimeter of which is dimensioned (R2,R'2) to operate at a second frequency f2, and overlapped in said first slot (10), the first and the second slot being fed by a common feed line (12) (Im1,Im2 ; I'm; I'm1,I'm2) positioned in a way that it crosses each slot in a short-circuit plane of the feed line.
    2. Antenna according to Claim 1, characterized in that it comprises N overlapped slots (21,22,23) of the slot annular type or of symmetrical shape with respect to a point, the perimeter of each slot being dimensioned to operate at a frequency fi with i varying from 1 to N, each slot being fed by the said feed line (20) in such a way as to lie in a short-circuit plane of the feed line.
    3. Antenna according to Claim 1, characterized in that the slots (R'1,R'2) are cotangent at a point with a feed situated at this point or at the diametrically opposite point.
    4. Antenna according to Claim 1, characterized in that the slots are concentric.
    5. Antenna according to one of Claims 1 to 4, characterized in that the slots are furnished with means (1") allowing the radiation of a circularly polarized wave.
    6. Antenna according to Claim 5, characterized in that the means consist of notches made in the slot.
    7. Antenna according to one of Claims 1 to 6, characterized in that the feed line is a microstrip line or a line made in coplanar technology.
    EP01954073A 2000-07-13 2001-07-11 Multiband planar antenna Expired - Lifetime EP1299923B1 (en)

    Priority Applications (1)

    Application Number Priority Date Filing Date Title
    EP01954073A EP1299923B1 (en) 2000-07-13 2001-07-11 Multiband planar antenna

    Applications Claiming Priority (6)

    Application Number Priority Date Filing Date Title
    FR0009378 2000-07-13
    FR0009378 2000-07-13
    EP00460072 2000-12-19
    EP00460072 2000-12-19
    EP01954073A EP1299923B1 (en) 2000-07-13 2001-07-11 Multiband planar antenna
    PCT/FR2001/002233 WO2002007261A1 (en) 2000-07-13 2001-07-11 Multiband planar antenna

    Publications (2)

    Publication Number Publication Date
    EP1299923A1 EP1299923A1 (en) 2003-04-09
    EP1299923B1 true EP1299923B1 (en) 2004-10-13

    Family

    ID=26073646

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01954073A Expired - Lifetime EP1299923B1 (en) 2000-07-13 2001-07-11 Multiband planar antenna

    Country Status (11)

    Country Link
    US (1) US6914574B2 (en)
    EP (1) EP1299923B1 (en)
    JP (1) JP5010794B2 (en)
    KR (1) KR100777792B1 (en)
    CN (1) CN100358183C (en)
    AT (1) ATE279795T1 (en)
    AU (1) AU2001276428A1 (en)
    DE (1) DE60106452T2 (en)
    ES (1) ES2230344T3 (en)
    MX (1) MXPA02012930A (en)
    WO (1) WO2002007261A1 (en)

