EP1290346B1 - Temperature control with constant cooling flow and temperature for vacuum generating device - Google Patents
Temperature control with constant cooling flow and temperature for vacuum generating device Download PDFInfo
- Publication number
- EP1290346B1 EP1290346B1 EP01945446A EP01945446A EP1290346B1 EP 1290346 B1 EP1290346 B1 EP 1290346B1 EP 01945446 A EP01945446 A EP 01945446A EP 01945446 A EP01945446 A EP 01945446A EP 1290346 B1 EP1290346 B1 EP 1290346B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- heat exchange
- heat
- thermal communication
- pump body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
Definitions
- the present invention relates to vacuum generation devices as defined in the preamble of claim 1.
- Such a device is known from the document JP-A-01008388 or JP-A-07174099 .
- vacuum generation devices One of the common uses of vacuum generation devices is the generation of vacuum in a semiconductor processing chamber.
- the vacuum generating devices comprise at least one primary pump which delivers the pumped gases at atmospheric pressure or at a relatively high pressure.
- the pumped gases tend to condense and solidify in the form of deposits when their temperature is too low, or when the temperature variations are too great. These deposits disrupt the operation of the pump and the quality of the vacuum generation, which can cause pollution by back-diffusion in the semiconductor processing chamber.
- the thermal regulation of the pump body is ensured by a temperature control system of the vacuum pump comprising at least one heat exchange circuit in which circulates a heat-transfer liquid and of which at least a first circuit portion is thermally connected with the pump empty and a second circuit portion is connected to a thermal source. Means are provided for circulating the heat transfer liquid in the heat exchange circuit.
- control means make it possible to vary the flow rate of the heat transfer liquid in the heat exchange circuit, thus modulating the heat exchange capacity of the heat exchange circuit as a function of a control signal to adapt it if necessary heat exchange for maintaining the temperature of the pump in a suitable temperature range.
- the thermal exchanges required for the thermal regulation of the pump lead to a large variation in the flow rate of the coolant.
- the speed of the heat transfer liquid is variable, and is low during certain operating steps, and its temperature is also variable and is high during certain operating steps.
- control means make it possible to vary the power of the thermal source, for example by adjusting an electric heating current as described in the document JP 01 008388 , or by speed adjustment of a cooling fan as described in the document JP 07 174099 .
- the temperature of the coolant is very variable depending on the heat output to be transmitted.
- a problem encountered in these known temperature control systems is the formation of deposits in the pipes and in the rooms to be cooled when using water networks as a heat transfer liquid.
- the limestone naturally present in suspension in the water solidifies and forms deposits in the pipes and in the rooms to be cooled, initially altering the quality of heat exchange, and can even obstruct said pipes or parts.
- the problem proposed by the present invention is to design a new temperature control system structure in the vacuum generation devices, allowing to ensure an efficient thermal regulation while avoiding the calcareous deposits mentioned above.
- the idea underlying the present invention is to circulate in the heat exchange circuit a heat transfer liquid permanently having a relatively high speed and a relatively low temperature, regardless of the operating steps of the generating device. vacuum, by providing other means than a speed variation to ensure the regulation of the temperature of the pumps.
- the proposed principle is based on an adjustable thermal conductance between the coolant and the vacuum pump. It is thus possible to maintain continuously a flow of heat transfer liquid at a maximum flow rate and a low temperature, the flow rate being at least equal to the flow rate necessary to ensure sufficient heat exchange under the extreme operating conditions of the vacuum pump.
- the heat exchange circuit is adapted to heat the vacuum pump.
- the device is then used in areas of the vacuum generation device in which it is necessary to heat the vacuum line to avoid solid deposits.
- the heat exchange circuit is adapted to cool the vacuum pump.
- the device is then used in the vacuum generation device areas in which the pump produces excessive heating.
- a combination of the two applications can be provided, allowing to sometimes heat, sometimes to cool the same area of the vacuum generation device.
- the thermal bonding liquid source may comprise a thermal bonding liquid passage pipe, a heat bond liquid reservoir, and liquid control means for causing the thermal bonding fluid to pass between the chamber. of adjustment and the reserve of thermal bonding liquid.
- the liquid control means may comprise a piston disposed in the reserve of thermal connection liquid and biased by an actuator controlled by a control member as a function of a temperature setpoint signal and as a function of measured pump temperature signals from temperature sensors associated with the pump body.
- the adjustment chamber may be a cavity made in the pump body, traversed by an exchange pipe forming said first circuit portion, and closed by closure means making it airtight, the exchange pipe having at least one ascending portion between two different extreme levels defining the extreme levels of adjustment of the thermal bonding liquid.
- control chamber may comprise two opposite ends and may be traversed by the exchange pipe between a lower orifice and an upper orifice.
- the adjustment chamber may be closed at one or both ends by one or more sealed plugs, or by crimps around the exchange pipe.
- a vacuum generating device comprises at least one vacuum pump 100 and a temperature control system 2 for controlling the temperature of the vacuum pump 100.
- the pump Vacuum 100 comprises a pump body 1 having a suction inlet 3 connected directly or indirectly to a vacuum chamber 4, for example a process enclosure for the treatment of semiconductor wafers.
- the vacuum pump 100 delivers an outlet 5 at a higher pressure, for example at atmospheric pressure.
- the temperature control system 2 comprises a heat exchange circuit 6 in which circulates a heat transfer liquid such as water, oil, glycol, for example.
- the heat exchange circuit 6 comprises an external pipe 7 connected to at least a first circuit portion 8 and to at least a second circuit portion 9.
