EP1272816A1 - Faserlaser-sensor - Google Patents

Faserlaser-sensor

Info

Publication number
EP1272816A1
EP1272816A1 EP01914952A EP01914952A EP1272816A1 EP 1272816 A1 EP1272816 A1 EP 1272816A1 EP 01914952 A EP01914952 A EP 01914952A EP 01914952 A EP01914952 A EP 01914952A EP 1272816 A1 EP1272816 A1 EP 1272816A1
Authority
EP
European Patent Office
Prior art keywords
bragg grating
temperature
fiber
chirped
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01914952A
Other languages
English (en)
French (fr)
Inventor
Etienne Rochat
Karim Haroud
Rene DÄNDLIKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes International Treasury Services Ltd
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP1272816A1 publication Critical patent/EP1272816A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings

Definitions

  • the invention relates to the field of optical sensors. It relates to a fiber laser sensor according to the preamble of claim 1.
  • changes in the refractive index of the fiber due to external influences e.g. Changes in pressure and temperature, in a change in the laser wavelength or in a change in the beat frequency, are implemented between two longitudinal laser modes.
  • Such a fiber laser sensor is known, for example, from GA Ball et al., "Polarimetric heterodyne Bragg-grating fiber-laser sensor", Optic Letters 18 (22), 1993, pp. 1976-1978.
  • the sensor has a fiber laser with two Bragg gratings and a doped birefringent fiber segment arranged between them, which acts as a laser medium.
  • the Bragg gratings are written directly in the fiber core of an optical fiber and form so-called fiber Bragg Grid.
  • Pump light which is guided by means of a feed fiber through one of the Bragg gratings to the doped fiber segment, excites two orthogonally polarized self-polarization modes in the fiber segment.
  • the two natural polarization modes are brought to interference in the emission light of the laser, whereby a common beat frequency is obtained.
  • Any external disturbance that changes the length of the laser cavity or the birefringence leads to a change in this beat frequency.
  • the beat frequency obtained and its changes can be measured using a frequency counter, so that conclusions can be drawn about the magnitude of the external influence, for example an external pressure or a change in temperature.
  • this fiber laser sensor cannot differentiate between individual external influences. In particular, temperature and pressure effects are cumulated in the sensor signal.
  • WO 99/44023 discloses a fiber laser pressure sensor in which, in addition to a fiber segment acting as a laser medium, two sensor fiber segments with a non-rotationally symmetrical structure are present in the laser cavity. If an external pressure is exerted on one of these sensor fiber segments, a pressure-proportional beat frequency is in turn induced between different polarization modes. In order to compensate for temperature effects, it is proposed to expose both sensor fiber segments to the temperature, but only one sensor fiber segment to the external pressure.
  • This fiber laser sensor can also be used for pure temperature measurement by determining a shift in the Bragg wavelength of the fiber Bragg grating and thus the wavelength of the emission light by means of an optical wavelength meter. The use of such an additional device increases the overall cost of the sensor.
  • WO 94/17366 describes a fiber optic sensor with several fiber lasers connected in series. For separate measurement of the temperature, it is proposed to use two fiber lasers with different wavelengths and to subject both to the same temperature and pressure changes. Both fiber lasers experience the same pressure-induced, but different temperature-induced wavelength changes. The temperature change can be determined by subtracting the two signals. It is also proposed in this publication to design the two Bragg gratings of the individual fiber lasers differently, so that each fiber laser has a narrowband and a broadband Bragg grating. By using Bragg gratings of different widths, only the narrow-band Bragg grating determines the Bragg wavelength. This is to prevent disruptions in the cavity and thus so-called mode hopping, caused by different stretching of the two Bragg gratings.
  • the fiber laser sensor according to the invention has a fiber laser with two Bragg gratings, a first Bragg grating being arranged in a temperature-sensitive manner and the second Bragg grating being a chirped-Bragg grating whose reflection zone is temperature-stabilized for its central wavelength.
  • This arrangement ensures that emission light of the laser brought to interference has two beat frequencies. One of them is proportional to a temperature change induced in the first Bragg grating, the other to a pressure change induced in the laser. In particular, the temperature-dependent change is linear. This means that temperature and pressure can be measured simultaneously, but independently of one another.
  • the Chirped-Bragg grating itself is temperature-stabilized, for example by means of a cooling or heating element.
  • the second Bragg grating is preferably a conventional narrow-band Bragg grating with an at least approximately constant grating period.
  • Figure 1 is a schematic representation of a fiber optic sensor according to the invention and Figure 2 shows a reflectivity of a Bragg grating and one
  • FIG. 1 shows a preferred embodiment of a fiber laser sensor according to the invention.
  • the sensor essentially has a pump light source 1, an optical fiber 2 with a fiber laser FL, a detection unit 8 and evaluation electronics 10.
  • the light sources in particular pump lasers, usually used for fiber laser sensors can be used as pump light source 1.
  • the pump light source 1 is in optical connection with the optical fiber 2 and the fiber laser FL via a feed fiber 2a and a fiber coupler 6.
  • a return line fiber 2b, which leads to the detection unit 8, is also optically connected to the fiber coupler 6.
  • the detection unit 8 preferably has a polarization control 80, an analyzer 81 and a detection means, for example a photodiode 82.
  • the detection unit 8, more precisely the photodiode 82, is connected via a signal line 9 to the evaluation electronics 10, which in turn has a frequency filter 11 and a frequency counter 12.
  • An optical isolator 7 is preferably arranged between the fiber coupler 6 and the detection unit 8.
  • Part of the optical fiber 2 is formed by the fiber laser FL.
  • This consists of two end reflectors in the form of a first and a second Bragg grating 4, 5 and a fiber segment 3 arranged between them.
  • the fiber segment 3 is formed in one or more pieces, at least part of the segment acting as a laser medium.
  • the fiber segment 3 are the according the prior art fibers used in fiber laser sensors.
  • the fiber segment should thus carry several, preferably two polarization or spatial modes, between which an external pressure change induces a differential phase shift.