    Families Citing this family (40)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    USD666178S1 (en) 2008-02-29 2012-08-28 Antennas Direct, Inc. Antenna
    US7839347B2 (en) * 2007-12-05 2010-11-23 Antennas Direct, Inc. Antenna assemblies with tapered loop antenna elements and reflectors
    USD868045S1 (en) 2008-02-29 2019-11-26 Antennas Direct, Inc. Antenna
    USD809490S1 (en) 2008-02-29 2018-02-06 Antennas Direct, Inc. Antenna
    US7609222B2 (en) * 2007-12-05 2009-10-27 Antennas Direct, Inc. Antenna assemblies with antenna elements and reflectors
    US10957979B2 (en) 2018-12-06 2021-03-23 Antennas Direct, Inc. Antenna assemblies
    US8368607B2 (en) * 2007-12-05 2013-02-05 Antennas Direct, Inc. Antenna assemblies with antenna elements and reflectors
    USD881172S1 (en) 1975-11-03 2020-04-14 Antennas Direct, Inc. Antenna and base stand
    US20140292597A1 (en) 2007-12-05 2014-10-02 Antennas Direct, Inc. Antenna assemblies with tapered loop antenna elements
    USD867347S1 (en) 2008-02-29 2019-11-19 Antennas Direct, Inc. Antenna
    FR2833764B1 (en) * 2001-12-19 2004-01-30 Thomson Licensing Sa DEVICE FOR RECEIVING AND / OR TRANSMITTING CIRCULARLY POLARIZED ELECTROMAGNETIC SIGNALS
    FR2840456A1 (en) * 2002-05-31 2003-12-05 Thomson Licensing Sa IMPROVEMENT TO SLOT PLANAR ANTENNAS
    FR2861222A1 (en) * 2003-10-17 2005-04-22 Thomson Licensing Sa Dual-band planar antenna for use in wireless mobile network, has outer and inner annular slots supplied by two common supply line that cuts across slots in directions of respective protrusions
    FR2866987A1 (en) * 2004-03-01 2005-09-02 Thomson Licensing Sa MULTIBAND PLANAR ANTENNA
    JP2006033652A (en) * 2004-07-21 2006-02-02 Japan Radio Co Ltd Multi-band antenna
    JP4325532B2 (en) * 2004-10-19 2009-09-02 日立電線株式会社 Antenna, manufacturing method thereof, and wireless terminal using the antenna
    US7659860B2 (en) * 2004-12-27 2010-02-09 Telefonaktiebolaget L M Ericsson (Publ) Triple polarized slot antenna
    KR100781933B1 (en) * 2005-12-16 2007-12-04 주식회사 이엠따블유안테나 Single layer dual band antenna with circular polarization and single feed point
    FR2903216A1 (en) * 2006-06-28 2008-01-04 Thomson Licensing Sa IMPROVING DATA MEDIA SUCH AS OPTICAL MEDIA
    US20080291345A1 (en) * 2007-05-23 2008-11-27 Antennas Direct, Inc. Picture frame antenna assemblies
    KR100932008B1 (en) * 2007-07-04 2009-12-15 전남대학교산학협력단 CPU Feed Slot Antenna with Dual Resonance Characteristics
    US7990335B2 (en) * 2007-12-05 2011-08-02 Antennas Direct, Inc. Antenna assemblies with antenna elements and reflectors
    US11929562B2 (en) 2007-12-05 2024-03-12 Antennas Direct, Inc. Antenna assemblies with tapered loop antenna elements
    US7710302B2 (en) * 2007-12-21 2010-05-04 International Business Machines Corporation Design structures and systems involving digital to analog converters
    US7868809B2 (en) * 2007-12-21 2011-01-11 International Business Machines Corporation Digital to analog converter having fastpaths
    USD815073S1 (en) * 2008-02-29 2018-04-10 Antennas Direct, Inc. Antenna
    USD804459S1 (en) 2008-02-29 2017-12-05 Antennas Direct, Inc. Antennas
    USD883264S1 (en) 2008-02-29 2020-05-05 Antennas Direct, Inc. Antenna
    USD920962S1 (en) 2008-02-29 2021-06-01 Antennas Direct, Inc. Base stand for antenna
    USD883265S1 (en) * 2008-02-29 2020-05-05 Antennas Direct, Inc. Antenna
    US8542153B2 (en) 2009-11-16 2013-09-24 Skyware Antennas, Inc. Slot halo antenna device
    US8797227B2 (en) 2009-11-16 2014-08-05 Skywave Antennas, Inc. Slot halo antenna with tuning stubs
    USD664126S1 (en) 2010-08-26 2012-07-24 Antennas Direct, Inc. Antenna
    JP6480751B2 (en) * 2015-02-18 2019-03-13 パナソニック株式会社 Array antenna device
    USD827620S1 (en) 2015-10-08 2018-09-04 Antennas Direct, Inc. Antenna element
    US10128575B2 (en) 2015-09-02 2018-11-13 Antennas Direct, Inc. HDTV antenna assemblies
    USD824884S1 (en) 2015-10-08 2018-08-07 Antennas Direct, Inc. Antenna element
    US9761935B2 (en) 2015-09-02 2017-09-12 Antennas Direct, Inc. HDTV antenna assemblies
    USD811752S1 (en) 2015-10-08 2018-03-06 Antennas Direct, Inc. Picture frame antenna
    KR102557031B1 (en) * 2018-12-28 2023-07-19 삼성전자주식회사 Antenna module using metal bezel and electronic device including thereof

    Family Cites Families (12)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
    JPH01189208A (en) * 1988-01-22 1989-07-28 Sony Corp Microstrip antenna
    US4947178A (en) * 1988-05-02 1990-08-07 Lotfollah Shafai Scanning antenna
    JPH0229007A (en) * 1988-07-18 1990-01-31 Mitsubishi Electric Corp Antenna system
    EP0407145B1 (en) * 1989-07-06 1994-12-14 Harada Industry Co., Ltd. Broad band mobile telephone antenna
    FR2651926B1 (en) * 1989-09-11 1991-12-13 Alcatel Espace FLAT ANTENNA.
    ES2021522A6 (en) 1990-04-20 1991-11-01 Consejo Superior Investigacion microstrip radiator for circular polarization free of welds and floating potentials.
    FR2672437B1 (en) * 1991-02-01 1993-09-17 Alcatel Espace RADIANT DEVICE FOR FLAT ANTENNA.
    EP0632523B1 (en) * 1993-07-01 1999-03-17 Commonwealth Scientific And Industrial Research Organisation A planar antenna
    FR2725561B1 (en) 1994-10-10 1996-11-08 Thomson Consumer Electronics INTEGRATED MULTIPLE SOURCE ANTENNA SYSTEM WITH LOW NOISE FREQUENCY CONVERTER
    JPH11215218A (en) * 1998-01-21 1999-08-06 Matsushita Electric Ind Co Ltd Portable radio communication equipment
    FR2866987A1 (en) * 2004-03-01 2005-09-02 Thomson Licensing Sa MULTIBAND PLANAR ANTENNA

