EP1849213B1 - Multiband printed dipole antenna - Google Patents

Multiband printed dipole antenna Download PDF

Info

Publication number
EP1849213B1
EP1849213B1 EP06709478A EP06709478A EP1849213B1 EP 1849213 B1 EP1849213 B1 EP 1849213B1 EP 06709478 A EP06709478 A EP 06709478A EP 06709478 A EP06709478 A EP 06709478A EP 1849213 B1 EP1849213 B1 EP 1849213B1
Authority
EP
European Patent Office
Prior art keywords
dipole
leg
antenna
dipoles
strands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06709478A
Other languages
German (de)
French (fr)
Other versions
EP1849213A1 (en
Inventor
Patrice Brachat
Philippe Ratajczak
Frédéric DEVILLERS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1849213A1 publication Critical patent/EP1849213A1/en
Application granted granted Critical
Publication of EP1849213B1 publication Critical patent/EP1849213B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system

Definitions

  • the present invention relates to a multi-band printed dipole antenna for a telecommunications signal reception and / or transmission network capable of radiating radio fields in several frequency bands.
  • Such an antenna is for example intended to operate in a first frequency band of a cellular radio communication network according to the DCS-1800 standard and / or of the CDMA type and in a second frequency band for a cellular radio communication system according to the standard GSM-900.
  • the invention can also be applied to the field of measurement probes.
  • a printed antenna comprises a t-shaped conductor element which extends over the upper portion of a dielectric substrate and which has an axial slot separating two radiating strands from the tee.
  • the conductive element is fed by a coaxial feed line extending on the underside of the substrate.
  • This dipole uses the principle of double stub adaptation and a wide frequency band.
  • multiband operation can be achieved by introducing localized elements, by series supply of several dipoles or by deformation of a main strand.
  • the antenna described in the above-mentioned patent and article provides only one frequency band operation, and all the above-mentioned solutions have the disadvantage of having narrowband multifrequency operation.
  • a multiband printed dipole antenna according to the invention comprises first and second dipoles supported by a dielectric substrate and each having a manner known from the French patent. 2,713,020 a t-shaped conductive element comprising a leg and two radiating strands separated by a coupling slot in the leg, and a feeding line which may extend substantially parallel to the leg.
  • the invention improves it by the presence of a second dipole whose leg and strands are respectively longer than the leg and the strands. of the first dipole.
  • the antenna according to the invention is characterized by a superposition of the leg of the first dipole and a base of the leg of the second dipole, an alignment of the coupling slots, and a decoupling notch formed in the leg of the second dipole and in which the coupling slot of the first dipole opens by superposition.
  • the notch in the second dipole has a bottom substantially aligned with the slot of the first dipole.
  • the antenna according to the invention is very compact while providing operation in different frequency bands.
  • the antenna can reach a stationary wave rate of less than 2 over more than 50% of the bandwidth in each of the bands.
  • the first dipole radiates in the frequency bands of DCS-1800, UMTS and WLAN networks and the second dipole in the GSM-900 network frequency band.
  • the antenna according to the invention retains the bandwidth performance of the known antenna according to the French patent 2,713,020 and offers a considerable space saving due to the superposition of the two dipoles, the thickness of the antenna being negligible in front of the length or the width thereof.
  • the decoupling notch discovers by completely superimposing the coupling slot of the first dipole, and the dielectric substrate comprises two dielectric layers and the dipole supply lines extend between faces facing the two dielectric layers, or the dielectric substrate comprises for each dipole a dielectric layer having faces respectively supporting the feed line and the conductive element of the dipole, and a dielectric layer extending between the layers supporting the dipoles .
  • the conductive elements of the dipoles extend on a common face of the dielectric substrate, the leg of the first dipole and the base of the leg of the second dipole are merged, and the supply lines extend on the other side of the dielectric substrate.
  • This embodiment has the advantage of having a single substrate, which provides space saving and less space.
  • a metal plane may extend perpendicularly to the faces of the substrate, the dipole having the strands farthest from the metal plane operating at the lowest frequencies.
  • the invention also relates to an antenna array comprising a plurality of antennas, each printed antenna being supported by a dielectric substrate and comprising first and second dipoles each having a t-shaped conducting element and comprising a leg and two radiating strands separated by a coupling slot formed in the leg, and a feeding line, the leg and the strands of the second dipole being respectively longer than the leg and the strands of the first dipole.
  • the network is characterized in that in each antenna, the leg of the first dipole and a base of the leg of the second dipole are superimposed, the coupling slots are aligned, and a decoupling notch is formed in the leg of the second dipole and the coupling slot of the first dipole opens by superposition in the decoupling notch, and the faces of the antenna substrates are parallel to each other and the coupling slots of the dipoles are oriented parallel.
  • a dual-band printed dipole antenna according to the first embodiment of the invention is described below in detail with reference to Figures 1 to 5 .
  • the antenna comprises two stacked rectangular dielectric substrate layers CS1 and CS2, and two superposed printed dipoles D1 and D2.
  • the dipoles radiate in different frequency bands BF1 and BF2 and therefore have different dimensions.
  • the first dipole D1 the smallest, extends on the lower face of the first layer CS1 and is intended to radiate in a first frequency band BF1, for example between 1.5 and 2.5 GHz approximately in order to to cover a band combining the DCS 1800, UMTS and WLAN bands.
  • the second dipole D2 extends on the upper face of the second layer CS2 and is intended to radiate in a second frequency band BF2 which is less than the first frequency band BF1 and understood as an example between 0.7 and Around 1.0 GHz to cover the GSM-900 band.
  • the supply lines LA1 and LA2 extend between the facing faces of the first and second dielectric layers CS1 and CS2.
  • the facing faces of the dielectric layers are the faces opposite to the faces on which the dipoles extend, and all the faces of the layers are parallel to each other.
  • the layers CS1 and CS2 are for example a Duroid substrate with a relative dielectric permittivity of 2.2 and a thickness of about 0.75 mm.
  • the layers CS1 and CS2 are in different relative dielectric permittivity substrates and / or have different thicknesses.
  • each dipole D1, D2 comprises a flat-shaped conductor element in the form of a tee comprising a leg J1, J2 and two lateral strands B1, B2 constituted by wings of the tee perpendicular to the leg and separated by an axially arranged coupling slot FC1, FC2 at the top of the leg.
  • the leg J1, J2 constitutes a ground plane for the corresponding feed line LA1, LA2.
  • the songs of the bases of the legs J1 and J2 are coplanar in a plane perpendicular to the layers, and the strands B2 of the largest dipole D2 are located in front of the strands B1 of the smaller dipole D2 in the direction of radiation.
  • the legs for example, have identical widths and collinear edges when viewed from above, as shown in FIGS. Figures 1 and 2 , the longest leg J2 covering the shorter leg J1 to confer a high compactness to the antenna.
  • the lateral strands B1, B2 constitute the radiating part of the conductive element.
  • the coupling slots FC1 and FC2 are of rectangular shape and very narrow, for example having a width of 0.5 mm.
  • the lateral strands B1, B2 of each dipole D1, D2 preferably have identical lengths.
  • the sum of the lengths of the strands is substantially equal to half the wavelength corresponding to the center frequency of the operating band of each dipole.
  • the strands B1 of the first dipole D1 are shorter than the strands B2 second dipole D2.
  • the length of the leg J1, J2 is equal to about half of said wavelength, although this length of the leg is less critical since it does not intervene in a dominant way in the radiation of the antenna.
  • the width of the legs J1, J2 is for example substantially double the width W1, W2 side strands B1, B2 so that the legs cover the feed lines LA1 and LA2 extending longitudinally between the legs.
  • the feed lines LA1 and LA2 extend parallel to the legs of the dipoles D1 and D2 and are printed with the triplate technology dipoles for which the legs J1 and J2 play the role of ground plane.
  • the supply line LA1 of the first dipole D1 extends on the leg J1 between an access end E11 and a U-shaped end E12 symmetrically to the line LA2 with respect to an axial longitudinal plane P of the common antenna. legs and coupling slots.
  • the access end E11 is located at the edge of the antenna and is to be connected by a connector to a first microwave signal generator for the BF1 band.
  • the U-shaped end E12 has a perpendicularly crossing core by superimposing the coupling slot FC1 and located axially under the birth of the strands B1 and is terminated by a short terminal branch extending substantially parallel to the coupling slot FC1 and near the LA2 power line.
  • the end E12 is folded in U towards the supply line LA2 of the second dipole in order to maintain a high compactness of the antenna, avoiding to discard the feed lines LA1 and LA2 juxtaposed parallel between the dielectric layers CS1 and CS2 and therefore to widen the legs J1 and J2, while ensuring efficient excitation of the B1 strand over which the other feed line LA2 and thus the two quarter-wave strands B1 coupled by a slit line FC1.
  • the length of the coupling slot FC1 and the dimensions of the U-shaped end E12 of the feed line LA1 are chosen in order to adapt the dipole D1 to a wide band BF1.
  • the feed line LA2 of the second dipole D2 extends under the leg J2 between an access end E21 and a right angled end E22, symmetrically to the line LA1.
  • the access end E21 is located at the edge of the antenna and connected by a connector to a second microwave signal generator for the BF2 band.
