EP1298620B1 - Controlsystem for lightsignal devices at intersections - Google Patents

Controlsystem for lightsignal devices at intersections Download PDF

Info

Publication number
EP1298620B1
EP1298620B1 EP02020174A EP02020174A EP1298620B1 EP 1298620 B1 EP1298620 B1 EP 1298620B1 EP 02020174 A EP02020174 A EP 02020174A EP 02020174 A EP02020174 A EP 02020174A EP 1298620 B1 EP1298620 B1 EP 1298620B1
Authority
EP
European Patent Office
Prior art keywords
traffic
characteristic
traffic situation
situations
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02020174A
Other languages
German (de)
French (fr)
Other versions
EP1298620A3 (en
EP1298620A2 (en
Inventor
Paul Dr. Mathias
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1298620A2 publication Critical patent/EP1298620A2/en
Publication of EP1298620A3 publication Critical patent/EP1298620A3/en
Application granted granted Critical
Publication of EP1298620B1 publication Critical patent/EP1298620B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the invention relates to a method for controlling light sensors at a node according to the preamble of claim 1 and a control device for carrying out the method according to the preamble of claim. 5
  • a traffic light system consists of a combination of light sensors for the various approaches to the junction and the required operating facilities to control the flow of traffic.
  • a light signal transmitter in this sense is a telecommunications device that transmits visible signals to the road users.
  • a local control unit of the intersection runs a signal program, in which the signal times of the traffic signal system with respect to duration and assignment are defined.
  • a distinction is made essentially fixed-time-controlled and traffic-dependent method for controlling the signal generator at a node.
  • the fixed-time signal control is a light signal control with fixed signal times without the possibility of influencing the road user.
  • This macroscopic signal control is based on a long-term consideration of the traffic condition at the node.
  • the method uses fixed time table signal programs with a fixed daily or weekly automatic. In fixed-time-controlled individual nodes, the switching times for changing signal programs are thus set, for example, for the respective day of the week.
  • the method is simple in itself, there are no detectors for the current detection of the traffic condition at the node necessary.
  • fixed-time-controlled methods are relatively inexpensive due to their average planning effort, they are neither In the short or long term flexible with regard to a change in traffic conditions at the intersection, so that re-planning is required time and again.
  • a method for the traffic-adaptive control of a traffic signal system which processes data supplied by sensors for traffic detection in the intersection area.
  • the method does not use pre-built models or algorithms other than traffic safety, but it learns, stores and uses the most favorable traffic flow control methods for all traffic situations typical for the intersection, thus adapting the green phases to the traffic flow in response to temporal variations in traffic ,
  • a so-called feed-forward network is selected, which is trained by means of Reinforcement Learning.
  • the signals obtained from the sensor measurement data are thereby applied to the network inputs so that they are available at the network outputs in processed form for the control of the signal groups during a decision cycle in which each neuron of the network determines its output value from its synaptic inputs stand.
  • the traffic flow resulting from the signal groups switched in this way is evaluated by calculating a real number, which is greater the more vehicles pass the intersection and the fewer vehicles wait at the stop line.
  • this real number is then converted into appropriate changes in the weights in the synapses, so that after many sequences of decision and learning cycles, the real number sets to a maximum value that corresponds to the most favorable traffic flow control.
  • the time required for pre-training of the neural network increases. To increase the speed of learning additional sensors are required at intervals before the stop lines except one sensor on the stop line for each lane.
  • US 5,257,194 discloses a method of controlling light emitters not only at a local node, but also for a blanket system.
  • the traffic intensities in the intersections and the saturation traffic intensities for each direction of travel are recorded;
  • pedestrian signal requirements are detected.
  • Linear programming is used to calculate the local signal timing parameters, ie, minimum, optimal, and maximum green times and round trip durations.
  • the light signal transmitters are switched according to the calculated signal time parameters.
  • an electronic neural system with a plurality of interconnected nodes, which are arranged along a road and coupled with sensors, is known.
  • the sensors Observed quantities such as positions, speeds, distances and the like of vehicles and processed into symbolic patterns representing traffic conditions on the road.
  • the symbolic patterns are forwarded in the neural system and compared to their match quality using, for example, corellation techniques.
  • the degree of corelation ie, the goodness of fit, serves as a measure or metric of the traffic flow between the nodes of the compared symbolic patterns, with a high degree of corollation indicating unimpeded traffic flow, while a low degree of corollary indicates problems in traffic flow between the nodes.
  • the metric is 1, in normal traffic conditions with relatively moving vehicles, the metric value is less than 1. A sudden and rapid change in the corellation is to be taken as a warning, the value of the metric is significant between the patterns is less than 1. Coupled to the nodes is a plurality of traffic signals that are switched based on the symbolic patterns.
  • the US 3,818,429 discloses a traffic guidance system consisting of control method and apparatus for selecting a particular program for controlling light-emitting devices at one or more successive intersections of a plurality of programs stored in advance on punched tape.
  • the control device of the traffic control system is connected to intersection devices for controlling the light signal transmitter and with vehicle detectors for detecting the traffic conditions at the respective intersections.
  • the optimal program is selected by electronic calculation and analysis of the current traffic conditions. From the signals of the vehicle detectors are averaged values of various dynamic traffic parameters, such as density, speed and volume of traffic, calculated. different Traffic volumes are assigned to certain preselected areas of the traffic parameters and it is determined in which parameter area the current traffic volume lies.
  • a program can be done by specific programming of the control unit also by time of day and day of the week.
  • a program is understood to mean a data block of durations which determine the switching times for the light signal transmitters during a cycle. If the current parameter range is left in a running cycle, a new program, which is adapted to the current traffic conditions, is activated in the following cycle.
  • the known controls suffer from a considerable care and test effort on the part of the traffic planner or commissioning and require replanning due to often fundamental changes in traffic conditions over the course of months or years.
  • the invention is therefore based on the object to provide a system for local node control, which has greater flexibility in changes in traffic than pure fixed-time controls and at the same time shows high performance with minimal planning and coverage and moderate detector equipment.
  • each characteristic traffic condition a matched to this signal signal program is defined as a measure of the mutual position of two traffic conditions, a metric which is determined with respect to the defined metric the current traffic condition closest characteristic traffic condition, and the signal characteristic associated with the nearest characteristic traffic condition is issued for issuing switching commands for the light signal transmitter, the planning and supply effort is limited to the specification of basic data, such as the node topology, main directions, signal group definition, minimum green and transition times, split times and setup lengths, and some conditions, such as priorities and optimization criteria.
  • the procedure can adapt to changing traffic conditions on a short-term time scale.
  • the method according to the invention has a significantly greater flexibility than fixed-time-controlled methods and with relatively simple detection of the traffic conditions in the form of simple counts.
  • the traffic-related maintenance costs are reduced, since the method according to the invention adapts itself independently to changing framework conditions.
  • the diversity of traffic conditions occurring at a node becomes classified according to the frequency of their occurrence and their distribution in the space of all traffic conditions.
  • a characteristic traffic condition for example, as a heavy or accumulation point.
  • the distance between a newly determined characteristic traffic condition of a class of traffic conditions and the currently valid characteristic traffic condition of this class is determined, at a predeterminable threshold value for the distance exceeds the currently valid characteristic traffic condition by the newly determined characteristic traffic condition for replaces this class and calculates a signal program associated with the newly determined characteristic traffic condition.
  • a predeterminable threshold value for the distance exceeds the currently valid characteristic traffic condition by the newly determined characteristic traffic condition for replaces this class and calculates a signal program associated with the newly determined characteristic traffic condition.
  • a switching operation is determined by the previously executed signal program to the currently executable signal program.
  • the characteristic traffic state does not change or only slightly changes during its cyclic detection, the characteristic traffic state is maintained and thus the signal program assigned to it remains active. If, however, due to a shift in the statistical distribution, a new characteristic traffic condition or, due to a current change in the traffic condition, the characteristic traffic condition of another class is more obvious, a new signal program must be carried out after the cycle change.
  • traffic data of the node are continuously detected by detectors in the form of raw measured values, cyclically retrieving the acquired raw measured values and processing them by averaging or smoothing, using substitute values in the case of missing measured values, and the current traffic condition from the processed and possibly replaced measured values derived.
  • sensibly usable measured values are obtained from the continuously recorded raw measured values of the detectors, which cyclically provides the process with a current traffic state at the node to be controlled, even in the event of a possible failure of detectors.
  • the control module consists essentially of a main processor, which controls up to 48 signal groups, for example, from memory modules and various interfaces.
  • a control unit 10 comprises a core module 20 and a control module 30.
  • the switching of signal groups comprising light signal transmitters 40 and the continuous acquisition of traffic data by detectors 50 takes place.
  • About the basic supply 24 of the core module 20 intermediate times, minimum release times, offset times and transition times can be specified.
  • the control module 30 is encapsulated, the only interfaces go to the traffic-dependent core module 20 of the control unit 10.
  • the control component 30 does not use the signal program memory of the core module 20, but manages its own signal programs and only sets the corresponding switching commands.
  • the control module 30 comprises means 31 for processing the currently detected raw measured values of the detectors 50.
  • the means 23 for storing the raw measured values in the core module 20 shown in FIG. 2 are polled cyclically.
  • the pipe readings may then be condensed by special smoothing or averaging. If different types of measurements are available, such as counting and time gap, derived quantities such as LOS values are calculated by combining the original values. In the case of missing or failed detectors 50 substitute values are used instead of the original measured values.
  • the replacement measurements may optionally be defined at the supply 60 of the control module 30. It is also possible to specify substitute values specifically for different day types and hour ranges.
  • the measured values processed in this way represent the traffic state detected at the junction, which is stored in the means 32 for storing prepared measured values shown in FIG.
  • the control module 30 further comprises means 33 for deriving traffic conditions characteristic of the node.
  • traffic conditions characteristic of the node statistics about the current traffic data are continuously created, taking into account special calendar days, such as weekdays, weekends and public holidays. By using correspondingly smoothed or averaged values, the statistics only cover medium to long-term trends.
  • calendar data is important to adequately respond to infrequent but important traffic conditions.
  • the maximum number of classes can be specified via the supply 60 of the control module 30. For each class a representative representative is calculated, the so-called characteristic traffic condition.
  • the determination of the classes and their representatives is based on metrics, that is, certain distance functions which are expressions for specific performance criteria such as waiting times or set-up lengths.
  • the type of criteria can be selected in the supply 60 of the control module 30.
  • the characteristic traffic conditions are stored in means 34.
  • control module 30 comprises means 35 for monitoring changes in the characteristic traffic conditions.
  • the currently valid characteristic traffic conditions are compared with the newly calculated characteristic traffic conditions and it is determined whether the new, possibly drifted, have departed from the currently valid characteristic traffic conditions beyond a certain, predeterminable extent. If a threshold is exceeded, a new drifted characteristic traffic condition replaces the currently valid representative for that class. To determine the distance between two characteristic traffic conditions, the same metrics are used as in the clustering of traffic conditions.
  • the control module 30 also comprises means 36 for calculating signal programs which are each tuned to and associated with a stored characteristic traffic condition. For each new drifted characteristic traffic condition, an optimal signal program is calculated using a "genetic algorithm" based on attributes of a characteristic traffic condition, such as counts or traffic densities, from the nodal topology and other ancillary information such as directional priorities, pitch and offset times.
  • the optimization criterion ie the objective function, is freely definable.
  • the maximum number of signal groups is limited to sixteen in this embodiment.
  • the newly calculated signal program is stored in means 37 for storing signal programs, being assigned to the characteristic traffic state to which it is tailored.
  • the control module 30 comprises means 38 for determining the closest to the current traffic condition characteristic traffic condition with associated signal program. Depending on the traffic conditions recorded online, the selection of the respectively appropriate signal program is made by determining the closest characteristic traffic state. Distance estimation uses the same metrics as analyzing and clustering traffic conditions. In order to be able to react quickly to particularly extreme, unusual situations, a free emergency signal program is available, which can be temporarily overwritten and switched depending on the situation and in particular is not subject to the drift of the characteristic traffic conditions. In the case of a signal program change, corresponding phase transitions are determined which take into account the usual framework conditions, such as intermediate and offset times. Existing routines of the core module 20 are used for the calculation of the phase transitions.
  • control module 30 comprises means 39 for executing a signal program.
  • switching commands for the light signal transmitters 40 are forwarded to the core module 20 of the control device 10 every second.
  • control module 30 has its own fixed-time control with self-managed signal programs.
  • the method for controlling optical signal transmitters 40 at a node consists of the three cyclic subprocesses "data processing and clustering of traffic conditions" 70, "monitoring the characteristic traffic conditions and signal program calculation” 80 and "signal program selection and signal group circuit” 90, which are the partially common local Means 23 for storing raw measured values of the detectors 50, means 32 for storing prepared measured values or traffic conditions, means 34 for storing characteristic traffic conditions and means 37 for storing signal programs associated with the characteristic traffic conditions. Otherwise, the sub-processes work largely independently of each other.
  • the sub-process 70 begins in step 71 with the cyclic readout of the raw measured values from the memory 23.
  • these raw measured values are aggregated, ie smoothed and optionally averaged over time, and linked. For failed or missing detectors 50, substitute values may be used.
  • the measured values prepared in this way form the traffic states with which the method works; they are stored in the memory 32.
  • the space of the traffic conditions is divided into a predetermined number of classes according to a statistical distribution of the traffic conditions. For each class, a representative, a so-called characteristic traffic condition, is calculated.
  • the most recent characteristic traffic conditions are stored in memory 34 and optionally cyclically overwritten there.
  • the memory 34 also contains the currently valid characteristic traffic conditions, on which the automatic signal program selection currently operates.
  • the sub-process 80 begins in step 81 with the retrieval of the currently valid and the newly calculated characteristic traffic conditions from the memory 34. Cyclically, in step 82 it is checked whether a newly calculated characteristic traffic state moves beyond a threshold beyond the currently valid characteristic traffic condition. In determining the mutual location of characteristic traffic conditions, a given metric is used as a measure of the distance. When the threshold value is exceeded, in step 83 the previously valid characteristic traffic condition is replaced by the newly calculated drifted characteristic traffic condition and stored in the memory 34. Furthermore, in step 84, a signal program tailored to the new characteristic traffic condition is calculated and stored in memory 37 while being assigned to it.
  • Sub-process 90 starts cyclically in step 91 with retrieving the current traffic condition from memory 32. Further in step 92, the current traffic characteristic conditions are retrieved from memory 34 to determine in step 93 which of the valid characteristic traffic conditions corresponds to the current traffic condition predetermined metric is closest. In step 94, a decision is made as to whether there is a change in the characteristic traffic condition due to drift within the same class or due to class change due to the current traffic condition. If so, in step 95 the associated signal program is loaded from memory 37 and in step 96 a suitable phase transition is determined for switching from the previously active to the newly loaded signal program. Finally, in step 97, switching commands for the light signal generator 40 having signal groups corresponding to the current signal plan or after the specific phase transition issued. The collection of the stored signal programs constantly adapts to the current statistical distribution of the traffic values, whereby the control device 10 according to the invention organizes itself.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zum Steuern von Lichtsignalgebern an einem Knotenpunkt nach dem Oberbegriff des Patentanspruches 1 sowie ein Steuergerät zur Durchführung des Verfahrens nach dem Oberbegriff des Patentanspruches 5.The invention relates to a method for controlling light sensors at a node according to the preamble of claim 1 and a control device for carrying out the method according to the preamble of claim. 5

