EP1276971B1 - Rotor pour une turbine a gaz - Google Patents

Rotor pour une turbine a gaz Download PDF

Info

Publication number
EP1276971B1
EP1276971B1 EP00903479A EP00903479A EP1276971B1 EP 1276971 B1 EP1276971 B1 EP 1276971B1 EP 00903479 A EP00903479 A EP 00903479A EP 00903479 A EP00903479 A EP 00903479A EP 1276971 B1 EP1276971 B1 EP 1276971B1
Authority
EP
European Patent Office
Prior art keywords
rotor
cavity
central bore
radial bores
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00903479A
Other languages
German (de)
English (en)
Other versions
EP1276971A1 (fr
Inventor
Jörn-Axel GLAHN
Armin Heger
Jörg Pross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Priority claimed from PCT/CH2000/000092 external-priority patent/WO2001063097A1/fr
Publication of EP1276971A1 publication Critical patent/EP1276971A1/fr
Application granted granted Critical
Publication of EP1276971B1 publication Critical patent/EP1276971B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors

Definitions

  • the present invention relates to the field of gas turbines. It relates to a rotor for a gas turbine, which rotor comprises a plurality of rotatably arranged in a rotor axis, interconnected, in particular welded rotor disks, and which rotor extends between a compressor part and a turbine part and has a central bore extending between the two parts with an inner diameter wherein there are first means which branch cooling air in the compressor part and pass radially inwardly into the central bore through the rotor, and second means are provided which in the turbine part guide the cooling air radially outward from the central bore through the rotor.
  • a guide of the cooling air flow through the central bore in the rotor is known for example from the document US 5271711.
  • the rotors of gas turbines the most diverse demands are made.
  • the rotors should be designed so that cooling air mass flows taken on the compressor (compressor) and low loss through the Central bore of the rotor to (low pressure) turbine can be performed to cool blades there.
  • the rotor should also be able to be produced by welding together from individual slices and be inexpensive to manufacture overall.
  • cooling air In order to keep the flow losses low, it must be avoided that swirling currents can be expressed in the cooling air flow. Therefore, the cooling air must be guided on its radial path to and from the central bore. In terms of manufacturing technology, radial bores are available for this purpose. Large cooling air mass flows, however, require large cross sections of the holes, so that the holes in the required number and size already converge at a diameter which is well above the inner diameter of the central bore.
  • the known solutions fulfill only a part of the o.g. Conditions.
  • the discs are designed as components of screwed rotors. This joining technique allows more degrees of freedom in the geometry of the discs, so that the mentioned ribs can be easily realized.
  • a bolted rotor can be repaired. This is not the case with welded rotors.
  • the discs are designed but only for smaller cooling air mass flows. In this case, the cooling air holes can be led to close to the central bore, without causing any overlaps.
  • the object is solved by the entirety of the features of claim 1.
  • the essence of the invention is to combine radial holes and a cavity divided by ribs together so that on the one hand with the holes a large total cross section for the cooling air is achieved, and on the other hand, the ribs are exposed to only a comparatively moderate centrifugal force.
  • the air is removed through radial bores.
  • the end of the holes is laid so far in the direction of the rotor axis, that the outlet openings have an acceptable distance from each other.
  • the cavity into which the holes open, and in which the cooling air is then injected, is subdivided by relatively short ribs into chambers which prevent swirling.
  • first cavity and the first ribs therein are machined from one side of the first rotor disk, and the first cavity is bounded by an adjacent rotor disk.
  • a further improvement in the strength of the ribs results when the first ribs converge in the center of the first cavity in a common hub.
  • the holes may have different diameters and have a distance from each other, which may initially be arbitrary and is chosen so that the requirements in terms of strength, manufacturability and aerodynamics are met.
  • a first preferred embodiment of the rotor according to the invention is characterized in that all the first radial bores have the same bore diameter, and that the outer diameter of the first cavity is selected such that the distance between two adjacent first radial bores at the mouth to the first cavity corresponds approximately to the bore diameter. This design achieves an optimized compromise between mass flow and rib stress.
  • the first radial bores may extend in a plane perpendicular to the rotor axis, or be employed in the axial direction. It may also be advantageous for fluidic reasons, however, if the first radial holes are made in the tangential direction.
  • a section of a rotor according to a preferred embodiment of the invention is shown in longitudinal section.
  • the rotor 10, which is rotationally symmetrical to the rotor axis 11, is composed of a plurality of individual rotor disks arranged one behind the other in the direction of the rotor axis 11, which are welded together (in this case).
  • Shown in FIG. 1 are only four selected rotor disks 14, 15, 20 and 21 which are interconnected by respective welds 25 and 26, respectively.
  • the (adjacent) rotor disks 14 and 15 are located in the compressor part 12 of the Rotor 10 belonging gas turbine.
  • the (adjacent) rotor disks 20, 21 are located in the turbine part 13 of the gas turbine.
  • cooling air is branched off in the compressor part 12 and guided in a central bore 19 of the rotor 10 from the compressor part 12 to the turbine part 13 and there in the outside on the rotor 10 located (not shown in Fig. 1) blades introduced (arrows in Fig. 1).
  • the central bore 19 has a relatively small inner diameter D1 compared to the outer diameter of the rotor 10. Therefore, if the arranged in the rotor disk 14 radial bores 16, which lead the branched cooling air through the interior of the rotor 10 to the central bore 19, all the way to the central bore 19 would have on the handling of the central bore 19 only a few holes space, so that itself only a limited cooling air mass flow would result.
  • an annular cavity 17 is arranged in the rotor disk 14, which has an outer diameter D2, which is significantly larger than the inner diameter D1 of the central bore 19.
  • this cavity 17th which is designed aerodynamically favorable in the cross-sectional profile, open the radial bores 16 (see also Fig. 2).
  • the cavity 17 extends so far to the rotor axis 11 inwardly that it is in communication with the central bore 19. It is milled from one side into the rotor disk 14 and is bounded on this side by the adjacent rotor disk 15.
  • the distance of the adjacent rotor disks 14, 15 depends on the tolerances in the welding and the thermal and mechanical strains during operation. In any case, the two discs must not come into contact in any operating condition.
  • the outer diameter D2 of the cavity 17 is preferably selected so that the distance between two adjacent radial bores 16 at the mouth to the first cavity 17 corresponds approximately to the bore diameter D3 ( Figure 2). So that the cooling air flow does not get any undesired spin from the mouths of the radial bores 16 to the central bore 19 when passing through the cavity 17, the cavity is subdivided into individual chambers 27 (FIG. 2) by radial ribs 18.
  • the ribs 18 are left standing during the milling of the cavity 17, so that in the center of a (common) hub 28 is formed, in which the ribs 18 converge, and the ribs 18 at the outlet circumference of the radial bores 16 end. As a result, the rotor disk 14 is mechanically relieved.
  • the cooling air can be performed in the turbine part 13 in an analogous manner from the central bore 19 through the interior of the rotor 10 to the outside.
  • corresponding radial bores 22 are provided in the rotor disk 21, which emanate from an annular, subdivided by ribs 24 cavity 23, which is in communication with the central bore 19.
  • the same considerations apply as in the cavity 17th
  • the rotor 10 can be made according to the requirements of large variations in the number of holes and ribs from forged rotor discs.
  • the holes 16, 22 can be employed not only purely radially, but both in tangential and - as shown in Fig. 1 - in the axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (7)

