EP1299624B1 - Device for cooling an internal combustion engine - Google Patents

Device for cooling an internal combustion engine Download PDF

Info

Publication number
EP1299624B1
EP1299624B1 EP01955216A EP01955216A EP1299624B1 EP 1299624 B1 EP1299624 B1 EP 1299624B1 EP 01955216 A EP01955216 A EP 01955216A EP 01955216 A EP01955216 A EP 01955216A EP 1299624 B1 EP1299624 B1 EP 1299624B1
Authority
EP
European Patent Office
Prior art keywords
inflow
cylinder block
outflow passages
coolant
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01955216A
Other languages
German (de)
French (fr)
Other versions
EP1299624A1 (en
Inventor
Manfred Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7647541&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1299624(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1299624A1 publication Critical patent/EP1299624A1/en
Application granted granted Critical
Publication of EP1299624B1 publication Critical patent/EP1299624B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis

Definitions

  • the invention relates to a device for cooling an internal combustion engine, preferably a four-cylinder in-line engine, according to the preamble of the main claim.
  • a device for cooling is known.
  • a cylinder head and a cylinder block accommodated in the internal combustion engine each have a cooling jacket region in the form of a cooling pocket, wherein the coolant pockets arranged separately from one another and downstream have coolant connections for coupling to the cooling circuit, so that the cylinder head and the cylinder block of the internal combustion engine are separated from each other with coolant can be supplied, so that thus a separate thermal control of the cylinder head and the cylinder block is possible.
  • Unsatisfactory in this prior art is that due to the integral cooling of all cylinders a specific operating point-dependent cooling of individual cylinders of the internal combustion engine is not feasible.
  • a device for cooling an aircraft internal combustion engine which has provided on the internal combustion engine coolant connections to a cooling circuit, wherein the coolant connections open into at least one cooling jacket region of the internal combustion engine.
  • the individual cylinders are aligned in pairs horizontally against each other.
  • the inflow and outflow of the individual cylinders, which are also assigned in pairs, are arranged in such a way that the flow directions are transverse to the direction defined by the successive arrangement of the individual cylinders.
  • the device according to the invention with the characterizing features of the main claim has the advantage that by geometric arrangement of the inflow and outflow and their flow direction relative to the arrangement of the cylinder of each cylinder in direct flow contact a flow path assigned to him in each case and thus the number of flow paths of The number of cylinders is dependent, so that consequently a targeted and selective cooling of the individual cylinders and combustion chambers in dependence on the current engine operating condition is feasible.
  • an approximately uniform temperature distribution of the individual cylinders in all operating conditions is adjustable, which has a wear-reducing effect with respect to the corresponding components of the internal combustion engine. Due to the resulting low temperature variance can be, for example, reduce the tendency to knock or the nitrogen oxide emission at full load. Further advantageous developments and refinements of the invention will become apparent from the measures listed in the dependent claims.
  • Fig. 1 is a side view of an embodiment designed as a four-cylinder in-line engine internal combustion engine with coolant connections of the device according to the invention for coupling to a cooling circuit.
  • Fig. 2 shows a sectional view of a cylinder block of the internal combustion engine with inflow and outflow coolant connections of the device according to the invention in a plan view along the section line II-II of Fig. 1.
  • Fig. 3 shows a schematic view of the device according to the invention with the associated coolant circuit for cooling the internal combustion engine.
  • Fig. 1 in its entirety by 10 device for cooling a trained in the embodiment as a four-cylinder in-line engine 11 each has a cooling jacket area 12 ', 12 ", 12"' for the cylinder head 11 ', the cylinder block 11 "and the combustion chamber 11"'of the internal combustion engine 11.
  • the cooling jacket areas 12 ', 12 are arranged separately from each other and have for connection to a coolant circuit provided in pairs assigned inflows and outflows, which are formed in the embodiment as coolant connections 13, 13', 14, 14 'and the inflow and outflow side coupling
  • a pair of coolant connections 13, 13 ', 14, 14' are respectively provided on the cylinder head 11 'and on the cylinder block 11 "for the respective assigned cooling jacket region 12', 12", these coolant connections being in the horizontal longitudinal direction or direction Crankshaft longitudinal direction of the internal combustion engine 11, ie in the direction defined by the arrangement of the individual cylinders 15, are arranged on opposite side walls 16, 16 'of the internal combustion engine 11 such that the respective flow direction of these coolant ports is aligned along the crankshaft longitudinal direction mer is in a direction transverse to the crankshaft longitudinal direction, which is also arranged horizontally, both on the cylinder block 11 'and the cylinder head 11' on opposite side walls 25, 25 'another group formed in the embodiment as cool
  • each cylinder 15, 15 ', 15", 15 "' has two coolant connections 17, 17 ', 18, 18 ', 19, 19', 20, 20 'which are diametrically opposed and mirror-symmetrical with respect to the respective cylinder 15, 15', 15 ", 15"'Thus, the individual pairs of coolant connections 17 - 20, 17' - 20 ', 21 - 24, 21' - 24 'accordingly the distance of the respective adjacent cylinder along the crankshaft longitudinal direction spaced from each other, wherein on the front side wall 25 of the cylinder block 11, the inflow-side coolant connections 17-20 and on the opposite side wall 25 'the downstream coolant ports 17' - 20 'are arranged such that their respective As a result, in contrast to the longitudinally aligned coolant connections 13, 13 ', 14, 14', they flow serially one after the other through the crankshaft longitudinal direction and onto the respective associated cylinders
  • cylinder head 11 ' is in an analogous manner with the same geometric Arrangement of designed as coolant connections inflows and outflows 21 - 24 and 21 - 24 'is provided so that on opposite side walls 25, 25' of the cylinder head 11 'each cylinder 15, 15', 15 ", 15"'in each case a pair of coolant connections 21, 21 ', 22, 22', 23, 23 ', 24, 24' is assigned, wherein the flow direction transversely to the crankshaft longitudinal direction and the respective associated cylinder 15, 15 ', 15 ", 15”' has.
  • Fig. 3 shows the device 10 according to the invention with the associated cooling circuit.
  • the coolant connections 17-20 assigned to the cylinder block 11 "and arranged transversely are connected to a first outlet of a mixing valve 27, while its second outlet is connected upstream to the longitudinally arranged coolant connection 14, so that this mixing valve 27 adjusts the mixing ratio between the longitudinally arranged coolant connection 14 and the transversely arranged coolant connections 17 - 19.
  • the cylinder head 11 'assigned and transversely arranged coolant connections 21-24 are connected to a first outlet of a further mixing valve 27', while the second Output connected to the longitudinally arranged coolant connection 13 on the inflow side, so that this second mixing valve 27 ', the adjustment of the mixing ratio between the longitudinally disposed coolant port 13 u and the transversely disposed coolant ports 21-24.
  • the input of the first mixing valve 27 communicates with a first output of a third mixing valve 28 and the input of the second mixing valve 27' with a second output of the third mixing valve 28.
  • the transverse coolant connections 17 '- 20' associated with the cylinder block 11 "are connected to a first inlet of a mixing valve 29, while its second inlet is connected downstream to the coolant connection 14 'arranged in the longitudinal direction "associated and transversely arranged coolant connections 21 '- 24' connected to a first input of a further mixing valve 29 ', while the second input to the longitudinally arranged coolant connection 13' is connected downstream.
  • Both mixing valves 29, 29 ' are separately adjustable and serve the return of the heated in the internal combustion engine 11 coolant; they each have one Output, wherein the output of the mixing valve 29 to the output of the mixing valve 29 'is in communication; these two outputs are connected to an input of a thermostatic valve 31, which on the output side feeds the heated coolant flowing through the mixing valves 29, 29 'out of the cylinder head 11 "and the cylinder block 11 into a cooler 32.
  • the cooler 32 supplies a temperature-reduced coolant to a feed pump 33, which is connected on the output side to an input of the mixing valve 28.
  • a part of the coolant flowing in from the return valves 29, 29 ' is diverted and fed to a heat exchanger 35
  • the outlet side thereof via a reducing valve 36 is in communication with a branching point 37 interposed between the radiator 32 and the delivery pump 33, so that the coolant reduced in temperature in the heat exchanger 35 is supplied to the delivery pump 33.
  • a part of the coolant supplied to the thermostatic valve 31 is connected to the branch sstelle 37 coupled second output of the thermostatic valve 31 of the feed pump.
  • the following flow conditions can be realized for the inflows and outflows of the cylinder block 11 "shown in FIG. 2:
  • the partial flows supplied to the transversely arranged inflows 17 - 20 of the cylinder block 11 "are each about 0% of the coolant flow supplied to the cylinder block 11", wherein at the corresponding outflows 17 '- 20' also about 0% are discharged, while the partial flow in the longitudinal inflow 14 of the cylinder block 11 "is about 100% of the cylinder block supplied coolant flow, so that at the corresponding outflow 14 ', the corresponding partial flow is 100%.
  • the four transversely disposed inflows 17 - 20 of the cylinder block 11 "supplied partial flows of the cylinder block 11" supplied coolant flow are each about 10%, wherein at the corresponding outflows 17 '- 20' each about 25% are discharged, while the partial flow in the longitudinal inflow 14 of the cylinder block 11 "is set at about 60%, so that at the corresponding outflow 14 'flows about 0%.
  • the partial flows of the coolant flow supplied to the cylinder block 11 "to the four transverse inflows 17 - 20 of the cylinder block 11" are each about 0%, with approximately 25% being discharged at the corresponding outflows 17 '- 20', while the partial flow in the longitudinal inflow 14 of the cylinder block 11 "is set at approximately 100%, so that approximately 0% flows out of the corresponding outflow 14 '.
  • Characteristic of the invention is therefore that as coolant connections a group of mutually paired and each flow directions having inflows 17 - 24 and outflows 17 '- 24' is provided, wherein in each case a pair of inflows and outflows due to their respective flow direction defines a flow path and Each cylinder 15, 15 ', 15 ", 15"' is associated with at least one flow path which flows along the respective cylinder. In this case, their flow directions are transverse to the crankshaft longitudinal direction defined on the basis of the successive arrangement of the individual cylinders 15, 15 ', 15 ", 15”'. Another group of inflows and outflows 13, 13 '; 14, 14 'is arranged longitudinally to the crankshaft longitudinal direction.
  • the inflows and outflows arranged transversely thereto have metering bores in each case can be tuned by means of an overflow Coolant supply to each cylinder achievable a thermal cylinder equalization for each operating point.
  • the thermal load of the components belonging to the combustion chamber decreases and thus reduces wear.
  • the volume flow required for a uniform temperature distribution decreases and thus leads to a reduction in consumption. Also reducing consumption is a lowering of the flow resistance due to the parallel in the transverse direction training of the coolant partial flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einer Vorrichtung zum Kühlen einer Brennkraftmaschine, vorzugsweise eines Vierzylinderreihenmotors, nach der Gattung des Hauptanspruchs.The invention relates to a device for cooling an internal combustion engine, preferably a four-cylinder in-line engine, according to the preamble of the main claim.