- the first circuit portion 8 is thermally connected to the pump body 1 of the circuit the vacuum pump 100.
- the second circuit portion 9 is thermally connected with a heat source 10.
- Circulation means such as a circulation pump 11 are provided for circulating the heat transfer liquid in the heat exchange circuit 6. Control means make it possible to control the heat exchange capacity of the heat exchange circuit 6 as a function of a control signal.
- the variation of heat exchange capacity of the heat exchange circuit 6 is achieved by interposing thermal conduction means with adjustable thermal conductance at the interface between the first circuit portion 8 and the pump body 1 of the vacuum pump 100.
- thermo conductance means with adjustable thermal conductance thermally connecting the pump body 1 to each first circuit portion such as the first portion 8.
- the thermal conduction means with adjustable thermal conductance comprise at least one adjustment chamber 12, interposed between the first circuit portion 8 and the pump body 1.
- a source of thermal connection liquid 13 is connected to the adjustment chamber 12 and is adapted to feed the adjustment chamber 12 with a thermal bonding liquid 15 such as water, oil or glycol, for example, in an adjustable amount.
- the first circuit portion 8 for example in the form of a rectilinear tubular exchange pipe 14, is in contact with the thermal bonding liquid 15 in a portion of its lateral surface, the bonding liquid thermal 15 itself being in contact with a portion of the peripheral surface of the control chamber 12 constituted by the pump body 1.
- the thermal connection liquid thus ensures the thermal connection between the pump body 1 and the coolant contained in the exchange pipe 14 of the heat exchange circuit 6.
- the source of thermal connection liquid 13 is adapted to supply the control chamber 12 with heat-transfer liquid 15 in an adjustable quantity, so as to adjust the heat exchange surface occupied by the thermal connection liquid 15 between the first portion circuit 8 and the pump body 1.
- the heat-binding liquid source 13 includes a heat-connecting liquid passage conduit 16, a heat-binding liquid reservoir 17, and liquid control means for causing the thermal connecting liquid to flow in both directions passing between the adjustment chamber 12 and the reserve of thermal connection liquid 17.
- the liquid control means comprise a piston 18 arranged in the reserve of thermal connection liquid 17 and biased by an actuator 19 controlled by a control member 20 ( figures 1 and 2 ).
- the control member is for example an electrical circuit for controlling the actuator 19 as a function of a temperature setpoint signal and as a function of measured pump temperature signals from temperature sensors 21 associated with the pump body 1 .
- the actuator 19 moves the piston 18, thus changing the amount of thermal bonding liquid 15 contained in the adjusting chamber 12, which modifies the upper level 22 of the thermal connection liquid 15 and thus the heat exchange surface occupied by the thermal connection liquid 15 between the pump body 1 and the exchange pipe 14 of the first circuit portion 8 in which circulates coolant liquid.
- the control member 20, the actuator 19, the piston 18, the reserve of thermal connection liquid 17, the thermal connecting liquid passage pipe 16, the adjustment chamber 12 and the thermal bonding liquid 15 constitute control means which are adapted to vary the thermal conductance of the thermal conduction means between the pump body 1 and the first circuit portion 8, so as to maintain the temperature of the pump body 1 in the vicinity of a temperature predetermined setpoint.
- circulation means such as the circulation pump 11 are advantageously chosen, which are adapted to circulate the heat-transfer liquid permanently in the heat exchange circuit 6 in a permanent flow rate at least equal to the flow rate necessary to ensure the exchange.
- sufficient thermal under the extreme operating conditions of the vacuum pump 100.
- the vacuum pump 100 indeed needs a maximum heat exchange, and this maximum heat exchange is ensured, at the chosen permanent flow rate coolant liquid, when the control chamber 12 is full of thermal bonding liquid 15.
- the steady flow may advantageously be a constant flow.
- the figure 3 illustrates two embodiments of the control chamber 12 in a pump body 1.
- the adjustment chamber 12 is a cavity made directly in the pump body 1, and traversed by an exchange pipe 14 whose outer section is smaller than the cross-section of the pump. the adjustment chamber 12.
- the cavity constituting the adjustment chamber 12 is traversed by the exchange pipe 14 forming said first circuit portion 8 in which circulates the heat transfer liquid.
- the adjustment chamber 12 is closed by closure means which make it impermeable with respect to the external atmosphere, while allowing the exchange line 14 to pass through.
- the exchange line 14 comprises in the adjustment chamber 12 at least an ascending portion 23 between two extreme levels 24 and 25 which define the extreme levels of adjustment of the level 22 of the thermal connection liquid in the control chamber 12.
- control chamber 12 is open at two opposite ends, namely a lower end 24 and an upper end 25, and is crossed by the exchange pipe 14.
- each of the lower 24 and upper ends 25 is closed off by a respective sealing cap 26 and 27.
- the thermal connecting liquid passage duct 16 communicates with the adjustment chamber 12 in the vicinity of its lower end 24.
- the adjustment chamber 112 communicates with the heat transfer liquid passage pipe 116 in the vicinity of its lower end 124, and is closed at its lower end 124 and its upper end 125 by respective crimps 126 and 127 around the pipe exchange 114.
- the vacuum pump 100 comprises, in the pump body 1, for example cast iron, two pumping chambers 28 and 29 each receiving a rotor driven by a shaft such as the shafts 30 and 31.
- the adjustment chambers 12 and 112 may for example be oriented in a substantially vertical direction.
- the walls of the adjustment chamber 12 or 112 are smooth, as well as the outer face of the exchange pipe 14 or 114.
