EP1297252A1 - Fuel injection valve for internal combustion engines - Google Patents

Fuel injection valve for internal combustion engines

Info

Publication number
EP1297252A1
EP1297252A1 EP01947202A EP01947202A EP1297252A1 EP 1297252 A1 EP1297252 A1 EP 1297252A1 EP 01947202 A EP01947202 A EP 01947202A EP 01947202 A EP01947202 A EP 01947202A EP 1297252 A1 EP1297252 A1 EP 1297252A1
Authority
EP
European Patent Office
Prior art keywords
valve
valve member
fuel injection
combustion chamber
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01947202A
Other languages
German (de)
French (fr)
Inventor
Axel Hockenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1297252A1 publication Critical patent/EP1297252A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/047Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves being formed by deformable nozzle parts, e.g. flexible plates or discs with fuel discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injection valve is known from DE 196 34 933 AI.
  • a valve member tip is arranged at the combustion chamber end of the valve member and two conical surfaces thereon.
  • a first conical surface adjoins the valve member shaft and has an opening angle that is smaller than that of the conical valve seat.
  • the first cone surface is followed by a second cone surface on the combustion chamber side, the opening angle of which is greater than that of the valve seat, so that a sealing edge is formed at the transition of the two cone surfaces, which comes into contact with the valve seat in the closed position of the valve member by a closing force acting on the valve member ,
  • the opening stroke movement of the valve member is exerted by the hydraulic force of the fuel in the pressure chamber, which in the closed position inter alia acts on the first conical surface and thus causes a resultant force in the axial direction on the valve member.
  • the sealing edge defines the hydraulically effective seat diameter of the valve member and thus, for a given closing force, the opening pressure of the fuel at which the valve member lifts off the valve seat against the closing force.
  • the opening pressure of the fuel injection valve depends on the one hand on the closing force acting on the valve member and on the other hand on the hydraulically effective area of the Valve member.
  • the closing force drops somewhat during operation due to relaxation processes in the valve holding body and in the device generating the closing force.
  • the hydraulically effective area of the valve member must be reduced. This is achieved in that the difference in the cone angle of the valve seat and the first cone surface is smaller than the difference in the cone angle of the second cone surface and the valve seat.
  • the sealing edge When the fuel injection valve is in operation, the sealing edge is pressed into the valve seat by plastic deformation, and the hydraulically effective sealing edge shifts from the original sealing edge to the valve member. This increases the hydraulically effective seat diameter and the associated reduction in the area acting in the opening direction at least partially compensates for the falling closing force, so that the opening pressure remains largely constant. If the closing force remains the same, the opening pressure increases accordingly.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that the resulting opening pressure of the Fuel injector does not change or changes only slightly during operation.
  • a circumferential annular groove is formed on the first conical surface and limits the enlargement of the hydraulically effective seat diameter.
  • the opening pressure of the fuel injector increases for a given closing force due to the increase in the effective hydraulic seat diameter, but only up to a value that can be easily determined by production. This compensates for the drop in the closing force that arises due to relaxation processes of the valve holding body and the mechanism that generates the closing force. Since the increase in the effective hydraulic seat diameter is precisely defined by the annular groove, the other components of the fuel injector can be optimally adapted to this increase in opening pressure.
  • longitudinal grooves are arranged on the conical surface between the valve member shaft and the annular groove. This counteracts a cavitation effect in the ring groove and the associated wear problems. If the valve member lifts off the valve seat very quickly, it can happen at the beginning of the opening stroke movement that the fuel cannot flow into the annular groove quickly enough through the gap formed between the valve member tip and the valve seat.
  • the longitudinal grooves improve the flow of fuel from the pressure chamber into the annular groove and cavitation cannot occur or can only occur to a significantly reduced extent.
  • FIG. 1 shows a fuel injection valve in partial longitudinal section
  • FIG. 2 shows an enlarged illustration of FIG. 1 in the region of the valve seat. Description of the embodiment
  • a fuel injection valve for internal combustion engines is shown in partial longitudinal section.
  • a valve body 5 is clamped by means of a tensioning element 3 against a valve holder body 1, which together form a nozzle holder combination, which in the installed position is arranged in a receiving bore of an internal combustion engine, not shown in the drawing.
  • a bore 15 is formed, which is designed as a blind bore and the bottom surface of which is arranged towards the combustion chamber.
  • a conical valve seat 23 is formed with a cone angle ⁇ and at least one injection opening 25, which connects the bore 15 to the combustion chamber.
  • a piston-shaped valve member 7 Arranged in the bore 15 is a piston-shaped valve member 7 which has a longitudinal axis 19 and which is guided in the bore 15 with a guide section 207 facing away from the combustion chamber and is thus axially movable.
  • the valve member 7 tapers towards the combustion chamber to form a pressure shoulder 9 and merges into a valve member shaft 107.