  1. Rotor (10) pour une turbine à gaz, lequel rotor (10) comprend une pluralité de disques de rotor (14, 15 ; 20, 21) disposés les uns derrière les autres dans un axe de rotor (11), connectés les uns aux autres, notamment par soudage, et lequel rotor s'étend entre une partie de compresseur (12) et une partie de turbine (13) et présente un alésage central (19) de diamètre intérieur (D1) s'étendant entre les deux parties (12, 13), des premiers moyens (16, 17, 18) étant prévus, lesquels dévient de l'air de refroidissement dans la partie de compresseur (12) et le guident à travers le rotor (10) radialement vers l'intérieur dans l'alésage central (19), et des deuxièmes moyens étant prévus, lesquels guident dans la partie de turbine (13) l'air de refroidissement hors de l'alésage central (19) à travers le rotor (10) radialement vers l'extérieur, les premiers moyens comprenant une pluralité de premiers alésages radiaux (16), lesquels premiers alésages radiaux (16) s'étendant de l'extérieur vers l'intérieur à travers un premier disque de rotor (14) et débouchant dans un premier espace creux annulaire (17) disposé concentriquement à l'axe du rotor (11) dans ce premier disque de rotor (14), le premier espace creux (17) étant en liaison avec l'alésage central (19), le premier espace creux (17) présentant un diamètre extérieur (D2) qui est supérieur au diamètre intérieur (D1) de l'alésage central (19), et le premier espace creux (17) étant divisé en chambres individuelles (27) par une pluralité de premières nervures (18) disposées radialement, caractérisé en ce que le premier espace creux (17) et les premières nervures (18) situées à l'intérieur sont usinés par fraisage depuis un côté dans le premier disque de rotor (14), et en ce que le premier espace creux (17) est limité par un disque de rotor adjacent (15) et en ce que les premières nervures (18) se rejoignent au centre du premier espace creux (17) dans un moyeu commun (28).
  2. Rotor selon la revendication 1, caractérisé en ce que tous les premiers alésages radiaux (16) présentent les mêmes diamètres d'alésage (D3) et en ce que le diamètre extérieur (D2) du premier espace creux (17) est choisi de telle sorte que la distance entre deux premiers alésages radiaux voisins (16) à l'embouchure du premier espace creux (17) corresponde approximativement au diamètre d'alésage (D3).
  3. Rotor selon la revendication 1, caractérisé en ce que les premiers alésages radiaux (16) s'étendent dans un plan perpendiculaire à l'axe du rotor (11).
  4. Rotor selon la revendication 1, caractérisé en ce que les premiers alésages radiaux (16) sont inclinés dans la direction axiale.
  5. Rotor selon la revendication 1, caractérisé en ce que les premiers alésages radiaux (16) sont inclinés dans la direction tangentielle.
  6. Rotor selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les deuxième moyens comprennent une pluralité de deuxièmes alésages radiaux (22), lesquels deuxième alésages radiaux (22) s'étendent depuis l'intérieur vers l'extérieur à travers un deuxième disque de rotor (21) et sont en liaison avec l'alésage central (19).
  7. Rotor selon la revendication 6, caractérisé en ce que les deuxièmes alésages radiaux (22) partent d'un deuxième espace creux annulaire (23) disposé concentriquement à l'axe du rotor (11) dans le deuxième disque de rotor (21), en ce que le deuxième espace creux (23) est en liaison avec l'alésage central (19), en ce que le deuxième espace creux (23) présente un diamètre extérieur (D4), qui est supérieur au diamètre intérieur (D1) de l'alésage central (19), et en ce que le deuxième espace creux (23) est divisé en chambres individuelles par une pluralité de deuxièmes nervures (24) disposées radialement.
EP00903479A 2000-02-21 2000-02-21 Rotor pour une turbine a gaz Expired - Lifetime EP1276971B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2000/000092 WO2001063097A1 (fr) 1998-11-14 2000-02-21 Rotor pour une turbine a gaz