Aus der EP 0 038 556 ist eine Vorrichtung zum Kühlen bekannt. Dabei weisen ein in der Brennkraftmaschine aufgenommener Zylinderkopf und ein Zylinderblock jeweils einen als Kühltasche ausgebildeten Kühlmantelbereich auf, wobei die voneinander getrennt angeordneten Kühltaschen zu- und abströmseitige Kühlmittelanschlüsse zur Ankopplung an den Kühlkreislauf aufweisen, so daß der Zylinderkopf und der Zylinderblock der Brennkraftmaschine getrennt voneinander mit Kühlmittel versorgbar sind, so daß somit eine voneinander getrennte thermische Regelung des Zylinderkopfes und des Zylinderblocks möglich ist. Unbefriedigend bei diesem Stand der Technik ist jedoch, daß aufgrund der integralen Kühlung aller Zylinder eine gezielte betriebspunktabhängige Kühlung einzelner Zylinder der Brennkraftmaschine nicht durchführbar ist.From EP 0 038 556 a device for cooling is known. In this case, a cylinder head and a cylinder block accommodated in the internal combustion engine each have a cooling jacket region in the form of a cooling pocket, wherein the coolant pockets arranged separately from one another and downstream have coolant connections for coupling to the cooling circuit, so that the cylinder head and the cylinder block of the internal combustion engine are separated from each other with coolant can be supplied, so that thus a separate thermal control of the cylinder head and the cylinder block is possible. Unsatisfactory in this prior art, however, is that due to the integral cooling of all cylinders a specific operating point-dependent cooling of individual cylinders of the internal combustion engine is not feasible.

Aus der US-A-5 058 535 ist eine Vorrichtung zum Kühlen eines Flugzeugverbrennungsmotors bekannt, welche an der Brennkraftmaschine vorgesehene Kühlmittelanschlüsse an einen Kühlkreislauf aufweist, wobei die Kühlmittelanschlüsse in wenigstens einen Kühlmantelbereich der Brennkraftmaschine münden. Als Kühtmittetanschtüsse sind dabei eine Gruppe voneinander paarweise zugeordneten Zuströmungen und Abströmungen vorgesehen, wobei jeweils ein Paar von Zuströmungen und Abströmungen aufgrund ihrer jeweiligen Strömungsrichtung einen separaten Strömungspfad definiert und jedem Zylinder des Verbrennungsmotors der US-A-5 058 535 jeweils wenigstens ein beströmender Strömungspfad zugeordnet ist, welcher parallel zu anderen Strömungspfaden benachbarter Zylinder verläuft. Bei dem Kühlsystem der US-A-5 058 535 liegen die einzelnen Zylinder paarweise horizontal gegeneinander ausgerichtet. Die einander ebenfalls paarweise zugeordneten Zu- und Abströmungen der einzelnen Zylinder sind dabei derart angeordnet, dass die Strömungsrichtungen quer zur aufgrund der Hintereinanderanordnung der einzelnen Zylinder definierten Richtung verlaufen.From US-A-5 058 535 a device for cooling an aircraft internal combustion engine is known, which has provided on the internal combustion engine coolant connections to a cooling circuit, wherein the coolant connections open into at least one cooling jacket region of the internal combustion engine. As Kühtmittetanschtüsse while a pair of mutually associated inflows and outflows are provided, each defined a pair of inflows and outflows due to their respective flow direction a separate flow path and each cylinder of the internal combustion engine of US-A-5 058 535 is assigned at least one beströmender flow path which is parallel to other flow paths of adjacent cylinders. In the cooling system of US-A-5 058 535, the individual cylinders are aligned in pairs horizontally against each other. The inflow and outflow of the individual cylinders, which are also assigned in pairs, are arranged in such a way that the flow directions are transverse to the direction defined by the successive arrangement of the individual cylinders.