Der Verkehr auf Kreuzungen von Straßen, sogenannten Knotenpunkten, wird heute hauptsächlich durch Lichtsignalanlagen geregelt. Eine Lichtsignalanlage besteht aus einer Kombination von Lichtsignalgebern für die verschiedenen Zufahrten zum Knotenpunkt und den erforderlichen Betriebseinrichtungen zur Steuerung des Verkehrsablaufs. Ein Lichtsignalgeber in diesem Sinne ist ein Fernmeldegerät, das den Verkehrsteilnehmern sichtbare Signale übermittelt. In einem lokalen Steuergerät der Kreuzung läuft ein Signalprogramm ab, in dem die Signalzeiten der Lichtsignalanlage bezüglich Dauer und Zuordnung festgelegt sind. Hier unterscheidet man im wesentlichen festzeitgesteuerte und verkehrsabhängige Verfahren zum Steuern der Signalgeber an einem Knotenpunkt.The traffic at intersections of roads, so-called nodes, is now regulated mainly by traffic lights. A traffic light system consists of a combination of light sensors for the various approaches to the junction and the required operating facilities to control the flow of traffic. A light signal transmitter in this sense is a telecommunications device that transmits visible signals to the road users. In a local control unit of the intersection runs a signal program, in which the signal times of the traffic signal system with respect to duration and assignment are defined. Here, a distinction is made essentially fixed-time-controlled and traffic-dependent method for controlling the signal generator at a node.

Bei der Festzeit-Signalsteuerung handelt es sich um eine Lichtsignalsteuerung mit festgelegten Signalzeiten ohne Einwirkungsmöglichkeit für den Verkehrsteilnehmer. Diese makroskopische Signalsteuerung basiert auf einer langfristigen Berücksichtigung des Verkehrszustandes am Knotenpunkt. Das Verfahren verwendet auf fixen Zeittabellen arbeitende Signalprogramme mit einer starren Tages- oder Wochenautomatik. Beim festzeitgesteuerten Einzelknoten sind die Schaltzeitpunkte zum Wechseln von Signalprogrammen also beispielsweise für den jeweiligen Wochentag eingestellt. Das Verfahren ist an sich einfach, es sind keine Detektoren zur laufenden Erfassung des Verkehrszustandes am Knoten notwendig. Festzeitgesteuerte Verfahren sind aufgrund ihres mittleren Planungsaufwands zwar relativ kostengünstig, sind aber weder kurz- noch langfristig flexibel bezüglich einer Veränderung der Verkehrsverhältnisse am Knotenpunkt, so dass immer wieder Nachplanungen erforderlich sind.The fixed-time signal control is a light signal control with fixed signal times without the possibility of influencing the road user. This macroscopic signal control is based on a long-term consideration of the traffic condition at the node. The method uses fixed time table signal programs with a fixed daily or weekly automatic. In fixed-time-controlled individual nodes, the switching times for changing signal programs are thus set, for example, for the respective day of the week. The method is simple in itself, there are no detectors for the current detection of the traffic condition at the node necessary. Although fixed-time-controlled methods are relatively inexpensive due to their average planning effort, they are neither In the short or long term flexible with regard to a change in traffic conditions at the intersection, so that re-planning is required time and again.