  • Birefringent, polarization-maintaining fibers are suitable, for example an Nd- or erbium-doped fiber.
  • the birefringence can be obtained in various ways, by appropriate refractive indices in the fiber or by appropriate shaping of the fiber.
  • the Bragg gratings 4, 5 are fiber Bragg gratings.
  • the first Bragg grating 4 is a conventional, narrow-band Bragg grating with an at least approximately constant grating period. Typical values of the first Bragg grating 4 are 0.1 nm bandwidth and a reflectivity of at least approximately 99%.
  • the second Bragg grating 5 is a chirped Bragg grating, that is to say a Bragg grating with a monotonically changing grating period and / or a changing refractive index of the fiber core. Chirped-Bragg gratings are known in the prior art, and they are used above all in communication technology.
  • Fiber Bragg gratings are given, for example, by A. Othonos, "Fiber Bragg Grätings", Rev. Sei. Instrum .. 68 (12) Dec. 1997, pp. 4309-4340.
  • Typical values of the second Bragg grating 5 are 1-5 nm bandwidth and a reflectivity of at least approximately 95%.
  • Chirped-Bragg gratings are characterized in particular by the fact that they reflect a wider range of wavelengths, ie they are broadband than the conventional Bragg gratings. The individual wavelengths reflect spatially separated reflection zones within the chirped-bragg grating.
  • the chirped-bragg grating exhibits a linear behavior of its group delay over a relatively large spectrum.
  • the reflectivity of the chirped-bragg grating is shown in FIG 5 and the conventional Bragg grating 4 as a function of the wavelength ⁇ , where R CBG denotes the reflectivity of the chirped Bragg grating 5, R BG1 the reflect CTI vity of the conventional Bragg grating 4 at a first temperature, R BG2 at a second temperature and R BG3 at a third temperature.
  • the first Bragg grating 4 is arranged in a temperature-sensitive manner, that is to say it is exposed to external temperature influences without compensation.
  • the position of the central Bragg wavelength is temperature-stabilized.
  • the entire Chirped-Bragg grating 5 is preferably arranged in a temperature-stabilized manner, for example it is operatively connected to a cooling or heating element 50, in particular a Peltier element.
  • the chirped Bragg grating 5 is preferably arranged at the emission end of the fiber laser FL, so that laser light is coupled out via the chirped Bragg grating 5.
  • light from the pump light source 1 is also coupled into the fiber segment 3 via the same chirped Bragg grating 5.
  • the fiber laser sensor functions like the sensors known from the prior art. A detailed description is therefore not given here.
  • pump light emitted by the pump light source 1 is coupled into the fiber segment 3 via a Bragg grating, here via the Chirped-Bragg grating 5.
  • the fiber laser FL represents a laser cavity with longitudinal modes and orthogonal self-polarization modes coupled therewith.
  • the natural frequencies of the longitudinal modes are characterized in that the optical length of the fiber laser FL is filled by integer multiples of half the laser wavelength, that is to say the Bragg wavelength ⁇ B , Since the first Bragg grating 4 is narrow-band, it determines the Bragg wavelength.
  • the fiber segment 3 enables the oscillation of at least, preferably two, longitudinal modes in the Cavity.
  • Emission light which couples out of a grating, here the chirped-Bragg grating 5, has the Bragg wavelength ⁇ B.
  • the emission light is separated from the pump light due to the shifted wavelength and directed into the return fiber 2b.
  • Back reflections in the fiber laser FL are prevented by the optical isolator 7.
  • the preferably two adjacent polarization modes are brought to interference by means of the analyzer 81, so that an interference signal and thus a beat frequency is obtained.
  • the interference signal is converted into an electrical signal proportional to the intensity, from which the desired beat signal is separated in the frequency filter 11 and fed to the frequency counter 12.
  • room modes can also be used for this.
  • Bragg gratings react to changes in temperature by changing their grating constants and thus their Bragg wavelength ⁇ B.
  • the first, temperature-sensitive Bragg grating 4 thus changes its Bragg wavelength ⁇ B. Due to the change in the Bragg wavelength, the changes in the chirped-Bragg grating 5 Reflection zone and thus the optical length of the cavity.
  • the length of the laser cavity is shown schematically in FIG. 1. Let L0 be the optical length at a temperature T 0 and Ll that at a temperature T x ⁇ T 0 .
  • the above-mentioned condition for the oscillation of the longitudinal modes has thus changed, which leads to a relative phase shift of the longitudinal modes.
  • the laser does not break down even when there is a sharp change in temperature.
  • the shift in the reflection zone in the chirped-Bragg grating 5 and thus the change in the cavity length are linear due to the chirped-Bragg grating with respect to the change in wavelength and thus to the change in temperature.
  • the longitudinal modes are emitted analogously to the above pressure measurement method and their beat frequency is analyzed. They do not have to be brought to interference because they already interfere with each other.
  • the change in the beat frequency is proportional, in particular linearly proportional to a temperature change.
  • the sensor comprising an Nd-doped fiber segment, a chirped Bragg grating with a cosine-shaped index profile with a band spectrum of 2 nm FWHM (fill width at half maximum) and a uniform chirp of - 1 nm / cm, a conventional Bragg grating with a Bragg wavelength change of 0.01 nm / K and a cavity length of 5 cm at a temperature T 0 .
  • the Chirped-Bragg grating behaved linearly within a range of the beat frequency of the Longintudinalmoden from 1.15 - 1.35 GHz and showed a sensitivity of 1 MHz / 0.01 nm.
  • the fiber laser sensor By means of the fiber laser sensor according to the invention, temperature and pressure changes can thus be measured simultaneously with the same fiber laser, the beat frequency of the longitudinal modes being used for temperature measurement and the beat frequency of the orthogonal self-polarization modes being used for pressure measurement. It is advantageous that the fiber laser sensor can be multiplexed, that is, several fiber lasers can be arranged in series along a common fiber. This fiber laser sensor, in particular its fiber laser, can be made relatively small, so that it can also be used in confined spaces.
  • Second Bragg grating (Chirped-Bragg grating) 50 Cooling or heating element
  • R BG1 reflectivity of the first Bragg grating at a temperature T :
  • R BG2 reflectivity of the first Bragg grating at a temperature T 2
  • R BG3 reflectivity of the first Bragg grating at a temperature T 3 ⁇ wavelength ⁇ B Bragg wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Optical Transform (AREA)