Aus der JP-A-5010124 ist eine Kühlvorrichtung für einen Verbrennungsmotor bekannt, welche getrennte Paare von Zu- und Ableitungen sowohl für den Zylinderkopf als auch für den Zylinderblock der Brennkraftmaschine aufweist.From JP-A-5010124 a cooling device for an internal combustion engine is known which has separate pairs of supply and discharge lines for both the cylinder head and the cylinder block of the internal combustion engine.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Vorrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß durch geometrische Anordnung der Zu- und Abströmungen und deren Strömungsrichtung relativ zur Anordnung der Zylinder jeder einzelnen Zylinder in direktem Strömungskontakt eines ihm jeweils zugewiesenen Strömungspfades steht und somit die Zahl der Strömungspfade von der Anzahl der Zylinder abhängig ist, so daß mithin eine gezielte und selektive Kühlung der einzelnen Zylinder bzw. Brennräume in Abhängigkeit vom aktuellen Motorbetriebszustand durchführbar ist. Damit ist eine annähernd gleichmäßige Temperaturverteilung der einzelnen Zylinder bei allen Betriebszuständen einstellbar, die sich verschleißmindernd bezüglich der entsprechenden Bauteile der Brennkraftmaschine auswirkt. Aufgrund sich dadurch ergebenden geringen Temperaturvarianz läßt sich beipielsweise bei Vollastbetrieb die Klopfneigung oder die Stickoxidemission reduzieren.
Weitere vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich durch die in den Unteransprüchen aufgeführten Maßnahmen.
The device according to the invention with the characterizing features of the main claim has the advantage that by geometric arrangement of the inflow and outflow and their flow direction relative to the arrangement of the cylinder of each cylinder in direct flow contact a flow path assigned to him in each case and thus the number of flow paths of The number of cylinders is dependent, so that consequently a targeted and selective cooling of the individual cylinders and combustion chambers in dependence on the current engine operating condition is feasible. Thus, an approximately uniform temperature distribution of the individual cylinders in all operating conditions is adjustable, which has a wear-reducing effect with respect to the corresponding components of the internal combustion engine. Due to the resulting low temperature variance can be, for example, reduce the tendency to knock or the nitrogen oxide emission at full load.
Further advantageous developments and refinements of the invention will become apparent from the measures listed in the dependent claims.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der nachfolgenden Beschreibung und Zeichnung näher erläutert. Letztere zeigt in Fig. 1 eine Seitenansicht einer im Ausführungsbeispiel als Vierzylinderreihenmotor ausgebildeten Brennkraftmaschine mit Kühlmittelanschlüssen der erfindungsgemäßen Vorrichtung zur Ankopplung an einen Kühlkreislauf. Fig. 2 zeigt eine Schnittdarstellung eines Zylinderblocks der Brennkraftmaschine mit zuström- und abströmseitigen Kühlmittelanschlüssen der erfindungsgemäßen Vorrichtung in einer Draufsicht entlang der Schnittlinie II-II von Fig. 1. Fig. 3 zeigt eine schematische Ansicht der erfindungsgemäßen Vorrichtung mit dem zugehörigen Kühlmittelkreislauf zum Kühlen der Brennkraftmaschine.An embodiment of the invention is explained in more detail in the following description and drawings. The latter shows in Fig. 1 is a side view of an embodiment designed as a four-cylinder in-line engine internal combustion engine with coolant connections of the device according to the invention for coupling to a cooling circuit. Fig. 2 shows a sectional view of a cylinder block of the internal combustion engine with inflow and outflow coolant connections of the device according to the invention in a plan view along the section line II-II of Fig. 1. Fig. 3 shows a schematic view of the device according to the invention with the associated coolant circuit for cooling the internal combustion engine.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Die in Fig. 1 in ihrer Gesamtheit mit 10 bezeichnete Vorrichtung zum Kühlen einer im Ausführungsbeispiel als Vierzylinderreihenmotor ausgebildeten Brennkraftmaschine 11 weist jeweils einen Kühlmantelbereich 12', 12", 12"' für den Zylinderkopf 11', den Zylinderblock 11" und den Brennraum 11"' der Brennkraftmaschine 11 auf. Die Kühlmantelbereiche 12', 12" sind voneinander getrennt angeordnet und haben zum Anschluß an einen Kühlmittelkreislauf vorgesehene einander paarweise zugeordnete Zu- und Abströmungen, die im Ausführungsbeispiel als Kühlmittelanschlüsse 13, 13', 14, 14' ausgebildet sind und der zuström- und abströmseitigen Ankopplung an den Kühlkreislauf dienen. Dazu sind sowohl am Zylinderkopf 11' als auch am Zylinderblock 11" jeweils ein Paar Kühlmittelanschlüsse 13, 13', 14, 14' für den jeweils zugeordneten Kühlmantelbereich 12', 12" vorgesehen, wobei diese Kühlmittelanschlüsse in horizontaler Längserstreckungsrichtung bzw. Kurbelwellenlängsrichtung der Brennkraftmaschine 11, d.h. in der durch Hintereinanderanordnung der einzelnen Zylinder 15 definierten Richtung, an gegenüberliegenden Seitenwänden 16, 16' der Brennkraftmaschine 11 derart angeordnet sind, daß die jeweilige Strömungsrichtung dieser Kühlmittelanschlüsse entlang der Kurbelwellenlängsrichtung ausgerichtet ist. Femer ist in einer quer zur Kurbelwellenlängsrichtung verlaufenden Richtung, die in ebenfalls horizontal angeordnet ist, sowohl am Zylinderblock 11" als auch am Zylinderkopf 11' an gegenüberliegenden Seitenwänden 25, 25' eine weitere Gruppe von im Ausführungsbeispiel als Kühlmittelanschlüsse ausgebildeten Zu- und Abströmungen 17 - 20, 17' - 20', 21 - 24, 21' - 24' vorgesehen.