  • the U-shaped end E22 is terminated by a small rectilinear section situated axially under the birth of the strands B2, and crossing perpendicularly by superposing the coupling slot FC2 to extend also under the strand B2 of the same side of the axial longitudinal plane P of the antenna, and thus excite the two radiating strands B2 in quarter-wave stubs coupled by a slot line FC2.
  • a decoupling slot ED for example rectangular is provided in the leg J2 of the second dipole D2 ( figure 4 ) extending on the leg J1 of the first dipole D1 and beyond the top of the leg J1 including the coupling slot F1 of the first dipole D1.
  • the notch ED is formed in the edge of the leg J2 of the second dipole D2 closest to the feed line LA1 and discovers a portion of the line end E12 from the coupling slot FC1, and substantially the slot of FC1 coupling itself.
  • the notch ED completely overlaps the coupling slot FC1 and has a bottom which is located substantially in a plane perpendicular to the dielectric layers and containing the side of the coupling slot FC1 closest to the other line. LA2 power supply.
  • the decoupling notch ED decouples the ground plane constituted by the leg J2 of the second dipole D2 with respect to the coupling slot FC1 of the strands B1 of the first dipole D1 so that it can radiate.
  • the dipole antenna printed according to the first embodiment of the invention combines in a compact manner two superimposed and decoupled printed dipoles D1 and D2 respectively operating in the frequency bands BF1 and BF2, according to the principle of the double stub adaptation.
  • the printed dipole antenna typically extends over a maximum length of about 150 mm and a maximum width of about 150 mm, preferably respecting a square shape, and has a thickness of about 1.5 mm to provide a bulk minimum.
  • the printed dipole antenna described above has a stationary wave ratio of less than 2 over more than 50% bandwidth in each of the two frequency bands BF1 and BF2, and guarantees a decoupling level. better than -20 dB between E21 access for BF1 (GSM) and E11 for BF2 (DCS + UMTS + WLAN).
  • the feed lines LA1a and LA2a of the dipoles D1a and D2a of the antenna have a common access end E1, as shown in FIGS. Figures 6 and 7 .
  • the common access end E1 situated between the bases of the legs J1a J2a of the dipoles D1a, D2a is collinear with one LA2a of the supply lines, and the other supply line LA1a has a sinuous end for bypass the bottom of the decoupling slot FC1a
  • the Figures 8 and 9 illustrate the second embodiment of the antenna according to the invention.
  • the antenna feed is performed on separate layers.
  • the antenna comprises a third dielectric substrate layer CS3, the second layer CS2 extending between the first and third layers CS1 and CS3.
  • One D1b of the dipoles extends on the outer face of one CS1 of the first and third layers, and the other dipole extends between the two other layers CS2 and CS3.
  • the supply line LA1b relating to the first dipole D1b extends respectively between said one CS1 of the first and third layers CS1 and CS3 and the second intermediate layer CS2, on the leg J1b of the dipole D1b and under the leg J2b of the dipole D2b, and the feed line LA2b relative to the other dipole D2b extends on the outer face of the other CS3 of the first and third layers, on the legs J1b and J2b of the dipoles D1b and D2b.
  • the LA2b power line is printed in technology microstrip while the LA1b feed line is printed in triplate technology.
  • the second embodiment offers more decoupling between dipoles D1b and D2b but to the detriment of a thicker antenna compared to the first embodiment shown in FIGS. Figures 1 and 2 .
  • the conductive element of the dipole D1b and the feed line LA1b are interchanged, the conducting element of the dipole D1b being located between the layers CS1 and CS2 and the feed line LA1b being located under the layer CS1, the outside of the stack of layers, and / or the conductive element of the dipole D2b and the feed line LA2b are interchanged, the feed line LA2b being located between the layers CS3 and CS2 and the conductive element of dipole D2b being located on the CS3 layer, outside the stack of layers.
  • the Figures 10 and 11 illustrate the third embodiment of the antenna with dielectric structure monolayer and microstrip according to the invention.
  • the two printed dipoles D1c and D2c are etched on the same face of a single substrate S and the feed lines LA1c and LA2c are etched on the other side of the single substrate S.
  • the leg J1c of the smallest dipole D1c is used also an extreme portion of the leg J2c of the largest dipole D2c so that the legs J1c and J2c are coaxial and the bases of the legs J1c and J2c are merged on the access ends E11c and E21c feed lines LA1c and LA2c.
  • the decoupling notch EDc which can still be rectangular is practiced in the edge of the leg J2c of the second dipole D2c in front of the strand B1 on the line end E12c and located between this strand B1 and the bottom of the coupling slot FC2c.
  • the bottom of the notch EDc is set back with respect to the aligned slots FC1c and FC2c so that the coupling slot FC1c of the first dipole D1c opens into the notch EDc and the first dipole D1c can radiate.
  • a second coupling slot F1 similar to the first slot FC1c is formed axially in the base of the leg J1c opposite the first slot FC1c and collinearly to that and two slots F2 are provided at the end of a leg portion J2c of the dipole D2c located in front of the strand B1 under which the feed line LA1c and LA2c pass in order to form a narrowing of the leg J2c in a corner of the EDc notch to the width of the LA2c power line and above it.
  • the figure 12 presents an alternative embodiment comprising a metal ground plane PS extending perpendicularly to the faces of the substrate distributed in one, two or three layers and therefore to the flat conductive dipoles. It was assumed in the figure 12 that the antenna was in accordance with the first embodiment shown in figure 1 .
  • the ground plane PS serves as a means of reflection to remove a back radiation of the dipoles and direct the radiation forward of the dipoles opposite the floor plane PS, in the axial direction of the opening of the coupling slots FC1 and FC2.
  • the ground plane PS aims to increase the directivity of the antenna of the order of 2 dB, while maintaining broadband performance of the antenna.
  • the largest B2 strands of the antenna radiating at the lowest frequencies are the farthest from the ground plane PS.
  • the PS ground plane is located at a distance from the rear AC access side of the antenna by about one-third of the wavelength corresponding to the highest frequency of the operating band of the antenna and therefore frequency band BF1 of the smaller dipole.
  • the antenna is introduced into a metal cavity CV or a waveguide, as shown in dotted lines in the figure 12 , in order to obtain a frequency-doubled feed system in a guided structure.
  • the radio performance of the bi-band printed dipole antenna described above is maintained when a plurality of dual-band printed dipole antennas according to the invention are juxtaposed to form a frequency band network BF1 and BF2.
  • the figure 13 presents an example of a one-dimensional RE network of dipole antennas printed in two-band mode according to the first embodiment of the invention.
  • the network comprises a column of dual-band printed dipole antennas whose faces of the substrates are mutually parallel and preferably coplanar and whose axial planes P of coupling slots FC1, FC2 of the dipoles are oriented in parallel.
  • the antennas preferably have common substrate layers extending perpendicularly to a metal ground plane PS that can be the bottom of a cavity CV.
  • the LA1 feed lines of the dipoles D1 of all the antennas are connected to a first common access end and feed lines LA2 dipoles D2 of all the antennas are connected to a second common access end.
  • the first and second common access ends may be interconnected.
  • This network can constitute, for example, an antenna for a base station for the GSM, DCS and UMTS radiocommunication networks and a terminal for a WLAN network (IEEE 802.xx).
  • a base station for the GSM, DCS and UMTS radiocommunication networks and a terminal for a WLAN network (IEEE 802.xx).
  • IEEE 802.xx Depending on the orientation of the antenna, it has a directional diagram in elevation DE and a wide azimuth diagram DA for the two frequency bands BF1 and BF2.
  • a dual-polarization and two-frequency antenna array (not shown) consists of a first column of first dual-band printed dipole antennas which are oriented in the same way as in FIG. figure 13 and a second column of second dual-band printed dipole antennas which are oriented in the same fashion and perpendicular to the orientation of the first antennas.
  • the dipoles D1 and D2 of the first column radiate an electric field polarized and crossed perpendicularly with the electric field radiated respectively by the dipoles D1 and D2 of the second column for respective operations in the first common frequency band BF1 and the second band of common frequency BF2.
  • the dual polarization and thus two-dimensional network may comprise several parallel columns alternating on a plane.
  • the antenna according to the invention can be extended to a structure multiband by introducing as many dipole levels as desired operating bands, and as many dielectric layers as desired operating bands for the first embodiment, or as many pairs of dielectric layers as desired operating bands for the second embodiment, or as many dipoles as desired operating bands for the third embodiment. It is then necessary that one or more decoupling notches are formed in the legs of the dipoles of the upper levels so that they do not cover the coupling slots of the dipoles of the lower levels.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Superheterodyne Receivers (AREA)
  • Structure Of Receivers (AREA)

Abstract

The invention relates to a printed antenna comprising a dielectric substrate (CS 1 , CS 2 ) supporting feeder lines (LA 1 , LA 2 ) and first and second T-shaped dipoles (D 1 , D 2 ) of different sizes for dual-band operation. Each dipole includes a stem (J 1 , J 2 ) and two radiating arms (B 1 , B 2 ) separated by a coupling slot (FC 1 , FC 2 ) made in the stem. For compactness of the antenna, the stems are partly superimposed, the coupling slots are aligned and a decoupling cut-out (ED) is made in the second dipole so as to uncover the coupling slot of the first dipole, by virtue of their superposition. The substrate can comprise one, two or three layers. Plural antennas can constitute an antenna network used as a base element in one-dimensional or two-dimensional network.