Demgegenüber stehen die verkehrsabhängigen Verfahren, bei welchen die Signalsteuerung mikroskopisch, also unter kurzfristiger Berücksichtigung des Verkehrszustandes am Knotenpunkt erfolgt. Während beim teilverkehrsabhängigen Verfahren die Lichtsignalanlage nach in einem Signalplan festgelegten Zeiten mit Umschaltung der Grün- bzw. Freigabezeiten einzelner weniger Signalgruppen abhängig von einzelnen eintreffenden Verkehrsteilnehmern gesteuert wird, erfolgt beim vollverkehrsabhängigen Verfahren die Einstellung aller Freigabezeiten an einer Lichtsignalanlage eines Knotenpunkts aufgrund von Messungen einzelner eintreffender Verkehrsteilnehmer. Diese komplexen Verfahren, wie z.B. die Phasensteuerung mit dezentraler Modifikation, Rahmenphasenpläne oder Flussdiagramme, erfordern eine aufwendige automatische Erfassung von Verkehrszuständen oder Zustandsänderungen mit oft mehreren Detektoren, wie z.B. Induktionsschleifen, Infrarotsensoren oder Radardetektoren, pro Kreuzungszufahrt. Dadurch sind diese Steuerverfahren kurzfristig sehr flexibel, weisen langfristig allerdings nur eine mittlere Flexibilität auf, so dass Nachplanungen erforderlich werden. Insgesamt sind verkehrsabhängige Verfahren kostenintensiv und bringen einen großen Planungsaufwand mit sich.In contrast, there are the traffic-dependent methods in which the signal control takes place microscopically, that is to say under the short-term consideration of the traffic condition at the junction. While the partial traffic-dependent method, the light signal system is controlled by switching times of green or release times of individual fewer signal groups depending on individual incoming traffic participants, the setting of all release times on a traffic signal of a node based on measurements of individual arriving road users takes place in the full traffic-dependent method , These complex procedures, such as the phase control with decentralized modification, frame phase diagrams or flowcharts require a complex automatic detection of traffic conditions or state changes with often several detectors, such as e.g. Induction loops, infrared sensors or radar detectors, per intersection access. As a result, these tax procedures are very flexible in the short term, but have only medium flexibility in the long term, so that replanting is required. Overall, traffic-dependent procedures are costly and involve a large planning effort.

Aus der DE 44 36 339 A1 ist ein Verfahren zur verkehrsadaptiven Steuerung einer Verkehrsampelanlage bekannt, die von Sensoren zur Verkehrserfassung im Kreuzungsbereich gelieferte Daten verarbeitet. Das Verfahren verwendet außer zur Verkehrssicherheit nötige Prinzipien keine vorgefertigten Modelle oder Algorithmen, sondern es erlernt die günstigsten Methoden zur Verkehrsstromregelung aller für die Kreuzung typischen Verkehrssituationen, speichert diese und wendet sie an, um somit in Abhängigkeit von zeitlichen Schwankungen des Verkehrsaufkommens die Grünphasen dem Verkehrsstrom anzupassen.From the DE 44 36 339 A1 a method for the traffic-adaptive control of a traffic signal system is known which processes data supplied by sensors for traffic detection in the intersection area. The method does not use pre-built models or algorithms other than traffic safety, but it learns, stores and uses the most favorable traffic flow control methods for all traffic situations typical for the intersection, thus adapting the green phases to the traffic flow in response to temporal variations in traffic ,

Zum Steuern wird ein sogenanntes Feed-Forward-Netz gewählt, das mittels Reinforcement-Learning trainiert wird. Die aus den Sensor-Messdaten gewonnenen Signale werden dabei an die Netzeingänge gelegt, so dass sie während eines Entscheidungszyklus, in dem jedes Neuron des Netzes seinen Ausgangswert aus seinem mit Synapsen versehenen Eingängen ermittelt, an den Netzausgängen in verarbeiteter Form zur Ansteuerung der Signalgruppen zur Verfügung stehen. Der sich aus den auf diese Weise geschalteten Signalgruppen ergebende Verkehrsstrom wird bewertet, in dem eine reelle Zahl berechnet wird, die umso größer ist, je mehr Fahrzeuge die Kreuzung passieren und je weniger Fahrzeuge an der Haltelinie warten. Während eines Lernzyklus wird dann diese reelle Zahl in geeignete Änderungen der Gewichte in den Synapsen umgesetzt, so dass sich nach vielen Abfolgen von Entscheidungs- und Lernzyklen die reelle Zahl auf einen größtmöglichen Wert einstellt, der der günstigsten Verkehrsstromregelung entspricht. Mit der Verkomplizierung des Verkehrsknotens steigt der Zeitaufwand zum Vorabtraining des neuronalen Netzes an. Zur Erhöhung der Lerngeschwindigkeit sind außer je einem Sensor an der Haltelinie für jede Fahrbahn zusätzliche Sensoren in gewissen Abständen vor den Haltelinien erforderlich.To control a so-called feed-forward network is selected, which is trained by means of Reinforcement Learning. The signals obtained from the sensor measurement data are thereby applied to the network inputs so that they are available at the network outputs in processed form for the control of the signal groups during a decision cycle in which each neuron of the network determines its output value from its synaptic inputs stand. The traffic flow resulting from the signal groups switched in this way is evaluated by calculating a real number, which is greater the more vehicles pass the intersection and the fewer vehicles wait at the stop line. During a learning cycle, this real number is then converted into appropriate changes in the weights in the synapses, so that after many sequences of decision and learning cycles, the real number sets to a maximum value that corresponds to the most favorable traffic flow control. With the complication of the traffic node, the time required for pre-training of the neural network increases. To increase the speed of learning additional sensors are required at intervals before the stop lines except one sensor on the stop line for each lane.

US 5,257,194 offenbart ein Verfahren zum Steuern von Lichtsignalgebern nicht nur an einem lokalen Knotenpunkt, sondern auch für ein flächendeckendes System. Mittels Detektoren werden die Verkehrsstärken in den Kreuzungszufahrten sowie die Sättigungsverkehrsstärken für jede Fahrtrichtung erfasst; außerdem werden Fußgängersignalanforderungen detektiert Mittels linearer Programmierung werden die lokalen Signalzeitenparameter, d.h. minimale, optimale und maximale Grünzeiten und Umlaufdauern, berechnet. Schließlich werden die Lichtsignalgeber nach den berechneten Signalzeitenparametern geschaltet. US 5,257,194 discloses a method of controlling light emitters not only at a local node, but also for a blanket system. By means of detectors, the traffic intensities in the intersections and the saturation traffic intensities for each direction of travel are recorded; In addition, pedestrian signal requirements are detected. Linear programming is used to calculate the local signal timing parameters, ie, minimum, optimal, and maximum green times and round trip durations. Finally, the light signal transmitters are switched according to the calculated signal time parameters.

Aus der Patentschrift US 5,778,332 ist ein elektronisches Neuralsystem mit einer Vielzahl an untereinander verbundenen Knotenpunkten bekannt, welche entlang einer Straße angeordnet und mit Sensoren gekoppelt sind. Mittels der Sensoren werden Größen wie Positionen, Geschwindigkeiten, Abstände und dergleichen von Fahrzeugen beobachtet und zu symbolischen Mustern verarbeitet, die Verkehrszustände auf der Straße repräsentieren. Die symbolischen Muster werden im Neuralsystem weitergeleitet und - durch Anwendung von beispielsweise Korellationstechniken - auf ihre Übereinstimmungsgüte verglichen. Der Korellationsgrad, d.h. die Übereinstimmungsgüte, dient als Maß oder Metrik für den Verkehrsfluss zwischen den Knotenpunkten der verglichenen symbolischen Muster, wobei ein hoher Korellationsgrad einen ungehinderten Verkehrsfluss andeutet, ein niedriger Korella-tionsgrad hingegen Probleme im Verkehrsfluss zwischen den Knotenpunkten. Bei Übereinstimmung der Muster nimmt die Metrik den Wert 1 an, bei normalen Verkehrsverhältnissen mit sich relativ zueinander bewegenden Fahrzeugen liegt der Wert der Metrik unter 1. Ein plötzlicher und schneller Wechsel in der Korellation ist als Warnung aufzufassen, der Wert der Metrik ist bei signifikanten Abweichungen zwischen den Mustern kleiner als 1. An die Knotenpunkte ist eine Vielzahl an Verkehrssignalen gekoppelt, die auf der Grundlage der symbolischen Muster geschaltet werden.From the patent US 5,778,332 For example, an electronic neural system with a plurality of interconnected nodes, which are arranged along a road and coupled with sensors, is known. By means of the sensors Observed quantities such as positions, speeds, distances and the like of vehicles and processed into symbolic patterns representing traffic conditions on the road. The symbolic patterns are forwarded in the neural system and compared to their match quality using, for example, corellation techniques. The degree of corelation, ie, the goodness of fit, serves as a measure or metric of the traffic flow between the nodes of the compared symbolic patterns, with a high degree of corollation indicating unimpeded traffic flow, while a low degree of corollary indicates problems in traffic flow between the nodes. If the patterns match, the metric is 1, in normal traffic conditions with relatively moving vehicles, the metric value is less than 1. A sudden and rapid change in the corellation is to be taken as a warning, the value of the metric is significant between the patterns is less than 1. Coupled to the nodes is a plurality of traffic signals that are switched based on the symbolic patterns.