Publications (2)

Publication Number Publication Date
EP1276971A1 EP1276971A1 (fr) 2003-01-22
EP1276971B1 true EP1276971B1 (fr) 2006-07-26

Family

ID=4358045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00903479A Expired - Lifetime EP1276971B1 (fr) 2000-02-21 2000-02-21 Rotor pour une turbine a gaz

Country Status (3)

Country Link
EP (1) EP1276971B1 (fr)
AU (1) AU2000225311A1 (fr)
DE (1) DE50013243D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864101A (zh) * 2013-07-17 2016-08-17 西门子股份公司 用于热涡轮机的转子

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105864101A (zh) * 2013-07-17 2016-08-17 西门子股份公司 用于热涡轮机的转子
US10107103B2 (en) 2013-07-17 2018-10-23 Siemens Aktiengesellschaft Rotor for a thermal turbomachine
US10233757B2 (en) 2013-07-17 2019-03-19 Siemens Aktiengesellschaft Rotor for a thermal turbomachine
CN105864101B (zh) * 2013-07-17 2019-05-28 西门子股份公司 用于热涡轮机的转子

Also Published As

Publication number Publication date
EP1276971A1 (fr) 2003-01-22
DE50013243D1 (de) 2006-09-07
AU2000225311A1 (en) 2001-09-03

Similar Documents

Publication Publication Date Title
EP0903465B1 (fr) Connexion entre roue de compresseur et arbre pour turbomachines à haute vitesse
EP1649575B1 (fr) Machine electrique a refroidissement de rotor
EP1964641B1 (fr) Procédé de fabrication d'un rotor pour un générateur, partculièrement un turboalternateur
DE2947521C2 (fr)
DE69018338T2 (de) Gasturbine.
WO2001063097A1 (fr) Rotor pour une turbine a gaz
EP1789653B1 (fr) Rotor pour un propulseur
DE19617539B4 (de) Rotor für eine thermische Turbomaschine
EP3176384B1 (fr) Virole interne, secteur de virole interne, aubage statorique et turbomachine
EP2994615B1 (fr) Rotor pour une turbomachine thermique
EP0636764A1 (fr) Turbine à gaz avec refroidissement du rotor
WO2015007443A1 (fr) Rotor pour turbomachine thermique
EP3022393B1 (fr) Rotor pour une turbomachine thermique
WO1996013668A1 (fr) Compresseur radial ou turbine radiale avec un diffuseur ou une couronne directrice de turbine a aubes directrices
DE102012215413B4 (de) Baugruppe einer Axialturbomaschine
EP0093990A2 (fr) Turbine à vapeur
EP0798135B1 (fr) Roue pour véhicule à moteur
EP1276971B1 (fr) Rotor pour une turbine a gaz
EP2132858A2 (fr) Rotor pour une machine électrodynamique
DE102008056352A1 (de) Vakuumpumpenrotor
DE3926152C2 (fr)
DE202015105000U1 (de) Welle, Tellerelement und Gehäuse für einen Tellerseparator, sowie Tellerseparator
DE10340823A1 (de) Schaufel für einen Verdichter oder eine Turbinenscheibe einer Gasturbine
DE19619317C2 (de) Laufrad für eine Freistrahltubine
DE102005034435B3 (de) Rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

RBV Designated contracting states (corrected)

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20040722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013243

Country of ref document: DE

Date of ref document: 20060907

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50013243

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50013243

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50013243

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170217

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170216

Year of fee payment: 18

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50013243

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50013243

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013243

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180221