EP1296436B1 - Procédé et système pour détecter et transmettre par voie numérique des grandeurs de sortie analogiques mesurées de plusieurs transducteurs - Google Patents

Procédé et système pour détecter et transmettre par voie numérique des grandeurs de sortie analogiques mesurées de plusieurs transducteurs Download PDF

Info

Publication number
EP1296436B1
EP1296436B1 EP02090218A EP02090218A EP1296436B1 EP 1296436 B1 EP1296436 B1 EP 1296436B1 EP 02090218 A EP02090218 A EP 02090218A EP 02090218 A EP02090218 A EP 02090218A EP 1296436 B1 EP1296436 B1 EP 1296436B1
Authority
EP
European Patent Office
Prior art keywords
clock
fir
data concentrator
message
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02090218A
Other languages
German (de)
English (en)
Other versions
EP1296436A3 (fr
EP1296436A2 (fr
Inventor
Bert Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1296436A2 publication Critical patent/EP1296436A2/fr
Publication of EP1296436A3 publication Critical patent/EP1296436A3/fr
Application granted granted Critical
Publication of EP1296436B1 publication Critical patent/EP1296436B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C15/00Arrangements characterised by the use of multiplexing for the transmission of a plurality of signals over a common path

Definitions

  • Fig. 1 shows a block diagram of these draft standards, which show the basic connection of a converter 1 with a downstream converter, such as an analog-to-digital converter 2 with associated power supply to a digital transmission link 3.
  • These draft standards provide for a precisely defined transmission time for a telegram with sample values. The time between the sampling of the analogue output variable of the respective converter and the reception of the telegram with the sampling values is defined.
  • Secondary converters 4 and 5 are provided for adaptation.
  • Fig. 2 can be detected in the draft standards, the digital measures of the converter for a branch in, for example, a substation with the help of a so-called “merging unit", a data concentrator 10 summarize.
  • the data concentrator 10 outputs at an output 11 a telegram with the digital measurements to a protection or field device, not shown, and is connected via an auxiliary input 12 with a clock, also not shown.
  • Fig. 2 are the elements 1 and 2 according to Fig. 1 each with PC and the elements 4 and 5 denoted by SC.
  • the first way could be using the interpolation method.
  • the different known time delays between the sampling of the samples of the output measurements sent in datagrams and the receipt of the datagrams in the data concentrator and the measurable delay between the receipt of the different datagrams of the individual converters are used to assign a microsecond-precise sampling instant to each received sample.
  • interpolation is performed between the individual samples in order to convert all received samples to a common sampling instant.
  • Fig. 3 illustrates this situation. This figure is taken from the above-mentioned draft standard.
  • a disadvantage of this method is the high cost of the approximately 100ns accurate timestamping device for the received datagrams and the required means for interpolation of the sampled signals in real time. If an interpolation polynomial (eg 3rd order recursive splines interpolation) is used for the interpolation, the interpolation causes an additional interpolation error. The result of the interpolation can no longer be described using a linear transfer function, ie the algorithm used is nonlinear.
  • adaptive filters can also be used for the interpolation. In this case, the relatively high group delay of the practically realizable all-pass filter (or low-pass filter with a cut-off frequency significantly higher than the bandwidth to be used) has an unfavorable effect.
  • a device is needed with which the filter coefficients to be fed can be calculated.
  • the LMS algorithm is suitable.
  • DSP digital signal processor
  • ASIC complex ASIC
  • the second way is to use a substation-wide synchronization pulse. Since in a substation the signals provided by the transducers are usually used by different devices, it is actually never possible to disassemble a substation into individual sections in which a common sampling clock can be used for all output measured variables of the transducers to be synchronized. The entire substation must always be supplied with a central sampling clock. In this case, all converters can generate samples sampled synchronously with each other.
  • Fig. 4 shows the image used in the already mentioned draft standard to illustrate the synchronously sampled signals.
  • the draft IEC 61850-9-1 proposes a 100 Mbit Ethernet interface.
  • Ethernet interfaces is basically a central sample clock required for the synchronization of the scan, since in this transmission method, no constant transmission time of the transducer signals can be guaranteed over the Ethernet bus.