Die US 3,818,429 offenbart ein Verkehrsleitsystem, bestehend aus Steuerungsverfahren und -gerät, zum Auswählen eines bestimmten Programms für die Steuerung von Lichtsignalgebern an einer oder mehreren aufeinander folgenden Kreuzungen aus einer Vielzahl von vorab auf Lochstreifen gespeicherten Programmen. Das Steuerungsgerät des Verkehrsleitsystems ist mit Kreuzungsgeräten zur Steuerung der Lichtsignalgeber sowie mit Fahrzeugdetektoren zur Erfassung der Verkehrsbedingungen an den jeweiligen Kreuzungen verbunden. In Zyklen wird durch eine elektronische Berechnung und Analyse der aktuellen Verkehrsbedingungen das optimale Programm ausgewählt. Aus den Signalen der Fahrzeugdetektoren werden dazu gemittelte Werte verschiedener dynamischer Verkehrsparameter, wie Dichte, Geschwindigkeit und Volumen des Verkehrs, berechnet. Unterschiedliche Verkehrsaufkommen werden bestimmten vorausgewählten Bereichen der Verkehrsparameter zugeordnet und es wird bestimmt, in welchem Parameterbereich das aktuelle Verkehrsaufkommen liegt. Die Auswahl eines Programms kann durch gezielte Programmierung des Steuergeräts auch nach Tageszeit und Wochentag erfolgen. Unter einem Programm wird dabei ein Datenblock von Zeitdauern verstanden, die während eines Zyklus die Schaltzeitpunkte für die Lichtsignalgeber festlegen. Wird in einem laufenden Zyklus der aktuelle Parameterbereich verlassen, so wird im folgenden Zyklus ein neues, auf die aktuellen Verkehrsbedingungen abgestimmtes Programm aktiviert.The US 3,818,429 discloses a traffic guidance system consisting of control method and apparatus for selecting a particular program for controlling light-emitting devices at one or more successive intersections of a plurality of programs stored in advance on punched tape. The control device of the traffic control system is connected to intersection devices for controlling the light signal transmitter and with vehicle detectors for detecting the traffic conditions at the respective intersections. In cycles, the optimal program is selected by electronic calculation and analysis of the current traffic conditions. From the signals of the vehicle detectors are averaged values of various dynamic traffic parameters, such as density, speed and volume of traffic, calculated. different Traffic volumes are assigned to certain preselected areas of the traffic parameters and it is determined in which parameter area the current traffic volume lies. The selection of a program can be done by specific programming of the control unit also by time of day and day of the week. A program is understood to mean a data block of durations which determine the switching times for the light signal transmitters during a cycle. If the current parameter range is left in a running cycle, a new program, which is adapted to the current traffic conditions, is activated in the following cycle.

Neben den genannten Nachteilen leiden die bekannten Steuerungen unter einem erheblichen Versorgungs- und Testaufwand seitens des Verkehrsplaners bzw. Inbetriebsetzers und erfordern Nachplanungen aufgrund von oft grundlegenden Änderungen der Verkehrsverhältnisse im Laufe von Monaten oder Jahren. Der Erfindung liegt daher die Aufgabe zugrunde, ein System zur lokalen Knotenpunktsteuerung bereitzustellen, welches eine größere Flexibilität bei Änderungen der Verkehrsverhältnisse als reine Festzeitsteuerungen aufweist und gleichzeitig eine hohe Leistungsfähigkeit bei minimalem Planungs- und Versorgungsaufwand sowie bei moderater Detektorausstattung zeigt.In addition to the disadvantages mentioned, the known controls suffer from a considerable care and test effort on the part of the traffic planner or commissioning and require replanning due to often fundamental changes in traffic conditions over the course of months or years. The invention is therefore based on the object to provide a system for local node control, which has greater flexibility in changes in traffic than pure fixed-time controls and at the same time shows high performance with minimal planning and coverage and moderate detector equipment.

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren der eingangs genannten Art mit den im kennzeichnenden Teil des Patentanspruches 1 genannten Merkmalen und durch ein Steuergerät gemäß Patentanspruch 5. Indem bei einem gattungsgemäßen Verfahren aus den erfassten Verkehrszuständen für den Knotenpunkt charakteristische Verkehrszustände abgeleitet werden, jedem charakteristischen Verkehrszustand ein auf dieses abgestimmtes Signalprogramm zugeordnet wird, als Maß für die gegenseitige Lage zweier Verkehrszustände eine Metrik definiert wird, der bezüglich der definierten Metrik dem aktuellen Verkehrszustand nächstliegende charakteristische Verkehrszustand ermittelt wird, und das dem nächstliegenden charakteristischen Verkehrszustand zugeordnete Signalprogramm zum Abgeben von Schaltbefehlen für die Lichtsignalgeber ausgeführt wird, beschränkt sich der Planungs- und Versorgungsaufwand auf die Angabe von Basisdaten, wie die Knotentopologie, Hauptrichtungen, Signalgruppendefinition, Mindestgrün- und Übergangszeiten, Zwischenzeiten und Aufstelllängen, und einiger Rahmenbedingungen, wie Prioritäten und Optimierungskriterien. Mit Hilfe der automatischen Auswahl eines auf die aktuelle Verkehrssituation abgestimmten Signalprogramms kann sich das Verfahren auf einer kurzfristigen Zeitskala an wechselnde Verkehrsbedingungen anpassen. Dadurch weist das erfindungsgemäße Verfahren eine deutlich größere Flexibilität als festzeitgesteuerte Verfahren auf und zwar bei verhältnismäßig einfacher Detektion der Verkehrszustände in Form einfacher Zählwerte. Darüber hinaus reduziert sich der verkehrstechnische Wartungsaufwand, da das erfindungsgemäße Verfahren sich selbständig an wechselnde Rahmenbedingungen anpasst.The object is achieved by a method of the type mentioned above with the features mentioned in the characterizing part of claim 1 and by a control device according to claim 5. By a generic method derived from the detected traffic conditions for the node characteristic traffic conditions, each characteristic traffic condition a matched to this signal signal program is defined as a measure of the mutual position of two traffic conditions, a metric which is determined with respect to the defined metric the current traffic condition closest characteristic traffic condition, and the signal characteristic associated with the nearest characteristic traffic condition is issued for issuing switching commands for the light signal transmitter, the planning and supply effort is limited to the specification of basic data, such as the node topology, main directions, signal group definition, minimum green and transition times, split times and setup lengths, and some conditions, such as priorities and optimization criteria. With the help of the automatic selection of a signal program tailored to the current traffic situation, the procedure can adapt to changing traffic conditions on a short-term time scale. As a result, the method according to the invention has a significantly greater flexibility than fixed-time-controlled methods and with relatively simple detection of the traffic conditions in the form of simple counts. In addition, the traffic-related maintenance costs are reduced, since the method according to the invention adapts itself independently to changing framework conditions.