Abstract

Ein Faserlaser-Sensor weist einen Faserlaser (FL) mit zwei Reflektoren in Form eines ersten und eines zweiten Bragg-Gitters (4, 5) und einem dazwischen angeordneten Fasersegment (3) auf. Das erste Bragg-Gitter (4) ist temperatursensitiv angeordnet. Das zweite Bragg-Gitter ist ein Chirped-Bragg-Gitter (5), dessen zentrale Wellenlänge bezüglich Temperaturänderungen stabilisiert ist. Mittels dieses Sensors lassen sich gleichzeitig Temperatur und Druck getrennt voneinander messen, wobei Schwebungsfrequenzen von orthogonalen Eigenpolarisationsmoden des Faserlasers (FL) ein Mass für den Druck und Schwebungsfrequenzen von Longitudinalmoden ein Mass für die Temperatur sind.

Description

Faserlaser-Sensor
B E S C H R E I B U N G
Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der optischen Sensorik. Sie bezieht sich auf einen Faserlaser-Sensor gemäss Oberbegriff des Patentanspruches 1.
Stand der Technik
In Faserlaser-Sensoren werden Änderungen des Brechungsindex der Faser aufgrund externer Einflüsse, wie z.B. Druck- und Temperaturänderungen, in einer Änderung der Laserwellenlänge beziehungsweise in einer Änderung der Schwe- bungsfrequenz zwischen zwei longitudinalen Lasermoden umgesetzt.
Ein derartiger Faserlaser-Sensor ist beispielweise aus G.A. Ball et al., „Polarime- tric heterodyning Bragg-grating fiber-laser sensor", Optic Letters 18(22), 1993, S. 1976-1978, bekannt. Der Sensor weist einen Faserlaser mit zwei Bragg-Gittern und einem dazwischen angeordneten dotierten, als Lasermedium wirkendes, doppelbrechendes Fasersegment auf. Die Bragg-Gitter sind direkt in den Faser- kern einer optischen Faser geschrieben und bilden sogenannte Faser-Bragg- Gitter. Durch Pumplicht, welches mittels einer Zuleitungsfaser durch eines der Bragg-Gitter zum dotierten Fasersegment geführt wird, werden im Fasersegment zwei orthogonal polarisierte Eigenpolarisationsmoden angeregt. Im Emissionslicht des Lasers werden die zwei Eigenpolarisationsmoden zur Inter- ferenz gebracht, wodurch eine gemeinsame Schwebungsfrequenz erhalten wird. Jede äussere Störung, welche die Länge der Laserkavität oder die Doppelbrechung ändert, führt zu einer Änderung dieser Schwebungsfrequenz. Die erhaltene Schwebungsfrequenz und ihre Änderungen lassen sich mittels eines Frequenzzählers messen, so dass Rückschlüsse auf die Grosse der externen Beeinflussung, beispielsweise ein externer Druck oder eine Temperaturänderung gezogen werden können. Dieser Faserlaser-Sensor kann jedoch nicht zwischen einzelnen externen Einflüssen unterscheiden. Im Sensorsignal sind insbesondere Temperatur- und Druckeffekte kumuliert.
WO 99/44023 offenbart einen Faserlaser-Drucksensor, bei welchem in der Laserkavität neben einem als Lasermedium wirkenden Fasersegment zwei Sensorfasersegmente mit nichtrotationssy metrischer Struktur vorhanden sind. Wird ein äusserer Druck auf eines dieser Sensorfasersegmente ausgeübt, so wird wiederum eine druckproportionale Schwebungsfrequenz zwischen unterschied- liehen Polarisationsmoden induziert. Um Temperatureffekte zu kompensieren, wird vorgeschlagen, beide Sensorfasersegmente der Temperatur, jedoch nur ein Sensorfasersegment dem äusseren Druck auszusetzen. Dieser Faserlaser-Sensor lässt sich auch zur reinen Temperaturmessung einsetzen, indem eine Verschiebung der Bragg-Wellenlänge des Faser-Bragg-Gitters und damit die Wellenlänge des Emissionslichts mittels eines optischen Wellenlängenmeters bestimmt wird. Die Verwendung eines solchen zusätzlichen Gerätes erhöht die Gesamtkosten des Sensors. Zudem darf der Temperaturunterschied zwischen den beiden Faser- Bragg-Gittern nicht grösser sein als 10 K, da sonst die Laseremission augrund der unterschiedlichen Bragg- Wellenlängen zusammenbricht. WO 94/17366 beschreibt einen faseroptischen Sensor mit mehreren in Serie geschalteten Faserlasern. Zur separaten Messung der Temperatur wird dabei vorgeschlagen, zwei Faserlaser mit unterschiedlichen Wellenlängen zu verwenden und beide denselben Temperatur- und Druckänderungen auszusetzen. Beide Faserlaser erfahren dabei dieselbe druckinduzierte, jedoch unterschiedliche temperaturinduzierte Wellenlängenänderungen. Durch Subtraktion der zwei Signale lässt sich die Temperaturänderung bestimmen. Ferner wird in dieser Publikation vorgeschlagen, die zwei Bragg-Gitter der einzelnen Faserlaser unterschiedlich zu gestalten, so dass jeder Faserlaser ein schmalbandiges und ein breitbandiges Bragg-Gitter aufweist. Durch die Verwendung von unterschiedlich breiten Bragg-Gittern bestimmt lediglich das schmalbandige Bragg- Gitter die Bragg-Wellenlänge. Dadurch sollen Störungen in der Kavität und damit sogenanntes mode-hopping, hervorgerufen durch unterschiedliche Dehnung der zwei Bragg-Gitter, verhindert werden.