  • the method proposed in this draft standard for the digital transmission of transducer signals is just another implementation variant of the second method according to the draft standard IEC 60044-8.
  • Both designs are tailored to the requirements of protection and control technology. Both designs are unsuitable for transient recording and power quality measurements (too low sampling rates).
  • the sampling rates achievable according to IEC 60044-8 and 61850-9-1 are in the range of 1 ... 5 k samples / s.
  • the sampling rates required for transient recording and power quality measurements are in the range 5 ... 40 k samples.
  • a method for acquiring and digitally transmitting analog output measurements of a plurality of transducers to a protection or field device in which the analog output measures of each transducer are converted into digital measures that are transmitted to a data concentrator;
  • a telegram is formed with the digital measured quantities of the converters with a predetermined minimum sampling rate, and the telegram is transmitted to the protective or field device, with a sampling rate that is higher than the minimum sampling rate by a factor of m, the analog output measured quantities into the digital metrics implemented and their transmission is made, where the factor m is an integer Divisor of the number n of the filter coefficients of each FIR filter (FIR) in the data concentrator for each transducer is, from each converter associated buffers with the clock of a clock of the data concentrator data in the FIR filters (FIR) upstream Nachgespischen immediately be adopted and
  • the telegram is assembled by means of a multiplexer from the FIR filters (FIR) downstream output
  • the invention has for its object to develop the well-described known method so that it allows to achieve good results in any case.
  • the invention provides a method for detecting and digitally transmitting analog output variables of several converters to a protective or field device in which the analog output variables of each converter with a sampling rate that is higher than the NASAabtastrate by a factor, converted into digital measurements and their transmission is carried out, wherein the factor is an integer divisor of the number of filter coefficients of a respective FIR filter with filter coefficients of value 1 in a data concentrator for each transducer, the digital measurements are transmitted as a telegram to a data concentrator, wherein associated from each transducer Caching with a clock (clock) data in the FIR filters upstream Nachgespischen immediately be accepted, and in the data concentrator by means of a multiplexer from the FIR filters downstream output buffers a send telegram with in their sampling rate reduced digital measured variables of the converter is formed and the transmission telegram is transmitted to the protection or field device, wherein the clock (clock) from the sync of the respective telegram and the fixed clock of a clock generator is formed.
  • a telegram is generated with the digital measured variables by means of an isochronous logic arrangement and transmitted from one transmitter to a respective data receiver to the data concentrator.
  • the invention further relates to an arrangement for detecting and digitally transmitting analog output measured variables of a plurality of transducers to a protective or field device, and has set itself the task arising from the WO 01/45232 removable to acquaint removable known arrangement.
  • an isochronous logic arrangement for forming a telegram and a transmitter are arranged downstream of the respective analog-to-digital converter.
  • the analog output measurement quantities supplied by converters ECT1 to EVTBB are each provided in a module PC with an analog input circuit 20 and an analog-to-digital converter 21 (cf. Fig. 6 ) sampled and converted.
  • the block PC is followed by a further block Tx, which may be constructed in detail as the rest of the Fig. 6 with elements 22, 23, 24 and 25, element 2 representing a frame logic device, element 23 a coding device, element 24 an optical interface and element 25 an electrical interface.
  • the transmission of the digital measured variables Md at the output of the blocks Tx according to the arrangement Fig. 5 to the data concentrator 26 takes place via optical fiber LWL in the form of telegrams first to the data concentrator 26 upstream data receivers Rx, the input side - like Fig. 7 shows - are equipped with light receivers 30.
  • buffers Buf1 each of the data receiver Rx completely received telegrams are written to the clock of the data receiver Rx.
  • Each data receiver Rx is operated with its own clock. This clock is synchronous with the clock of the connected transmitter Tx and is generated from the sync signal of each transmitted telegram.