Indem nach jeder Erfassung des aktuellen Verkehrszustandes eine statistische Verteilung aller erfassten Verkehrszustände gebildet wird, entsprechend der statistischen Verteilung die Verkehrszustände zu Klassen zusammengefasst werden, und für jede Klasse von Verkehrszuständen ein charakteristischer Verkehrszustand als ihr Repräsentant ermittelt wird, wird die Vielfalt an einem Knotenpunkt auftretender Verkehrszustände entsprechend der Häufigkeit ihres Auftretens und ihrer Verteilung im Raum aller Verkehrszustände klassifiziert. Mit Hilfe der Metrik als Maß für die gegenseitige Lage zweier Verkehrszustände kann innerhalb einer Klasse von Verkehrszuständen ein charakteristischer Verkehrszustand, beispielsweise als Schwer- oder Häufungspunkt berechnet werden. Durch diese Clusterung wird die Vielfalt der an einem Knotenpunkt auftretenden Verkehrszustände auf eine sinnvoll begrenzte Anzahl von typischerweise auftretenden Verkehrszuständen, den charakteristischen Verkehrszuständen, begrenzt. Diese schränkt wiederum die Anzahl an zu speichernden, auf die charakteristischen Verkehrszustände abgestimmten Signalprogrammen ein.By forming a statistical distribution of all detected traffic conditions after each detection of the current traffic condition, classifying the traffic conditions into classes according to the statistical distribution, and determining a characteristic traffic condition as its representative for each class of traffic conditions, the diversity of traffic conditions occurring at a node becomes classified according to the frequency of their occurrence and their distribution in the space of all traffic conditions. With the help of the metric as a measure of the mutual position of two traffic conditions can be calculated within a class of traffic conditions, a characteristic traffic condition, for example, as a heavy or accumulation point. By means of this clustering, the diversity of the traffic states occurring at a node is limited to a sensibly limited number of typically occurring traffic states, the characteristic traffic conditions. This in turn restricts the number of signal programs to be stored, which are adapted to the characteristic traffic conditions.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der Abstand zwischen einem neu ermittelten charakteristischen Verkehrszustand einer Klasse von Verkehrszuständen und dem aktuell gültigen charakteristischen Verkehrszustand dieser Klasse bestimmt, bei Überschreiten eines vorgebbaren Schwellenwertes für den Abstand der aktuell gültige charakteristische Verkehrszustand durch den neu ermittelten charakteristischen Verkehrszustand für diese Klasse ersetzt, und ein dem neu ermittelten charakteristischen Verkehrszustand zugeordnetes Signalprogramm berechnet. Hierdurch wird zeitlichen Schwankungen der statistischen Verteilung der Verkehrszustände Rechnung getragen, mit der eine Bewegung bzw. ein Driften der charakteristischen Verkehrszustände einhergeht. Wenn der charakteristische Verkehrszustand einer Klasse zu stark abdriftet, wird ein neuer charakteristischer Verkehrszustand für diese Klasse ermittelt und ein auf diesen abgestimmtes Signalprogramm berechnet. Dadurch steht ein Verfahren zur Verfügung, welches sich auf einer mittel- bis langfristigen Zeitskala an wechselnde Verkehrsbedingungen anpasst. Durch die integrierte Signalprogrammberechnung gewinnt man eine nicht alternde Steuerung hoher Flexibilität und Leistungsfähigkeit, da stets ein optimal abgestimmter Satz an Signalprogrammen zur Verfügung steht.In an advantageous embodiment of the method according to the invention, the distance between a newly determined characteristic traffic condition of a class of traffic conditions and the currently valid characteristic traffic condition of this class is determined, at a predeterminable threshold value for the distance exceeds the currently valid characteristic traffic condition by the newly determined characteristic traffic condition for replaces this class and calculates a signal program associated with the newly determined characteristic traffic condition. As a result, temporal fluctuations of the statistical distribution of the traffic conditions are taken into account, with which a movement or a drift of the characteristic traffic conditions is associated. If the characteristic traffic condition of a class drifts too much, a new characteristic traffic condition is determined for this class and a signal program tuned to it is calculated. As a result, a method is available which adapts to changing traffic conditions on a medium to long-term time scale. The integrated signal program calculation gives you a non-aging control of high flexibility and performance, as there is always an optimally tuned set of signal programs available.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird bei einem Wechsel des charakteristischen Verkehrszustandes ein Umschaltvorgang vom bislang ausgeführten Signalprogramm zum aktuell auszuführenden Signalprogramm bestimmt. Solange sich der aktuelle Verkehrszustand bei seiner zyklischen Erfassung nicht oder nur wenig ändert, bleibt der charakteristische Verkehrszustand erhalten und damit das ihm zugeordnete Signalprogramm aktiv. Ergibt sich jedoch aufgrund einer Verschiebung der statistischen Verteilung ein neuer charakteristischer Verkehrszustand oder ist aufgrund einer aktuellen Veränderung des Verkehrszustandes der charakteristische Verkehrszustand einer anderen Klasse naheliegender, so ist nach dem Zykluswechsel ein neues Signalprogramm auszuführen.In a preferred embodiment of the method according to the invention, when the characteristic traffic condition changes, a switching operation is determined by the previously executed signal program to the currently executable signal program. As long as the current traffic state does not change or only slightly changes during its cyclic detection, the characteristic traffic state is maintained and thus the signal program assigned to it remains active. If, however, due to a shift in the statistical distribution, a new characteristic traffic condition or, due to a current change in the traffic condition, the characteristic traffic condition of another class is more obvious, a new signal program must be carried out after the cycle change.

Damit bei diesem Umschaltvorgang keine verkehrsgefährdenden Signalzustände auftreten, wird ein stetiger Phasenübergang zwischen den sich abwechselnden Signalprogrammen bestimmt und ausgeführt.So that no traffic-endangering signal states occur during this switching process, a continuous phase transition between the alternating signal programs is determined and executed.

In einer weiteren bevorzugten Ausgestaltung der Erfindung werden fortlaufend Verkehrsdaten des Knotenpunktes durch Detektoren in Form von Rohmesswerten erfasst, die erfassten Rohmesswerte zyklisch abgefragt und durch Mittelung oder Glättung aufbereitet, im Falle fehlender Messwerte Ersatzwerte verwendet, und aus den aufbereiteten und gegebenenfalls ersetzten Messwerten der aktuelle Verkehrszustand abgeleitet. Hierdurch werden aus den kontinuierlich erfassten Rohmesswerten der Detektoren sinnvoll verwertbare Messwerte gewonnen, die dem Verfahren zyklisch einen aktuellen Verkehrszustand am zu regelnden Knotenpunkt auch bei einem möglichen Ausfall von Detektoren zur Verfügung stellt.In a further preferred embodiment of the invention, traffic data of the node are continuously detected by detectors in the form of raw measured values, cyclically retrieving the acquired raw measured values and processing them by averaging or smoothing, using substitute values in the case of missing measured values, and the current traffic condition from the processed and possibly replaced measured values derived. As a result, sensibly usable measured values are obtained from the continuously recorded raw measured values of the detectors, which cyclically provides the process with a current traffic state at the node to be controlled, even in the event of a possible failure of detectors.

Das erfindungsgemäße System zum Steuern von Lichtsignalgebern an einem Knotenpunkt umfasst auch ein Steuergerät zur Durchführung des Verfahrens gemäß den im kennzeichnenden Teil des Patentanspruches 6 genannten Merkmalen. Zu Vorteilen und weiteren Ausgestaltungen des erfindungsgemäßen Steuergerätes wird auf die Unteransprüche 7 bis 9 sowie auf die nachfolgende Beschreibung der Zeichnungen verwiesen, in deren

FIG 1
die Module und Mittel eines erfindungsgemäßen Steuergerätes und in
FIG 2
die Teilprozesse und einzelnen Schritte des erfindungsgemäßen Steuerverfahrens
schematisch anhand von Flussdiagrammen dargestellt sind.The inventive system for controlling light sensors at a node also includes a control device for performing the method according to the features mentioned in the characterizing part of claim 6. For advantages and further embodiments of the control device according to the invention, reference is made to the dependent claims 7 to 9 and to the following description of the drawings, in whose
FIG. 1
the modules and means of a control device according to the invention and in
FIG. 2
the sub-processes and individual steps of the control method according to the invention
are shown schematically by flowcharts.

An sich bekannte Verkehrssteuergeräte sind typischerweise in einem Geräteschrank eingebaut, worin die einzelnen Komponenten, wie Stromversorgung, Steuerung, Signalsicherung, I/O-Module und Lampenschalter, auf einem U-förmigen Rahmen montiert sind. Die Steuerungsbaugruppe besteht im wesentlichen aus einem Hauptprozessor, der beispielsweise bis zu 48 Signalgruppen steuert, aus Speichermodulen und diversen Schnittstellen.Conventionally known traffic control devices are typically installed in an equipment cabinet, wherein the individual components, such as power supply, control, signal protection, I / O modules and lamp switches, are mounted on a U-shaped frame are. The control module consists essentially of a main processor, which controls up to 48 signal groups, for example, from memory modules and various interfaces.

Ein Steuergerät 10 umfasst gemäß FIG 1 ein Kernmodul 20 und ein Steuerungsmodul 30. Im Kernmodul 20 findet das Schalten 21 von Lichtsignalgeber 40 aufweisenden Signalgruppen sowie das fortwährende Erfassen 22 von Verkehrsdaten durch Detektoren 50 statt. Über die Basisversorgung 24 des Kernmoduls 20 sind Zwischenzeiten, Mindestfreigabezeiten, Versatzzeiten und Übergangszeiten vorgebbar. Das Steuerungsmodul 30 ist gekapselt, die einzigen Schnittstellen gehen zum verkehrsabhängigen Kernmodul 20 des Steuergerätes 10. Die Steuerungskomponente 30 nutzt dabei nicht die Signalprogrammspeicher des Kernmoduls 20, sondern verwaltet seine eigenen Signalprogramme und setzt lediglich die entsprechenden Schaltbefehle ab.According to FIG. 1, a control unit 10 comprises a core module 20 and a control module 30. In the core module 20, the switching of signal groups comprising light signal transmitters 40 and the continuous acquisition of traffic data by detectors 50 takes place. About the basic supply 24 of the core module 20 intermediate times, minimum release times, offset times and transition times can be specified. The control module 30 is encapsulated, the only interfaces go to the traffic-dependent core module 20 of the control unit 10. The control component 30 does not use the signal program memory of the core module 20, but manages its own signal programs and only sets the corresponding switching commands.