Alan D. Kersey et al., „Fiber Grating Sensors", Journal of Lightwave Technology, Vol. 15, No. 8, 1997, S. 1442-1463, bespricht verschiedene aktive und passive Fasergitter-Sensoren, wobei die Verwendung von Chirped-Bragg-Gittem zur Druck- und Temperaturmessung offenbart wird.
Darstellung der Erfindung
Es ist Aufgabe der Erfindung, einen Faserlaser-Sensor der eingangs genannten Art zu schaffen, welcher voneinander unabhängige Messungen von Temperatur und Druck mittels einfacher Mittel erlaubt.
Diese Aufgabe löst ein Faserlaser-Sensor mit den Merkmalen des Patentanspruches 1. Der erfϊndungsgemässe Faserlaser-Sensor weist einen Faserlaser mit zwei Bragg-Gittern auf, wobei ein erstes Bragg-Gitter temperatursensitiv angeordnet ist und das zweite Bragg-Gitter ein Chirped-Bragg-Gitter ist, dessen Reflexionszone für seine zentrale Wellenlänge temperaturstabilisiert ist.
Durch diese Anordnung wird erreicht, dass zur Interferenz gebrachtes Emissionslicht des Lasers zwei Schwebungsfrequenzen aufweist. Eine davon ist proportional zu einer im ersten Bragg-Gitter induzierten Temperaturänderung, die andere zu einer im Laser induzierten Druckänderung. Dabei ist insbesondere die temperaturabhängige Änderung linear. Somit lassen sich Temperatur und Druck gleichzeitig, jedoch unabhängig voneinander messen.
In einer bevorzugten Ausführungsform ist das Chirped-Bragg-Gitter selber temperaturstabilisiert, beispielsweise mittels eines Kühl- oder Heizelementes.
Das zweite Bragg-Gitter ist vorzugsweise ein konventionelles schmalbandiges Bragg-Gitter mit mindestens annähernd konstanter Gitterperiode.
Weitere Vorteile und Ausführungsformen gehen aus den abhängigen Patent- ansprüchen hervor.
Kurze Beschreibung der Zeichnungen
Im folgenden wird der Erfindungsgegenstand anhand eines bevorzugten Ausführungsbeispiels, welches in den beiliegenden Zeichnungen dargestellt ist, näher erläutert. Es zeigen
Figur 1 eine schematische Darstellung eines erfindungsgemässen faser- optischen Sensors und Figur 2 eine Darstellung einer Reflektivität eines Bragg-Gitters und eines
Chirped-Bragg-Gitters als Funktion der Wellenlänge.
Wege zur Ausführung der Erfindung
Figur 1 zeigt ein bevorzugtes Ausführungsbeispiel eines erfϊndungsgemässen Faserlaser-Sensors. Der Sensor weist im wesentlichen eine Pumplichtquelle 1, eine optische Faser 2 mit einem Faserlaser FL, eine Detektionseinheit 8 und eine Auswerteelektronik 10 auf.
Als Pumplichtquelle 1 lassen sich die üblicherweise für Faserlaser-Sensoren verwendeten Lichtquellen, insbesondere Pumplaser, verwenden. Die Pumplichtquelle 1 steht über eine Zuleitungsfaser 2a und einen Faserkoppler 6 mit der optischen Faser 2 und dem Faserlaser FL in optischer Verbindung.
Ebenfalls mit dem Faserkoppler 6 ist eine Rückleitungsfaser 2b optisch verbunden, welche zur Detektionseinheit 8 führt. Die Detektionseinheit 8 weist vorzugsweise eine Polarisationskontrolle 80, einen Analysator 81 sowie ein Detek- tionsmittel, beispielsweise eine Photodiode 82, auf. Die Detektionseinheit 8, genauer die Photodiode 82, ist über eine Signalleitung 9 mit der Auswerteelektronik 10 verbunden, welche ihrerseits ein Frequenzfilter 11 und einen Frequenzzähler 12 aufweist. Vorzugsweise ist zwischen Faserkoppler 6 und Detektionseinheit 8 ein optischer Isolator 7 angeordnet.
Ein Teil der optischen Faser 2 wird durch den Faserlaser FL gebildet. Dieser besteht aus zwei Endreflektoren in Form eines ersten und eines zweiten Bragg- Gitters 4,5 und einem dazwischen angeordneten Fasersegment 3. Das Fasersegment 3 ist ein- oder mehrstückig ausgebildet, wobei mindestens ein Teil des Segmentes als Lasermedium wirkt. Als Fasersegment 3 eignen sich die gemäss dem Stand der Technik in Faserlaser-Sensoren eingesetzten Fasern. Das Fasersegment soll somit mehrere, vorzugsweise zwei Polarisations- oder Raummoden tragen, zwischen denen eine externe Druckänderung eine differentielle Phasenschiebung induziert. Geeignet sind doppelbrechende, polarisationserhaltende Fasern, beispielsweise eine Nd- oder erbium-dotierte Faser. Die Doppelbrechung lässt sich dabei auf verschiedene Weise erhalten, durch entsprechende Brechungsindizes in der Faser oder durch entsprechende Formgebung der Faser.