- the peripheral of the regulating chamber 12 constituted by the pump body 1 comprises radial fins such as the fin 32.
- the outer surface of the exchange pipe 14 comprises radial fins such as the fin 33.
- the structure of the temperature control system 2 according to the invention makes it possible to maximize the circulation velocity of the heat-transfer liquid, while at the same time minimizing its temperature, so that the risks of occurrence of deposits in the heat exchange circuit are minimized. 6.
- the thermal conduction means with adjustable thermal conductance make it possible to obtain efficient regulation of the temperature of the vacuum pump 1, with inexpensive and effective means.
- the actuator 19, the reserve of thermal connection liquid 17 and its piston 18, as well as the control member 20 can be moved away from the adjustment chambers 12 or 112, and can therefore be positioned in any appropriate location, for example in unused areas around the pump body 1, to reduce the overall volume of the vacuum generating device.
- the crimping in the end zones 124 and 125 of the regulating chamber 112 may be effected by radial expansion or expansion of the exchange pipe 114 in the housing constituting the adjustment chamber 112.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Physical Vapour Deposition (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
La présente invention concerne les dispositifs de génération de vide comme définit dans le préambule de la revendication 1. Un tel dispositif est connu du document
L'une des utilisations fréquentes des dispositifs de génération de vide est la génération de vide dans une enceinte de traitement de semi-conducteurs.One of the common uses of vacuum generation devices is the generation of vacuum in a semiconductor processing chamber.
Lors d'un tel traitement, on effectue des dépôts de matière ou des gravures sur une tranche de semi-conducteur. Le rendement des dépôts est relativement faible, de sorte que le dispositif de génération de vide aspire une grande partie des matières que l'on veut déposer sur la tranche de semi-conducteur. Et le dispositif de génération de vide aspire les matières qui sont extraites de la tranche de semi-conducteur lors des opérations de gravure.During such treatment, material deposition or etching is performed on a semiconductor wafer. The efficiency of the deposits is relatively low, so that the vacuum generation device sucks up a large part of the material that is to be deposited on the semiconductor wafer. And the vacuum generation device sucks the materials that are extracted from the semiconductor wafer during etching operations.
Les dispositifs de génération de vide comprennent au moins une pompe primaire qui refoule les gaz pompés à la pression atmosphérique ou à une pression relativement haute. Dans une telle pompe primaire, les gaz pompés tendent à se condenser et à se solidifier sous forme de dépôts lorsque leur température est trop basse, ou lorsque les variations de température sont trop importantes. Ces dépôts perturbent le fonctionnement de la pompe et la qualité de la génération de vide, pouvant provoquer des pollutions par rétro-diffusion dans l'enceinte de traitement de semi-conducteurs.The vacuum generating devices comprise at least one primary pump which delivers the pumped gases at atmospheric pressure or at a relatively high pressure. In such a primary pump, the pumped gases tend to condense and solidify in the form of deposits when their temperature is too low, or when the temperature variations are too great. These deposits disrupt the operation of the pump and the quality of the vacuum generation, which can cause pollution by back-diffusion in the semiconductor processing chamber.
On cherche à limiter les dépôts solides résultant de la condensation ou de la solidification des gaz en régulant thermiquement la température du corps de pompe de la manière la plus stable possible.It is sought to limit the solid deposits resulting from the condensation or the solidification of the gases by thermally regulating the temperature of the pump body in the most stable manner possible.
Dans les systèmes connus, la régulation thermique du corps de pompe est assurée par un système de contrôle de température de la pompe à vide comprenant au moins un circuit d'échange thermique dans lequel circule un liquide caloporteur et dont au moins une première portion de circuit est reliée thermiquement avec la pompe à vide et une seconde portion de circuit est reliée à une source thermique. Des moyens sont prévus pour faire circuler le liquide caloporteur dans le circuit d'échange thermique.In known systems, the thermal regulation of the pump body is ensured by a temperature control system of the vacuum pump comprising at least one heat exchange circuit in which circulates a heat-transfer liquid and of which at least a first circuit portion is thermally connected with the pump empty and a second circuit portion is connected to a thermal source. Means are provided for circulating the heat transfer liquid in the heat exchange circuit.
Selon une première possibilité, décrite par exemple dans le document
Les échanges thermiques nécessaires pour la régulation thermique de la pompe conduisent à faire varier fortement le débit du liquide caloporteur. Ainsi, la vitesse du liquide caloporteur est variable, et se trouve faible pendant certaines étapes de fonctionnement, et sa température est également variable et se trouve élevée pendant certaines étapes de fonctionnement.The thermal exchanges required for the thermal regulation of the pump lead to a large variation in the flow rate of the coolant. Thus, the speed of the heat transfer liquid is variable, and is low during certain operating steps, and its temperature is also variable and is high during certain operating steps.
Selon une autre possibilité, des moyens de commande permettent de faire varier la puissance de la source thermique, par exemple par réglage d'un courant électrique de chauffe comme décrit dans le document
Un problème rencontré dans ces systèmes connus de contrôle de température est la formation de dépôts dans les canalisations et dans les pièces à refroidir lorsqu'on utilise de l'eau des réseaux courants comme liquide caloporteur. Le calcaire naturellement présent en suspension dans l'eau se solidifie et forme des dépôts dans les canalisations et dans les pièces à refroidir, altérant dans un premier temps la qualité des échanges thermiques, et pouvant aller jusqu'à obstruer lesdites canalisations ou pièces.A problem encountered in these known temperature control systems is the formation of deposits in the pipes and in the rooms to be cooled when using water networks as a heat transfer liquid. The limestone naturally present in suspension in the water solidifies and forms deposits in the pipes and in the rooms to be cooled, initially altering the quality of heat exchange, and can even obstruct said pipes or parts.