Description

La présente invention concerne une antenne dipôle imprimée multibande pour un réseau de réception et/ou d'émission de signaux de télécommunications, capable de rayonner des champs radioélectriques dans plusieurs bandes de fréquence.The present invention relates to a multi-band printed dipole antenna for a telecommunications signal reception and / or transmission network capable of radiating radio fields in several frequency bands.

Une telle antenne est par exemple destinée à fonctionner dans une première bande de fréquence d'un réseau cellulaire de radiocommunications selon la norme DCS-1800 et/ou du type CDMA et dans une deuxième bande de fréquence pour un système cellulaire de radiocommunications selon la norme GSM-900. L'invention peut s'appliquer également au domaine des sondes de mesure.Such an antenna is for example intended to operate in a first frequency band of a cellular radio communication network according to the DCS-1800 standard and / or of the CDMA type and in a second frequency band for a cellular radio communication system according to the standard GSM-900. The invention can also be applied to the field of measurement probes.

Selon le brevet français 2 713 020 et l'article intitulé «T Dipole Arrays for Mobile Applications » de Christian Sabatier, IEEE Antennas and Propagation Magazine, Vol. 45, No. 6, Décembre 2003, pages 9 à 26 , une antenne imprimée comprend un élément conducteur en forme de té qui s'étend sur la partie supérieure d'un substrat diélectrique et qui a une fente axiale séparant deux brins rayonnants du té. L'élément conducteur est alimenté par une ligne d'alimentation coaxiale s'étendant sur la face inférieure du substrat. Ce dipôle utilise le principe de l'adaptation double stub et une large bande de fréquence.According to the French patent 2,713,020 and the article entitled "T Dipole Arrays for Mobile Applications" by Christian Sabatier, IEEE Antennas and Propagation Magazine, Vol. 45, No. 6, December 2003, pages 9 to 26 , a printed antenna comprises a t-shaped conductor element which extends over the upper portion of a dielectric substrate and which has an axial slot separating two radiating strands from the tee. The conductive element is fed by a coaxial feed line extending on the underside of the substrate. This dipole uses the principle of double stub adaptation and a wide frequency band.

Le document US 6,094,176 décrit une antenne à réseaux de dipôles compacte Log-périodique planaire à bande large où les éléments d'antenne sont formés sur deux substrats.The document US 6,094,176 discloses a broad band planar periodic log-periodic dipole array antenna where the antenna elements are formed on two substrates.

Il est connu par ailleurs des antennes multibande qui associent par couplage des brins supplémentaires dans le même plan qu'un brin principal.It is also known multiband antennas that associate by coupling additional strands in the same plane as a main strand.

D'autres types de fonctionnement multibande peuvent être obtenus par l'introduction de filtres à éléments localisés, par alimentation en série de plusieurs dipôles ou par déformation d'un brin principal.Other types of multiband operation can be achieved by introducing localized elements, by series supply of several dipoles or by deformation of a main strand.

L'antenne décrite dans le brevet et l'article précités n'offre qu'un fonctionnement dans une seule bande de fréquence, et toutes les solutions précitées présentent l'inconvénient d'avoir un fonctionnement multifréquence à bande étroite.The antenna described in the above-mentioned patent and article provides only one frequency band operation, and all the above-mentioned solutions have the disadvantage of having narrowband multifrequency operation.

La présente invention a pour objectif de concevoir une antenne dipôle imprimée multibande compacte et fonctionnant dans au moins deux bandes de fréquence.It is an object of the present invention to provide a compact multi-band printed dipole antenna operating in at least two frequency bands.

Une antenne dipôle imprimé multibande selon l'invention comprend des premier et deuxième dipôles supportés par un substrat diélectrique et ayant chacun d'une manière connue par le brevet français 2 713 020 , un élément conducteur en forme de té, comprenant une jambe et deux brins rayonnants séparés par une fente de couplage ménagée dans la jambe, et une ligne d'alimentation qui peut s'étendre en majeure partie parallèlement à la jambe.A multiband printed dipole antenna according to the invention comprises first and second dipoles supported by a dielectric substrate and each having a manner known from the French patent. 2,713,020 a t-shaped conductive element comprising a leg and two radiating strands separated by a coupling slot in the leg, and a feeding line which may extend substantially parallel to the leg.

Sur la base d'une structure d'antenne dipôle imprimée avec un fonctionnement mono-bande, l'invention améliore celle-ci par la présence d'un deuxième dipôle dont la jambe et les brins sont respectivement plus longs que la jambe et les brins du premier dipôle.On the basis of a printed dipole antenna structure with single-band operation, the invention improves it by the presence of a second dipole whose leg and strands are respectively longer than the leg and the strands. of the first dipole.

L'antenne selon l'invention est caractérisée par une superposition de la jambe du premier dipôle et d'une base de la jambe du deuxième dipôle, un alignement des fentes de couplage, et une encoche de découplage ménagée dans la jambe du deuxième dipôle et dans laquelle la fente de couplage du premier dipôle débouche par superposition. De préférence, l'encoche ménagée dans le deuxième dipôle a un fond sensiblement aligné avec la fente du premier dipôle.The antenna according to the invention is characterized by a superposition of the leg of the first dipole and a base of the leg of the second dipole, an alignment of the coupling slots, and a decoupling notch formed in the leg of the second dipole and in which the coupling slot of the first dipole opens by superposition. Preferably, the notch in the second dipole has a bottom substantially aligned with the slot of the first dipole.

Grâce aux caractéristiques précédentes, l'antenne selon l'invention est très compacte tout en offrant un fonctionnement dans des bandes de fréquence différentes. L'antenne peut atteindre un taux d'ondes stationnaires inférieur à 2 sur plus de 50% de la largeur de bande dans chacune des bandes. Par exemple, le premier dipôle rayonne dans les bandes de fréquence de réseaux DCS-1800, UMTS et WLAN et le deuxième dipôle dans la bande de fréquence du réseau GSM-900. L'antenne selon l'invention conserve les performances en bande passante de l'antenne connue selon le brevet français 2 713 020 et offre un gain de place considérable grâce à la superposition des deux dipôles, l'épaisseur de l'antenne étant négligeable devant la longueur ou la largeur de celle-ci.With the above features, the antenna according to the invention is very compact while providing operation in different frequency bands. The antenna can reach a stationary wave rate of less than 2 over more than 50% of the bandwidth in each of the bands. For example, the first dipole radiates in the frequency bands of DCS-1800, UMTS and WLAN networks and the second dipole in the GSM-900 network frequency band. The antenna according to the invention retains the bandwidth performance of the known antenna according to the French patent 2,713,020 and offers a considerable space saving due to the superposition of the two dipoles, the thickness of the antenna being negligible in front of the length or the width thereof.

Selon une première réalisation offrant un découplage important entre les dipôles, l'encoche de découplage découvre par superposition complètement la fente de couplage du premier dipôle, et le substrat diélectrique comprend deux couches diélectriques et les lignes d'alimentation des dipôles s'étendent entre des faces en regard des deux couches diélectriques, ou le substrat diélectrique comprend pour chaque dipôle une couche diélectrique ayant des faces supportant respectivement la ligne d'alimentation et l'élément conducteur du dipôle, et une couche diélectrique s'étendant entre les couches supportant les dipôles.According to a first embodiment offering a significant decoupling between the dipoles, the decoupling notch discovers by completely superimposing the coupling slot of the first dipole, and the dielectric substrate comprises two dielectric layers and the dipole supply lines extend between faces facing the two dielectric layers, or the dielectric substrate comprises for each dipole a dielectric layer having faces respectively supporting the feed line and the conductive element of the dipole, and a dielectric layer extending between the layers supporting the dipoles .

Selon une autre réalisation, les éléments conducteurs des dipôles s'étendent sur une face commune du substrat diélectrique, la jambe du premier dipôle et la base de la jambe du deuxième dipôle sont confondues, et les lignes d'alimentation s'étendent sur l'autre face du substrat diélectrique. Cette réalisation a l'avantage de présenter un unique substrat, ce qui procure un gain de place et un encombrement moindre. Pour ces réalisations, un plan métallique peut s'étendre perpendiculairement aux faces du substrat, le dipôle ayant les brins les plus éloignés du plan métallique fonctionnant aux fréquences les plus basses.According to another embodiment, the conductive elements of the dipoles extend on a common face of the dielectric substrate, the leg of the first dipole and the base of the leg of the second dipole are merged, and the supply lines extend on the other side of the dielectric substrate. This embodiment has the advantage of having a single substrate, which provides space saving and less space. For these embodiments, a metal plane may extend perpendicularly to the faces of the substrate, the dipole having the strands farthest from the metal plane operating at the lowest frequencies.