Fig. 2 veranschaulicht die geometrische Anordnung dieser zweiten Gruppe von Kühlmittelanschlüssen 17 - 20 sowie 17' - 20' am Zylinderblock 11 ", wobei jedem Zylinder 15, 15', 15", 15"' jeweils zwei Kühlmittelanschlüsse 17, 17', 18, 18', 19, 19', 20, 20' zugeordnet sind, die einander diametral und spiegelsymmetrisch bezüglich des jeweiligen Zylinders 15, 15', 15", 15"' gegenüberliegen. Somit sind die einzelnen Paare der Kühlmittelanschlüsse 17 - 20, 17' - 20', 21 - 24, 21' - 24' entsprechend dem Abstand der jeweils benachbarten Zylinder entlang der Kurbelwellenlängsrichtung voneinander beabstandet angeordnet, wobei auf der stirnseitigen Seitenwand 25 des Zylinderblocks 11 die zuströmseitigen Kühlmittelanschlüsse 17 - 20 und auf der gegenüberliegenden Seitenwand 25' die abströmseitigen Kühlmittelanschlüsse 17' - 20' derart angeordnet sind, daß deren jeweilige Strömungsrichtung quer zur Kurbellängsrichtung und auf den jeweils zugeordneten Zylinder 15, 15', 15", 15''' weist. Dadurch sind - im Unterschied zu den in Längsrichtung ausgerichteten Kühlmittelanschlüssen 13, 13', 14, 14' , durch die die seriell hintereinander angeordneten Zylinder 15, 15', 15", 15''' nacheinander angeströmt werden - die einzelnen Zylinder 15, 15', 15", 15''' aufgrund der in Querrichtung parallelen Kühlmittelströme direkt und gleichzeitig anströmbar. Auch der - aus Symmetriegründen nicht gesondert dargestellte - Zylinderkopf 11' ist in analoger Weise mit der gleichen geometrischen Anordnung von als Kühlmittelanschlüsse ausgebildeten Zu- und Abströmungen 21 - 24 und 21 - 24' versehen, so daß an gegenüberliegenden Seitenwänden 25, 25' des Zylinderkopfs 11' jedem Zylinder 15, 15', 15", 15"' jeweils ein Paar von Kühlmittelanschlüssen 21, 21', 22, 22', 23, 23', 24, 24' zugeordnet ist, wobei deren Strömungsrichtung quer zur Kurbelwellenlängsrichtung und auf den jeweils zugeordneten Zylinder 15, 15', 15", 15"' weist. Diese dem Zylinderkopf 11' zugeordnete Gruppe von Zu- und Abströmungen 21 - 24, 21' - 24' speisen den für den Brennraum 11"' vorgesehenen in Kühltaschen aufgegliederten Kühlmantelbereich 12"', während demgegenüber die dem Zylinderblock 11" zugeordnete Gruppe von Zu- und Abströmungen 17 - 20, 17' - 20' in den im Zylinderblock 11" aufgenommenen Kühlmantelbereich 12" einmündet. Indem ferner die Zu- und Abströmungen 17 - 20, 17' - 20', 21 - 24, 21' - 24' mit quer zur Kurbelwellenlängsrichtung verlaufenden Strömungsrichtungen jeweils geeignete Dosierbohrungen aufweisen, ist durch eine über die Dosierbohrungen abstimmbare Kühlmittelzufuhr zu jedem Zylinder 15, 15', 15", 15"' und die dadurch regelbare Längs- und Querbeströmung der Zylinder eine thermische Zylindergleichstellung für jeden Betriebspunkt erreichbar.
The designated in Fig. 1 in its entirety by 10 device for cooling a trained in the embodiment as a four-cylinder in-line engine 11 each has a cooling jacket area 12 ', 12 ", 12"' for the cylinder head 11 ', the cylinder block 11 "and the combustion chamber 11"'of the internal combustion engine 11. The cooling jacket areas 12 ', 12 "are arranged separately from each other and have for connection to a coolant circuit provided in pairs assigned inflows and outflows, which are formed in the embodiment as coolant connections 13, 13', 14, 14 'and the inflow and outflow side coupling For this purpose, a pair of coolant connections 13, 13 ', 14, 14' are respectively provided on the cylinder head 11 'and on the cylinder block 11 "for the respective assigned cooling jacket region 12', 12", these coolant connections being in the horizontal longitudinal direction or direction Crankshaft longitudinal direction of the internal combustion engine 11, ie in the direction defined by the arrangement of the individual cylinders 15, are arranged on opposite side walls 16, 16 'of the internal combustion engine 11 such that the respective flow direction of these coolant ports is aligned along the crankshaft longitudinal direction mer is in a direction transverse to the crankshaft longitudinal direction, which is also arranged horizontally, both on the cylinder block 11 'and the cylinder head 11' on opposite side walls 25, 25 'another group formed in the embodiment as coolant connections inflows and outflows 17 20, 17 '- 20', 21 - 24, 21 '- 24' are provided.
2 illustrates the geometric arrangement of this second group of coolant connections 17-20 and 17 '-20' on the cylinder block 11 ", wherein each cylinder 15, 15 ', 15", 15 "' has two coolant connections 17, 17 ', 18, 18 ', 19, 19', 20, 20 'which are diametrically opposed and mirror-symmetrical with respect to the respective cylinder 15, 15', 15 ", 15"'Thus, the individual pairs of coolant connections 17 - 20, 17' - 20 ', 21 - 24, 21' - 24 'accordingly the distance of the respective adjacent cylinder along the crankshaft longitudinal direction spaced from each other, wherein on the front side wall 25 of the cylinder block 11, the inflow-side coolant connections 17-20 and on the opposite side wall 25 'the downstream coolant ports 17' - 20 'are arranged such that their respective As a result, in contrast to the longitudinally aligned coolant connections 13, 13 ', 14, 14', they flow serially one after the other through the crankshaft longitudinal direction and onto the respective associated cylinders 15, 15 ', 15 ", 15"' arranged cylinder 15, 15 ', 15 ", 15''' are flowed successively - the individual cylinders 15, 15 ', 15", 15''' due to the parallel in the transverse direction coolant flows directly and at the same time to flow in. Also - for reasons of symmetry not separately shown - cylinder head 11 'is in an analogous manner with the same geometric Arrangement of designed as coolant connections inflows and outflows 21 - 24 and 21 - 24 'is provided so that on opposite side walls 25, 25' of the cylinder head 11 'each cylinder 15, 15', 15 ", 15"'in each case a pair of coolant connections 21, 21 ', 22, 22', 23, 23 ', 24, 24' is assigned, wherein the flow direction transversely to the crankshaft longitudinal direction and the respective associated cylinder 15, 15 ', 15 ", 15"' has. This group of inflows and outflows 21 - 24, 21 '- 24' assigned to the cylinder head 11 'feeds the cooling jacket region 12 "' provided for the combustion chamber 11"'into cooling pockets, while the group of components assigned to the cylinder block 11 "feeds it. and outflows 17-20, 17 '-20' into the cooling jacket area 12 "accommodated in the cylinder block 11", whereby the inflows and outflows 17 - 20, 17 '- 20', 21 - 24, 21 '- 24' are also provided Transversely to the crankshaft longitudinal direction extending flow directions each have suitable Dosierbohrungen, can be achieved by a tuned via the Dosierbohrungen coolant supply to each cylinder 15, 15 ', 15 ", 15"' and thereby adjustable longitudinal and transverse flow of the cylinder thermal cylinder equalization for each operating point.