  • the data concentrator 26 also contains FIR filters FIR, which are respectively arranged after the post buffers Buf2, which in turn are connected to the buffer Buf1. On the output side are the filters FIR output buffer Buf3. The output buffers Buf3 is followed by a multiplexer 27.
  • the digital measured variables Md respectively generated by the analog-to-digital converter 21 are transmitted isochronously with the clock of the A / D conversion.
  • the A / D conversion and the transmission of the samples via the optical waveguide LWL takes place with a by a factor m compared to the sampling rate of the output signal A at the output module 28 of the multiplexer 27 higher sampling rate, wherein the factor m is an integer divisor of the number of filter coefficients n of the FIR filter FIR, which serves to reduce the sampling rate of the transmitted digital measured variable Md by the factor m.
  • This is accomplished by using FIR filters with filter coefficients of value 1, respectively.
  • the data concentrator 26 is provided with its own clock Clock operated.
  • This clock is formed of the clock of a clock generator, not shown, which is asynchronous to the clock of the receiver Rx, but has the same frequency.
  • the synchronous signal of the telegram is used to form the clock clock to the respective receiver Rx by a single clock clock each time arises when the sync signal and at the same time a pulse of the clock generator, not shown occurs.
  • the data of the completely received telegrams (that is to say the sampled values of the individual converters) are taken over from the buffer Buf1 in all the post-buffer Buf2 in synchronism with the clock clock.
  • the coefficients of the FIR filter are all set to 1 and added together. Only after, for example, 4 sampled values have been added in the multiplier-adding unit of the FIR filter is the sum output by the filter, so that in the present example a reduction of the sampling rate by a factor of 4 has occurred.
  • the multiplexer 27 composes a transmission telegram comprised of the sampled values contained in its output buffers Buf3 and reduced in their sampling rate, which is output in clock-synchronized fashion with the clock clock via the output component 28 to the output-side transmission channel of the data concentrator 26 (not shown).
  • the output module can optionally have interfaces to IEC 60044-8 and IEC 61850-9-1 for connecting third-party devices.
  • the clock clock of the data concentrator 26 can optionally be made available to an external device which processes the samples generated by the multiplexer 27.
  • the phase error of the samples is thus minimized by "oversampling" the analog output measured variables of the converter and synchronously “down-sampling” in the data concentrator 26.
  • the transmission data transmitted by the multiplexer 27 as a transmission telegram can be prepared in a communication module which is arranged upstream of a protective or field device, not shown.
  • the communication module includes an integrated circuit 31 in the form of a physics IC receiver 8 / 10B coding FC, ATM, FDDI ... and a device 32 with frame decoder and DPRAM and with a programmable logic integrated circuit FPGA or ASIC on; the block 32 is an interface downstream.
  • the protection or field device resamples the transmitted samples. Since there are no processors in the signal path (microcontroller, digital signal processors, ...), there is no temporal influence on the samples by interrupt latencies instead.
  • the entire signal preprocessing is done exclusively by synchronously clocked logic. Due to high sampling rates (> 2 M samples / s) and high transmission rates (> 120 Mbit / s), the transmission of the digital measured quantities to the digital protection device (1 ... 5 k samples / s) has a time-transparent effect. The achievable phase error is less than 0.1 °. This considerably reduces the computational effort in the protection and field devices (no computationally intensive procedures such as interpolation of the measured values necessary).
  • the implementation of the proposed method into currently existing devices of this type is thereby simplified considerably.
  • the use of synchronously clocked logic simplifies the setup of redundancy controls in the data concentrator and in the protection or field device.
  • the transmission links can be designed as optical waveguide cables or as a shielded two-wire line (low-cost applications).
  • fiber-optic cables with the simultaneous use of fiber optic fieldbus technology for digital inputs and outputs, it is possible to realize protective and field devices with significantly improved EMC properties.
  • VCSELs advanced optical transmitting diodes
  • passive optical splitters it is possible to connect up to 8 protection or field devices to one data concentrator output.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Claims (6)