L'invention concerne également un réseau d'antennes comprenant plusieurs antennes, chaque antenne imprimée étant supportée par un substrat diélectrique et comprenant des premier et deuxième dipôles ayant chacun un élément conducteur en forme de té et comprenant une jambe et deux brins rayonnants séparés par une fente de couplage ménagée dans la jambe, et une ligne d'alimentation, la jambe et les brins du deuxième dipôle étant respectivement plus longs que la jambe et les brins du premier dipôle.The invention also relates to an antenna array comprising a plurality of antennas, each printed antenna being supported by a dielectric substrate and comprising first and second dipoles each having a t-shaped conducting element and comprising a leg and two radiating strands separated by a coupling slot formed in the leg, and a feeding line, the leg and the strands of the second dipole being respectively longer than the leg and the strands of the first dipole.

Le réseau est caractérisé en ce que
dans chaque antenne, la jambe du premier dipôle et une base de la jambe du deuxième dipôle sont superposées, les fentes de couplage sont alignées, et une encoche de découplage est ménagée dans la jambe du deuxième dipôle et la fente de couplage du premier dipôle débouche par superposition dans l'encoche de découplage, et
les faces des substrats des antennes sont parallèles entre elles et les fentes de couplage des dipôles sont orientées parallèlement.
The network is characterized in that
in each antenna, the leg of the first dipole and a base of the leg of the second dipole are superimposed, the coupling slots are aligned, and a decoupling notch is formed in the leg of the second dipole and the coupling slot of the first dipole opens by superposition in the decoupling notch, and
the faces of the antenna substrates are parallel to each other and the coupling slots of the dipoles are oriented parallel.

D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs réalisations préférées de l'invention, données à titre d'exemples non limitatifs, en référence aux dessins annexés correspondants dans lesquels :

  • la figure 1 est une vue de dessus de l'antenne dipôle imprimée bi-bande selon une première réalisation de l'invention ;
  • la figure 2 est une coupe prise le long de la ligne II-II de la figure 1;
  • les figures 3 et 4 sont des vues de dessus de premier et deuxième dipôles de l'antenne selon la première réalisation;
  • la figure 5 est une vue en plan des lignes d'alimentation de l'antenne selon la première réalisation;
  • la figure 6 est une vue de dessus de l'antenne avec des lignes d'alimentation à accès commun selon une variante de la première réalisation;
  • la figure 7 est une coupe prise le long de la ligne VII-VII de la figure 6;
  • la figure 8 est une vue de dessus de l'antenne avec des lignes d'alimentation sur des couches diélectriques séparées selon une deuxième réalisation de l'invention;
  • la figure 9 est une coupe prise le long de la ligne IX-IX de la figure 8;
  • la figure 10 est une vue de dessus de l'antenne sur un substrat monocouche selon une troisième réalisation de l'invention;
  • la figure 11 est une coupe prise le long de la ligne XI-XI de la figure 10;
  • la figure 12 est une vue en perspective schématique de l'antenne avec un plan métallique selon une variante de la première réalisation; et
  • la figure 13 est une vue en perspective schématique d'un réseau monodimensionnel d'antennes dipôle imprimées bi-bande selon la première réalisation de l'invention.
Other features and advantages of the present invention will emerge more clearly on reading the following description of several preferred embodiments of the invention, given by way of non-limiting examples, with reference to the corresponding appended drawings in which:
  • the figure 1 is a top view of the dual-band printed dipole antenna according to a first embodiment of the invention;
  • the figure 2 is a section taken along line II-II of the figure 1 ;
  • the Figures 3 and 4 are top views of first and second dipoles of the antenna according to the first embodiment;
  • the figure 5 is a plan view of the antenna supply lines according to the first embodiment;
  • the figure 6 is a top view of the antenna with common access power lines according to a variant of the first embodiment;
  • the figure 7 is a section taken along line VII-VII of the figure 6 ;
  • the figure 8 is a top view of the antenna with feed lines on separate dielectric layers according to a second embodiment of the invention;
  • the figure 9 is a section taken along line IX-IX of the figure 8 ;
  • the figure 10 is a top view of the antenna on a monolayer substrate according to a third embodiment of the invention;
  • the figure 11 is a section taken along line XI-XI of the figure 10 ;
  • the figure 12 is a schematic perspective view of the antenna with a metal plane according to a variant of the first embodiment; and
  • the figure 13 is a schematic perspective view of a one-dimensional network of dual-band printed dipole antennas according to the first embodiment of the invention.

Une antenne dipôle imprimée bi-bande selon la première réalisation de l'invention est décrite ci-après en détail en référence aux figures 1 à 5.A dual-band printed dipole antenna according to the first embodiment of the invention is described below in detail with reference to Figures 1 to 5 .

L'antenne comprend deux couches rectangulaires de substrat diélectrique empilées CS1 et CS2, et deux dipôles imprimés superposés D1 et D2. Les dipôles rayonnent dans des bandes de fréquence différentes BF1 et BF2 et ont donc des dimensions différentes. Le premier dipôle D1, le plus petit, s'étend sur la face inférieure de la première couche CS1 et est destiné à rayonner dans une première bande de fréquence BF1 comprise à titre d'exemple entre 1,5 et 2,5 GHz environ afin de couvrir une bande combinant les bandes DCS 1800, UMTS et WLAN. Le deuxième dipôle D2 s'étend sur la face supérieure de la deuxième couche CS2 et est destiné à rayonner dans une deuxième bande de fréquence BF2 qui est inférieure à la première bande de fréquence BF1 et comprise à titre d'exemple entre 0,7 et 1,0 GHz environ pour couvrir la bande GSM-900. Une ligne d'alimentation imprimée LA1 avec duplexeur intégré alimente le premier dipôle D1, et une ligne d'alimentation imprimée LA2 avec duplexeur intégré alimente le deuxième dipôle D2. Les lignes d'alimentation LA1 et LA2 s'étendent entre les faces en regard des première et deuxième couches diélectriques CS1 et CS2. Ainsi les faces en regard des couches diélectriques sont les faces opposées aux faces sur lesquelles s'étendent les dipôles, et toutes les faces des couches sont parallèles entre elles. Les couches CS1 et CS2 sont par exemple en un substrat Duroïd avec une permittivité diélectrique relative de 2,2 et une épaisseur voisine de 0,75 mm environ. En variante, les couches CS1 et CS2 sont en des substrats de permittivités diélectriques relatives différentes et/ou ont des épaisseurs différentes.The antenna comprises two stacked rectangular dielectric substrate layers CS1 and CS2, and two superposed printed dipoles D1 and D2. The dipoles radiate in different frequency bands BF1 and BF2 and therefore have different dimensions. The first dipole D1, the smallest, extends on the lower face of the first layer CS1 and is intended to radiate in a first frequency band BF1, for example between 1.5 and 2.5 GHz approximately in order to to cover a band combining the DCS 1800, UMTS and WLAN bands. The second dipole D2 extends on the upper face of the second layer CS2 and is intended to radiate in a second frequency band BF2 which is less than the first frequency band BF1 and understood as an example between 0.7 and Around 1.0 GHz to cover the GSM-900 band. An LA1 printed feed line with integrated duplexer feeds the first dipole D1, and a printed feed line LA2 with integrated duplexer feeds the second dipole D2. The supply lines LA1 and LA2 extend between the facing faces of the first and second dielectric layers CS1 and CS2. Thus, the facing faces of the dielectric layers are the faces opposite to the faces on which the dipoles extend, and all the faces of the layers are parallel to each other. The layers CS1 and CS2 are for example a Duroid substrate with a relative dielectric permittivity of 2.2 and a thickness of about 0.75 mm. As a variant, the layers CS1 and CS2 are in different relative dielectric permittivity substrates and / or have different thicknesses.

Comme montré à la figure 1, chaque dipôle D1, D2 comprend un élément conducteur plat en forme de té comprenant une jambe J1, J2 et deux brins latéraux B1, B2 constitués par des ailes du té perpendiculaires à la jambe et séparés par une fente de couplage FC1, FC2 ménagée axialement au sommet de la jambe. La jambe J1, J2 constitue un plan de masse pour la ligne d'alimentation correspondante LA1, LA2. Les chants des bases des jambes J1 et J2 sont coplanaires dans un plan perpendiculaire aux couches, et les brins B2 du plus grand dipôle D2 sont situés devant les brins B1 du plus petit dipôle D2 suivant le sens de rayonnement. Les jambes ont par exemple des largeurs identiques et des bords colinéaires en vue de dessus, comme montré aux figures 1 et 2, la plus longue jambe J2 recouvrant la plus courte jambe J1 afin de conférer une compacité élevée à l'antenne. Les brins latéraux B1, B2 constituent la partie rayonnante de l'élément conducteur. De préférence, les fentes de couplage FC1 et FC2 sont de forme rectangulaire et très étroites, par exemple ayant une largeur de 0,5 mm.As shown in figure 1 each dipole D1, D2 comprises a flat-shaped conductor element in the form of a tee comprising a leg J1, J2 and two lateral strands B1, B2 constituted by wings of the tee perpendicular to the leg and separated by an axially arranged coupling slot FC1, FC2 at the top of the leg. The leg J1, J2 constitutes a ground plane for the corresponding feed line LA1, LA2. The songs of the bases of the legs J1 and J2 are coplanar in a plane perpendicular to the layers, and the strands B2 of the largest dipole D2 are located in front of the strands B1 of the smaller dipole D2 in the direction of radiation. The legs, for example, have identical widths and collinear edges when viewed from above, as shown in FIGS. Figures 1 and 2 , the longest leg J2 covering the shorter leg J1 to confer a high compactness to the antenna. The lateral strands B1, B2 constitute the radiating part of the conductive element. Preferably, the coupling slots FC1 and FC2 are of rectangular shape and very narrow, for example having a width of 0.5 mm.