Fig. 3 zeigt die erfindungsgemäße Vorrichtung 10 mit dem zugehörigen Kühlkreislauf. Zuströmseitig sind die dem Zylinderblock 11" zugeordneten und in Querrichtung angeordneten Kühlmittelanschlüsse 17 - 20 mit einem ersten Ausgang eines Mischventils 27 verbunden, während dessen zweiter Ausgang mit dem in Längsrichtung angeordneten Kühlmittelanschluß 14 zuströmseitig verbunden ist, so daß dieses Mischventil 27 der Einstellung des Mischverhältnisses zwischen dem in Längsrichtung angeordneten Kühlmittelanschluß 14 und den in Querrichtung angeordneten Kühlmittelanschlüssen 17 - 19 dient. In analoger Weise sind zuströmseitig die dem Zylinderkopf 11' zugeordneten und in Querrichtung angeordneten Kühlmittelanschlüsse 21 - 24 mit einem ersten Ausgang eines weiteren Mischventils 27' verbunden, während dessen zweiter Ausgang mit dem in Längsrichtung angeordneten Kühlmittelanschluß 13 zuströmseitig verbunden ist, so daß dieses zweite Mischventil 27' der Einstellung des Mischverhältnisses zwischen dem in Längsrichtung angeordneten Kühlmittelanschluß 13 und den in Querrichtung angeordneten Kühlmittelanschlüssen 21 - 24 dient. Zum Einstellen des zuströmseitigen Kühlmittel - Mischverhältnisses zwischen Zylinderkopf 11' und Zylinderblock 11" steht der Eingang des ersten Mischventils 27 mit einem ersten Ausgang eines dritten Mischventils 28 und der Eingang des zweiten Mischventils 27' mit einem zweiten Ausgang des dritten Mischventils 28 in Verbindung.
Abströmseitig sind die dem Zylinderblock 11 " zugeordneten Quer-Kühlmittelanschlüsse 17' - 20' mit einem ersten Eingang eines Mischventils 29 verbunden, während dessen zweiter Eingang mit dem in Längsrichtung angeordneten Kühlmittelanschluß 14' abströmseitig verbunden ist. In analoger Weise sind abströmseitig die dem Zylinderkopf 11" zugeordneten und in Querrichtung angeordneten Kühlmittelanschlüsse 21' - 24' mit einem ersten Eingang eines weiteren Mischventils 29' verbunden, während dessen zweiter Eingang mit dem in Längsrichtung angeordneten Kühlmittelanschluß 13' abströmseitig verbunden ist. Beide Mischventile 29, 29' sind getrennt voneinander einstellbar und dienen dem Rücklauf des in der Brennkraftmaschine 11 erwärmten Kühlmittels; sie weisen jeweils einen Ausgang auf, wobei der Ausgang des Mischventils 29 mit dem Ausgang des Mischventils 29' in Verbindung steht; diese beiden Ausgänge sind mit einem Eingang eines Thermostatventils 31 verbunden, welches ausgangsseitig das über die Mischventile 29, 29' aus dem Zylinderkopf 11" und den Zylinderblock 11' abströmende erwärmte Kühlmittel in einen Kühler 32 einspeist. Der Kühler 32 führt seinerseits temperatürreduziertes Kühlmittel einer Förderpumpe 33 zu, die ausgangsseitig mit einem Eingang des Mischventils 28 verbunden ist. Über eine dem Eingang des Thermostatventils 31 vorgeordnete Verzweigungsstelle 34 wird ein Teil des von den Rücklaufventilen 29, 29' zuströmenden Kühlmittels abgezweigt und einem Wärmetauscher 35 zugeführt, dessen Austrittsseite über ein Reduzierventil 36 mit einer dem Kühler 32 und der Förderpumpe 33 zwischengeordnete Verzweigungsstelle 37 in Verbindung steht, so daß das im Wärmetauscher 35 temperaturreduzierte Kühlmittel der Förderpumpe 33 zugeführt wird. Ein Teil des dem Thermostatventil 31 zugeführten Kühlmittels wird über einen an die Verzweigungsstelle 37 angekoppelten zweiten Ausgang des Thermostatventils 31 der Förderpumpe zugeleitet. Die jeweils durch den Kühler 32 und den Wärmetauscher 35 definierten Zweige des Kühlmittelkreislaufs sind mithin durch eine einzige Förderpumpe 33 betreibbar.
Somit sind beispielsweise für die in Fig. 2 dargestellten Zu- und Abströmungen des Zylinderblocks 11 " folgende Strömungsbedingungen realisierbar: In einer ersten Ausführungsform betragen die den jeweils vier quer angeordneten Zu- und Abströmungen 17 - 20 und 17' - 20' des Zylinderblocks 11" zugeführten Teilströme jeweils etwa 25% des dem Zylinderblock 11" zugeführten Kühlmittelstroms, während der Teilstrom in der längs angeordneten Zuströmung 14 des Zylinderblocks 11" etwa 0% des dem Zylinderblock zugeführten Kühlmittelstroms beträgt, so daß an der korrespondierenden Abströmung 14' der entsprechende Teilstrom von etwa 0% abströmt. In einer zweiten Ausführungsform betragen die den quer angeordneten Zuströmungen 17 - 20 des Zylinderblocks 11" zugeführten Teilströme jeweils etwa 0% des dem Zylinderblock 11" zugeführten Kühlmittelstroms, wobei an den dazu korrespondierenden Abströmungen 17' - 20' ebenfalls etwa 0% abgeführt werden, während der Teilstrom in der längs angeordneten Zuströmung 14 des Zylinderblocks 11" etwa 100% des dem Zylinderblock zugeführten Kühlmittelstroms beträgt, so daß an der korrespondierenden Abströmung 14' der entsprechende Teilstrom 100% beträgt. In einer dritten Ausführungsform betragen die den vier quer angeordneten Zuströmungen 17 - 20 des Zylinderblocks 11" zugeführten Teilströme des dem Zylinderblock 11" zugeführten Kühlmittelstroms jeweils etwa 10%, wobei an den dazu korrespondierenden Abströmungen 17' - 20' jeweils etwa 25% abgeführt werden, während der Teilstrom in der längs angeordneten Zuströmung 14 des Zylinderblocks 11" mit etwa 60% eingestellt ist, so daß an der dazu korrespondierenden Abströmung 14' etwa 0% abströmt. In einer vierten Ausführungsform betragen die den vier quer angeordneten Zuströmungen 17 - 20 des Zylinderblocks 11" zugeführten Teilströme des dem Zylinderblock 11" zugeführten Kühlmittelstroms jeweils etwa 0%, wobei an den dazu korrespondierenden Abströmungen 17' - 20' jeweils etwa 25% abgeführt werden, während der Teilstrom in der längs angeordneten Zuströmung 14 des Zylinderblocks 11" mit etwa 100% eingestellt ist, so daß an der dazu korrespondierenden Abströmung 14' etwa 0% abströmt.
Charakteristisch für die Erfindung ist mithin, daß als Kühlmittelanschlüsse eine Gruppe von einander paarweise zugeordneten und jeweils Strömungsrichtungen aufweisenden Zuströmungen 17 - 24 und Abströmungen 17' - 24' vorgesehen ist, wobei jeweils ein Paar von Zuströmungen und Abströmungen aufgrund ihrer jeweiligen Strömungsrichtung einen Strömungspfad definiert und jedem Zylinder 15, 15', 15", 15"' jeweils wenigstens ein den jeweiligen Zylinder beströmender Strömungspfad zugeordnet ist. Dabei verlaufen deren Strömungsrichtungen quer zur aufgrund der Hintereinanderanordnung der einzelnen Zylinder 15, 15', 15", 15"' definierten Kurbelwellenlängsrichtung. Eine weitere Gruppe von Zu- und Abströmungen 13, 13'; 14, 14' ist längs zur Kurbelwellenlängsrichtung angeordnet. Indem ferner die quer dazu angeordneten Zu- und Abströmungen jeweils Dosierbohrungen aufweisen, ist durch eine darüber abstimmbare Kühlmittelzufuhr zu jedem Zylinder eine thermische Zylindergleichstellung für jeden Betriebspunkt erreichbar.
Insgesamt sind folgende Vorteile erzielbar: Durch die Einstellbarkeit einer annähernd gleichmäßigen Temperaturverteilung bei allen Betriebszuständen sinkt die thermische Belastung der zum Brennraum gehörenden Bauteile und wirkt somit verschleißmindernd. Aufgrund der selektiven Zuführung der Kühlmittel-Teilströme zu den einzelnen Brennraumbereichen und einer dadurch möglichen präzisen Kühlung sinkt der für eine gleichmäßige Temperaturverteilung erforderliche Volumenstrom und führt somit zu einer Verbrauchsreduzierung. Ebenfalls verbrauchsreduzierend wirkt sich eine Absenkung des Strömungswiderstands aufgrund der in Querrichtung parallelen Ausbildung der Kühlmittel-Teilströme aus.