Le problème proposé par la présente invention est de concevoir une nouvelle structure de système de contrôle de température dans les dispositifs de génération de vide, permettant d'assurer une régulation thermique efficace tout en évitant les dépôts calcaires mentionnés ci-dessus.The problem proposed by the present invention is to design a new temperature control system structure in the vacuum generation devices, allowing to ensure an efficient thermal regulation while avoiding the calcareous deposits mentioned above.
L'idée qui est à la base de la présente invention consiste à faire circuler dans le circuit d'échange thermique un liquide caloporteur présentant en permanence une vitesse relativement élevée et une température relativement basse, quelles que soient les étapes de fonctionnement du dispositif de génération de vide, en prévoyant d'autres moyens qu'une variation de vitesse pour assurer la régulation de la température des pompes.The idea underlying the present invention is to circulate in the heat exchange circuit a heat transfer liquid permanently having a relatively high speed and a relatively low temperature, regardless of the operating steps of the generating device. vacuum, by providing other means than a speed variation to ensure the regulation of the temperature of the pumps.
Le principe proposé est basé sur une conductance thermique réglable entre le liquide caloporteur et la pompe à vide. On peut ainsi conserver en permanence une circulation de liquide caloporteur à débit maximum et température basse, le débit étant au moins égal au débit nécessaire pour assurer l'échange thermique suffisant dans les conditions extrêmes de fonctionnement de la pompe à vide.The proposed principle is based on an adjustable thermal conductance between the coolant and the vacuum pump. It is thus possible to maintain continuously a flow of heat transfer liquid at a maximum flow rate and a low temperature, the flow rate being at least equal to the flow rate necessary to ensure sufficient heat exchange under the extreme operating conditions of the vacuum pump.
Pour atteindre ces objets ainsi que d'autres, un dispositif de génération de vide selon l'invention comprend au moins une pompe à vide et un système de contrôle de température de la pompe à vide, le système de contrôle de température ayant au moins un circuit d'échange thermique dans lequel circule un liquide caloporteur et dont au moins une première portion de circuit est reliée thermiquement avec le corps de pompe de la pompe à vide, avec des moyens de circulation pour faire circuler le liquide caloporteur dans le circuit d'échange thermique, et avec des moyens de commande pour commander la capacité d'échange thermique du circuit d'échange thermique en fonction d'un signal de commande;
selon l'invention :
- des moyens de conduction thermique à conductance thermique réglable par les moyens de commande relient thermiquement la première portion de circuit au corps de pompe,
- les moyens de commande sont adaptés pour faire varier la conductance thermique des moyens de conduction thermique de façon à maintenir la température du corps de pompe au voisinage d'une température de consigne prédéterminée,
- les moyens de circulation, pour faire circuler le liquide caloporteur, sont adaptés pour faire circuler en permanence le liquide caloporteur dans le circuit d'échange thermique selon un débit au moins égal au débit nécessaire pour assurer l'échange thermique suffisant dans les conditions extrêmes de fonctionnement de la pompe à vide.
according to the invention:
- thermally conductive thermal conduction means adjustable by the control means thermally connect the first circuit portion to the pump body,
- the control means are adapted to vary the thermal conductance of the thermal conduction means so as to maintain the temperature of the pump body in the vicinity of a predetermined set temperature,
- the circulation means, for circulating the heat-transfer liquid, are adapted to circulate permanently the heat transfer liquid in the heat exchange circuit at a flow rate at least equal to the flow rate necessary to ensure sufficient heat exchange in the extreme operating conditions of the vacuum pump.
Selon une première application, le circuit d'échange thermique est adapté pour échauffer la pompe à vide. On utilise alors le dispositif dans les zones du dispositif de génération de vide dans lesquelles il est nécessaire de chauffer la ligne de vide pour éviter les dépôts solides.According to a first application, the heat exchange circuit is adapted to heat the vacuum pump. The device is then used in areas of the vacuum generation device in which it is necessary to heat the vacuum line to avoid solid deposits.
Selon une seconde application, le circuit d'échange thermique est adapté pour refroidir la pompe à vide. Le dispositif est alors utilisé dans les zones de dispositif de génération de vide dans lesquelles le pompage produit un échauffement excessif.According to a second application, the heat exchange circuit is adapted to cool the vacuum pump. The device is then used in the vacuum generation device areas in which the pump produces excessive heating.
Une combinaison des deux applications peut être prévue, permettant tantôt de chauffer, tantôt de refroidir une même zone du dispositif de génération de vide.A combination of the two applications can be provided, allowing to sometimes heat, sometimes to cool the same area of the vacuum generation device.
Selon un mode de réalisation avantageux, les moyens de conduction thermique à conductance thermique réglable peuvent comprendre :
- au moins une chambre de réglage, interposée entre la première portion de circuit et le corps de pompe,
- une source de liquide de liaison thermique, raccordée à la chambre de réglage, et adaptée pour alimenter la chambre de réglage avec un liquide de liaison thermique selon une quantité réglable de façon à régler la surface d'échange thermique occupée par le liquide de liaison thermique entre la première portion de circuit et le corps de pompe.
- at least one adjustment chamber, interposed between the first circuit portion and the pump body,
- a source of thermal connection liquid, connected to the control chamber, and adapted to supply the control chamber with a thermal connection liquid in an adjustable amount so as to adjust the heat exchange surface occupied by the thermal connection liquid between the first circuit portion and the pump body.