Les brins latéraux B1, B2 de chaque dipôle D1, D2 ont de préférence des longueurs identiques. La somme des longueurs des brins est sensiblement égale à la moitié de la longueur d'onde correspondant à la fréquence centrale de la bande de fonctionnement de chaque dipôle. Comme la fréquence centrale de la première bande BF1 est supérieure à la fréquence centrale de la deuxième bande BF2, les brins B1 du premier dipôle D1 sont plus courts que les brins B2 deuxième dipôle D2. De même, la longueur de la jambe J1, J2 est égale à environ la moitié de ladite longueur d'onde, bien que cette longueur de la jambe soit moins critique puisqu'elle n'intervient pas de manière prépondérante dans le rayonnement de l'antenne. La largeur des jambes J1, J2 est par exemple sensiblement le double de la largeur W1, W2 des brins latéraux B1, B2 afin que les jambes recouvrent les lignes d'alimentation LA1 et LA2 s'étendant longitudinalement entre les jambes. Les lignes d'alimentation LA1 et LA2 s'étendent parallèlement aux jambes des dipôles D1 et D2 et sont imprimées avec les dipôles en technologie triplaque pour laquelle les jambes J1 et J2 jouent le rôle de plan de masse.The lateral strands B1, B2 of each dipole D1, D2 preferably have identical lengths. The sum of the lengths of the strands is substantially equal to half the wavelength corresponding to the center frequency of the operating band of each dipole. As the center frequency of the first band BF1 is greater than the center frequency of the second band BF2, the strands B1 of the first dipole D1 are shorter than the strands B2 second dipole D2. Similarly, the length of the leg J1, J2 is equal to about half of said wavelength, although this length of the leg is less critical since it does not intervene in a dominant way in the radiation of the antenna. The width of the legs J1, J2 is for example substantially double the width W1, W2 side strands B1, B2 so that the legs cover the feed lines LA1 and LA2 extending longitudinally between the legs. The feed lines LA1 and LA2 extend parallel to the legs of the dipoles D1 and D2 and are printed with the triplate technology dipoles for which the legs J1 and J2 play the role of ground plane.

La ligne d'alimentation LA1 du premier dipôle D1 s'étend sur la jambe J1 entre une extrémité d'accès E11 et une extrémité en U E12, symétriquement à la ligne LA2 par rapport à un plan longitudinal axial P de l'antenne commun aux jambes et aux fentes de couplage. L'extrémité d'accès E11 est située en bordure de l'antenne et est à relier par un connecteur à un premier générateur de signal à micro-onde pour la bande BF1. L'extrémité en U E12 a une âme croisant perpendiculairement par superposition la fente de couplage FC1 et située axialement sous la naissance des brins B1 et est terminée par une branche courte terminale s'étendant sensiblement parallèlement à la fente de couplage FC1 et à proximité de la ligne d'alimentation LA2. L'extrémité E12 est repliée en U vers la ligne d'alimentation LA2 du deuxième dipôle afin de maintenir une compacité élevée de l'antenne en évitant d'écarter les lignes d'alimentation LA1 et LA2 juxtaposées parallèlement entre les couches diélectriques CS1 et CS2 et donc d'élargir les jambes J1 et J2, tout en assurant une excitation efficace du brin B1 sur lequel passe l'autre ligne d'alimentation LA2 et donc des deux brins B1 en quart d'onde couplés par une ligne à fente FC1. La longueur de la fente de couplage FC1 et les dimensions de l'extrémité en U E12 de la ligne d'alimentation LA1 sont choisies afin d'adapter le dipôle D1 sur une large bande BF1.The supply line LA1 of the first dipole D1 extends on the leg J1 between an access end E11 and a U-shaped end E12 symmetrically to the line LA2 with respect to an axial longitudinal plane P of the common antenna. legs and coupling slots. The access end E11 is located at the edge of the antenna and is to be connected by a connector to a first microwave signal generator for the BF1 band. The U-shaped end E12 has a perpendicularly crossing core by superimposing the coupling slot FC1 and located axially under the birth of the strands B1 and is terminated by a short terminal branch extending substantially parallel to the coupling slot FC1 and near the LA2 power line. The end E12 is folded in U towards the supply line LA2 of the second dipole in order to maintain a high compactness of the antenna, avoiding to discard the feed lines LA1 and LA2 juxtaposed parallel between the dielectric layers CS1 and CS2 and therefore to widen the legs J1 and J2, while ensuring efficient excitation of the B1 strand over which the other feed line LA2 and thus the two quarter-wave strands B1 coupled by a slit line FC1. The length of the coupling slot FC1 and the dimensions of the U-shaped end E12 of the feed line LA1 are chosen in order to adapt the dipole D1 to a wide band BF1.

La ligne d'alimentation LA2 du deuxième dipôle D2 s'étend sous la jambe J2 entre une extrémité d'accès E21 et une extrémité coudée à angle droit E22, symétriquement à la ligne LA1. L'extrémité d'accès E21 est située en bordure de l'antenne et à relier par un connecteur à un deuxième générateur de signal à micro-onde pour la bande BF2. L'extrémité en U E22 est terminée par petit tronçon rectiligne situé axialement sous la naissance des brins B2, et croisant perpendiculairement par superposition la fente de couplage FC2 pour s'étendre également sous le brin B2 du même côté du plan longitudinal axial P de l'antenne, et ainsi exciter les deux brins rayonnants B2 en stubs quart d'onde couplés par une ligne à fente FC2.The feed line LA2 of the second dipole D2 extends under the leg J2 between an access end E21 and a right angled end E22, symmetrically to the line LA1. The access end E21 is located at the edge of the antenna and connected by a connector to a second microwave signal generator for the BF2 band. The U-shaped end E22 is terminated by a small rectilinear section situated axially under the birth of the strands B2, and crossing perpendicularly by superposing the coupling slot FC2 to extend also under the strand B2 of the same side of the axial longitudinal plane P of the antenna, and thus excite the two radiating strands B2 in quarter-wave stubs coupled by a slot line FC2.

Une encoche de découplage ED par exemple rectangulaire est prévue dans la jambe J2 du deuxième dipôle D2 (figure 4) s'étendant sur la jambe J1 du premier dipôle D1 et au delà du sommet de la jambe J1 incluant la fente de couplage F1 du premier dipôle D1. L'encoche ED est pratiquée dans le bord de la jambe J2 du deuxième dipôle D2 le plus proche de la ligne d'alimentation LA1 et découvre une portion de l'extrémité de ligne E12 depuis la fente de couplage FC1, et sensiblement la fente de couplage FC1 elle-même. De préférence, l'encoche ED découvre par superposition complètement la fente de couplage FC1 et a un fond qui est situé sensiblement dans un plan perpendiculaire aux couches diélectriques et contenant le côté de la fente de couplage FC1 le plus proche de l'autre ligne d'alimentation LA2. Ainsi une projection de la fente de couplage FC1 du premier dipôle D1 sur le plan du deuxième dipôle D2 est contenue dans l'encoche de découplage ED. L'encoche de découplage ED découple le plan de masse constitué par la jambe J2 du deuxième dipôle D2 par rapport à la fente de couplage FC1 des brins B1 du premier dipôle D1 afin que celui-ci puisse rayonner.A decoupling slot ED for example rectangular is provided in the leg J2 of the second dipole D2 ( figure 4 ) extending on the leg J1 of the first dipole D1 and beyond the top of the leg J1 including the coupling slot F1 of the first dipole D1. The notch ED is formed in the edge of the leg J2 of the second dipole D2 closest to the feed line LA1 and discovers a portion of the line end E12 from the coupling slot FC1, and substantially the slot of FC1 coupling itself. Preferably, the notch ED completely overlaps the coupling slot FC1 and has a bottom which is located substantially in a plane perpendicular to the dielectric layers and containing the side of the coupling slot FC1 closest to the other line. LA2 power supply. Thus a projection of the coupling slot FC1 of the first dipole D1 on the plane of the second dipole D2 is contained in the decoupling slot ED. The decoupling notch ED decouples the ground plane constituted by the leg J2 of the second dipole D2 with respect to the coupling slot FC1 of the strands B1 of the first dipole D1 so that it can radiate.