  • a valve member tip 13 At the combustion chamber end of the valve member 7, a valve member tip 13 is arranged, which tapers towards the combustion chamber.
  • the pressure shoulder 9 is arranged in a pressure chamber 11 formed in the valve body 5, which merges towards the combustion chamber into an annular channel surrounding the valve member shaft 107 and extends to the bottom surface of the bore 15.
  • An inlet channel 17 is formed in the valve holding body 1 and in the valve body 5, which opens into the pressure chamber 11 and via which the pressure chamber 11 can be filled with fuel under high pressure.
  • the valve member 7 is acted upon by a closing force in the direction of the combustion chamber.
  • the device generating the closing force is arranged in the valve holding body 1, for example in the form of a prestressed spring. It can also be provided to generate the closing force by means of a plurality of springs which, depending on the stroke of the valve member 7, generate the closing force individually or together.
  • an additional closing force can also be generated by building up a pressure in the spring chamber. This closing force presses the valve member 7 with the valve member tip 13 against the valve seat 23, as a result of which the pressure chamber 11 is closed against the injection openings 25.
  • the opening stroke movement of the valve member 7 takes place in that the hydraulic force of the fuel in the pressure chamber 11 acts on the pressure shoulder 9 and at least on part of the valve member tip 13.
  • valve member 7 is shown in the closed position in the region of the valve member tip 13 and the valve body 5 surrounding the valve member 7 in longitudinal section.
  • a first conical surface 30 is formed on the valve member tip 13, which adjoins the valve member shaft 107 and has a conical angle ⁇ .
  • the cone angle ⁇ is smaller than the cone angle ⁇ of the valve seat 23, so that a first difference angle ⁇ 2 is formed between the first cone surface 30 and the valve seat 23.
  • a second cone surface 32 adjoins the first cone surface 30 on the valve member tip 13, the cone angle ⁇ of which is greater than the cone angle ⁇ of the valve seat 23.
  • the second differential angle ⁇ 2 formed between the second conical surface 32 and the valve seat 23 is larger than the first differential angle ⁇ ⁇ . Due to the transition from the first 30 to the second cone surface 32, a circumferential sealing edge 40 is formed on the valve member tip 13, which is in a
  • a circumferential annular groove 35 is arranged on the first cone surface 30 and runs in a radial plane to the longitudinal axis 19 of the valve member 7.
  • Their cross-section can be in the form of an arc of a circle or also have another useful shape.
  • the cross section can be formed by a polygon or be part of an ellipse.
  • the width of the annular groove is preferably 0.15 to 0.5 mm.
  • the longitudinal grooves 42 facilitate the inflow of fuel from the pressure chamber 11 into the annular groove 35 at the beginning of the opening stroke movement, so that cavitations cannot form or can be formed to a significantly reduced extent.
  • the longitudinal grooves 42 preferably run parallel to the surface lines of the first conical surface 30 and, if more than one longitudinal groove 42 is provided, are preferably distributed uniformly over the circumference of the valve member 7.
  • valve member tip 13 designed according to the invention is as follows: In the closed position of the valve tilliedes 7, the sealing edge 40 is pressed against the valve seat 23. This is in principle a line contact and there are high voltages both in the valve member 7 and in the valve seat 23, which lead to elastic and plastic deformation of the valve member 7 and valve seat 23, so that the sealing edge 40 in the valve seat during operation 23 presses in and there is surface contact. Since the first differential angle ⁇ is smaller than the second differential angle ⁇ 2 , the hydraulically effective sealing edge, i.e. the boundary line up to which the pressure of the fuel in the pressure chamber 11 acts in the closed position of the valve member 7, is displaced by the indentation of the sealing edge 40 Sealing edge 40 in the direction of the annular groove 35.
  • valve member 7 and valve seat 23 can ensure that the valve member tip 13 is not pressed into the valve seat 23 to such an extent that the upper annular groove edge 37 facing away from the combustion chamber comes into contact with the valve seat 23.
  • the cone angle of the valve seat is 55 to 65 degrees, preferably about 60 degrees.
  • the cone angles of the first 30 and second cone surface 32 are designed such that the difference angles ⁇ l7 ⁇ 2 are each less than 1.5 degrees.
  • the first differential angle ⁇ x is always smaller than the second differential angle ⁇ 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a fuel injection valve, comprising a valve body (5) in which a piston-shaped valve member (7) is longitudinally displaceable in a bore (15) which is configured in the form of a blind bore. A conical valve seat (23) is provided on the bottom surface of the bore (15), as is an injection opening (25) which connects a pressure chamber (11) formed between the section (107) of the valve member (7) on the combustion chamber side and the bore (15) to the combustion chamber. A valve member tip (13) is configured at the combustion chamber-side end of the valve member (7), a first conical surface (30) which is adjacent to the valve member (7) and a second conical surface (32) which is located on the combustion chamber side in relation to said first conical surface being configured on said tip. The cone angle (α) of the first conical surface (30) is smaller and the cone angle (β) of the second conical surface (32) is greater than the cone angle (η) of the valve seat (23), so that a sealing edge (40) is formed where the two conical surfaces (30, 32) meet. A peripheral ring groove (35) is configured on the first conical surface (30), this ring groove limiting the enlargement of the hydraulically effective seat diameter resulting from the plastic deformation of the sealing edge (40) and the valve seat (23) to a precisely defined value.