Fig. 3 shows the device 10 according to the invention with the associated cooling circuit. On the inflow side, the coolant connections 17-20 assigned to the cylinder block 11 "and arranged transversely are connected to a first outlet of a mixing valve 27, while its second outlet is connected upstream to the longitudinally arranged coolant connection 14, so that this mixing valve 27 adjusts the mixing ratio between the longitudinally arranged coolant connection 14 and the transversely arranged coolant connections 17 - 19. Analogously, on the inflow side, the cylinder head 11 'assigned and transversely arranged coolant connections 21-24 are connected to a first outlet of a further mixing valve 27', while the second Output connected to the longitudinally arranged coolant connection 13 on the inflow side, so that this second mixing valve 27 ', the adjustment of the mixing ratio between the longitudinally disposed coolant port 13 u and the transversely disposed coolant ports 21-24. For adjusting the inflow-side coolant mixing ratio between cylinder head 11 'and cylinder block 11 ", the input of the first mixing valve 27 communicates with a first output of a third mixing valve 28 and the input of the second mixing valve 27' with a second output of the third mixing valve 28.
On the downstream side, the transverse coolant connections 17 '- 20' associated with the cylinder block 11 "are connected to a first inlet of a mixing valve 29, while its second inlet is connected downstream to the coolant connection 14 'arranged in the longitudinal direction "associated and transversely arranged coolant connections 21 '- 24' connected to a first input of a further mixing valve 29 ', while the second input to the longitudinally arranged coolant connection 13' is connected downstream. Both mixing valves 29, 29 'are separately adjustable and serve the return of the heated in the internal combustion engine 11 coolant; they each have one Output, wherein the output of the mixing valve 29 to the output of the mixing valve 29 'is in communication; these two outputs are connected to an input of a thermostatic valve 31, which on the output side feeds the heated coolant flowing through the mixing valves 29, 29 'out of the cylinder head 11 "and the cylinder block 11 into a cooler 32. The cooler 32, in turn, supplies a temperature-reduced coolant to a feed pump 33, which is connected on the output side to an input of the mixing valve 28. Via a branch point 34 upstream of the input of the thermostatic valve 31, a part of the coolant flowing in from the return valves 29, 29 'is diverted and fed to a heat exchanger 35, the outlet side thereof via a reducing valve 36 is in communication with a branching point 37 interposed between the radiator 32 and the delivery pump 33, so that the coolant reduced in temperature in the heat exchanger 35 is supplied to the delivery pump 33. A part of the coolant supplied to the thermostatic valve 31 is connected to the branch sstelle 37 coupled second output of the thermostatic valve 31 of the feed pump. The respectively defined by the radiator 32 and the heat exchanger 35 branches of the coolant circuit can therefore be operated by a single pump 33.
Thus, for example, the following flow conditions can be realized for the inflows and outflows of the cylinder block 11 "shown in FIG. 2: In a first embodiment, the four transversely disposed inflows and outflows 17 - 20 and 17 '- 20' of the cylinder block 11" supplied partial streams each about 25% of the cylinder block 11 "supplied coolant flow, while the partial flow in the longitudinal inflow 14 of the cylinder block 11" is about 0% of the cylinder block supplied coolant flow, so that at the corresponding outflow 14 'of the corresponding partial flow of about 0% outflows. In a second embodiment, the partial flows supplied to the transversely arranged inflows 17 - 20 of the cylinder block 11 "are each about 0% of the coolant flow supplied to the cylinder block 11", wherein at the corresponding outflows 17 '- 20' also about 0% are discharged, while the partial flow in the longitudinal inflow 14 of the cylinder block 11 "is about 100% of the cylinder block supplied coolant flow, so that at the corresponding outflow 14 ', the corresponding partial flow is 100%. In a third embodiment, the four transversely disposed inflows 17 - 20 of the cylinder block 11 "supplied partial flows of the cylinder block 11" supplied coolant flow are each about 10%, wherein at the corresponding outflows 17 '- 20' each about 25% are discharged, while the partial flow in the longitudinal inflow 14 of the cylinder block 11 "is set at about 60%, so that at the corresponding outflow 14 'flows about 0%. In a fourth embodiment, the partial flows of the coolant flow supplied to the cylinder block 11 "to the four transverse inflows 17 - 20 of the cylinder block 11" are each about 0%, with approximately 25% being discharged at the corresponding outflows 17 '- 20', while the partial flow in the longitudinal inflow 14 of the cylinder block 11 "is set at approximately 100%, so that approximately 0% flows out of the corresponding outflow 14 '.
Characteristic of the invention is therefore that as coolant connections a group of mutually paired and each flow directions having inflows 17 - 24 and outflows 17 '- 24' is provided, wherein in each case a pair of inflows and outflows due to their respective flow direction defines a flow path and Each cylinder 15, 15 ', 15 ", 15"' is associated with at least one flow path which flows along the respective cylinder. In this case, their flow directions are transverse to the crankshaft longitudinal direction defined on the basis of the successive arrangement of the individual cylinders 15, 15 ', 15 ", 15"'. Another group of inflows and outflows 13, 13 '; 14, 14 'is arranged longitudinally to the crankshaft longitudinal direction. In addition, since the inflows and outflows arranged transversely thereto have metering bores in each case can be tuned by means of an overflow Coolant supply to each cylinder achievable a thermal cylinder equalization for each operating point.
Overall, the following advantages can be achieved: Due to the adjustability of an approximately uniform temperature distribution in all operating conditions, the thermal load of the components belonging to the combustion chamber decreases and thus reduces wear. Due to the selective supply of the coolant partial streams to the individual combustion chamber regions and thereby possible precise cooling, the volume flow required for a uniform temperature distribution decreases and thus leads to a reduction in consumption. Also reducing consumption is a lowering of the flow resistance due to the parallel in the transverse direction training of the coolant partial flows.