  1. Procédé d'acquisition et de transmission numérique de grandeurs de sortie analogiques de plusieurs transducteurs à un appareil de protection ou sur site, dans lequel
    - on transforme les grandeurs de mesures de sortie analogiques de chaque transducteur ( ECT1....EVTBB ) avec un taux d'échantillonnage qui est plus grand d'un facteur m que le taux d'échantillonnage minimum, en des grandeurs ( Md ) de mesure numériques et on en effectue la transmission,
    - dans lequel le facteur est un diviseur en nombre entier du nombre n des coefficients de filtrage de respectivement un filtre FIR ( FIR ) ayant des coefficients de filtrage de la valeur 1 dans un concentrateur ( 26 ) de données pour chaque transducteur ( ECT1....EVTBB ) ,
    - on transmet les grandeurs ( Md ) de mesure numériques, sous forme de télégramme, à un concentrateur de données,
    - à partir de mémoires ( Buf1 ) tampons associées à chaque transducteur ( ECT1....EVTBB ) avec une cadence ( Clock ) on prend en charge des données dans une post-mémoire tampon ( Buf2 ) montée en amont des filtres FIR ( FIR ),
    - dans le concentrateur de données, on forme au moyen d'un multiplexeur ( 27 ) à partir de mémoires tampons de sortie ( Burf3 ) en aval des filtres FRI ( FIR ) un télégramme d'émission ayant des grandeurs de mesure numériques des transducteurs de taux d'échantillonnage réduit et,
    - on transmet le télégramme d'émission à l'appareil de protection ou sur site,
    caractérisé en ce que,
    - on forme la cadence ( Clock ) à partir du signe de synchronisation du télégramme respectif et de la cadence fixe d'un générateur de la cadence.
  2. Procédé suivant la revendication 1,
    caractérisé en ce que
    - on forme une cadence ( Clock ) individuelle respectivement lorsque le signe de synchronisation et en même temps une impulsion du générateur de la cadence se produisent.
  3. Procédé suivant la revendication 1 ou 2,
    caractérisé en ce que
    - on produit avec les grandeurs ( Md ) de mesure numériques au moyen d'un agencement logique synchronisé par cadence respectivement un télégramme et on le transmet de respectivement à un émetteur à respectivement un récepteur ( Rx ) de données du concentrateur ( 26 ) de données.
  4. Dispositif d'acquisition et de transmission numérique de grandeurs de sortie analogiques de plusieurs transistors à un appareil de protection ou sur site, dans lequel
    - on monte en aval de chaque transducteur ( ECT1....EVTBB ), pour former des grandeurs de mesure numériques, un convertisseur ( 21 ) analogique-numérique fonctionnant à un taux d'échantillonnage choisi d'un facteur plus grand que le taux d'échantillonnage minimum,
    - dans lequel le facteur est un diviseur en nombre entier du nombre n des coefficients de filtrage de respectivement un filtre FIR ( FIR ) ayant des coefficients de filtrage de la valeur 1 dans un concentrateur ( 26 ) de données pour chaque transducteur ( ECT1....EVTBB ) ,
    - les sorties des convertisseurs ( 21 ) analogique-numérique ne sont en liaison avec le concentrateur ( 26 ) de données que pour la transmission des grandeurs de mesures numériques sous forme de télégramme.
    - au concentrateur ( 26 ) de données est associé du côté de l'entrée à chaque transducteur ( ECT1....EVTBB ) une mémoire tampon ( Buf1 ),
    - aux mémoires ( But1 ) tampons sont raccordées des post-mémoires tampon ( Buf2 ) qui sont reliées du côté de la sortie aux filtres FIR ( FIR ),
    - un multiplexeur ( 27 ) est raccordé à la mémoire tampon de sortie ( Buf3 ) montée en aval des filtres FIR ( FIR ) et,
    - le concentrateur ( 26 ) de données a une sortie reliée à l'appareil de protection ou sur site pour l'émission d'un télégramme d'émission avec des grandeurs de mesure numériques des transducteurs ( ECT1....EVTBB ) de taux d'échantillonnage réduit,
    caractérisé en ce que le concentrateur ( 26 ) de données est conçu pour fonctionner au moyen d'une cadence ( Clock ) formée à partir d'un signe de synchronisation du télégramme respectif et de la cadence fixe d'un générateur de la cadence.
  5. Dispositif suivant la revendication 4,
    caractérisé en ce que
    - le concentrateur ( 26 ) de données est conçu pour fonctionner aux moyens d'une cadence ( Clock ) dont les cadences individuelles sont formées respectivement lorsque le signe de synchronisation et en même temps une impulsion de générateur de la cadence se produisent.
  6. Dispositif suivant la revendication 4 ou 5,
    caractérisé en ce que
    - en aval du convertisseur ( 21 ) analogique-numérique respectif sont montés une logique synchronisée par cadence pour la formation d'un télégramme et un émetteur ( Tx ).
EP02090218A 2001-07-11 2002-06-20 Procédé et système pour détecter et transmettre par voie numérique des grandeurs de sortie analogiques mesurées de plusieurs transducteurs Expired - Fee Related EP1296436B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10135089 2001-07-11
DE10135089A DE10135089A1 (de) 2001-07-11 2001-07-11 Verfahren und Anordnung zum Erfassen und digitalen Übertragen von analogen Ausgangsmessgrößen mehrerer Wandler