Das Steuerungsmodul 30 umfasst Mittel 31 zum Aufbereiten der aktuell erfassten Rohmesswerte der Detektoren 50 auf. In dieser Datenvorverarbeitung werden zyklisch die in FIG 2 dargestellten Mittel 23 zum Speichern der Rohmesswerte im Kernmodul 20 abgefragt. Die Rohrmesswerte werden unter Umständen anschließend durch besondere Glättungen oder Mittelwertbildungen verdichtet. Falls verschiedenartige Messwerttypen verfügbar sind, etwa Zählung und Zeitlücke, werden abgeleitete Größen wie z.B. LOS-Werte durch Verknüpfung der ursprünglichen Werte berechnet. Im Falle fehlender oder ausgefallener Detektoren 50 werden anstelle der originalen Messwerte Ersatzwerte verwendet. Die Ersatzmesswerte können optional bei der Versorgung 60 des Steuerungsmoduls 30 definiert werden. Es ist auch möglich, Ersatzwerte spezifisch für verschiedene Tagestypen und Stundenbereiche anzugeben. Die derart aufbereiteten Messwerte stellen den am Knotenpunkt erfassten Verkehrszustand dar, der in den in FIG 2 dargestellten Mitteln 32 zum Speichern aufbereiteter Messwerte abgelegt wird.The control module 30 comprises means 31 for processing the currently detected raw measured values of the detectors 50. In this data preprocessing, the means 23 for storing the raw measured values in the core module 20 shown in FIG. 2 are polled cyclically. The pipe readings may then be condensed by special smoothing or averaging. If different types of measurements are available, such as counting and time gap, derived quantities such as LOS values are calculated by combining the original values. In the case of missing or failed detectors 50 substitute values are used instead of the original measured values. The replacement measurements may optionally be defined at the supply 60 of the control module 30. It is also possible to specify substitute values specifically for different day types and hour ranges. The measured values processed in this way represent the traffic state detected at the junction, which is stored in the means 32 for storing prepared measured values shown in FIG.

Das Steuerungsmodul 30 umfasst ferner Mittel 33 zum Ableiten von für den Knotenpunkt charakteristischen Verkehrszuständen. Hier werden fortlaufend Statistiken über die aktuellen Verkehrsdaten erstellt, wobei spezielle Kalendertage, wie Werktage, Wochenenden und Feiertage, berücksichtigt werden. Durch die Verwendung entsprechend geglättet bzw. gemittelter Werte werden über die Statistiken nur mittel- bis langfristige Trends erfasst. Die Einbeziehung von Kalenderdaten ist wichtig, um auf selten vorkommende, aber wichtige Verkehrszustände adäquat reagieren zu können. Mit Hilfe eines Cluster-Verfahrens wird auf Basis der Statistiken der gesamte Raum der möglichen Verkehrszustände in disjunkte Klassen eingeteilt. Die maximale Anzahl der Klassen kann über die Versorgung 60 des Steuerungsmoduls 30 vorgegeben werden. Für jede Klasse wird ein repräsentativer Vertreter berechnet, der sogenannte charakteristische Verkehrszustand. Die Bestimmung der Klassen und ihrer Repräsentanten basiert auf Metriken, also bestimmten Abstandsfunktionen, die Ausdruck für spezielle Leistungsfähigkeitskriterien wie Wartezeiten oder Aufstelllängen sind. Die Art der Kriterien kann in der Versorgung 60 des Steuerungsmoduls 30 angewählt werden. Die charakteristischen Verkehrszustände werden in Mitteln 34 abgespeichert.The control module 30 further comprises means 33 for deriving traffic conditions characteristic of the node. Here, statistics about the current traffic data are continuously created, taking into account special calendar days, such as weekdays, weekends and public holidays. By using correspondingly smoothed or averaged values, the statistics only cover medium to long-term trends. The inclusion of calendar data is important to adequately respond to infrequent but important traffic conditions. With the help of a cluster procedure the whole space of the possible traffic conditions is divided into disjoint classes on the basis of the statistics. The maximum number of classes can be specified via the supply 60 of the control module 30. For each class a representative representative is calculated, the so-called characteristic traffic condition. The determination of the classes and their representatives is based on metrics, that is, certain distance functions which are expressions for specific performance criteria such as waiting times or set-up lengths. The type of criteria can be selected in the supply 60 of the control module 30. The characteristic traffic conditions are stored in means 34.

Weiterhin umfasst das Steuerungsmodul 30 Mittel 35 zum Überwachen von Änderungen der charakteristischen Verkehrszustände. Es werden jeweils die aktuell gültigen charakteristischen Verkehrszustände mit den neu berechneten charakteristischen Verkehrszuständen verglichen und bestimmt, ob sich die neuen, ggf. gedrifteten, von den aktuell gültigen charakteristischen Verkehrszuständen über ein bestimmtes, vorgebbares Maß hinaus entfernt haben. Bei Überschreitung einer Schwelle ersetzt ein neuer, gedrifteter charakteristischer Verkehrszustand den aktuell gültigen Vertreter für diese Klasse. Zur Bestimmung der Entfernung zweier charakteristischer Verkehrszustände werden die gleichen Metriken wie beim Clustern der Verkehrszustände verwendet.Furthermore, the control module 30 comprises means 35 for monitoring changes in the characteristic traffic conditions. In each case, the currently valid characteristic traffic conditions are compared with the newly calculated characteristic traffic conditions and it is determined whether the new, possibly drifted, have departed from the currently valid characteristic traffic conditions beyond a certain, predeterminable extent. If a threshold is exceeded, a new drifted characteristic traffic condition replaces the currently valid representative for that class. To determine the distance between two characteristic traffic conditions, the same metrics are used as in the clustering of traffic conditions.

Das Steuerungsmodul 30 umfasst außerdem Mittel 36 zum Berechnen von Signalprogrammen, welche je auf einen gespeicherten charakteristischen Verkehrszustand abgestimmt und diesem zugeordnet sind. Für jeden neuen, gedrifteten charakteristischen Verkehrszustand wird ein optimales Signalprogramm mit Hilfe eines "genetischen Algorithmus" auf der Basis von Attributen eines charakteristischen Verkehrszustandes, beispielsweise Zählwerte oder Verkehrsdichten, von der Knotentopologie und von weiteren Zusatzinformationen, wie Richtungsprioritäten, Aufstelllängen und Versatzzeiten, berechnet. Dabei ist das Optimierungskriterium, also die Zielfunktion, frei vorgebbar. Die maximale Anzahl an Signalgruppen ist in diesem Ausführungsbeispiel auf sechzehn begrenzt. Das neu berechnete Signalprogramm wird in Mitteln 37 zum Speichern von Signalprogrammen abgelegt, wobei es dem charakteristischen Verkehrszustand, auf den es zugeschnitten ist, zugeordnet wird.The control module 30 also comprises means 36 for calculating signal programs which are each tuned to and associated with a stored characteristic traffic condition. For each new drifted characteristic traffic condition, an optimal signal program is calculated using a "genetic algorithm" based on attributes of a characteristic traffic condition, such as counts or traffic densities, from the nodal topology and other ancillary information such as directional priorities, pitch and offset times. The optimization criterion, ie the objective function, is freely definable. The maximum number of signal groups is limited to sixteen in this embodiment. The newly calculated signal program is stored in means 37 for storing signal programs, being assigned to the characteristic traffic state to which it is tailored.

Das Steuerungsmodul 30 umfasst Mittel 38 zum Bestimmen des dem aktuellen Verkehrszustand nächstliegenden charakteristischen Verkehrszustandes mit zugeordnetem Signalprogramm. In Abhängigkeit der online erfassten Verkehrszustände geschieht die Auswahl des jeweils passenden Signalprogramms über die Bestimmung des nächstliegenden charakteristischen Verkehrszustandes. Zur Entfernungsbestimmung werden die gleichen Metriken wie beim Analysieren und Clustern der Verkehrszustände verwendet. Um kurzfristig auf besonders extreme, ausgefallene Situationen reagieren zu können, steht ein freies Notfall-Signalprogramm zur Verfügung, welches je nach Situation kurzfristig überschrieben und geschaltet werden kann und insbesondere nicht dem Drift der charakteristischen Verkehrszustände unterliegt. Im Falle eines Signalprogrammwechsels werden entsprechende Phasenübergänge bestimmt, die die üblichen Rahmenbedingungen, wie Zwischen- und Versatzzeiten, berücksichtigen. Für die Berechnung der Phasenübergänge werden vorhandene Routinen des Kernmoduls 20 genutzt.The control module 30 comprises means 38 for determining the closest to the current traffic condition characteristic traffic condition with associated signal program. Depending on the traffic conditions recorded online, the selection of the respectively appropriate signal program is made by determining the closest characteristic traffic state. Distance estimation uses the same metrics as analyzing and clustering traffic conditions. In order to be able to react quickly to particularly extreme, unusual situations, a free emergency signal program is available, which can be temporarily overwritten and switched depending on the situation and in particular is not subject to the drift of the characteristic traffic conditions. In the case of a signal program change, corresponding phase transitions are determined which take into account the usual framework conditions, such as intermediate and offset times. Existing routines of the core module 20 are used for the calculation of the phase transitions.

Schließlich umfasst das Steuerungsmodul 30 Mittel 39 zum Ausführen eines Signalprogramms. Entsprechend dem gerade aktiven Signalprogramm werden sekündlich Schaltbefehle für die Lichtsignalgeber 40 an das Kernmodul 20 des Steuerungsgeräts 10 weitergegeben. Damit besitzt das Steuerungsmodul 30 seine eigene Festzeitsteuerung mit eigenverwalteten Signalprogrammen.Finally, the control module 30 comprises means 39 for executing a signal program. In accordance with the currently active signal program, switching commands for the light signal transmitters 40 are forwarded to the core module 20 of the control device 10 every second. Thus, the control module 30 has its own fixed-time control with self-managed signal programs.