Die Bragg-Gitter 4,5 sind in diesem Ausführungsbeispiel Faser-Bragg-Gitter. Das erste Bragg-Gitter 4 ist dabei ein konventionelles, schmalbandiges Bragg- Gitter mit einer mindestens annähernd konstanten Gitterperiode. Typische Werte des ersten Bragg-Gitters 4 sind 0.1 nm Bandbreite und ein Reflexionsvermögen von mindestens annähernd 99%. Das zweite Bragg-Gitter 5 ist erfm- dungsgemäss ein Chirped-Bragg-Gitter, das heisst, ein Bragg-Gitter mit einer sich monoton ändernden Gitterperiode und/oder einem sich ändernden Brechungsindex des Faserkerns. Chirped-Bragg-Gitter sind im Stand der Technik bekannt, wobei sie vor allem in der Kommunikationstechnik Anwendung finden. Eine Übersicht über Faser-Bragg-Gitter gibt beispielsweise A. Othonos, „Fiber Bragg Grätings", Rev. Sei. Instrum.. 68 (12) Dez. 1997, S. 4309- 4340. Typische Werte des zweiten Bragg-Gitters 5 sind 1-5 nm Bandbreite und ein Reflexionsvermögen von mindestens annähernd 95 %. Chirped-Bragg-Gitter zeichnen sich insbesondere dadurch aus, dass sie einen breiteren Bereich von Wellenlängen reflektieren, also breitbandiger sind als die konventionellen Bragg- Gitter. Die einzelnen Wellenlängen reflektieren dabei an örtlich getrennten Reflexionszonen innerhalb des Chirped-Bragg-Gitters. Dabei weist das Chirped- Bragg-Gitter im Gegensatz zum konventionellen Bragg-Gitter über ein relativ grosses Spektrum ein lineares Verhalten seiner Gruppenverzögerung auf. In Figur 2 ist die Reflektivität des Chirped-Bragg-Gitters 5 und des konventionellen Bragg-Gitters 4 als Funktion der Wellenlänge λ dargestellt. Dabei bezeichnet RCBG die Reflektivität des Chirped-Bragg-Gitters 5, RBG1 die Reflekti- vität des konventionellen Bragg-Gitters 4 bei einer ersten Temperatur, RBG2 bei einer zweiten Temperatur und RBG3 bei einer dritten Temperatur.
Erfmdungsgemäss ist das erste Bragg-Gitter 4 temperatursensitiv angeordnet, das heisst, es ist äusseren Temperatureinflüssen unkompensiert ausgesetzt. Beim Chirped-Bragg-Gitter 5 hingegen ist die Lage der zentralen Bragg-Wel- lenlänge temperaturstabilisiert. Vorzugsweise ist dabei das gesamte Chirped- Bragg-Gitter 5 temperaturstabilisiert angeordnet, beispielsweise ist es mit einem Kühl- oder Heizelement 50, insbesondere einem Peltierelement, wirkverbunden.
Vorzugsweise ist das Chirped-Bragg-Gitter 5 am emissionsseitigen Ende des Faserlasers FL angeordnet, so dass Laserlicht über das Chirped-Bragg-Gitter 5 ausgekoppelt wird. In der hier dargestellten Ausführungsform wird zudem über dasselbe Chirped-Bragg-Gitter 5 Licht aus der Pumplichtquelle 1 in das Faser- segment 3 eingekoppelt. Es ist jedoch auch möglich, die zwei Bragg-Gitter 4,5 miteinander zu vertauschen.
Zur einer Druckmessung funktioniert der erfmdungsgemäss e Faserlaser-Sensor wie die aus dem Stand der Technik bekannten Sensoren. Auf eine detaillierte Beschreibung wird hier deshalb verzichtet. Grundsätzlich wird von der Pumplichtquelle 1 ausgesendetes Pumplicht über ein Bragg-Gitter, hier über das Chirped-Bragg-Gitter 5, in das Fasersegment 3 eingekoppelt. Der Faserlaser FL stellt eine Laserkavität mit Longitudinalmoden und damit gekoppelten orthogo- nalen Eigenpolarisationsmoden dar. Die Eigenfrequenzen der Longitudinalmoden sind dadurch charakterisiert, dass die optische Länge des Faserlasers FL durch ganzzahlige Vielfache der halben Laserwellenlänge, das heisst der Bragg- Wellenlänge λB, ausgefüllt ist. Da das erste Bragg-Gitter 4 schmalbandig ausgebildet ist, bestimmt es die Bragg- Wellenlänge. Das Fasersegment 3 ermöglicht das Anschwingen von mindestens, vorzugsweise zwei Longitudinalmoden in der Kavität. Die zwei zugehörigen orthogonalen Eigenpolarisations-Moden sehen aufgrund der Doppelbrechung unterschiedliche Brechungsindizes in der Laserkavität. Emissionslicht, welches aus einem Gitter, hier dem Chirped-Bragg- Gitter 5, auskoppelt, weist die Bragg-Wellenlänge λB auf. Im Faserkoppler 6 wird das Emissionslicht vom Pumplicht aufgrund der verschobenen Wellenlänge separiert und in die Rückleitungsfaser 2b geleitet. Rückreflexe in den Faserlaser FL werden durch den optischen Isolator 7 verhindert. In der Detektionseinheit 8 werden die, vorzugsweise zwei benachbarte Polarisationsmoden mittels des Analysators 81 zur Interferenz gebracht, so dass ein Interferenzsignal und somit eine Schwebungsfrequenz erhalten wird. In der Photodiode 82 oder einem anderen Detektionsmittel wird das Interferenzsignal in ein intensitätsproportionales elektrisches Signal umgewandelt, aus welchem im Frequenzfilter 11 das gewünschte Schwebungssignal separiert und dem Frequenzzähler 12 zugeführt wird. Anstelle von Polarisationsmoden lassen sich hierfür auch Raummoden ein- setzen.