L'antenne dipôle imprimée selon la première réalisation de l'invention réunit d'une manière compacte deux dipôles imprimés superposés et découplés D1 et D2 fonctionnant respectivement dans les bandes de fréquence BF1 et BF2, selon le principe de l'adaptation double stub. L'antenne dipôle imprimée s'étend typiquement sur une longueur maximale de 150 mm environ et sur une largeur maximale de 150 mm environ en respectant de préférence une forme carrée, et présente une épaisseur de 1,5 mm environ afin d'offrir un encombrement minimum.The dipole antenna printed according to the first embodiment of the invention combines in a compact manner two superimposed and decoupled printed dipoles D1 and D2 respectively operating in the frequency bands BF1 and BF2, according to the principle of the double stub adaptation. The printed dipole antenna typically extends over a maximum length of about 150 mm and a maximum width of about 150 mm, preferably respecting a square shape, and has a thickness of about 1.5 mm to provide a bulk minimum.

Des mesures ont montré que l'antenne dipôle imprimée décrite ci-dessus offrait un taux d'onde stationnaire inférieur à 2 sur plus de 50% de largeur de bande dans chacune des deux bandes de fréquence BF1 et BF2, et garantissait un niveau de découplage meilleur que -20 dB entre les accès E21 pour bande BF1 (GSM) et E11 pour bande BF2 (DCS+UMTS+WLAN).Measurements have shown that the printed dipole antenna described above has a stationary wave ratio of less than 2 over more than 50% bandwidth in each of the two frequency bands BF1 and BF2, and guarantees a decoupling level. better than -20 dB between E21 access for BF1 (GSM) and E11 for BF2 (DCS + UMTS + WLAN).

Selon une variante de la première réalisation et d'une manière analogue aux figures 1 à 5, les lignes d'alimentation LA1a et LA2a des dipôles D1a et D2a de l'antenne ont une extrémité d'accès commune E1, comme montré aux figures 6 et 7. Par exemple l'extrémité d'accès commune E1 située entre les bases des jambes J1a J2a des dipôles D1a, D2a est colinéaire à l'une LA2a des lignes d'alimentation, et l'autre ligne d'alimentation LA1a présente une extrémité sinueuse pour contourner le fond de la fente de découplage FC1aAccording to a variant of the first embodiment and in a manner similar to Figures 1 to 5 the feed lines LA1a and LA2a of the dipoles D1a and D2a of the antenna have a common access end E1, as shown in FIGS. Figures 6 and 7 . For example, the common access end E1 situated between the bases of the legs J1a J2a of the dipoles D1a, D2a is collinear with one LA2a of the supply lines, and the other supply line LA1a has a sinuous end for bypass the bottom of the decoupling slot FC1a

Les figures 8 et 9 illustrent la deuxième réalisation de l'antenne selon l'invention. L'alimentation de l'antenne est effectuée sur des couches séparées. L'antenne comprend une troisième couche de substrat diélectrique CS3, la deuxième couche CS2 s'étendant entre les première et troisième couches CS1 et CS3. L'un D1b des dipôles s'étend sur la face externe de l'une CS1 des première et troisième couches, et l'autre dipôle s'étend entre les deux autres couches CS2 et CS3. La ligne d'alimentation LA1b relative au premier dipôle D1b s'étend respectivement entre ladite une CS1 des première et troisième couches CS1 et CS3 et la deuxième couche intermédiaire CS2, sur la jambe J1b du dipôle D1b et sous la jambe J2b du dipôle D2b, et la ligne d'alimentation LA2b relative à l'autre dipôle D2b s'étend sur la face externe de l'autre CS3 des première et troisième couches, sur les jambes J1b et J2b des dipôles D1b et D2b. La ligne d'alimentation LA2b est imprimée en technologie microruban alors que la ligne d'alimentation LA1b est imprimée en technologie triplaque.The Figures 8 and 9 illustrate the second embodiment of the antenna according to the invention. The antenna feed is performed on separate layers. The antenna comprises a third dielectric substrate layer CS3, the second layer CS2 extending between the first and third layers CS1 and CS3. One D1b of the dipoles extends on the outer face of one CS1 of the first and third layers, and the other dipole extends between the two other layers CS2 and CS3. The supply line LA1b relating to the first dipole D1b extends respectively between said one CS1 of the first and third layers CS1 and CS3 and the second intermediate layer CS2, on the leg J1b of the dipole D1b and under the leg J2b of the dipole D2b, and the feed line LA2b relative to the other dipole D2b extends on the outer face of the other CS3 of the first and third layers, on the legs J1b and J2b of the dipoles D1b and D2b. The LA2b power line is printed in technology microstrip while the LA1b feed line is printed in triplate technology.

La deuxième réalisation offre plus de découplage entre les dipôles D1b et D2b mais au détriment d'une antenne plus épaisse comparativement à la première réalisation montrée aux figures 1 et 2.The second embodiment offers more decoupling between dipoles D1b and D2b but to the detriment of a thicker antenna compared to the first embodiment shown in FIGS. Figures 1 and 2 .

En variantes, l'élément conducteur du dipôle D1b et la ligne d'alimentation LA1b sont intervertis, l'élément conducteur du dipôle D1b étant située entre les couches CS1 et CS2 et la ligne d'alimentation LA1b étant située sous la couche CS1, à l'extérieur de l'empilement des couches, et/ou l'élément conducteur du dipôle D2b et la ligne d'alimentation LA2b sont intervertis, la ligne d'alimentation LA2b étant située entre les couches CS3 et CS2 et l'élément conducteur du dipôle D2b étant situé sur la couche CS3, à l'extérieur de l'empilement des couches.In variants, the conductive element of the dipole D1b and the feed line LA1b are interchanged, the conducting element of the dipole D1b being located between the layers CS1 and CS2 and the feed line LA1b being located under the layer CS1, the outside of the stack of layers, and / or the conductive element of the dipole D2b and the feed line LA2b are interchanged, the feed line LA2b being located between the layers CS3 and CS2 and the conductive element of dipole D2b being located on the CS3 layer, outside the stack of layers.

Les figures 10 et 11 illustrent la troisième réalisation de l'antenne à structure diélectrique monocouche et microruban selon l'invention. Les deux dipôles imprimés D1c et D2c sont gravés sur la même face d'un substrat unique S et les lignes d'alimentation LA1c et LA2c sont gravés sur l'autre face du substrat unique S. La jambe J1c du plus petit dipôle D1c fait office également d'une portion extrême de la jambe J2c du plus grand dipôle D2c si bien que les jambes J1c et J2c sont coaxiales et les bases des jambes J1c et J2c sont confondues sur les extrémités d'accès E11c et E21c des lignes d'alimentation LA1c et LA2c.The Figures 10 and 11 illustrate the third embodiment of the antenna with dielectric structure monolayer and microstrip according to the invention. The two printed dipoles D1c and D2c are etched on the same face of a single substrate S and the feed lines LA1c and LA2c are etched on the other side of the single substrate S. The leg J1c of the smallest dipole D1c is used also an extreme portion of the leg J2c of the largest dipole D2c so that the legs J1c and J2c are coaxial and the bases of the legs J1c and J2c are merged on the access ends E11c and E21c feed lines LA1c and LA2c.

L'encoche de découplage EDc qui peut être encore rectangulaire est pratiquée dans le bord de la jambe J2c du deuxième dipôle D2c devant le brin B1 sur l'extrémité de ligne E12c et située entre ce brin B1 et le fond de la fente de couplage FC2c. Le fond de l'encoche EDc est en retrait par rapport aux fentes alignées FC1c et FC2c afin que la fente de couplage FC1c du premier dipôle D1c débouche dans l'encoche EDc et le premier dipôle D1c puisse rayonner.The decoupling notch EDc which can still be rectangular is practiced in the edge of the leg J2c of the second dipole D2c in front of the strand B1 on the line end E12c and located between this strand B1 and the bottom of the coupling slot FC2c. The bottom of the notch EDc is set back with respect to the aligned slots FC1c and FC2c so that the coupling slot FC1c of the first dipole D1c opens into the notch EDc and the first dipole D1c can radiate.

De manière à accentuer le découplage entre les deux dipôles D1c et D2c, une deuxième fente de couplage F1 analogue à la première fente FC1c, est ménagée axialement dans la base de la jambe J1c à l'opposé de la première fente FC1c et colinéairement à celle-ci, et deux fentes F2 sont ménagées à l'extrémité d'une portion de jambe J2c du dipôle D2c située devant le brin B1 sous lequel passe la ligne d'alimentation LA1c et LA2c afin de former un rétrécissement de la jambe J2c dans un coin de l'encoche EDc à la largeur de la ligne d'alimentation LA2c et au-dessus de celle-ci.In order to accentuate the decoupling between the two dipoles D1c and D2c, a second coupling slot F1 similar to the first slot FC1c, is formed axially in the base of the leg J1c opposite the first slot FC1c and collinearly to that and two slots F2 are provided at the end of a leg portion J2c of the dipole D2c located in front of the strand B1 under which the feed line LA1c and LA2c pass in order to form a narrowing of the leg J2c in a corner of the EDc notch to the width of the LA2c power line and above it.