Claims (16)

  1. Device for cooling an internal combustion engine, preferably a four-cylinder in-line engine, having coolant connections on the internal combustion engine to a cooling circuit, the coolant connections opening out into at least one cooling jacket region of the internal combustion engine, a group of inflow passages (17 - 24) and outflow passages (17' - 24'), which are associated with one another in pairs, being provided as coolant connections, and one pair of inflow passages and outflow passages in each case defining a flow path on account of their respective flow direction, and each cylinder (15, 15', 15", 15"') being associated with at least one flow path which flows to it, the inflow and outflow passages (17, 17' - 24, 24') which are associated with one another in pairs and each have flow directions being arranged in such a way that the flow directions run transversely with respect to the crankshaft longitudinal direction defined by the arrangement of the individual cylinders (15, 15', 15'', 15"') one behind the other, and are spaced apart from one another at intervals corresponding to the distance between the respectively adjacent cylinders (15, 15', 15", 15"'), the respective pairs of inflow and outflow passages (17, 17' - 24, 24') being situated diametrically and mirror-symmetrically opposite one another relative to the respectively associated cylinder (15, 15', 15", 15"'), characterized in that the respective pairs of inflow and outflow passages (17, 17' - 24, 24') are arranged at opposite side walls (25, 25') both of a cylinder head (11') which is comprised in the internal combustion engine (11) and of a cylinder block (11") which is comprised in the internal combustion engine (11), and those pairs of inflow and outflow passages (17, 17' - 24, 24') which are associated with the cylinder head (11') are connected to a cooling jacket region (12'), which is held in the cylinder head (11'), in such a way that said pairs of inflow and outflow passages (17, 17' - 24, 24') feed a cooling jacket region which is provided for a combustion space (11"') comprised in the internal combustion engine and is embodied as cooling pockets (12"').
  2. Device according to Claim 1, characterized in that the flow paths which flow to the cylinders (15, 15', 15", 15"') each run parallel to one another.
  3. Device according to Claim 1 or 2, characterized in that those pairs of inflow and outflow passages (17 - 20, 17' - 20') which are associated with the cylinder block (11") are connected to a cooling jacket region (12") which is held in the cylinder block (11").
  4. Device according to one of Claims 1 to 3, characterized in that the inflow and outflow passages (17 - 24, 17' - 24') have metering bores.
  5. Device according to one of Claims 1 to 4, characterized in that a further group of inflow and outflow passages (13, 13'; 14, 14') is provided at opposite side walls (16, 16') which the crankshaft longitudinal direction passes through, the flow directions of said inflow and outflow passages (13, 13'; 14, 14') being aligned along the crankshaft longitudinal direction.
  6. Device according to Claim 5, characterized in that the device (10) has valve means (27, 27', 28, 29, 29', 31, 36) by which the inflow and outflow passages (13, 13', 14, 14'; 17 - 20, 17' - 20'; 21 - 24, 21' - 24') can be controlled in such a way that a relatively large part of the coolant flow fed by the coolant circuit (32, 33, 34, 35, 36, 37) flows via that group of inflow and outflow passages (17 - 20, 17' - 20', 21 - 24, 21' - 24') which is arranged transversely with respect to the crankshaft longitudinal direction, and a comparatively small part of the coolant flow flows via that group of inflow and outflow passages (13, 13', 14, 14') which is arranged longitudinally with respect to the crankshaft longitudinal direction.
  7. Device according to Claim 6, characterized in that the valve means have at least one first mixing valve (28) for dividing the coolant flow into partial flows which are respectively associated with the cylinder block (11'') and the cylinder head (11').
  8. Device according to Claim 7, characterized in that the valve means have a first group of at least two mixing valves (27, 27'), which are arranged such that they are connected downstream of the first mixing valve (28), for adjusting a mixture of partial coolant flows which are associated, on the one hand, with the longitudinally arranged inflow and outflow passages (13, 14) and, on the other hand, with the transversely arranged inflow and outflow passages (17 - 20, 21 - 24).
  9. Device according to Claim 7 or 8, characterized in that the valve means have a second group of at least two further mixing valves (29, 29') for recirculating coolant which flows out of the internal combustion engine (11).
  10. Device according to Claim 8 or 9, characterized in that the mixing valves (27, 27'; 29, 29') which are comprised in the respective group are each arranged such that they are connected in parallel with one another.
  11. Device according to one of Claims 7 to 10, characterized in that the valve means are formed in such a way that mixing valves (27, 28) which are associated with the cylinder block (11'') can be at least temporarily switched off.
  12. Device according to one of Claims 6 to 11, characterized in that those partial flows of the coolant flow which are associated with the transversely arranged inflow and outflow passages (17 - 24, 17' - 24') can each be selectively adjusted relative to one another.
  13. Device according to one of Claims 6 to 12, characterized in that the valve means are switched in such a way that the partial flows in the transversely arranged inflow and outflow passages (17 - 20, 17' - 20') of the cylinder block (11") are each approximately 0% of the coolant flow which is fed to the cylinder block (11"), and the partial flows in the longitudinally arranged inflow and outflow passages (14, 14') of the cylinder block (11") are approximately 100% of the coolant flow which is fed to the cylinder block.
  14. Device according to one of Claims 6 to 12, characterized in that the valve means are switched in such a way that the partial flows in the transversely arranged inflow and outflow passages (17 - 20, 17' - 20') of the cylinder block (11") are in each case approximately 25% of the coolant flow which is fed to the cylinder block (11"), and the partial flows in the longitudinally arranged inflow and outflow passages (14, 14') of the cylinder block (11") are approximately 0% of the coolant flow which is fed to the cylinder block.
  15. Device according to Claim 12, characterized in that the valve means are switched in such a way that the partial flows in the transversely arranged inflow and outflow passages (17 - 20, 17' - 20') of the cylinder block (11") are in each case approximately 10% in the inflow passages, and in each case approximately 25% in outflow passages (17' - 20'), of the coolant flow which is fed to the cylinder block (11"), while in contrast, the partial flows in the longitudinally arranged inflow and outflow passages (14, 14') of the cylinder block (11") are approximately 60% in the inflow passage (14), and approximately 0% in the outflow passage (14'), of the coolant flow which is fed to the cylinder block.
  16. Device according to Claim 12, characterized in that the valve means are switched in such a way that the partial flows in the transversely arranged inflow and outflow passages (17 - 20, 17' - 20') of the cylinder block (11") are in each case approximately 0% in the inflow passages, and in each case approximately 25% in outflow passages (17' - 20'), of the coolant flow which is fed to the cylinder block (11"), while in contrast, the partial flows in the longitudinally arranged inflow and outflow passages (14, 14') of the cylinder block (11") are approximately 100% in the inflow passage (14), and approximately 0% in the outflow passage (14'), of the coolant flow which is fed to the cylinder block.
EP01955216A 2000-07-01 2001-06-28 Device for cooling an internal combustion engine Expired - Lifetime EP1299624B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10032184A DE10032184A1 (en) 2000-07-01 2000-07-01 Device for cooling an internal combustion engine
DE10032184 2000-07-01
PCT/DE2001/002329 WO2002002917A1 (en) 2000-07-01 2001-06-28 Device for cooling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1299624A1 EP1299624A1 (en) 2003-04-09
EP1299624B1 true EP1299624B1 (en) 2006-09-06