Wird nun ein äusserer Druck in das Fasersegment 3 induziert, verändert sich die Doppelbrechung in der Laserkavität, was zu einer Verschiebung der Schwebungsfrequenz der Eigenpolarisationsmoden führt. Diese Änderung lässt sich somit mittels der Detektionseinheit 8 und der Auswertelektronik 10 bestimmen und dadurch die Druckänderung detektieren.
Die erfϊndungsgemässe Kombination eines temperatursensitiven Bragg-Gitters und eines temperaturstabilisierten Chirped-Bragg-Gitters ermöglicht nun auch eine Temperaturmessung:
Bragg-Gitter reagieren auf Temperaturänderungen durch Änderung ihrer Gitterkonstanten und somit ihrer Bragg-Wellenlänge λB. Das erste, temperatursensitive Bragg-Gitter 4 ändert somit seine Bragg-Wellenlänge λB. Aufgrund der Änderung der Bragg-Wellenlänge ändert sich im Chirped-Bragg-Gitter 5 die Reflexionszone und somit die optische Länge der Kavität. Die Länge der Laserkavität ist in Figur 1 schematisch dargestellt. Dabei sei L0 die optische Länge bei einer Temperatur T0 und Ll diejenige bei einer Temperatur Tx ≠ T0.
Die obengenannte Bedingung für das Anschwingen der Longitudinalmoden hat sich somit verändert, was zu einer relativen Phasenschiebung der Longitudinalmoden führt. Aufgrund des breitbandigen Chirped-Bragg-Gitters bricht der Laser jedoch auch bei einer starken Temperaturänderung nicht zusammen. Die Verschiebung der Reflexionszone im Chirped-Bragg-Gitter 5 und somit die Änderung der Kavitätslänge sind aufgrund des Chirped-Bragg-Gitters linear in Bezug auf die Wellenlängenänderung und somit auf die Temperaturänderung.
Die Longitudinalmoden, vorzugsweise zwei benachbarte, werden analog zum obigen Druckmess-Verfahren emittiert und ihre Schwebungsfrequenz analysiert. Sie müssen nicht zur Interferenz gebracht werden, da sie bereits miteinander interferieren. Die Änderung in der Schwebungsfrequenz ist dabei proportional, insbesondere linear proportional zu einer Temperaturänderung.
Es wurden Versuche mit einem oben beschriebenen Faserlaser-Sensor durch- geführt, wobei der Sensor ein Nd-dotiertes Fasersegment, ein Chirped-Bragg- Gitter mit einem cosinusfόrmigen Indexprofil mit einem Bandspektrum von 2nm FWHM (füll width at half maximum) und einem einheitlichen Chirp von - 1 nm/cm, ein konventionelles Bragg-Gitter mit einer Bragg- Wellenlängenänderung von 0.01 nm/K und eine Kavitätslänge von 5 cm bei einer Temperatur T0 aufweist. Das Chirped-Bragg-Gitter hat sich dabei innerhalb eines Bereiches der Schwebungsfrequenz der Longintudinalmoden von 1.15 - 1.35 GHz linear verhalten und eine Sensitivität von 1 MHz/0.01 nm aufgewiesen. Dadurch lassen sich Temperaturänderungen von bis zu 200 K nachweisen. Mittels des erfmdungsgemässen Faserlaser-Sensor lassen sich somit gleichzeitig Temperatur- und Druckänderungen mit demselben Faserlaser messen, wobei die Schwebungsfrequenz der Longitudinalmoden zur Temperaturmessung und die Schwebungsfrequenz der orthogonalen Eigenpolarisationsmoden zur Druckmessung verwendet werden. Vorteilhaft ist, dass sich der Faserlaser-Sensor multiplexen lässt, das heisst, es lassen sich mehrere Faserlaser in Serie entlang einer gemeinsamen Faser anordnen. Dieser Faserlaser-Sensor, insbesondere sein Faserlaser, lässt sich relativ klein gestalten, so dass er auch in engen Raumverhältnissen einsetzbar ist.
Bezugszeichenliste
FL Faserlaser 1 Pumplichtquelle
2a Zuführungsfaser
2b Rückleitungsfaser
2 Optische Faser
3 Fasersegment 4 Erstes Bragg-Gitter
5 Zweites Bragg-Gitter (Chirped-Bragg-Gitter) 50 Kühl- oder Heizelement
6 Faserkoppler
7 Optischer Isolator 8 Detektionseinheit
80 Polarisationskontrolle
81 Analysator
82 Photodiode
9 Signalleitung 10 Auswerteelektronik
11 Frequenzfilter
12 Frequenzzähler
L0 Länge der Kavität bei einer Temperatur T0 Ll Länge der Kavität bei einer Temperatur Tx RGBG Reflektivität des Chirped-Bragg-Gitters
RBG1 Reflektivität des ersten Bragg-Gitters bei einer Temperatur T: RBG2 Reflektivität des ersten Bragg-Gitters bei einer Temperatur T2 RBG3 Reflektivität des ersten Bragg-Gitters bei einer Temperatur T3 λ Wellenlänge λB Bragg-Wellenlänge