Description

Kraftstoffeinspritzventil für BrennkraftmaschinenFuel injection valve for internal combustion engines
Stand der TechnikState of the art
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein solches Kraftstoffeinspritzventil ist aus der Schrift DE 196 34 933 AI bekannt. Am brennraumseitigen Ende des Ventilgliedes ist eine Ventilgliedspitze angeordnet und an dieser zwei Konusflächen. Eine erste Konusfläche grenzt an den Ventilgliedschaft und weist einen Öffnungswinkel auf, der kleiner als der des konischen Ventilsitzes ist. An die erste Konusfläche schließt sich brennraumseitig eine zweite Konusfläche an, deren Öffnungswinkel größer als der des Ventilsitzes ist, so daß am Übergang der beiden Konusflächen eine Dichtkante gebildet wird, die in Schließstellung des Ventilgliedes durch eine auf das Ventilglied wirkende Schließkraft am Ventilsitz zur Anlage kommt.The invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1. Such a fuel injection valve is known from DE 196 34 933 AI. A valve member tip is arranged at the combustion chamber end of the valve member and two conical surfaces thereon. A first conical surface adjoins the valve member shaft and has an opening angle that is smaller than that of the conical valve seat. The first cone surface is followed by a second cone surface on the combustion chamber side, the opening angle of which is greater than that of the valve seat, so that a sealing edge is formed at the transition of the two cone surfaces, which comes into contact with the valve seat in the closed position of the valve member by a closing force acting on the valve member ,
Die Öffnungshubbewegung des Ventilgliedes wird durch die hydraulische Kraft des Kraftstoffs im Druckraum ausgeübt, der in Schließstellung unter anderem auf die erste Konusfläche wirkt und so eine resultierende Kraft in axialer Richtung auf das Ventilglied bewirkt. Die Dichtkante definiert dabei den hydraulisch wirksamen Sitzdurchmesser des Ventilgliedes und damit bei gegebener Schließkraft den Öffnungsdruck des Kraftstoffs, bei dem das Ventilglied vom Ventilsitz entgegen der Schließkraft abhebt .The opening stroke movement of the valve member is exerted by the hydraulic force of the fuel in the pressure chamber, which in the closed position inter alia acts on the first conical surface and thus causes a resultant force in the axial direction on the valve member. The sealing edge defines the hydraulically effective seat diameter of the valve member and thus, for a given closing force, the opening pressure of the fuel at which the valve member lifts off the valve seat against the closing force.
Der Öffnungsdruck des Kraftstoffeinspritzventils hängt einerseits von der auf das Ventilglied wirkenden Schließkraft und andererseits von der hydraulisch wirksamen Fläche des Ventilgliedes ab. Bei einem Kraftstoffeinspritzventil sinkt die Schließkraft durch Relaxationsprozesse im Ventilhaltekörper und in der die Schließkraft erzeugenden Vorrichtung im Betrieb etwas ab. Für ein optimal funktionierendes Kraft- stoffeinspritzventil ist es jedoch wichtig, daß der Öffnungsdruck im Betrieb konstant bleibt . Um dem entgegenzuwirken muß sich die hydraulisch wirksame Fläche des Ventilgliedes verkleinern. Dies wird dadurch erreicht, daß die Differenz der Konuswinkel von Ventilsitz und erster Konusfläche kleiner ist als die Differenz der Konuswinkel von zweiten Konusfläche und Ventilsitz. Im Betrieb des Kraftstoffeinspritzventil drückt sich die Dichtkante durch plastische Verformung in den Ventilsitz ein, und die hydraulisch wirksame Dichtkante verlagert sich von der ursprünglichen Dicht- kante zum Ventilgliedschaft hin. Dadurch vergrößert sich der hydraulisch wirksame Sitzdurchmesser und die damit einhergehende Verringerung der in Öffnungsrichtung wirkenden Fläche kompensiert wenigstens teilweise die abfallende Schließkraft, so daß der Öffnungsdruck weitgehend konstant bleibt. Bei gleichbleibender Schließkraft erhöht sich entsprechend der Öffnungsdruck.The opening pressure of the fuel injection valve depends on the one hand on the closing force acting on the valve member and on the other hand on the hydraulically effective area of the Valve member. In the case of a fuel injection valve, the closing force drops somewhat during operation due to relaxation processes in the valve holding body and in the device generating the closing force. For an optimally functioning fuel injector, however, it is important that the opening pressure remains constant during operation. In order to counteract this, the hydraulically effective area of the valve member must be reduced. This is achieved in that the difference in the cone angle of the valve seat and the first cone surface is smaller than the difference in the cone angle of the second cone surface and the valve seat. When the fuel injection valve is in operation, the sealing edge is pressed into the valve seat by plastic deformation, and the hydraulically effective sealing edge shifts from the original sealing edge to the valve member. This increases the hydraulically effective seat diameter and the associated reduction in the area acting in the opening direction at least partially compensates for the falling closing force, so that the opening pressure remains largely constant. If the closing force remains the same, the opening pressure increases accordingly.