    Also Published As

    Publication number Publication date
    WO2002007261A1 (en) 2002-01-24
    AU2001276428A1 (en) 2002-01-30
    US6914574B2 (en) 2005-07-05
    MXPA02012930A (en) 2003-10-14
    ATE279795T1 (en) 2004-10-15
    ES2230344T3 (en) 2005-05-01
    EP1299923A1 (en) 2003-04-09
    US20040090379A1 (en) 2004-05-13
    KR100777792B1 (en) 2007-11-22
    JP2004504747A (en) 2004-02-12
    KR20030016320A (en) 2003-02-26
    DE60106452D1 (en) 2004-11-18
    JP5010794B2 (en) 2012-08-29
    DE60106452T2 (en) 2006-02-02
    CN1441981A (en) 2003-09-10
    CN100358183C (en) 2007-12-26

    Similar Documents

    Publication Publication Date Title
    EP1299923B1 (en) Multiband planar antenna
    EP1081849B1 (en) Dual band amplifier circui and radio frequency receiving unit
    EP0888647B1 (en) Helix antenna with a built-in broadband power supply, and manufacturing methods therefor
    EP1849213B1 (en) Multiband printed dipole antenna
    EP2345104B1 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
    EP1805848B1 (en) Multiband printed helical slot antenna
    FR3070224A1 (en) PLATED ANTENNA HAVING TWO DIFFERENT RADIATION MODES WITH TWO SEGREGATED WORK FREQUENCIES, DEVICE USING SUCH ANTENNA
    FR2752646A1 (en) PLANE PRINTED ANTENNA WITH OVERLAPPING ELEMENTS SHORT CIRCUITS
    WO2015140127A1 (en) Frequency-tunable planar antenna supplied with power via a slot, and satellite-based positioning receiver including such an antenna
    FR2727250A1 (en) MONOPOLY BROADBAND ANTENNA IN UNIPLANAR PRINTED TECHNOLOGY AND TRANSMITTING AND / OR RECEIVING DEVICE INCORPORATING SUCH ANTENNA
    EP3146593B1 (en) Antenna system for reducing the electromagnetic coupling between antennas
    EP0604338A1 (en) Space-saving broadband antenna with corresponding transceiver
    FR2966986A1 (en) RADIANT ELEMENT OF ANTENNA
    WO2002054538A1 (en) Multiband antenna for mobile appliances
    EP2643886B1 (en) Planar antenna having a widened bandwidth
    EP0888648B1 (en) Helical antenna with built-in duplexing means, and manufacturing methods therefore
    FR2760132A1 (en) ANTENNA SUPPLIED BY SIDE-BY-SIDE COILS FOR A PORTABLE RADIO SET
    EP1540768B1 (en) Broadband helical antenna
    FR2866987A1 (en) MULTIBAND PLANAR ANTENNA
    FR2833764A1 (en) Domestic wire less transmission wide frequency band circular polarization transmitter/receiver having feed line annular slot antenna connected and feed line two points connected.
    FR2861222A1 (en) Dual-band planar antenna for use in wireless mobile network, has outer and inner annular slots supplied by two common supply line that cuts across slots in directions of respective protrusions
    EP2879234B1 (en) Electronic apparatus with radio antenna folded in a housing
    FR2949611A1 (en) SELF-DIRECTIVE CIRCULAR POLARIZATION ANTENNA
    FR2958805A1 (en) Compact planar antenna for e.g. nomad or mobile terminals, has slot supplied with power by supply line, and variable capacitance elements mounted between supply line and end of slot radiator
    EP1226626A1 (en) Printed antenna with an enlarged bandwidth and a low level of cross polarisation, and corresponding antenna network

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20030106

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17Q First examination report despatched

    Effective date: 20030725

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041013

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041013

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041013

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041013

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041013

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60106452

    Country of ref document: DE

    Date of ref document: 20041118

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050113

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050113

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050113

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050110

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20041013

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2230344

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050711

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050714

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: S.A. *THOMSON LICENSING

    Effective date: 20050731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050313

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20150611

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20150728

    Year of fee payment: 15

    Ref country code: DE

    Payment date: 20150723

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150720

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150727

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60106452

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170201

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160711

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160712

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20180628