Dans ce cas, la source de liquide de liaison thermique peut comprendre une canalisation de passage de liquide de liaison thermique, une réserve de liquide de liaison thermique, et des moyens de réglage de liquide pour provoquer le passage du liquide de liaison thermique entre la chambre de réglage et la réserve de liquide de liaison thermique.In this case, the thermal bonding liquid source may comprise a thermal bonding liquid passage pipe, a heat bond liquid reservoir, and liquid control means for causing the thermal bonding fluid to pass between the chamber. of adjustment and the reserve of thermal bonding liquid.
Les moyens de réglage de liquide peuvent comprendre un piston disposé dans la réserve de liquide de liaison thermique et sollicité par un actionneur piloté par un organe de commande en fonction d'un signal de consigne de température et en fonction de signaux de température mesurée de pompe provenant de capteurs de température associés au corps de pompe.The liquid control means may comprise a piston disposed in the reserve of thermal connection liquid and biased by an actuator controlled by a control member as a function of a temperature setpoint signal and as a function of measured pump temperature signals from temperature sensors associated with the pump body.
Selon une réalisation pratique, la chambre de réglage peut être une cavité réalisée dans le corps de pompe, parcourue par une canalisation d'échange formant ladite première portion de circuit, et obturée par des moyens d'obturation la rendant étanche à l'atmosphère, la canalisation d'échange ayant au moins une portion ascendante entre deux niveaux extrêmes distincts définissant les niveaux extrêmes de réglage du liquide de liaison thermique.According to a practical embodiment, the adjustment chamber may be a cavity made in the pump body, traversed by an exchange pipe forming said first circuit portion, and closed by closure means making it airtight, the exchange pipe having at least one ascending portion between two different extreme levels defining the extreme levels of adjustment of the thermal bonding liquid.
De préférence, pour faciliter la réalisation, la chambre de réglage peut comporter deux extrémités opposées et peut être traversée par la canalisation d'échange entre un orifice inférieur et un orifice supérieur.Preferably, to facilitate the embodiment, the control chamber may comprise two opposite ends and may be traversed by the exchange pipe between a lower orifice and an upper orifice.
La chambre de réglage peut être obturée à son ou ses extrémités par un ou plusieurs bouchons étanches, ou par des sertissages autour de la canalisation d'échange.The adjustment chamber may be closed at one or both ends by one or more sealed plugs, or by crimps around the exchange pipe.
D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles :
- la
figure 1 est un schéma de principe illustrant un dispositif de génération de vide selon un mode de réalisation de la présente invention ; - la
figure 2 est un schéma de principe illustrant le détail des moyens de conduction thermique à conductance thermique réglable selon un mode de réalisation de la présente invention ; - la
figure 3 illustre schématiquement, en coupe, un corps de pompe à vide avec un système de refroidissement selon deux modes de réalisation de la présente invention ; et - la
figure 4 est une coupe transversale d'une chambre de réglage selon un mode de réalisation particulier de l'invention.
- the
figure 1 is a block diagram illustrating a vacuum generating device according to an embodiment of the present invention; - the
figure 2 is a block diagram illustrating the detail of the adjustable thermal conductance thermal conduction means according to an embodiment of the present invention; - the
figure 3 illustrates schematically, in section, a vacuum pump body with a cooling system according to two embodiments of the present invention; and - the
figure 4 is a cross section of a control chamber according to a particular embodiment of the invention.
Dans le mode de réalisation illustré sur la
Le système de contrôle de température 2 comprend un circuit d'échange thermique 6 dans lequel circule un liquide caloporteur tel que de l'eau, de l'huile, du glycol, par exemple. Dans la réalisation illustrée sur la
Selon l'invention, la variation de capacité d'échange thermique du circuit d'échange thermique 6 est réalisée en interposant des moyens de conduction thermique à conductance thermique réglable à l'interface entre la première portion de circuit 8 et le corps de pompe 1 de la pompe à vide 100.According to the invention, the variation of heat exchange capacity of the
On peut prévoir par exemple une pluralité de premières portions de circuit 8, et des moyens de conduction thermique à conductance thermique réglable reliant thermiquement le corps de pompe 1 à chaque première portion de circuit telle que la première portion 8.For example, it is possible to provide a plurality of
En considérant plus spécialement les
Dans la chambre de réglage 12, la première portion de circuit 8, par exemple sous forme d'une canalisation d'échange 14 tubulaire rectiligne, est au contact du liquide de liaison thermique 15 selon une portion de sa surface latérale, le liquide de liaison thermique 15 étant lui-même au contact d'une portion de la surface périphérique de la chambre de réglage 12 constituée par le corps de pompe 1. Le liquide de liaison thermique assure ainsi la liaison thermique entre le corps de pompe 1 et le liquide caloporteur contenu dans la canalisation d'échange 14 du circuit d'échange thermique 6.In the
La source de liquide de liaison thermique 13 est adaptée pour alimenter la chambre de réglage 12 en liquide de liaison thermique 15 selon une quantité réglable, de façon à régler la surface d'échange thermique occupée par le liquide de liaison thermique 15 entre la première portion de circuit 8 et le corps de pompe 1.The source of
Dans la réalisation illustrée sur la
Les moyens de réglage de liquide comprennent un piston 18 disposé dans la réserve de liquide de liaison thermique 17 et sollicité par un actionneur 19 piloté par un organe de commande 20 (
L'organe de commande est par exemple un circuit électrique permettant de commander l'actionneur 19 en fonction d'un signal de consigne de température et en fonction de signaux de température mesurée de pompe provenant de capteurs de température 21 associés au corps de pompe 1.The control member is for example an electrical circuit for controlling the