Bei den bekannten Ventilgliedern läßt sich jedoch nicht vorherbestimmen, wie weit sich der hydraulisch wirksame Sitzdurchmesser des Ventilgliedes im Betrieb ändert und damit, wie stark sich die in Öffnungsrichtung wirkende Fläche vergrößert. Um einigermaßen reproduzierbare Ergebnisse zu erzielen, müssen deshalb sowohl die Konusflächen als auch der Ventilsitz sehr exakt und damit kostenintensiv gefertigt werden.In the known valve members, however, it cannot be predetermined how far the hydraulically effective seat diameter of the valve member changes during operation, and thus how much the area acting in the opening direction increases. In order to achieve reasonably reproducible results, both the conical surfaces and the valve seat have to be manufactured very precisely and therefore costly.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kenn- zeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß sich der resultierende Öffnungsdruck des Kraftstoffeinspritzventils im Betrieb nicht oder nur unwesentlich ändert. An der ersten Konusfläche ist eine umlaufende Ringnut ausgebildet, die die Vergrößerung des hydraulisch wirksamen Sitzdurchmessers begrenzt. Dadurch steigt der Öffnungsdruck des Kraftstoffeinspritzventils bei gegebener Schließkraft durch die Zunahme des effektiven hydraulischen Sitzdurchmessers an, allerdings nur bis zu einem durch die Fertigung leicht bestimmbaren Wert. Dies kompensiert den Abfall der Schließkraft, der aufgrund von Relaxationsprozes- sen des Ventilhaltekörpers und des die Schließkraft erzeugenden Mechanismus entsteht . Da die Zunahme des effektiven hydraulischen Sitzdurchmessers durch die Ringnut genau definiert geschieht, können die übrigen Komponenten des Kraft- stoffeinspritzventils an diesen Öffnungsdruckanstieg optimal angepaßt werden können.The fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that the resulting opening pressure of the Fuel injector does not change or changes only slightly during operation. A circumferential annular groove is formed on the first conical surface and limits the enlargement of the hydraulically effective seat diameter. As a result, the opening pressure of the fuel injector increases for a given closing force due to the increase in the effective hydraulic seat diameter, but only up to a value that can be easily determined by production. This compensates for the drop in the closing force that arises due to relaxation processes of the valve holding body and the mechanism that generates the closing force. Since the increase in the effective hydraulic seat diameter is precisely defined by the annular groove, the other components of the fuel injector can be optimally adapted to this increase in opening pressure.
In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung sind an der konischen Fläche zwischen dem Ventil- gliedschaft und der Ringnut Längsnuten angeordnet. Dadurch wird einer Kavitationswirkung in der Ringnut und den damit verbundenen Verschleißproblemen entgegengewirkt . Hebt das Ventilglied sehr schnell vom Ventilsitz ab, kann es zu Beginn der Öffnungshubbewegung dazu kommen, daß der Kraftstoff durch den zwischen der Ventilgliedspitze und dem Ventilsitz gebildeten Spalt nicht schnell genug in die Ringnut strömen kann. Durch die Längsnuten wird der Kraftstoffström aus dem Druckraum in die Ringnut verbessert und Kaviationen können nicht oder nur in deutlich reduziertem Ausmaß auftreten.In an advantageous embodiment of the subject of the invention, longitudinal grooves are arranged on the conical surface between the valve member shaft and the annular groove. This counteracts a cavitation effect in the ring groove and the associated wear problems. If the valve member lifts off the valve seat very quickly, it can happen at the beginning of the opening stroke movement that the fuel cannot flow into the annular groove quickly enough through the gap formed between the valve member tip and the valve seat. The longitudinal grooves improve the flow of fuel from the pressure chamber into the annular groove and cavitation cannot occur or can only occur to a significantly reduced extent.
Zeichnungdrawing
In der Zeichnung ist ein erfindungsgemäßes Kraftstoffeinspritzventil dargestellt. Es zeigt die Figur 1 ein Kraft- stoffeinspritzventil im teilweisen Längsschnitt und Figur 2 eine vergrößerte Darstellung von Figur 1 im Bereich des Ventilsitzes . Beschreibung des AusführungsbeispielsA fuel injection valve according to the invention is shown in the drawing. FIG. 1 shows a fuel injection valve in partial longitudinal section and FIG. 2 shows an enlarged illustration of FIG. 1 in the region of the valve seat. Description of the embodiment
In Figur 1 ist ein Kraftstoffeinspritzventil für Brennkraft- maschinen im teilweisen Längsschnitt gezeigt . Ein Ventilkörper 5 ist mittels eines Spannelements 3 gegen einen Ventil- haltekörper 1 verspannt, welche zusammen eine Düsenhalter- kombination bilden, die in Einbaulage in einer in der Zeichnung nicht dargestellten Aufnahmebohrung einer Brennkraftma- schine angeordnet ist. Im Ventilkörper 5 ist eine Bohrung 15 ausgebildet, die als Sackbohrung ausgeführt ist und deren Bodenfläche dem Brennraum zu angeordnet ist . An der Bodenfläche der Bohrung 15 ist ein konischer Ventilsitz 23 mit einem Konuswinkel γ ausgebildet und wenigstens eine Ξin- spritzöffnung 25, die die Bohrung 15 mit dem Brennraum verbindet. In der Bohrung 15 ist ein kolbenförmiges Ventilglied 7 angeordnet, das eine Längsachse 19 aufweist und das mit einem brennraumabgewandten Führungsabschnitt 207 in der Bohrung 15 geführt und so axial beweglich ist . Das Ventilglied 7 verjüngt sich zum Brennraum hin unter Bildung einer Druckschulter 9 und geht in einen Ventilgliedschaft 107 über. Am brennraumseitigen Ende des Ventilgliedes 7 ist eine Ventil- gliedspitze 13 angeordnet, die sich zum Brennraum hin verjüngt. Die Druckschulter 9 ist in einem im Ventilkörper 5 ausgebildeten Druckraum 11 angeordnet, der zum Brennraum hin in einen den Ventilgliedschaft 107 umgebenden Ringkanal übergeht und sich bis zur Bodenfläche der Bohrung 15 erstreckt. Im Ventilhaltekörper 1 und im Ventilkörper 5 ist ein Zulaufkanal 17 ausgebildet, der in den Druckraum 11 mün- det und über den der Druckraum 11 mit Kraftstoff unter hohem Druck befüllbar ist.In Figure 1, a fuel injection valve for internal combustion engines is shown in partial longitudinal section. A valve body 5 is clamped by means of a tensioning element 3 against a valve holder body 1, which together form a nozzle holder combination, which in the installed position is arranged in a receiving bore of an internal combustion engine, not shown in the drawing. In the valve body 5, a bore 15 is formed, which is designed as a blind bore and the bottom surface of which is arranged towards the combustion chamber. On the bottom surface of the bore 15, a conical valve seat 23 is formed with a cone angle γ and at least one injection opening 25, which connects the bore 15 to the combustion chamber. Arranged in the bore 15 is a piston-shaped valve member 7 which has a longitudinal axis 19 and which is guided in the bore 15 with a guide section 207 facing away from the combustion chamber and is thus axially movable. The valve member 7 tapers towards the combustion chamber to form a pressure shoulder 9 and merges into a valve member shaft 107. At the combustion chamber end of the valve member 7, a valve member tip 13 is arranged, which tapers towards the combustion chamber. The pressure shoulder 9 is arranged in a pressure chamber 11 formed in the valve body 5, which merges towards the combustion chamber into an annular channel surrounding the valve member shaft 107 and extends to the bottom surface of the bore 15. An inlet channel 17 is formed in the valve holding body 1 and in the valve body 5, which opens into the pressure chamber 11 and via which the pressure chamber 11 can be filled with fuel under high pressure.