Publications (3)

Publication Number Publication Date
EP1296436A2 EP1296436A2 (fr) 2003-03-26
EP1296436A3 EP1296436A3 (fr) 2007-01-24
EP1296436B1 true EP1296436B1 (fr) 2009-03-11

Family

ID=7692309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02090218A Expired - Fee Related EP1296436B1 (fr) 2001-07-11 2002-06-20 Procédé et système pour détecter et transmettre par voie numérique des grandeurs de sortie analogiques mesurées de plusieurs transducteurs

Country Status (3)

Country Link
US (1) US6753772B2 (fr)
EP (1) EP1296436B1 (fr)
DE (2) DE10135089A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50213906D1 (de) * 2002-11-15 2009-11-19 Abb Research Ltd Schutzgerät und Verfahren zur Installation einer Schutzfunktion in einem Schutzgerät
EP1886448B1 (fr) * 2005-06-01 2011-11-30 Siemens Aktiengesellschaft Dispositif de mesure ou de protection universel
EP2044509A2 (fr) 2006-07-21 2009-04-08 Schweitzer Engineering Laboratories, Inc. Procédé de configuration de dispositifs électroniques intelligents pour faciliter la standardisation de messages de communication parmi plusieurs dei à l'intérieur d'un réseau
US7589651B1 (en) * 2006-08-25 2009-09-15 Altera Corporation Flexible signal detect for programmable logic device serial interface
US7427939B2 (en) * 2006-12-28 2008-09-23 Intel Corporation Parallel processed electronic dispersion control
US8560255B2 (en) * 2008-12-12 2013-10-15 Schneider Electric USA, Inc. Power metering and merging unit capabilities in a single IED
US8693353B2 (en) * 2009-12-28 2014-04-08 Schneider Electric USA, Inc. Intelligent ethernet gateway system and method for optimizing serial communication networks
US10261567B2 (en) 2013-05-21 2019-04-16 Schweitzer Engineering Laboratories, Inc. Automatically configurable intelligent electronic device
FR3034274B1 (fr) 2015-03-27 2017-03-24 Stmicroelectronics Rousset Procede de traitement d'un signal analogique issu d'un canal de transmission, en particulier un signal vehicule par courant porteur en ligne
CN104931826A (zh) * 2015-06-12 2015-09-23 国家电网公司 模拟量输入式合并单元的相位误差测试装置及方法
WO2017131637A1 (fr) * 2016-01-26 2017-08-03 Hewlett Packard Enterprise Development Lp Topologie de transfert de couche physique ethernet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3688652D1 (de) * 1985-02-04 1993-08-12 Peter Dietrich Verfahren und einrichtung zur datenuebertragung in der fernwirktechnik.
US4839652A (en) * 1987-06-01 1989-06-13 General Electric Company Method and apparatus for high speed digital phased array coherent imaging system
US5027306A (en) * 1989-05-12 1991-06-25 Dattorro Jon C Decimation filter as for a sigma-delta analog-to-digital converter
US5371842A (en) * 1990-04-19 1994-12-06 Bioscience Analysis Software Ltd. System for real-time display of the waveshape of an incoming stream of digital data samples
GB9205614D0 (en) * 1992-03-14 1992-04-29 Innovision Ltd Sample rate converter suitable for converting between digital video formats
EP0602718B1 (fr) * 1992-12-16 1998-08-19 Koninklijke Philips Electronics N.V. Convertisseur analogique-numérique pour la conversion d'une multitude de signaux analogiques d'entrée en signaux de sortie numériques à l'aide d'un seul modulateur sigma-delta
DE19961630A1 (de) * 1999-12-14 2001-07-05 Siemens Ag Verfahren und Anordnung zum Erfassen und digitalen Übertragen von analogen Ausgangsmeßgrößen mehrerer Wandler