Das Verfahren zum Steuern von Lichtsignalgebern 40 an einem Knotenpunkt besteht gemäß FIG 2 aus den drei zyklischen Teilprozessen "Datenaufbereitung und Clustern der Verkehrszustände" 70, "Überwachung der charakteristischen Verkehrszustände und Signalprogrammberechnung" 80 und "Signalprogrammauswahl und Signalgruppenschaltung" 90, die die teilweise gemeinsamen lokalen Mittel 23 zum Speichern von Rohmesswerten der Detektoren 50, Mittel 32 zum Speichern aufbereiteter Messwerte bzw. Verkehrszustände, Mittel 34 zum Speichern charakteristischer Verkehrszustände sowie Mittel 37 zum Speichern von den charakteristischen Verkehrszuständen zugeordneten Signalprogrammen nutzen. Ansonsten arbeiten die Teilprozesse aber weitgehend unabhängig voneinander.The method for controlling optical signal transmitters 40 at a node consists of the three cyclic subprocesses "data processing and clustering of traffic conditions" 70, "monitoring the characteristic traffic conditions and signal program calculation" 80 and "signal program selection and signal group circuit" 90, which are the partially common local Means 23 for storing raw measured values of the detectors 50, means 32 for storing prepared measured values or traffic conditions, means 34 for storing characteristic traffic conditions and means 37 for storing signal programs associated with the characteristic traffic conditions. Otherwise, the sub-processes work largely independently of each other.

Der Teilprozess 70 beginnt im Schritt 71 mit dem zyklischen Auslesen der Rohmesswerte aus dem Speicher 23. Im Schritt 72 werden diese Rohmesswerte aggregiert, d.h. geglättet und gegebenenfalls zeitlich gemittelt, und verknüpft. Bei ausgefallenen oder fehlenden Detektoren 50 können Ersatzwerte verwendet werden. Die derart aufbereiteten Messwerte bilden die Verkehrszustände, mit denen das Verfahren arbeitet; sie werden in den Speicher 32 abgelegt. In Schritt 73 wird der Raum der Verkehrszustände entsprechend einer statistischen Verteilung der Verkehrszustände in eine festgelegte Anzahl von Klassen eingeteilt. Für jede Klasse wird ein Repräsentant, ein sogenannter charakteristischer Verkehrszustand, berechnet. In Schritt 74 werden die jeweils neuesten charakteristischen Verkehrszustände im Speicher 34 abgelegt und dort gegebenenfalls zyklisch überschrieben. Der Speicher 34 enthält außerdem die gerade gültigen charakteristischen Verkehrszustände, auf denen die automatische Signalprogrammauswahl aktuell operiert.The sub-process 70 begins in step 71 with the cyclic readout of the raw measured values from the memory 23. In step 72, these raw measured values are aggregated, ie smoothed and optionally averaged over time, and linked. For failed or missing detectors 50, substitute values may be used. The measured values prepared in this way form the traffic states with which the method works; they are stored in the memory 32. In step 73, the space of the traffic conditions is divided into a predetermined number of classes according to a statistical distribution of the traffic conditions. For each class, a representative, a so-called characteristic traffic condition, is calculated. In step 74, the most recent characteristic traffic conditions are stored in memory 34 and optionally cyclically overwritten there. The memory 34 also contains the currently valid characteristic traffic conditions, on which the automatic signal program selection currently operates.

Der Teilprozess 80 beginnt im Schritt 81 mit dem Abrufen der aktuell gültigen und der neu berechneten charakteristischen Verkehrszustände aus dem Speicher 34. Zyklisch wird in Schritt 82 überprüft, ob sich ein neu berechneter charakteristischer Verkehrszustand über einen Schwellenwert hinaus von dem aktuell gültigen charakteristischen Verkehrszustand entfernt. Bei der Bestimmung der gegenseitigen Lage von charakteristischen Verkehrszuständen wird eine vorgegebene Metrik als Maß für den Abstand angewendet. Bei Überschreiten des Schwellenwertes wird in Schritt 83 der bisher gültige charakteristische Verkehrszustand durch den neu berechneten, gedrifteten charakteristischen Verkehrszustand ersetzt und im Speicher 34 abgelegt. Ferner wird in Schritt 84 ein auf den neuen charakteristischen Verkehrszustand zugeschnittenes Signalprogramm berechnet und unter Zuordnung zu diesem im Speicher 37 abgelegt.The sub-process 80 begins in step 81 with the retrieval of the currently valid and the newly calculated characteristic traffic conditions from the memory 34. Cyclically, in step 82 it is checked whether a newly calculated characteristic traffic state moves beyond a threshold beyond the currently valid characteristic traffic condition. In determining the mutual location of characteristic traffic conditions, a given metric is used as a measure of the distance. When the threshold value is exceeded, in step 83 the previously valid characteristic traffic condition is replaced by the newly calculated drifted characteristic traffic condition and stored in the memory 34. Furthermore, in step 84, a signal program tailored to the new characteristic traffic condition is calculated and stored in memory 37 while being assigned to it.

Teilprozess 90 startet in Schritt 91 zyklisch mit dem Abrufen des aktuellen Verkehrszustandes aus dem Speicher 32. Weiter in Schritt 92 werden die aktuell gültigen charakteristischen Verkehrszustände aus dem Speicher 34 abgerufen, um in Schritt 93 festzustellen, welcher der gültigen charakteristischen Verkehrszustände dem aktuellen Verkehrszustand bezüglich einer vorgegebenen Metrik am nächsten liegt. In Schritt 94 wird entschieden, ob ein Wechsel des charakteristischen Verkehrszustandes - bedingt entweder durch Drift innerhalb derselben Klasse oder durch Klassenwechsel - aufgrund des aktuellen Verkehrszustands vorliegt. Wenn ja, wird in Schritt 95 das zugehörige Signalprogramm aus dem Speicher 37 geladen und in Schritt 96 ein passender Phasenübergang zum Umschalten vom bisher aktiven auf das neu geladene Signalprogramm bestimmt. Schließlich werden in Schritt 97 Schaltbefehle für die Lichtsignalgeber 40 aufweisenden Signalgruppen entsprechend dem aktuellen Signalplan oder nach dem bestimmten Phasenübergang abgegeben. Die Kollektion der gespeicherten Signalprogramme passt sich ständig an die aktuelle statistische Verteilung der Verkehrswerte an, wodurch sich das erfindungsgemäße Steuergerät 10 selbst organisiert.Sub-process 90 starts cyclically in step 91 with retrieving the current traffic condition from memory 32. Further in step 92, the current traffic characteristic conditions are retrieved from memory 34 to determine in step 93 which of the valid characteristic traffic conditions corresponds to the current traffic condition predetermined metric is closest. In step 94, a decision is made as to whether there is a change in the characteristic traffic condition due to drift within the same class or due to class change due to the current traffic condition. If so, in step 95 the associated signal program is loaded from memory 37 and in step 96 a suitable phase transition is determined for switching from the previously active to the newly loaded signal program. Finally, in step 97, switching commands for the light signal generator 40 having signal groups corresponding to the current signal plan or after the specific phase transition issued. The collection of the stored signal programs constantly adapts to the current statistical distribution of the traffic values, whereby the control device 10 according to the invention organizes itself.

Claims (7)

  1. Method for controlling signalling lights (40) at a node, in which
    - a traffic situation at the node is detected cyclically,
    - a signal program matched to the detected traffic situation is selected,
    - and the signalling lights (40) receive switching commands from the selected signal program,
    characterised in that
    - characteristic traffic situations are derived from the detected traffic situations for the node,
    - each of the characteristic traffic situations is assigned a signal program matched to this traffic situation,
    - a metric is defined as a measure of the relative position of two traffic situations,
    - the characteristic traffic situation that is closest to the current traffic situation in terms of the defined metric is determined,
    - and the signal program assigned to the closest characteristic traffic situation is executed in order to issue switching commands for the signalling lights (40),
    where
    - after each detection of the current traffic situation, a statistical distribution of all detected traffic situations is generated,
    - the traffic situations are grouped into classes according to the statistical distribution,
    - and a characteristic traffic situation is determined for each class of traffic situations as its representative.
  2. Method according to Claim 1,
    characterised in that
    - the distance between a newly determined characteristic traffic situation of a class of traffic situations and the currently valid characteristic traffic situation of this class is determined,
    - on a definable threshold value for the distance being exceeded, the currently valid characteristic traffic situation is replaced by the newly determined characteristic traffic situation for this class,
    - and a signal program assigned to the newly determined characteristic traffic situation is computed.
  3. Method according to Claim 1 or 2,
    characterised in that when there is a change in the characteristic traffic situation, a procedure is defined for switching from the signal program performed until now to the signal program to be performed as of now.
  4. Method according to any of Claims 1 to 3,
    characterised in that
    - traffic data from the node in the form of raw measurements is continuously detected by detectors (50),
    - the detected raw measurements are polled cyclically and conditioned by averaging or smoothing,
    - default values are used where measurements are missing,
    - and the current traffic situation is derived from the conditioned, and if applicable, substituted measurements.
  5. Control device (10) for carrying out a method according to any of Claims 1 to 5, comprising
    - means (32) for storing traffic situations detected at a node
    - and means (39) for executing a signal program, which is designed to issue switching commands to the signalling lights (40),
    characterised by
    - means (33) for deriving traffic situations characteristic of the node from the stored traffic situations,
    - means (34) for storing the derived characteristic traffic situations,
    - means (36) for computing signal programs, each of which are matched and assigned to a stored characteristic traffic situation,
    - means (37) for storing signal programs assigned to the characteristic traffic situations,
    - and means (38) for determining the characteristic traffic situation closest to the current traffic situation, said characteristic traffic situation having an assigned signal program,
    where the means (33) for deriving traffic situations characteristic of the node comprise
    - means for generating a statistical distribution of the detected traffic situations,
    - means for grouping the traffic situations into classes according to the statistical distribution,
    - and means for determining a characteristic traffic situation as representative of a class of traffic situations.
  6. Control device according to Claim 5,
    characterised in that it also comprises means (35) for monitoring the relative position of two characteristic traffic situations, where the distance between the two characteristic traffic situations is compared with a defined threshold value.
  7. Control device according to Claim 5,
    characterised in that it also comprises means (31) for conditioning the currently detected detector raw-measurements, where the conditioned measurements represent the traffic situation detected at the node.
EP02020174A 2001-09-20 2002-09-09 Controlsystem for lightsignal devices at intersections Expired - Lifetime EP1298620B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10146398 2001-09-20
DE10146398A DE10146398A1 (en) 2001-09-20 2001-09-20 System for controlling traffic lights at intersections