Das Ventilglied 7 wird von einer Schließkraft in Richtung auf den Brennraum zu beaufschlagt. Die die Schließkraft er- zeugende Vorrichtung ist dabei im Ventilhaltekörper 1 angeordnet, beispielsweise in Form einer vorgespannten Feder. Es kann auch vorgesehen sein, die Schließkraft durch mehrere Federn zu erzeugen, die abhängig vom Hub des Ventilgliedes 7 einzeln oder gemeinsam die Schließkraft erzeugen. Außerdem kann auch durch Aufbau eines Drucks im Federraum eine zu- sätzliche Schließkraft erzeugt werden. Durch diese Schließkraft wird das Ventilglied 7 mit der Ventilgliedspitze 13 gegen den Ventilsitz 23 gepreßt, wodurch der Druckraum 11 gegen die Einspritzöffnungen 25 verschlossen wird. Die Öffnungshubbewegung des Ventilgliedes 7 erfolgt dadurch, daß die hydraulische Kraft des Kraftstoffs im Druckraum 11 auf die Druckschulter 9 und zumindest auf einen Teil der Ventil- gliedspitze 13 einwirkt. Dadurch ergibt sich eine in axialer Richtung wirkende Öffnungskraft auf das Ventilglied 7 entgegen der Schließkraft . Ist die Öffnungskraft größer als die Schließkraft, so bewegt sich das Ventilglied 7 in der Bohrung 15 vom Brennraum weg und die Ventilgliedspitze 13 hebt vom Ventilsitz 23 ab. Die Einspritzöffnungen 25 sind nun mit dem Druckraum 11 verbunden und Kraftstoff wird in den Brennraum eingespritzt. Bei umgekehrtem Verhältnis von Öffnungs- und Schließkraft erfolgt die Schließbewegung des Ventilgliedes 7 und durch die axiale Bewegung des Ventilgliedes 7 auf den Brennraum zu kommt die Ventilgliedspitze 13 am Ventilsitz 23 zur Anlage und beendet so den Einspritzvorgang.The valve member 7 is acted upon by a closing force in the direction of the combustion chamber. The device generating the closing force is arranged in the valve holding body 1, for example in the form of a prestressed spring. It can also be provided to generate the closing force by means of a plurality of springs which, depending on the stroke of the valve member 7, generate the closing force individually or together. In addition, an additional closing force can also be generated by building up a pressure in the spring chamber. This closing force presses the valve member 7 with the valve member tip 13 against the valve seat 23, as a result of which the pressure chamber 11 is closed against the injection openings 25. The opening stroke movement of the valve member 7 takes place in that the hydraulic force of the fuel in the pressure chamber 11 acts on the pressure shoulder 9 and at least on part of the valve member tip 13. This results in an opening force acting in the axial direction on the valve member 7 against the closing force. If the opening force is greater than the closing force, the valve member 7 moves away from the combustion chamber in the bore 15 and the valve member tip 13 lifts off the valve seat 23. The injection openings 25 are now connected to the pressure chamber 11 and fuel is injected into the combustion chamber. With an inverse ratio of opening and closing force, the closing movement of the valve member 7 takes place and the axial movement of the valve member 7 towards the combustion chamber causes the valve member tip 13 to come into contact with the valve seat 23 and thus ends the injection process.
In Figur 2 ist das Ventilglied 7 in Schließstellung im Bereich der Ventilgliedspitze 13 dargestellt und der das Ventilglied 7 umgebende Ventilkörpers 5 im Längsschnitt. An der Ventilgliedspitze 13 ist eine erste Konusfläche 30 ausgebildet, die an den Ventilgliedschaft 107 grenzt und einen Ko- nuswinkel α aufweist. Der Konuswinkel α ist dabei kleiner als der Konuswinkel γ des Ventilsitzes 23, so daß zwischen der ersten Konusfläche 30 und dem Ventilsitz 23 ein erster Differenzwinkel δ2 gebildet wird. An die erste Konusfläche 30 schließt sich an der Ventilgliedspitze 13 brennraumseitig eine zweite Konusfläche 32 an, deren Konuswinkel ß größer als der Konuswinkel γ des Ventilsitzes 23 ist. Der dadurch gebildete zweite Differenzwinkel δ2 zwischen der zweiten Konusfläche 32 und dem Ventilsitz 23 ist dabei größer als der erste Differenzwinkel δ± . Durch den Übergang von der ersten 30 zur zweiten Konusfläche 32 ist an der Ventilgliedspitze 13 eine umlaufende Dichtkante 40 ausgebildet, die in einerIn Figure 2, the valve member 7 is shown in the closed position in the region of the valve member tip 13 and the valve body 5 surrounding the valve member 7 in longitudinal section. A first conical surface 30 is formed on the valve member tip 13, which adjoins the valve member shaft 107 and has a conical angle α. The cone angle α is smaller than the cone angle γ of the valve seat 23, so that a first difference angle δ 2 is formed between the first cone surface 30 and the valve seat 23. A second cone surface 32 adjoins the first cone surface 30 on the valve member tip 13, the cone angle β of which is greater than the cone angle γ of the valve seat 23. The result The second differential angle δ 2 formed between the second conical surface 32 and the valve seat 23 is larger than the first differential angle δ ± . Due to the transition from the first 30 to the second cone surface 32, a circumferential sealing edge 40 is formed on the valve member tip 13, which is in a