Ainsi, en fonctionnement, à réception des signaux de commande, l'actionneur 19 déplace le piston 18, modifiant ainsi la quantité de liquide de liaison thermique 15 contenue dans la chambre de réglage 12, ce qui modifie le niveau supérieur 22 du liquide de liaison thermique 15 et ainsi la surface d'échange thermique occupée par le liquide de liaison thermique 15 entre le corps de pompe 1 et la canalisation d'échange 14 de la première portion de circuit 8 dans laquelle circule de liquide caloporteur. Ainsi, l'organe de commande 20, l'actionneur 19, le piston 18, la réserve de liquide de liaison thermique 17, la canalisation de passage de liquide de liaison thermique 16, la chambre de réglage 12 et le liquide de liaison thermique 15 constituent des moyens de commande qui sont adaptés pour faire varier la conductance thermique des moyens de conduction thermique entre le corps de pompe 1 et la première portion de circuit 8, de façon à maintenir la température du corps de pompe 1 au voisinage d'une température de consigne prédéterminée.Thus, in operation, upon receipt of the control signals, the
Ainsi, on choisit avantageusement des moyens de circulation tels que la pompe de circulation 11 qui soient adaptés pour faire circuler le liquide caloporteur en permanence dans le circuit d'échange thermique 6 selon un débit permanent au moins égal au débit nécessaire pour assurer l'échange thermique suffisant dans les conditions extrêmes de fonctionnement de la pompe à vide 100. Dans ces conditions extrêmes de fonctionnement, la pompe à vide 100 a en effet besoin d'un échange thermique maximum, et cet échange thermique maximum est assuré, au débit permanent choisi du liquide caloporteur, lorsque la chambre de réglage 12 est pleine de liquide de liaison thermique 15. On notera que le débit permanent peut être avantageusement un débit constant.Thus, circulation means such as the circulation pump 11 are advantageously chosen, which are adapted to circulate the heat-transfer liquid permanently in the
La
Dans l'un et l'autre des modes de réalisation, la chambre de réglage 12 est une cavité réalisée directement dans le corps de pompe 1, et parcourue par une canalisation d'échange 14 dont la section extérieure est inférieure à la section transversale de la chambre de réglage 12. Ainsi, la cavité constituant la chambre de réglage 12 est parcourue par la canalisation d'échange 14 formant ladite première portion de circuit 8 dans laquelle circule le liquide caloporteur. La chambre de réglage 12 est obturée par des moyens d'obturation qui la rendent étanche vis à vis de l'atmosphère extérieure, tout en laissant passer la canalisation d'échange 14. Pour permettre un réglage efficace de la conductance thermique par modification du niveau du liquide de liaison thermique, la canalisation d'échange 14 comporte dans la chambre de réglage 12 au moins une portion ascendante 23 entre deux niveaux extrêmes 24 et 25 distincts qui définissent les niveaux extrêmes de réglage du niveau 22 du liquide de liaison thermique dans la chambre de réglage 12.In either embodiment, the
Par exemple, la chambre de réglage 12 est ouverte selon deux extrémités opposées, à savoir une extrémité inférieure 24 et une extrémité supérieure 25, et est traversée par la canalisation d'échange 14.For example, the
Dans le mode de réalisation illustré sur la partie gauche de la
Dans le mode de réalisation illustré sur la partie droite de la
Dans la réalisation illustrée sur la
Dans le corps de pompe 1, les chambres de réglage 12 et 112 peuvent par exemple être orientées selon une direction sensiblement verticale.In the
Dans cette même réalisation, les parois de la chambre de réglage 12 ou 112 sont lisses, ainsi que la face extérieure de la canalisation d'échange 14 ou 114.In this same embodiment, the walls of the
Dans le mode de réalisation illustré en coupe transversale sur la
La structure du système de contrôle de température 2 selon l'invention permet de maximiser la vitesse de circulation du liquide caloporteur, tout en minimisant ainsi sa température, de sorte que sont minimisés les risques d'apparition de dépôts dans le circuit d'échange thermique 6. Simultanément, les moyens de conduction thermique à conductance thermique réglable permettent d'obtenir une régulation efficace de la température de la pompe à vide 1, avec des moyens peu onéreux et efficaces. On notera que l'actionneur 19, la réserve de liquide de liaison thermique 17 et son piston 18, ainsi que l'organe de commande 20, peuvent être déplacés à l'écart des chambres de réglage 12 ou 112, et peuvent donc être positionnés en tout emplacement approprié, par exemple dans des zones non utilisées autour du corps de pompe 1, permettant de réduire le volume général du dispositif de génération de vide.The structure of the temperature control system 2 according to the invention makes it possible to maximize the circulation velocity of the heat-transfer liquid, while at the same time minimizing its temperature, so that the risks of occurrence of deposits in the heat exchange circuit are minimized. 6. At the same time, the thermal conduction means with adjustable thermal conductance make it possible to obtain efficient regulation of the temperature of the
Le sertissage dans les zones d'extrémité 124 et 125 de la chambre de réglage 112 peut être effectué par dudgeonnage ou expansion radiale de la canalisation d'échange 114 dans le logement constituant la chambre de réglage 112.The crimping in the
Claims (10)
- A vacuum generator device comprising at least one vacuum pump (100) and a system (2) for controlling the temperature of the vacuum pump (100), the temperature control system (2) having at least one heat exchange circuit (6) in which a heat-conveying liquid circulates and including at least one first circuit portion (8) which is in thermal communication with the pump body (1) of the vacuum pump (100), including circulation means (11) for causing the heat-conveying liquid to circulate in the heat exchange circuit (6), and having control means for controlling the heat exchange capacity of the heat exchange circuit (6) as a function of a control signal,
the device being characterized in that:heat conduction means (12, 13, 15) having thermal conductance that is adjustable by the control means (20) provide thermal communication between the pump body (1) and the first circuit portion (8);the control means (20) are adapted to vary the thermal conductance of the heat conduction means (12, 13, 15) so as to maintain the temperature of the pump body (1) in the vicinity of a predetermined reference temperature; andthe circulation means (11) for causing the heat-conveying liquid to circulate are adapted to cause the heat-conveying liquid to circulate permanently in the heat exchange circuit (6) at a flow rate that is not less than the flow rate required for providing sufficient heat exchange under extreme operating conditions of the vacuum pump (100). - A device according to claim 1, characterized in that the heat exchange circuit (6) is adapted to heat the vacuum pump (100).