Publications (3)

Publication Number Publication Date
EP1298620A2 EP1298620A2 (en) 2003-04-02
EP1298620A3 EP1298620A3 (en) 2003-06-18
EP1298620B1 true EP1298620B1 (en) 2007-07-18

Family

ID=7699692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02020174A Expired - Lifetime EP1298620B1 (en) 2001-09-20 2002-09-09 Controlsystem for lightsignal devices at intersections

Country Status (3)

Country Link
US (1) US6850171B2 (en)
EP (1) EP1298620B1 (en)
DE (2) DE10146398A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610358B2 (en) * 2001-11-26 2009-10-27 Time Warner Cable System and method for effectively presenting multimedia information materials
EP1480183A1 (en) * 2003-05-19 2004-11-24 TransVer GmbH Method for detecting road traffic characteristics at access points
US7821422B2 (en) * 2003-08-18 2010-10-26 Light Vision Systems, Inc. Traffic light signal system using radar-based target detection and tracking
US7688222B2 (en) 2003-09-18 2010-03-30 Spot Devices, Inc. Methods, systems and devices related to road mounted indicators for providing visual indications to approaching traffic
DE102005040350A1 (en) 2005-08-25 2007-03-15 Siemens Ag Method for forecasting a traffic condition in a road network and traffic management center
DE102005041067A1 (en) * 2005-08-30 2007-03-01 Siemens Ag Traffic light system controlling method for use at junction in e.g. road network, involves temporally switching program such that traffic light transmitters for direction to be coordinated are in green phase at arrival time of vehicle group
US9460619B2 (en) * 2007-01-17 2016-10-04 The Boeing Company Methods and systems for controlling traffic flow
GB0802205D0 (en) * 2008-02-06 2008-03-12 Hatton Traffic Man Ltd Traffic control system
US9076333B2 (en) * 2008-03-27 2015-07-07 Aisin Aw Co., Ltd. Driving support device, driving support method, and driving support program
WO2009150528A2 (en) * 2008-06-13 2009-12-17 Tmt Services And Supplies (Pty) Limited Traffic control system and method
DE102009022833A1 (en) * 2009-05-27 2010-12-09 Siemens Aktiengesellschaft Method and device for switching signal programs
US8909462B2 (en) * 2011-07-07 2014-12-09 International Business Machines Corporation Context-based traffic flow control
US9189957B2 (en) * 2013-08-30 2015-11-17 Siemens Industry, Inc. Single cycle offset adjustment for traffic signal controllers using a threshold percentage of the cycle length
JP6404572B2 (en) * 2014-02-05 2018-10-10 パナソニック株式会社 Signal control apparatus, signal control system, and signal control method
CA2955961A1 (en) 2014-07-28 2016-02-04 Econolite Group, Inc. Self-configuring traffic signal controller
US10839302B2 (en) 2015-11-24 2020-11-17 The Research Foundation For The State University Of New York Approximate value iteration with complex returns by bounding
EP3176768A1 (en) * 2015-12-02 2017-06-07 Siemens Aktiengesellschaft Method for the transformation of a switching order to a signal image of a set of signals
US10490066B2 (en) * 2016-12-29 2019-11-26 X Development Llc Dynamic traffic control
TWI690440B (en) * 2018-10-17 2020-04-11 財團法人車輛研究測試中心 Intelligent driving method for passing intersections based on support vector machine and intelligent driving system thereof
CN109615885B (en) * 2018-12-27 2020-11-10 银江股份有限公司 Intelligent traffic signal control method, device and system
CN112802326B (en) 2019-11-13 2022-03-04 阿波罗智联(北京)科技有限公司 Traffic scheme control method and device
DE102020201878A1 (en) 2020-02-14 2021-08-19 Siemens Mobility GmbH Method for controlling a traffic light system
CN112489460A (en) * 2020-12-03 2021-03-12 百度国际科技(深圳)有限公司 Signal lamp information output method and device
CN112562336B (en) * 2020-12-10 2022-11-04 重庆交通大学 Real-time dynamic allocation method and system for intersection traffic signal duration
CN114333301B (en) * 2021-12-06 2023-09-26 北京东土正创科技有限公司 Traffic signal control optimization method, system and traffic signal optimization equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3818429A (en) * 1971-07-28 1974-06-18 Singer Co Multi-intersection traffic control system
BE795561A (en) 1972-02-17 1973-08-16 Siemens Ag INSTALLATION TO DETECT AND CONTROL THE COURSE OF ROAD TRAFFIC
DE4106024C1 (en) 1991-02-26 1992-04-02 Siemens Ag, 8000 Muenchen, De
US5257194A (en) * 1991-04-30 1993-10-26 Mitsubishi Corporation Highway traffic signal local controller
US5509082A (en) * 1991-05-30 1996-04-16 Matsushita Electric Industrial Co., Ltd. Vehicle movement measuring apparatus
JP2655953B2 (en) * 1991-07-19 1997-09-24 株式会社日立製作所 Traffic control system
DE4436339A1 (en) 1994-10-11 1996-04-18 Ifu Gmbh Traffic lights sequence control method
US5778332A (en) * 1995-11-17 1998-07-07 J-Squared, Llc Electronic nervous system for a roadway and method
JP3399421B2 (en) * 1999-11-05 2003-04-21 住友電気工業株式会社 Traffic signal control device
US6587778B2 (en) * 1999-12-17 2003-07-01 Itt Manufacturing Enterprises, Inc. Generalized adaptive signal control method and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US6850171B2 (en) 2005-02-01
US20030063016A1 (en) 2003-04-03
DE10146398A1 (en) 2003-04-17
EP1298620A3 (en) 2003-06-18
EP1298620A2 (en) 2003-04-02
DE50210488D1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
EP1298620B1 (en) Controlsystem for lightsignal devices at intersections
EP1212738B1 (en) Method for monitoring the condition of traffic for a traffic network comprising effective narrow points
DE69329119T2 (en) PREDICTION METHOD FOR ROAD TRAFFIC PARAMETERS
EP1831853B1 (en) Method and device for controlling light signal systems and producing a green wave
WO2010037581A1 (en) Method for optimizing the traffic control at a traffic signal-controlled intersection in a road traffic network
DE102009033431A1 (en) Method for dynamic controlling of traffic light utilized for controlling flow of floating car traffic on road, involves controlling phases of signaling system by control unit based on lost time of vehicle
EP3438946A2 (en) Method for predicting a switching time of a set of signals of signalling facility
DE10062856B4 (en) Method for vehicle-specific traffic forecast
EP2280383A1 (en) Method for determining traffic information for a section of a road network and traffic calculator to implement the method
DE69631629T2 (en) Registration and prediction of traffic obstructions
DE102011107663B4 (en) Method and device for the dynamic control of a signaling system
DE102005044888B4 (en) Method, arrangement and simulation unit for a traffic condition estimation system
DE102018201787A1 (en) Method and system for optimizing and predicting a traffic situation
WO1997034274A1 (en) Fuzzy logic-assisted traffic-responsive control system for traffic light systems
DE2411716A1 (en) TRAFFIC CONTROL SYSTEM
EP2418632B1 (en) Method for regulating a signalling assembly
DE19941854A1 (en) Control device for a traffic light intersection
EP2887332B1 (en) Method and system for detection of a traffic situation on a stretch of road
DE19944891A1 (en) Method of detecting traffic situations with fuzzy classification, multidimensional morphological data filtering and dynamic domain formation
EP1022703B1 (en) Method of organizing traffic flows to control optimally the traffic and to plan road networks according to the needs
DE19905284A1 (en) Traffic situation detection with fuzzy classification and multidimensional morphological data filtering and dynamic domain formation
WO2019166431A1 (en) Method and device for controlling a signal light system
EP3987500A1 (en) Method and device for predicting a switch state and/or a switch time point of a signalling system for controlling traffic
EP0958563B1 (en) Method for determining the traffic situation, detector and control centre
DE102020201878A1 (en) Method for controlling a traffic light system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030721

AKX Designation fees paid

Designated state(s): CH DE GB IT LI NL

17Q First examination report despatched

Effective date: 20041103

17Q First examination report despatched

Effective date: 20041103

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070718

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 50210488

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080924

Year of fee payment: 7

Ref country code: NL

Payment date: 20080910

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080911

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081211

Year of fee payment: 7

Ref country code: DE

Payment date: 20081121

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090909