La figure 12 présente une variante de réalisation comprenant un plan de sol métallique PS s'étendant perpendiculairement aux faces du substrat réparti en une, deux ou trois couches et donc aux dipôles conducteurs plans. On a supposé dans la figure 12 que l'antenne était conforme à la première réalisation montrée à la figure 1. Le plan de sol PS fait office de moyen de réflexion afin de supprimer un rayonnement arrière des dipôles et de diriger le rayonnement en avant des dipôles à l'opposé du plan de sol PS, suivant la direction axiale de l'ouverture des fentes de couplages FC1 et FC2. Le plan de sol PS vise à accroître la directivité de l'antenne de l'ordre de 2 dB, tout en conservant les performances en large bande de l'antenne.The figure 12 presents an alternative embodiment comprising a metal ground plane PS extending perpendicularly to the faces of the substrate distributed in one, two or three layers and therefore to the flat conductive dipoles. It was assumed in the figure 12 that the antenna was in accordance with the first embodiment shown in figure 1 . The ground plane PS serves as a means of reflection to remove a back radiation of the dipoles and direct the radiation forward of the dipoles opposite the floor plane PS, in the axial direction of the opening of the coupling slots FC1 and FC2. The ground plane PS aims to increase the directivity of the antenna of the order of 2 dB, while maintaining broadband performance of the antenna.

A cette fin, les plus grands brins B2 de l'antenne rayonnant aux fréquences les plus basses sont les plus éloignés du plan de sol PS. Typiquement le plan de sol PS est situé à une distance du côté arrière d'accès CA de l'antenne d'environ un tiers de la longueur d'onde correspondant à la plus grande fréquence de la bande de fonctionnement de l'antenne et donc de bande de fréquence BF1 du plus petit dipôle.For this purpose, the largest B2 strands of the antenna radiating at the lowest frequencies are the farthest from the ground plane PS. Typically, the PS ground plane is located at a distance from the rear AC access side of the antenna by about one-third of the wavelength corresponding to the highest frequency of the operating band of the antenna and therefore frequency band BF1 of the smaller dipole.

En variante, l'antenne est introduite dans une cavité métallique CV ou un guide d'onde, comme représenté en traits pointillés dans la figure 12, afin d'obtenir un système d'alimentation duplexé en fréquence dans une structure guidée.Alternatively, the antenna is introduced into a metal cavity CV or a waveguide, as shown in dotted lines in the figure 12 , in order to obtain a frequency-doubled feed system in a guided structure.

Les performances radioélectriques de l'antenne dipôle imprimée bi-bande décrite ci-dessus sont conservées lorsque plusieurs antennes dipôle imprimées bi-bande selon l'invention sont juxtaposées pour former un réseau à bandes de fréquence BF1 et BF2.The radio performance of the bi-band printed dipole antenna described above is maintained when a plurality of dual-band printed dipole antennas according to the invention are juxtaposed to form a frequency band network BF1 and BF2.

La figure 13 présente un exemple de réseau monodimensionnel RE d'antennes dipôle imprimées bi-bande selon la première réalisation de l'invention. Le réseau comprend une colonne d'antennes dipôle imprimées bi-bande dont les faces des substrats sont parallèles entre elles et de préférence coplanaires et dont les plans axiaux P de fentes de couplage FC1, FC2 des dipôles sont orientées parallèlement. En pratique pour réduire le coût de fabrication du réseau, les antennes ont de préférence des couches de substrat communes s'étendant perpendiculairement à un plan de sol métallique PS pouvant être le fond d'une cavité CV. Les lignes d'alimentation LA1 des dipôles D1 de toutes les antennes sont reliées à une première extrémité d'accès commune et les lignes d'alimentation LA2 des dipôles D2 de toutes les antennes sont reliées à une deuxième extrémité d'accès commune. Les première et deuxième extrémités d'accès communes peuvent être reliées entre elles.The figure 13 presents an example of a one-dimensional RE network of dipole antennas printed in two-band mode according to the first embodiment of the invention. The network comprises a column of dual-band printed dipole antennas whose faces of the substrates are mutually parallel and preferably coplanar and whose axial planes P of coupling slots FC1, FC2 of the dipoles are oriented in parallel. In practice, in order to reduce the manufacturing cost of the network, the antennas preferably have common substrate layers extending perpendicularly to a metal ground plane PS that can be the bottom of a cavity CV. The LA1 feed lines of the dipoles D1 of all the antennas are connected to a first common access end and feed lines LA2 dipoles D2 of all the antennas are connected to a second common access end. The first and second common access ends may be interconnected.

Ce réseau peut constituer par exemple une antenne pour une station de base pour les réseaux de radiocommunication GSM, DCS et UMTS et une borne pour réseau WLAN (IEEE 802.xx). Selon l'orientation de l'antenne, celle-ci présente un diagramme directif en élévation DE et un diagramme large en azimut DA pour les deux bandes de fréquence BF1 et BF2.This network can constitute, for example, an antenna for a base station for the GSM, DCS and UMTS radiocommunication networks and a terminal for a WLAN network (IEEE 802.xx). Depending on the orientation of the antenna, it has a directional diagram in elevation DE and a wide azimuth diagram DA for the two frequency bands BF1 and BF2.

En variante, un réseau d'antennes (non représenté) à double polarisation et à deux bandes de fréquence est constitué d'une première colonne de premières antennes dipôle imprimées bi-bande qui sont orientées de la même façon que dans la figure 13 et d'une deuxième colonne de deuxièmes antennes dipôle imprimées bi-bande qui sont orientées de la même façon et perpendiculairement à l'orientation des premières antennes. Les dipôles D1 et D2 de la première colonne rayonnent un champ électrique polarisé et croisé perpendiculairement avec le champ électrique rayonné respectivement par les dipôles D1 et D2 de la deuxième colonne pour des fonctionnements respectifs dans la première bande de fréquence commune BF1 et la deuxième bande de fréquence commune BF2.In a variant, a dual-polarization and two-frequency antenna array (not shown) consists of a first column of first dual-band printed dipole antennas which are oriented in the same way as in FIG. figure 13 and a second column of second dual-band printed dipole antennas which are oriented in the same fashion and perpendicular to the orientation of the first antennas. The dipoles D1 and D2 of the first column radiate an electric field polarized and crossed perpendicularly with the electric field radiated respectively by the dipoles D1 and D2 of the second column for respective operations in the first common frequency band BF1 and the second band of common frequency BF2.

Le réseau à double polarisation et ainsi bidimensionnel peut comprendre plusieurs colonnes parallèles alternées sur un plan.The dual polarization and thus two-dimensional network may comprise several parallel columns alternating on a plane.

Bien que l'invention ait été décrite en référence à un fonctionnement bi-bande, l'antenne selon l'invention peut être étendue à une structure multibande en introduisant autant de niveaux de dipôles que de bandes de fonctionnement souhaitées, et autant de couches diélectriques que de bandes de fonctionnement souhaitées pour la première réalisation, ou autant de paires de couches diélectriques que de bandes de fonctionnement souhaitées pour la deuxième réalisation, ou autant de dipôles que de bandes de fonctionnement souhaitées pour la troisième réalisation. Il est alors nécessaire qu'une ou plusieurs encoches de découplage soient ménagées dans les jambes des dipôles des niveaux supérieurs afin qu'elles ne couvrent pas les fentes de couplages des dipôles des niveaux inférieurs.Although the invention has been described with reference to a dual-band operation, the antenna according to the invention can be extended to a structure multiband by introducing as many dipole levels as desired operating bands, and as many dielectric layers as desired operating bands for the first embodiment, or as many pairs of dielectric layers as desired operating bands for the second embodiment, or as many dipoles as desired operating bands for the third embodiment. It is then necessary that one or more decoupling notches are formed in the legs of the dipoles of the upper levels so that they do not cover the coupling slots of the dipoles of the lower levels.