Radialebene zur Längsachse 19 des Ventilgliedes 7 liegt. Die Ventilgliedspitze 13 liegt in Schließstellung des Ventilgliedes 7 mit der Dichtkante 40 am Ventilsitz 23 an, so daß ein dichter Verschluß des Druckraums 11 gegen die Ein- spritzöffnungen 25 erreicht wird, die brennraumzugewandt zur Anlagestelle der Dichtkante 40 am Ventilsitz 23 in der Bodenfläche der Bohrung 15 angeordnet sind.Radial plane to the longitudinal axis 19 of the valve member 7 lies. The valve member tip 13 is in the closed position of the valve member 7 with the sealing edge 40 on the valve seat 23, so that a tight seal of the pressure chamber 11 against the injection openings 25 is achieved, the combustion chamber facing the contact point of the sealing edge 40 on the valve seat 23 in the bottom surface of the bore 15 are arranged.
An der ersten Konusfläche 30 ist eine umlaufende Ringnut 35 angeordnet, die in einer Radialebene zur Längsachse 19 des Ventilgliedes 7 verläuft. Ihr Querschnitt kann kreisbogenförmig sein oder auch eine andere, zweckdienliche Form aufweisen. Beispielsweise kann der Querschnitt durch einen Polygonzug gebildet werden oder Teil einer Ellipse sein. Die Breite der Ringnut beträgt vorzugsweise 0,15 bis 0,5 mm.A circumferential annular groove 35 is arranged on the first cone surface 30 and runs in a radial plane to the longitudinal axis 19 of the valve member 7. Their cross-section can be in the form of an arc of a circle or also have another useful shape. For example, the cross section can be formed by a polygon or be part of an ellipse. The width of the annular groove is preferably 0.15 to 0.5 mm.
Öffnet das Ventilglied 7 sehr schnell, so kann es dazu kommen, daß sich im Bereich der Ringnut 35 Kavitationen bilden. Deshalb kann es vorgesehen sein, daß die Ringnut 35 durch eine oder mehrere Längsnuten 42 mit dem VentilgliedschaftOpens the valve member 7 very quickly, so it can happen that 35 cavitations form in the area of the annular groove. It can therefore be provided that the annular groove 35 through one or more longitudinal grooves 42 with the valve member shaft
107 verbunden ist. Die Längsnuten 42 erleichtern den Zulauf von Kraftstoff aus dem Druckraum 11 in die Ringnut 35 zu Beginn der Öffnungshubbewegung, so daß sich Kavitationen nicht oder in erheblich vermindertem Maß bilden können. Die Längs- nuten 42 verlaufen vorzugsweise parallel zu den Mantellinien der ersten Konusfläche 30 und sind, wenn mehr als eine Längsnut 42 vorgesehen ist, vorzugsweise gleichmäßig über den Umfang des Ventilgliedes 7 verteilt .107 is connected. The longitudinal grooves 42 facilitate the inflow of fuel from the pressure chamber 11 into the annular groove 35 at the beginning of the opening stroke movement, so that cavitations cannot form or can be formed to a significantly reduced extent. The longitudinal grooves 42 preferably run parallel to the surface lines of the first conical surface 30 and, if more than one longitudinal groove 42 is provided, are preferably distributed uniformly over the circumference of the valve member 7.
Die Funktionsweise der erfindungsgemäß ausgestalteten Ventilgliedspitze 13 ist wie folgt: In Schließstellung des Ven- tilgliedes 7 wird die Dichtkante 40 an den Ventilsitz 23 gepreßt . Damit ist im Prinzip eine Linienberührung gegeben und es treten hohe Spannungen sowohl im Ventilglied 7 als auch im Ventilsitz 23 auf, die zu elastischen und plastischen Verformungen von Ventilglied 7 und Ventilsitz 23 führen, so daß sich im Laufe des Betriebs die Dichtkante 40 in den Ventilsitz 23 eindrückt und eine Flächenberührung vorliegt. Da der erste Differenzwinkel δ kleiner als der zweite Differenzwinkel δ2 ist, verschiebt sich durch das Eindrücken der Dichtkante 40 die hydraulisch wirksame Dichtkante, also die Grenzlinie, bis zu der der Druck des Kraftstoffs im Druckraum 11 in Schließstellung des Ventilgliedes 7 wirkt, von der Dichtkante 40 in Richtung auf die Ringnut 35. Erreicht die hydraulisch wirksame Dichtkante die untere, dem Bren - räum zugewandte Ringnutkante 38, kann sie nicht mehr weiter wandern und die hydraulisch wirksame Dichtkante fällt mit der unteren Ringnutkante 38 zusammen. Durch eine geeignete Auswahl der Materialien von Ventilglied 7 und Ventilsitz 23 kann sichergestellt werden, daß die Ventilgliedspitze 13 nicht soweit in den Ventilsitz 23 eingedrückt wird, daß auch die obere, dem Brennraum abgewandte Ringnutkante 37 am Ventilsitz 23 zur Anlage kommt.The functioning of the valve member tip 13 designed according to the invention is as follows: In the closed position of the valve tilliedes 7, the sealing edge 40 is pressed against the valve seat 23. This is in principle a line contact and there are high voltages both in the valve member 7 and in the valve seat 23, which lead to elastic and plastic deformation of the valve member 7 and valve seat 23, so that the sealing edge 40 in the valve seat during operation 23 presses in and there is surface contact. Since the first differential angle δ is smaller than the second differential angle δ 2 , the hydraulically effective sealing edge, i.e. the boundary line up to which the pressure of the fuel in the pressure chamber 11 acts in the closed position of the valve member 7, is displaced by the indentation of the sealing edge 40 Sealing edge 40 in the direction of the annular groove 35. If the hydraulically effective sealing edge reaches the lower annular groove edge 38 facing the combustion chamber, it can no longer move and the hydraulically active sealing edge coincides with the lower annular groove edge 38. A suitable selection of the materials of the valve member 7 and valve seat 23 can ensure that the valve member tip 13 is not pressed into the valve seat 23 to such an extent that the upper annular groove edge 37 facing away from the combustion chamber comes into contact with the valve seat 23.
Der Konuswinkel der Ventilsitzes beträgt 55 bis 65 Grad, vorzugsweise etwa 60 Grad. Die Konuswinkel von erster 30 und zweiter Konusfläche 32 sind so ausgebildet, daß die Differenzwinkel δl7δ2 jeweils weniger als 1,5 Grad betragen. Dabei ist stets der erste Differenzwinkel δx kleiner als der zwei- te Differenzwinkel δ2. The cone angle of the valve seat is 55 to 65 degrees, preferably about 60 degrees. The cone angles of the first 30 and second cone surface 32 are designed such that the difference angles δ l7 δ 2 are each less than 1.5 degrees. The first differential angle δ x is always smaller than the second differential angle δ 2 .