Claims

P A T E N T A N S P R U E C H E
Faserlaser-Sensor mit einem Faserlaser (FL), welcher durch zwei Reflektoren in Form eines ersten und eines zweiten Bragg-Gitters (4,5) und einem dazwischen angeordneten Fasersegment (3) gebildet ist, dadurch gekennzeichnet, dass das erste Bragg-Gitter (4) temperatursensitiv ist und das zweite Bragg-Gitter ein Chirped-Bragg-Gitter (5) ist, wobei das Chirped- Bragg-Gitter (5) eine temperaturstabilisierte Reflexionszone seiner zentralen Wellenlänge aufweist.
Sensor nach Anspruch 1, dadurch gekennzeichnet, dass das Chirped-Bragg- Gitter (5) selber temperaturstabilisiert ist.
3. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass er ein kombinierter Druck- und Temperatursensor ist.
4. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass er eine Detektionseinheit (8) zur Detektion von Schwebungsfrequenzen von orthogonalen Eigenpolarisationsmoden und von Schwebungsfrequenzen von Longitudi- nalmoden des Faserlasers (FL) aufweist, wobei die Schwebungsfrequenz der
Eigenpolarisationsmoden ein Mass für einen Druck und die Schwebungsfrequenz der Longitudinalmoden ein Mass für eine Temperatur sind.
5. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass das erste Bragg- Gitter (4) ein schmalbandiges Bragg-Gitter mit einer mindestens annähernd konstanten Gitterperiode ist.
6. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass das Chirped-Bragg- Gitter (5) am emissionsseitigen Ende des Faserlasers (FL) angeordnet ist.
7. Sensor nach Anspruch 2, dadurch gekennzeichnet, dass ein Kühl- oder Heizelement (50) vorhanden ist, welches das Chirped-Bragg-Gitter (5) temperaturstabilisiert.
8. Sensor nach Anspruch 7, dadurch gekennzeichnet, dass das Kühl- oder Heizelement (50) ein Peltierelement ist.
9. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass das Fasersegment aus mindestens zwei Teilsegmenten besteht, wobei mindetsns ein Teil- segment als Lasermedium wirkt.
10. Sensor nach Anspruch 4, dadurch gekennzeichnet, dass die Detektionseinheit (8) räumliche Moden anstelle von Polarisationsmoden detektiert.
EP01914952A 2000-04-11 2001-04-05 Faserlaser-sensor Withdrawn EP1272816A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10017946A DE10017946A1 (de) 2000-04-11 2000-04-11 Faserlaser-Sensor
DE10017946 2000-04-11
PCT/CH2001/000220 WO2001077623A1 (de) 2000-04-11 2001-04-05 Faserlaser-sensor

Publications (1)

Publication Number Publication Date
EP1272816A1 true EP1272816A1 (de) 2003-01-08

Family

ID=7638338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01914952A Withdrawn EP1272816A1 (de) 2000-04-11 2001-04-05 Faserlaser-sensor

Country Status (5)