Family

ID=7647541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01955216A Expired - Lifetime EP1299624B1 (en) 2000-07-01 2001-06-28 Device for cooling an internal combustion engine

Country Status (5)

Country Link
US (1) US20030000487A1 (en)
EP (1) EP1299624B1 (en)
JP (1) JP2004502083A (en)
DE (2) DE10032184A1 (en)
WO (1) WO2002002917A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841596B1 (en) * 2002-06-27 2005-12-16 Renault Sa COOLING DEVICE FOR INTERNAL COMBUSTION ENGINE
FR2845420B1 (en) * 2002-10-04 2006-01-27 Mark Iv Systemes Moteurs Sa COOLING CIRCUIT COMPRISING A FLOW CONTROL MEMBER
FR2848248B1 (en) * 2002-12-06 2006-08-04 Renault Sa INTERNAL COMBUSTION ENGINE COOLING CIRCUIT
DE10306695A1 (en) * 2003-02-18 2004-09-16 Daimlerchrysler Ag Internal combustion engine with a coolant circuit
FR2855555B1 (en) * 2003-05-27 2005-07-15 Renault Sa INTERNAL COMBUSTION ENGINE COOLING CIRCUIT
US6810838B1 (en) 2003-06-12 2004-11-02 Karl Harry Hellman Individual cylinder coolant control system and method
DE10342935B4 (en) 2003-09-17 2015-04-30 Robert Bosch Gmbh Internal combustion engine with a cooling circuit
FR2860833B1 (en) * 2003-10-08 2007-06-01 Peugeot Citroen Automobiles Sa COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE CONSISTING OF AT LEAST THREE COOLING PASSAGES
FR2856426B1 (en) * 2004-08-19 2006-06-09 Mark Iv Systemes Moteurs Sa COOLING CIRCUIT COMPRISING A FLOW CONTROL MEMBER
US20090020079A1 (en) * 2005-11-10 2009-01-22 BEHRmbH & Co. KG Circulation system, mixing element
DE102005062294A1 (en) * 2005-12-24 2007-06-28 Dr.Ing.H.C. F. Porsche Ag Method for cooling an internal combustion engine
WO2007080780A1 (en) * 2006-01-10 2007-07-19 Matsushita Electric Industrial Co., Ltd. Communication system and communication method
DE102008005591A1 (en) * 2008-01-22 2009-07-23 Bayerische Motoren Werke Aktiengesellschaft Valve device for an exhaust gas recirculation device
CN102667092B (en) 2009-12-01 2014-06-11 丰田自动车株式会社 Engine cooling device
DE102010010594B4 (en) * 2010-03-08 2014-10-09 Audi Ag Cooling circuit for an internal combustion engine
CN101787920B (en) * 2010-03-30 2012-06-27 奇瑞汽车股份有限公司 Cooling system of automobile
DE102010015107B4 (en) * 2010-04-16 2014-01-02 Audi Ag Coolant circuit for an internal combustion engine of a motor vehicle
WO2012070149A1 (en) * 2010-11-26 2012-05-31 トヨタ自動車株式会社 Cooling device for engine
US8739745B2 (en) * 2011-08-23 2014-06-03 Ford Global Technologies, Llc Cooling system and method
JP5699906B2 (en) * 2011-10-31 2015-04-15 トヨタ自動車株式会社 Engine cooling control device
DE102012200005B4 (en) * 2012-01-02 2015-04-30 Ford Global Technologies, Llc Method for operating a coolant circuit
US8960134B1 (en) * 2013-07-31 2015-02-24 GM Global Technology Operations LLC Targeted cooling with individualized feeding ports to cylinders
JP6222157B2 (en) * 2015-04-09 2017-11-01 トヨタ自動車株式会社 Cooling device for internal combustion engine
DE102015014514B4 (en) * 2015-11-11 2023-10-26 Deutz Aktiengesellschaft "Common-Rail" water jacket
GB2548835B (en) * 2016-03-29 2018-04-18 Ford Global Tech Llc A cooling system
FR3050233B1 (en) * 2016-04-19 2019-10-11 Renault S.A.S COOLING SYSTEM OF A THERMAL ENGINE
JP6581129B2 (en) 2017-02-14 2019-09-25 トヨタ自動車株式会社 Cooling device for internal combustion engine
JP6544376B2 (en) * 2017-03-28 2019-07-17 トヨタ自動車株式会社 Internal combustion engine cooling system
JP6544375B2 (en) * 2017-03-28 2019-07-17 トヨタ自動車株式会社 Internal combustion engine cooling system
KR20210003434A (en) * 2019-07-02 2021-01-12 현대자동차주식회사 Water jacket of engine
AT523181B1 (en) * 2020-02-18 2021-06-15 Avl List Gmbh COOLING SYSTEM FOR A COMBUSTION ENGINE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510124A (en) * 1991-07-01 1993-01-19 Toyota Motor Corp Cooling device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE168718C (en) *
DE325833C (en) * 1917-06-26 1920-09-21 Mercur Flugzeugbau G M B H Cooling, especially for engines
US1680567A (en) * 1922-02-08 1928-08-14 Pitzman Marsh Internal-combustion engine
JPS56148610A (en) 1980-04-18 1981-11-18 Toyota Motor Corp Cooling device for engine
US5058535A (en) * 1988-04-28 1991-10-22 Teledyne Industries, Inc. Parallel flow coolant circuit for internal combustion aircraft engines
JP3553765B2 (en) * 1997-06-27 2004-08-11 株式会社日本自動車部品総合研究所 In-cylinder direct injection internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510124A (en) * 1991-07-01 1993-01-19 Toyota Motor Corp Cooling device for internal combustion engine

Also Published As

Publication number Publication date
WO2002002917A1 (en) 2002-01-10
JP2004502083A (en) 2004-01-22
DE50110945D1 (en) 2006-10-19
DE10032184A1 (en) 2002-01-10
EP1299624A1 (en) 2003-04-09
US20030000487A1 (en) 2003-01-02

Similar Documents

Publication Publication Date Title
EP1299624B1 (en) Device for cooling an internal combustion engine
AT515143B1 (en) Liquid-cooled internal combustion engine
EP1533512B1 (en) Intake device for an internal combustion engine
DE10350394B4 (en) Cylinder head for a liquid-cooled multi-cylinder internal combustion engine
EP2309106A1 (en) Cooling system
DE10344834B4 (en) Engine cooling system
DE102006035552A1 (en) heat exchangers
DE102004032653B4 (en) Cylinder head structure of an engine
WO2007051212A2 (en) Cylinder head
EP1698770B1 (en) Separate cooling of cylinder head
EP1532359B1 (en) Cylinder head for a water-cooled multi-cylinder internal combustion engine
EP1253303B1 (en) Fluid cooled reciprocating-piston internal combustion engine
WO2004104391A1 (en) Multi-cylinder combustion engine
DE112008003840B4 (en) Cooling device, cooling circuit and cooling method for an internal combustion engine
WO2001083958A1 (en) Cooling circuit for a multi-cylinder internal combustion engine
DE10000299A1 (en) Cooling system for internal combustion engine has distribution valve in series with row of cylinders, regulating valve with movable element forming regulated valve paths for coolant feeds
DE102009008237A1 (en) Internal combustion engine has liquid-cooled cylinder head which encloses upper and lower coolant chambers which are completely separated from each other within cylinder head
DE10021526C2 (en) Arrangement for cooling a multi-cylinder internal combustion engine
AT524566B1 (en) Liquid-cooled internal combustion engine
EP1329628B1 (en) Cylinder head for a piston combustion engine with a cooling conduit system
DE19943002A1 (en) Cooling device for an internal combustion engine
EP0637680B1 (en) Liquid cooled multicylinder internal combustion engine
DE19711030A1 (en) Independent heating regulation of vehicle compartment sides
WO2005088111A1 (en) Water-cooled cylinder head for an internal combustion engine
EP1041260B1 (en) Internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060906

REF Corresponds to:

Ref document number: 50110945

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MAN NUTZFAHRZEUGE AG

Effective date: 20070524

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20080612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120705

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120623

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120822

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110945

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130628