Also Published As

Publication number Publication date
DE50213344D1 (de) 2009-04-23
US20030011491A1 (en) 2003-01-16
EP1296436A3 (fr) 2007-01-24
DE10135089A1 (de) 2003-01-23
US6753772B2 (en) 2004-06-22
EP1296436A2 (fr) 2003-03-26

Similar Documents

Publication Publication Date Title
EP1243061B1 (fr) Procede et systeme pour detecter et transmettre par voie numerique des grandeurs de sortie analogiques mesurees de plusieurs transducteurs
EP1296436B1 (fr) Procédé et système pour détecter et transmettre par voie numérique des grandeurs de sortie analogiques mesurées de plusieurs transducteurs
EP0538277B1 (fr) Reseau optique de donnees a haute fiabilite de fonctionnement
DE3990712C2 (de) Schnittstelleneinheit
DE3789791T2 (de) Datenübertragungsvorrichtung.
EP1886448B1 (fr) Dispositif de mesure ou de protection universel
DE3603358A1 (de) Verfahren und einrichtung zur datenuebertragung in der fernwirktechnik
DE19635989A1 (de) Sendeeinrichtung zur optischen Übertragung von analogen elektrischen Signalen und digitales Übertragungssystem
DE4123851C1 (en) Inter-working unit for coupling asynchronous-to synchronous-transfer mode network - uses multiplexer and demultiplexer for each network, buffer memory and asynchronous-synchronous converters for transmission via exchanges
EP1079657B1 (fr) Méthode de routage des paquets de données optiques
DE3132730A1 (de) Netzschutzeinrichtung
EP1062773B1 (fr) Bus de donnees pour plusieurs noeuds
DE3511352A1 (de) Verfahren und koppeleinrichtung zum verteilen von plesiochronen breitband-digitalsignalen
EP0817407A2 (fr) Dispositif et unité d'émission et système de transmission optique pour transmettre des signaux électriques analogiques
EP0941591B1 (fr) Modulateur de transit servant a soumettre des signaux a une gigue
DE4328486A1 (de) Überwachung optischer Einfaser-Anschlußleitungen bis zu einer passiven Schnittstelle
EP0731584A2 (fr) Méthode de transmission de données utiles
WO1999004526A1 (fr) Procedure de transmission d'informations de signalisation et de commande pour reseaux a multiplexage en longueur d'onde destines a la transmission d'informations optique par fibres
DE2521731C2 (de) Verfahren und Anordnung zur sendeseitigen asynchronen Übernahme, Übertragung und empfangsseitigen Übergabe digitaler Signale
DE2106172B2 (de) Digitales synchronmodem
DE4428350A1 (de) Überwachung optischer Breitband-Anschlußleitungen bis zu einer passiven Schnittstelle
EP0512140B1 (fr) Méthode pour configurer un réseau de communication formé de deux réseaux en anneau
DE202005010659U1 (de) ASI-System zum Anschluß mehrerer Sensoren und/oder Aktuatoren an eine Steuerung
DE3248624A1 (de) Schaltungsanordnung zur erzeugung eines digitalen binaeren datensignals und eines zugehoerigen taktsignals aus einem cmi-codierten signals, dessen taktfrequenz ueber 30 mhz liegt
EP0748090A2 (fr) Circuit d'égalisation de signaux lors d'une transmission de données

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: G08C 15/00 20060101ALI20061221BHEP

Ipc: H03M 1/00 20060101ALI20061221BHEP

Ipc: H02J 13/00 20060101AFI20030130BHEP

17P Request for examination filed

Effective date: 20070222

17Q First examination report despatched

Effective date: 20070327

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50213344

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50213344

Country of ref document: DE

Effective date: 20130110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130620

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170619

Year of fee payment: 16

Ref country code: FR

Payment date: 20170623

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170821

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213344

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620