- A device according to claim 1 or claim 2, characterized in that the heat exchange circuit (6) is adapted to cool the vacuum pump (100).
- A device according to any one of claims 1 to 3, characterized in that the heat conduction means of adjustable thermal conductance comprise:at least one adjustment chamber (12) interposed between the first circuit portion (8) and the pump body (1); anda source (13) of thermal communication liquid connected to the adjustment chamber (12) and adapted to feed the adjustment chamber (12) with an adjustable quantity of a thermal communication liquid (15) so as to adjust the heat exchange area occupied by the thermal communication liquid (15) between the first circuit portion (8) and the pump body (1).
- A device according to claim 4, characterized in that the source (13) of thermal communication liquid comprises a pipe (16) for passing the thermal communication liquid, a supply (17) of thermal communication liquid, and liquid adjustment means (18, 19) to cause the thermal communication liquid (15) to pass between the adjustment chamber (12) and the supply (17) of thermal communication liquid.
- A device according to claim 5, characterized in that the liquid adjustment means comprise a piston (18) disposed in the supply (17) of thermal communication liquid and driven by an actuator (19) controlled by a control member (20) as a function of pump temperature measurement signals coming from temperature sensors (18) associated with the pump body (1).
- A device according to any one of claims 4 to 6, characterized in that the adjustment chamber (12) is a cavity formed in the pump body (1) with a heat exchange pipe (14) passing therethrough, said pipe forming said first circuit portion (8), the cavity being closed by closure means (26, 27) making it leaktight relative to the atmosphere, the heat exchange pipe (14) having at least one portion (23) rising between two distinct extreme levels (24, 25) defining the extreme depth to which the thermal communication liquid (15) can be adjusted.
- A device according to claim 7, characterized in that the adjustment chamber (12) has two opposite ends (24, 25) and has the heat exchange pipe (14) passing therethrough.
- A device acorn to claim 7 or claim 8, characterized in that the adjustment chamber (12) is closed at its end(s) (24, 25) by one or more leaktight plugs (26, 27).
- A device according to claim 7 or claim 8, characterized in that the adjustment chamber (112) is closed by crimping (126, 127) around the heat exchange pipe (114).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0007627 | 2000-06-15 | ||
FR0007627A FR2810375B1 (en) | 2000-06-15 | 2000-06-15 | CONSTANT THERMAL FLOW CONTROL AND COOLING TEMPERATURE FOR VACUUM GENERATING DEVICE |
PCT/FR2001/001866 WO2001096744A1 (en) | 2000-06-15 | 2001-06-15 | Temperature control with constant cooling flow and temperature for vacuum generating device |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1290346A1 EP1290346A1 (en) | 2003-03-12 |
EP1290346B1 true EP1290346B1 (en) | 2008-04-02 |
Family
ID=8851283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01945446A Expired - Lifetime EP1290346B1 (en) | 2000-06-15 | 2001-06-15 | Temperature control with constant cooling flow and temperature for vacuum generating device |
Country Status (7)
Country | Link |
---|---|
US (1) | US6679676B2 (en) |
EP (1) | EP1290346B1 (en) |
JP (1) | JP2004503713A (en) |
AT (1) | ATE391237T1 (en) |
DE (1) | DE60133459D1 (en) |
FR (1) | FR2810375B1 (en) |
WO (1) | WO2001096744A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149949A (en) * | 2013-01-09 | 2013-06-12 | 上海空间推进研究所 | Micro-flow controller based on peltier effect |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5172615B2 (en) * | 2008-11-12 | 2013-03-27 | Ckd株式会社 | Temperature control device |
CN117846931B (en) * | 2024-03-08 | 2024-05-14 | 江苏纬恩复材科技有限公司 | Vacuum pump pipeline connection structure, autoclave and working method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61236123A (en) * | 1985-04-12 | 1986-10-21 | Hitachi Ltd | Vacuum processor |
JPS648388A (en) * | 1987-06-30 | 1989-01-12 | Oki Electric Ind Co Ltd | Vacuum pump device |
JPS6419198A (en) * | 1987-07-15 | 1989-01-23 | Hitachi Ltd | Vacuum pump |
FR2634829B1 (en) * | 1988-07-27 | 1990-09-14 | Cit Alcatel | VACUUM PUMP |
KR950007378B1 (en) * | 1990-04-06 | 1995-07-10 | 가부시끼 가이샤 히다찌 세이사꾸쇼 | Vacuum pump |
JPH04164188A (en) * | 1990-10-26 | 1992-06-09 | Hitachi Ltd | Turbo-molecular exhaust pump for semiconductor manufacturing device |
JPH05118296A (en) * | 1991-10-25 | 1993-05-14 | Hitachi Ltd | Dry vacuum pump |
EP0646220B1 (en) * | 1992-06-19 | 1997-01-08 | Balzers und Leybold Deutschland Holding Aktiengesellschaft | Gas friction vacuum pump |