Claims (9)

  1. - Printed antenna comprising first and second dipoles (D1, D2) supported by a dielectric substrate and each having a tee-shaped conducting element comprising a leg (J1, J2) and two radiating strands (B1, B2) separated by a coupling slot (FC1, FC2) made in the leg, and a power feedline (LA1, LA2), the leg (J2) and the strands (B2) of the second dipole (D2) being respectively longer than the leg (J1) and the strands (B1) of the first dipole (D1), and a superposition of the leg (J1) of the first dipole and of a base of the leg (J2) of the second dipole, an alignment of the coupling slots (FC1, FC2), and a decoupling notch (ED) made in the leg (J2) of the second dipole and in which the coupling slot (FC1) of the first dipole emerges by superposition.
  2. - Antenna in accordance with Claim 1, in which the decoupling notch (ED) completely uncovers by superposition the coupling slot (FC1) of the first dipole (D1).
  3. - Antenna in accordance with Claim 1 or 2, in which the dielectric substrate comprises two dielectric layers (CS1, CS2) and the power feedlines (LA1, LA2) of the dipoles (D1, D2) extend between opposing faces of the two dielectric layers (CS1, CS2).
  4. - Antenna in accordance with Claim 1 or 2, in which the dielectric substrate comprises for each dipole (D1b, D2b) a dielectric layer (CS1, CS3) having faces supporting respectively the power feedline and the conducting element of the dipole, and a dielectric layer (CS2) extending between the layers (CS1, CS3) supporting the dipoles.
  5. - Antenna in accordance with Claim 1, in which the conducting elements of the dipoles (D1c, D2c) extend over a common face of the dielectric substrate (S), the leg (J1c) of the first dipole and the base of the leg (J2c) of the second dipole coincide, and the power feedlines (LA1c, LA2c) extend over the other face of the dielectric substrate.
  6. - Antenna in accordance with any one of Claims 1 to 4, in which the notch (ED, EDc) made in the second dipole has a bottom substantially aligned with the slot (FC1, FC1c) of the first dipole.
  7. - Antenna in accordance with any one of Claims 1 to 6, in which the power feedline (LA1) of the first dipole has an end (E12) folded back in a U towards the power feedline (LA2) of the second dipole and having a web crossing perpendicularly by superposition the coupling slot (FC1) of the first dipole and a terminal short branch extending substantially parallel to the coupling slot (FC1) of the first dipole.
  8. - Antenna in accordance with any one of Claims 1 to 7, in which a metallic plane (PS) extends perpendicularly to the faces of the substrate (CS1, CS2), the dipole (D2) having the strands furthest from the metallic plane operating at the lowest frequencies.
  9. - Antenna array comprising several antennas, each printed antenna being supported by a dielectric substrate and comprising first and second dipoles (D1, D2) each having a tee-shaped conducting element and comprising a leg (J1, J2) and two radiating strands (B1, B2) separated by a coupling slot (FC1, FC2) made in the leg, and a power feedline (LA1, LA2), the leg (J2) and the strands (B2) of the second dipole (D2) being respectively longer than the leg (J1) and the strands (B1) of the first dipole (D1), and embodied in such a way that
    in each antenna, the leg (J1) of the first dipole and a base of the leg (J2) of the second dipole are superposed, the coupling slots (FC1, FC2) are aligned, and a decoupling notch (ED) is made in the leg (J2) of the second dipole and the coupling slot (FC1) of the first dipole emerges by superposition in the decoupling notch (ED), and
    the faces of the substrates of the antennas are parallel to one another and the coupling slots of the dipoles are oriented in parallel.
EP06709478A 2005-02-18 2006-02-03 Multiband printed dipole antenna Active EP1849213B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0501814A FR2882468A1 (en) 2005-02-18 2005-02-18 PRINTED DIPOLE ANTENNA MULTIBAND
PCT/FR2006/050099 WO2006087488A1 (en) 2005-02-18 2006-02-03 Multiband printed dipole antenna

Publications (2)

Publication Number Publication Date
EP1849213A1 EP1849213A1 (en) 2007-10-31
EP1849213B1 true EP1849213B1 (en) 2008-07-23

Family

ID=34954534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709478A Active EP1849213B1 (en) 2005-02-18 2006-02-03 Multiband printed dipole antenna

Country Status (6)

Country Link
US (1) US7432873B2 (en)
EP (1) EP1849213B1 (en)
AT (1) ATE402500T1 (en)
DE (1) DE602006001942D1 (en)
FR (1) FR2882468A1 (en)
WO (1) WO2006087488A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954829B1 (en) * 2009-12-31 2012-03-02 Art Fi SYSTEM FOR MEASURING AN ELECTROMAGNETIC FIELD
US8368602B2 (en) 2010-06-03 2013-02-05 Apple Inc. Parallel-fed equal current density dipole antenna
BR112013019159A2 (en) 2011-01-27 2017-07-11 Galtronics Corp Ltd antenna
US9653806B2 (en) 2011-07-18 2017-05-16 Sony Corporation Multi-band wireless terminals with metal backplates and coupling feed elements, and related multi-band antenna systems
FR2999337A1 (en) 2012-12-12 2014-06-13 Thomson Licensing TRANSITION CIRCUIT FROM MICRO-RIBBON LINE TO DUAL-BAND SLOT LINE
US9496623B2 (en) 2014-11-21 2016-11-15 Sony Corporation Dual band multi-layer dipole antennas for wireless electronic devices
US10074888B2 (en) 2015-04-03 2018-09-11 NXT-ID, Inc. Accordion antenna structure
CN107275804B (en) * 2016-04-08 2022-03-04 康普技术有限责任公司 Multi-band antenna array with Common Mode Resonance (CMR) and Differential Mode Resonance (DMR) removal
CN107181045B (en) * 2017-06-19 2024-02-20 上海传英信息技术有限公司 Antenna of mobile terminal and mobile terminal with same
US10311264B1 (en) * 2018-04-30 2019-06-04 Xerox Corporation Printed RFID tag antenna array with interfering subarrays
CN109473771B (en) * 2018-12-25 2023-12-15 广东交通职业技术学院 Planar omni-directional dipole duplex antenna
KR102608773B1 (en) * 2019-02-14 2023-12-04 삼성전자주식회사 Antenna module and electronic device including the same
RU2712798C1 (en) * 2019-05-20 2020-01-31 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Dual-band antenna
CN113451788B (en) * 2020-03-24 2022-10-18 华为技术有限公司 Antenna, antenna module and wireless network equipment
CN114665261B (en) * 2020-12-22 2023-03-28 华为技术有限公司 Antenna and communication equipment
EP4380066A1 (en) 2022-11-29 2024-06-05 Thales Dis France Sas Inductively tuned antenna structure for different wireless chips and frequencies

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713020B1 (en) 1993-11-24 1996-02-23 Roger Behe Radiating element of the dipole type produced in printed technology, matching adjustment process and corresponding network.
US6094176A (en) * 1998-11-24 2000-07-25 Northrop Grumman Corporation Very compact and broadband planar log-periodic dipole array antenna
FR2797098B1 (en) * 1999-07-30 2007-02-23 France Telecom BI-POLARIZED PRINTED ANTENNA AND CORRESPONDING ANTENNA ARRAY
US6310584B1 (en) * 2000-01-18 2001-10-30 Xircom Wireless, Inc. Low profile high polarization purity dual-polarized antennas
US6529172B2 (en) * 2000-08-11 2003-03-04 Andrew Corporation Dual-polarized radiating element with high isolation between polarization channels
US6621464B1 (en) * 2002-05-08 2003-09-16 Accton Technology Corporation Dual-band dipole antenna
US20040036655A1 (en) * 2002-08-22 2004-02-26 Robert Sainati Multi-layer antenna structure
US7095382B2 (en) * 2003-11-24 2006-08-22 Sandbridge Technologies, Inc. Modified printed dipole antennas for wireless multi-band communications systems

Also Published As

Publication number Publication date
ATE402500T1 (en) 2008-08-15
FR2882468A1 (en) 2006-08-25
EP1849213A1 (en) 2007-10-31
US7432873B2 (en) 2008-10-07
WO2006087488A1 (en) 2006-08-24
DE602006001942D1 (en) 2008-09-04
US20080030418A1 (en) 2008-02-07

Similar Documents

Publication Publication Date Title
EP1849213B1 (en) Multiband printed dipole antenna
EP0825673B1 (en) Plane antenna with interposed short-circuited elements
Oraizi et al. Wideband circularly polarized aperture-fed rotated stacked patch antenna
EP2664030B1 (en) Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas
EP1228552A1 (en) Dual-frequency band printed antenna
FR2966986A1 (en) RADIANT ELEMENT OF ANTENNA
FR2863111A1 (en) Multi-band aerial with double polarization includes three sets of radiating elements including crossed dipoles for maximum polarization decoupling
FR2709833A1 (en) Broadband and low band listening instrument for space applications.
EP1690317A1 (en) Multiband dual-polarised array antenna
EP2430705B1 (en) Compact multibeam antenna
CA2182334C (en) Mini-cap radiating element
WO2012069492A1 (en) Planar antenna having a widened bandwidth
EP2059973B1 (en) Polarization diversity multi-antenna system
CA1319190C (en) Circular polarization diplexing composite antenna
US7375685B1 (en) Dual band electrically small microstrip antenna
EP0642189B1 (en) Antenna for portable radio apparatus
EP0484241B1 (en) Printed circuit antenna for a dual polarized antenna array
FR2943465A1 (en) ANTENNA WITH DOUBLE FINS
Rahman et al. Quadrature hybrid integrated dual-circularly polarized array antenna
EP0831550B1 (en) Versatile array antenna
Volski et al. Compact low-cost 4 elements microstrip antenna array for WLAN
Shafai et al. Bandwidth and polarization characteristics of perforated patch antennas
EP0557176B1 (en) Feeding device for a plate antenna with two crossed polarizations and array equipped with such a device
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
WO2004006386A1 (en) Coplanar polarization dual-band radiating device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602006001942

Country of ref document: DE

Date of ref document: 20080904

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081123

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081103

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090424

BERE Be: lapsed

Owner name: FRANCE TELECOM

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081024

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080723

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 19

Ref country code: GB

Payment date: 20240123

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 19