Claims

Ansprüche "5 Claims "5
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (5) , in dem eine Bohrung (15) angeordnet ist, an deren brennraumseitigen Ende ein konischer Ventilsitz (23) und wenigstens eine Einspritzöffnung (25) 0 angeordnet sind, welche die Bohrung (15) mit dem Brennraum verbindet, und mit einem in der Bohrung (15) geführten, längsverschiebbaren, kolbenförmigen Ventilglied (7) , das einen dem Ventilsitz (23) zugewandten Ventilgliedschaft (107) aufweist, zwischen dem und der Wand der Boh- 5 rung (15) ein mit Kraftstoff befüllbarer Druckraum (11) ausgebildet ist, und welches Ventilglied (7) an seinem brennraumseitigen Ende eine Ventilgliedspitze (13) aufweist, an welcher eine erste Konusfläche (30) und eine zweite, sich brennraumseitig an die erste Konusfläche 0 (30) anschließende zweite Konusfläche (32) ausgebildet ist, wobei der Konuswinkel ( ) der ersten Konusfläche (30) kleiner und der Konuswinkel (ß) der zweiten Konusfläche (32) größer als der Konuswinkel (γ) des Ventilsitzes (23) ist, so daß am Übergang der beiden Konusflächen 5 (30,32) eine umlaufende Dichtkante (40) gebildet wird, die in Schließstellung des Ventilgliedes (7) am Ventilsitz (23) bezüglich des Kraftstoffflusses zu den Einspritzöffnungen (25) stromaufwärts der Einspritzöffnungen (25) zur Anlage kommt, dadurch gekennzeichnet, daß an der 0 ersten konischen Fläche (30) der Ventilgliedspitze (13) eine umlaufende Ringnut (35) ausgebildet ist.1. Fuel injection valve for internal combustion engines with a valve body (5) in which a bore (15) is arranged, at the end of the combustion chamber a conical valve seat (23) and at least one injection opening (25) 0 are arranged, which the bore (15) with connects the combustion chamber, and with a longitudinally displaceable, piston-shaped valve member (7) guided in the bore (15) and having a valve member shaft (107) facing the valve seat (23), between and the wall of the bore (15) A fuel chamber (11) can be filled with fuel, and which valve member (7) has at its combustion chamber end a valve member tip (13) on which a first cone surface (30) and a second combustion chamber side to the first cone surface 0 (30) subsequent second cone surface (32) is formed, the cone angle () of the first cone surface (30) being smaller and the cone angle (β) of the second cone surface (32) being larger than the cone wi nkel (γ) of the valve seat (23), so that at the transition of the two conical surfaces 5 (30,32) a circumferential sealing edge (40) is formed, which in the closed position of the valve member (7) on the valve seat (23) with respect to the fuel flow the injection openings (25) come upstream of the injection openings (25), characterized in that a circumferential annular groove (35) is formed on the first conical surface (30) of the valve member tip (13).
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Ringnut (35) in einer Radialebene der Längsachse (19) des Ventilgliedes (7) verläuft. 52. Fuel injection valve according to claim 1, characterized in that the annular groove (35) extends in a radial plane of the longitudinal axis (19) of the valve member (7). 5
3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß an der zwischen dem Ventilgliedschaft (107) und der Ringnut (35) ausgebildeten Konusfläche wenigstens eine Längsnut (42) angeordnet ist, die den Ventilgliedschaft (107) mit der Ringnut (35) verbindet.3. Fuel injection valve according to claim 2, characterized in that on the between the valve member shaft (107) and the annular groove (35) formed conical surface at least one longitudinal groove (42) is arranged which connects the valve member shaft (107) with the annular groove (35).
4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch ge- "5 kennzeichnet, daß die wenigstens eine Längsnut (42) zumindest annähernd parallel zu den Mantellinien der ersten Konusfläche (30) verläuft.4. Fuel injection valve according to claim 3, characterized " 5 indicates that the at least one longitudinal groove (42) extends at least approximately parallel to the surface lines of the first conical surface (30).
5. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, daß mehrere Längsnuten (42) vorhanden sind, 0 die gleichmäßig über den Umfang des Ventilgliedes (7) verteilt sind.5. Fuel injection valve according to claim 3, characterized in that a plurality of longitudinal grooves (42) are provided, 0 which are evenly distributed over the circumference of the valve member (7).
6. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Konuswinkel (γ) des Ventilsitzes (23) 55 bis 65 Grad beträgt, vorzugswei- 5 se etwa 60 Grad.6. Fuel injection valve according to one of the preceding claims, characterized in that the cone angle (γ) of the valve seat (23) is 55 to 65 degrees, preferably 5 se about 60 degrees.
7. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Differenz der Konuswinkel von erster konischer Fläche (30) und Ventilsitz (23) weniger als 1,5 Grad beträgt, vorzugsweise 0,5 0 bis 1,0 Grad.7. Fuel injection valve according to one of the preceding claims, characterized in that the difference in the cone angle of the first conical surface (30) and valve seat (23) is less than 1.5 degrees, preferably 0.5 0 to 1.0 degrees.
8. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, daß die Differenz der Konuswinkel von zweiter konischer Fläche (32) und Ventilsitz (23) weniger als 1 Grad beträgt, vorzugsweise 0,5 bis 0,7 Grad. 5 8. Fuel injection valve according to claim 7, characterized in that the difference in the cone angle of the second conical surface (32) and valve seat (23) is less than 1 degree, preferably 0.5 to 0.7 degrees. 5
EP01947202A 2000-06-27 2001-06-12 Fuel injection valve for internal combustion engines Withdrawn EP1297252A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10031265 2000-06-27
DE10031265A DE10031265A1 (en) 2000-06-27 2000-06-27 Fuel injection valve for internal combustion engines
PCT/DE2001/002180 WO2002001065A1 (en) 2000-06-27 2001-06-12 Fuel injection valve for internal combustion engines

Publications (1)

Publication Number Publication Date
EP1297252A1 true EP1297252A1 (en) 2003-04-02

Family

ID=7646964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01947202A Withdrawn EP1297252A1 (en) 2000-06-27 2001-06-12 Fuel injection valve for internal combustion engines

Country Status (9)