JPH07174099A (en) * | 1992-08-14 | 1995-07-11 | Hitachi Ltd | Cooling device for vacuum pump |
JP3831113B2 (en) * | 1998-03-31 | 2006-10-11 | 大晃機械工業株式会社 | Vacuum pump |
-
2000
- 2000-06-15 FR FR0007627A patent/FR2810375B1/en not_active Expired - Fee Related
-
2001
- 2001-06-15 JP JP2002510839A patent/JP2004503713A/en not_active Withdrawn
- 2001-06-15 DE DE60133459T patent/DE60133459D1/en not_active Expired - Lifetime
- 2001-06-15 AT AT01945446T patent/ATE391237T1/en not_active IP Right Cessation
- 2001-06-15 EP EP01945446A patent/EP1290346B1/en not_active Expired - Lifetime
- 2001-06-15 US US10/049,132 patent/US6679676B2/en not_active Expired - Fee Related
- 2001-06-15 WO PCT/FR2001/001866 patent/WO2001096744A1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103149949A (en) * | 2013-01-09 | 2013-06-12 | 上海空间推进研究所 | Micro-flow controller based on peltier effect |
CN103149949B (en) * | 2013-01-09 | 2016-08-03 | 上海空间推进研究所 | A kind of gas micro controller based on paltie effect |
Also Published As
Publication number | Publication date |
---|---|
DE60133459D1 (en) | 2008-05-15 |
FR2810375A1 (en) | 2001-12-21 |
WO2001096744A1 (en) | 2001-12-20 |
ATE391237T1 (en) | 2008-04-15 |
JP2004503713A (en) | 2004-02-05 |
US20020106285A1 (en) | 2002-08-08 |
EP1290346A1 (en) | 2003-03-12 |
US6679676B2 (en) | 2004-01-20 |
FR2810375B1 (en) | 2002-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0415840B1 (en) | Condenser with receiver/subcooler | |
EP3649725B1 (en) | Combination of electrical machine and system for the oil cooling of said electrical machine | |
FR2986579A1 (en) | HYDRAULIC CONTROL CIRCUIT | |
EP1290346B1 (en) | Temperature control with constant cooling flow and temperature for vacuum generating device | |
FR2579305A1 (en) | APPARATUS FOR COOLING THE ENGINE OF A REFRIGERATOR | |
FR2602035A1 (en) | METHOD AND INSTALLATION FOR HEAT TRANSFER BETWEEN A FLUID AND A COOLING OR HEATING COMPONENT, BY DEDUCTION OF THE FLUID RELATIVE TO ATMOSPHERIC PRESSURE | |
EP0143013A2 (en) | method and device for overheating a refrigerant | |
FR2644556A1 (en) | OIL MANAGEMENT SYSTEM FOR A BOX CONTAINING A ROTATING MEMBER | |
EP3770514B1 (en) | Thermodynamic machine such as a heat pump with multisource reversible cycle and operating method | |
BE1009829A3 (en) | Screw machine for fluid sec. | |
FR2859836A1 (en) | Electric engine for transport truck, has bearing installed in flange which includes cooling chamber for passage of coolant, where cooling chamber lies in zone which is axially close to bearing | |
WO2007144024A1 (en) | Thermal exchange device | |
EP3975677A1 (en) | Electric power module with cooling system | |
FR3028689A3 (en) | ELECTRIC MOTOR COMPRISING A ROTOR COOLING CIRCUIT. | |
CH647860A5 (en) | CIRCUIT FOR TRANSFERRING CALORIES TO A FLUID. | |
FR2882202A1 (en) | Rotating electrical machine e.g. alternator, cooling device for e.g. hybrid vehicle, has conduits that allow exchanging vapor produced by heating liquid between envelope and tank, and transferring condensed liquid toward envelope by gravity | |
WO2023174682A1 (en) | Liquid hydrogen degassing device | |
FR3081214A1 (en) | EVAPORATOR OF A FLUID LOOP AND FLUID LOOP COMPRISING SUCH EVAPORATOR | |
CN206889485U (en) | Tilting-pad bearing | |
JP2003506904A (en) | Gas laser | |
FR3045440A1 (en) | DEVICE FOR REGULATING THE TEMPERATURE OF A VCSEL DIODE MOLD | |
FR3061269B1 (en) | INSTALLATION FOR THE PRODUCTION AND TREATMENT OF GAS FLOWS THROUGH A VOLUME OF LIQUID | |
FR2724200A1 (en) | Deep underwater oil pumping station | |
WO2023110383A1 (en) | Casing for an electric machine and associated electric machine, cooling circuit, vehicle and cooling method | |
WO2023233116A1 (en) | Autonomous device for cooling an industrial process, in particular for a data processing centre, and data processing centre using the device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020301 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL LUCENT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60133459 Country of ref document: DE Date of ref document: 20080515 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080902 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080713 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
BERE | Be: lapsed |
Owner name: ALCATEL LUCENT Effective date: 20080630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080703 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080702 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090106 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080615 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080703 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20150521 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA Effective date: 20150521 |