Country Link
US (1) US6827297B2 (en)
EP (1) EP1297252A1 (en)
JP (1) JP2004502074A (en)
KR (1) KR20020027575A (en)
CN (1) CN1383470A (en)
BR (1) BR0106897A (en)
DE (1) DE10031265A1 (en)
PL (1) PL352573A1 (en)
WO (1) WO2002001065A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031537B4 (en) * 2000-06-28 2009-06-04 Continental Automotive Gmbh Formation of an injection valve to reduce the seat load
DE10246693A1 (en) * 2002-10-07 2004-04-15 Siemens Ag Injector for injecting fuel
DE10249144A1 (en) * 2002-10-22 2004-05-06 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE10259169A1 (en) * 2002-12-18 2004-07-01 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE10260975A1 (en) * 2002-12-24 2004-07-08 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
ATE325271T1 (en) * 2003-10-06 2006-06-15 Delphi Tech Inc INJECTOR
DE10351881A1 (en) * 2003-10-30 2005-06-02 Robert Bosch Gmbh Injector with structures for limiting wear-related changes of an opening course
DE10353683A1 (en) * 2003-11-17 2005-06-16 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102004033283A1 (en) * 2004-07-09 2006-02-02 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102004050046A1 (en) * 2004-10-14 2006-04-20 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
JP2006307678A (en) * 2005-04-26 2006-11-09 Denso Corp Fuel injection nozzle
US7578450B2 (en) * 2005-08-25 2009-08-25 Caterpillar Inc. Fuel injector with grooved check member
US7360722B2 (en) * 2005-08-25 2008-04-22 Caterpillar Inc. Fuel injector with grooved check member
US20070200011A1 (en) * 2006-02-28 2007-08-30 Caterpillar Inc. Fuel injector having nozzle member with annular groove
DE102006033687A1 (en) * 2006-07-20 2008-01-24 Siemens Ag Injector nozzle e.g. for fuel injection, has nozzle needle, and conical-trained sealing area with body jet, circuit and nozzle needle provided which axially moves bag shaped capsules
DE102006035832A1 (en) * 2006-08-01 2008-02-07 Siemens Ag Nozzle unit for injection valve for dosing fuel into combustion chamber of internal combustion engine, has pressure discharge area allowing groove in closing position of needle to communicate with recess of body upstream to seating area
DE102007009168A1 (en) * 2007-02-26 2008-08-28 Robert Bosch Gmbh Pressure-compensated control valve, has seat limiting surface running between valve element and valve piece, where seat limiting surface is limited by seat disposing edge, which is guided at valve element or at valve piece
DE102007013248A1 (en) 2007-03-20 2008-09-25 Robert Bosch Gmbh Fuel injector, has pressure-balanced switching valve actuated by solenoid valve and seat surface formed in area of valve seat, where seat surface increases outwards in radial direction
DE102008040639A1 (en) 2007-10-04 2009-04-09 Robert Bosch Gmbh Pressure-balanced control valve for internal combustion engine, has high pressure chamber loaded with fuel through hole under system pressure, and another high pressure chamber formed in region between valve piece and valve element
CN101592106B (en) * 2009-04-24 2013-10-30 靳北彪 Apertured valve sheet deformation fuel injector for engine
DE102013009418A1 (en) * 2013-06-05 2014-12-24 Man Diesel & Turbo Se fuel Injector
FI126534B (en) * 2014-12-17 2017-01-31 Waertsilae Finland Oy Armature apparatus and method for increasing the fatigue strength of a prefabricated element
EP3252302B1 (en) * 2015-01-30 2019-10-30 Hitachi Automotive Systems, Ltd. Fuel injection valve
EP3290684A1 (en) * 2016-08-31 2018-03-07 Continental Automotive GmbH Fluid injector and needle for a fluid injector
JP2022088969A (en) * 2020-12-03 2022-06-15 株式会社ジャパンエンジンコーポレーション Fuel injection valve and marine internal combustion engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836080A (en) * 1973-09-10 1974-09-17 Ambac Ind Fuel injection nozzle
US4153205A (en) * 1977-10-19 1979-05-08 Allis-Chalmers Corporation Short seat fuel injection nozzle valve
US4408722A (en) * 1981-05-29 1983-10-11 General Motors Corporation Fuel injection nozzle with grooved poppet valve
JPS5882068A (en) * 1981-11-09 1983-05-17 Nissan Motor Co Ltd Fuel injection nozzle
US4540126A (en) 1982-04-08 1985-09-10 Nissan Motor Co., Ltd. Fuel injection nozzle
WO1989003935A1 (en) 1987-10-30 1989-05-05 Nauchno-Proizvodstvennoe Obiedinenie Po Toplivnoi Pulverizer of diesel nozzle
JP2819702B2 (en) 1989-12-12 1998-11-05 株式会社デンソー Fuel injection valve
GB9425652D0 (en) * 1994-12-20 1995-02-22 Lucas Ind Plc Fuel injection nozzle
JP3213515B2 (en) * 1995-07-14 2001-10-02 三菱自動車工業株式会社 Two-stage valve opening pressure type fuel injection valve
DE19634933B4 (en) 1996-08-29 2007-06-06 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE19931891A1 (en) 1999-07-08 2001-01-18 Siemens Ag Fuel-injection valve for combustion engine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0201065A1 *

Also Published As

Publication number Publication date
JP2004502074A (en) 2004-01-22
KR20020027575A (en) 2002-04-13
PL352573A1 (en) 2003-08-25
BR0106897A (en) 2002-04-30
US20020162906A1 (en) 2002-11-07
DE10031265A1 (en) 2002-01-10
WO2002001065A1 (en) 2002-01-03
CN1383470A (en) 2002-12-04
US6827297B2 (en) 2004-12-07

Similar Documents

Publication Publication Date Title
WO2002001065A1 (en) Fuel injection valve for internal combustion engines
DE19547423B4 (en) Fuel injection valve for internal combustion engines
EP1198672B1 (en) Fuel injection valve for internal combustion engines
DE10315820A1 (en) Fuel injection valve for motor vehicle internal combustion engine has housing with injection openings and sliding valve needle with double seating surfaces
EP1556607B1 (en) Fuel injection valve for internal combustion engines
EP1373715A1 (en) Fuel-injection valve for internal combustion engines
WO2003098031A1 (en) Fuel injection valve for internal combustion engines
EP1518049B1 (en) Fuel injection valve for an internal combustion engine
DE10315967A1 (en) Fuel ejecting valve for internal combustion engine, has injecting duct with conical sections, each narrowed along the flow direction and has different opening angles
EP1356203B1 (en) Device for supplying high pressure fuel to an internal combustion engine
EP1433951A1 (en) Fuel injector for an internal combustion engine
EP1062423B1 (en) Fuel injection valve
WO2004104406A1 (en) Fuel injection valve for combustion engines
EP1608866B1 (en) Fuel-injection valve for internal combustion engines
EP1579113A1 (en) Fuel injection valve for internal combustion engines
DE10318989A1 (en) Fuel injection valve, for an IC motor, has a ring groove at the valve needle in a constant hydraulic link with the fuel-filled pressure zone and its downstream edge acting a sealing edge, to reduce wear at the valve seat
EP1576283A1 (en) Fuel injection valve for internal combustion engines
DE102006050631A1 (en) Fuel injection valve for self-ignited internal-combustion engine, has recesses formed at cone surface, and extend from cylindrical surface up to cone surface, where recesses close upstream of sealing edge
WO2001002718A1 (en) Fuel injection valve for internal combustion engines
WO2004027254A1 (en) Fuel injection valve for internal combustion engines
WO2001057394A1 (en) Fuel injection valve for internal combustion engines
EP1358403A1 (en) Fuel injection valve for an internal combustion engine
DE10320044A1 (en) Fuel injection valve for internal combustion engine, has valve needle with sealing surface that seals off injection opening, the sealing surface having a ring groove which runs level with the off-edge of the valve seat
WO2001075298A1 (en) Fuel injection valve for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20061110

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070321