Country Link
US (1) US6901187B2 (de)
EP (1) EP1272816A1 (de)
AU (1) AU2001242218A1 (de)
DE (1) DE10017946A1 (de)
WO (1) WO2001077623A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932113A (zh) * 2019-02-20 2019-06-25 天津大学 力触觉超高空间分辨率的啁啾光纤测量系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6845194B2 (en) * 2001-06-27 2005-01-18 Furukawa Electric North America Inc. Optical bandpass filter using long period gratings
WO2003067313A1 (en) * 2002-02-07 2003-08-14 Teraxion Inc. Power efficient assemblies for applying a temperature gradient to a refractive index grating
WO2006032116A1 (en) * 2004-09-22 2006-03-30 Faculte Polytechnique De Mons Method for evaluating the influence of temperature and strain on the spectrum reflected by fibre bragg grating
EP1640692A1 (de) * 2004-09-22 2006-03-29 Faculté Polytechnique de Mons Verfahren zur Auswertung des Einflusses von Temperatur und Dehnung auf das reflektierte Spektrum eines Bragg-Gitters in einer optischen Faser
US9568339B2 (en) * 2010-12-02 2017-02-14 Ofs Fitel, Llc DBF fiber laser bend sensor and optical heterodyne microphone
WO2015076969A1 (en) * 2013-11-22 2015-05-28 Baker Hughes Incorporated Use of bragg gratings with coherent otdr
US9341532B2 (en) 2014-03-24 2016-05-17 General Electric Company Systems and methods for distributed pressure sensing
US9240262B1 (en) 2014-07-21 2016-01-19 General Electric Company Systems and methods for distributed pressure sensing
DE102017201524A1 (de) 2017-01-31 2018-08-02 Hochschule für angewandte Wissenschaften München Faseroptische Erfassungseinrichtung sowie Verfahren zum Betreiben einer solchen faseroptischen Erfassungseinrichtung
CN107046219B (zh) * 2017-04-18 2023-10-24 中国工程物理研究院激光聚变研究中心 一种啁啾体布拉格光栅冷却系统及冷却方法
CN109282913A (zh) * 2018-07-26 2019-01-29 孝感锐创机械科技有限公司 一种基于布拉格光纤光栅的非接触式测温装置
CN109975244A (zh) * 2019-04-16 2019-07-05 中国计量大学 基于星形金纳米修饰的大角度倾斜光纤光栅生物传感器
CN114675053B (zh) * 2022-02-23 2023-08-01 广东工业大学 基于啁啾光纤光栅的强度解调型风速传感器
CN115693359A (zh) * 2022-11-08 2023-02-03 上海频准激光科技有限公司 一种光纤激光器及其偏振态切换方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986001286A1 (en) * 1984-08-13 1986-02-27 United Technologies Corporation Distributed, spatially resolving optical fiber strain gauge
US5317576A (en) * 1989-12-26 1994-05-31 United Technologies Corporation Continously tunable single-mode rare-earth doped pumped laser arrangement
NO302441B1 (no) * 1995-03-20 1998-03-02 Optoplan As Fiberoptisk endepumpet fiber-laser
US5671307A (en) * 1995-04-10 1997-09-23 Universite Laval Use of a temperature gradient to impose a chirp on a fibre bragg grating
US5706079A (en) * 1995-09-29 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy Ultra-high sensitivity transducer with chirped bragg grating relector
US5760391A (en) * 1996-07-17 1998-06-02 Mechanical Technology, Inc. Passive optical wavelength analyzer with a passive nonuniform optical grating
US5905745A (en) * 1997-03-17 1999-05-18 Sdl, Inc. Noise suppression in cladding pumped fiber lasers
GB2323441B (en) * 1997-03-22 2001-02-14 British Aerospace Apparatus for sensing temperature and/or strain in an object
DE19724528B4 (de) * 1997-06-11 2005-09-15 Institut für Physikalische Hochtechnologie e.V. Temperaturkompensiertes faseroptisches Bragg-Gitter
GB2326471B (en) * 1997-06-19 2001-05-30 British Aerospace A strain isolated optical fibre bragg grating sensor
US6058226A (en) * 1997-10-24 2000-05-02 D-Star Technologies Llc Optical fiber sensors, tunable filters and modulators using long-period gratings
NO313024B1 (no) * 1997-12-19 2002-07-29 Optoplan As Fremgangsmate for anvendelse av en optisk fiber som hydrostatisk trykkfoler

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0177623A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932113A (zh) * 2019-02-20 2019-06-25 天津大学 力触觉超高空间分辨率的啁啾光纤测量系统
CN109932113B (zh) * 2019-02-20 2021-07-06 天津大学 力触觉超高空间分辨率的啁啾光纤光栅测量系统

Also Published As

Publication number Publication date
US20040071400A1 (en) 2004-04-15
AU2001242218A1 (en) 2001-10-23
DE10017946A1 (de) 2002-01-17
US6901187B2 (en) 2005-05-31
WO2001077623A1 (de) 2001-10-18

Similar Documents

Publication Publication Date Title
EP1060372B1 (de) Faserlaser-sensor
DE19821616B4 (de) Anordnung zur Bestimmung von absoluten physikalischen Zustandsgrößen, insbesondere Temperatur und Dehnung, einer optischen Faser
EP1197738A1 (de) Anisotroper Faserlaser-Sensor mit verteilter Rückkopplung
EP1272816A1 (de) Faserlaser-sensor
DE60225023T2 (de) Bestimmung einer optischen Eigenschaft unter Benutzung von überlagerten und verzögerten Signalen
DE69521971T2 (de) Optisches Mikrosystem des Typs Rosettenspannungslehre mit dielektrischen Leitern zur Messung der longitudinalen Spannung in Planarstruktur
EP0487450B1 (de) Verfahren und Einrichtungen zur faseroptischen Kraftmessung
DE69410595T2 (de) Aktiver laseroptischer mehrpunkt-lasersensor
DE10000306B4 (de) Faseroptischer Stromsensor
CH671099A5 (de)
DE60120013T2 (de) Inline Messung und Kontrolle der Polarisation in Lichtwellenübertragungssystemen
DE60214852T2 (de) Differenzmesssystem auf der basis der benutzung von paaren von bragg-gittern
EP1499859A1 (de) Hochaufl sender faserlaser-sensor
DE19628200B4 (de) Vorrichtung zur Durchführung interferometrischer Messungen
EP1606585B1 (de) Hochstabile breitband-lichtquelle und dafür geeignetes stabi lisierungsverfahren
EP2245482B1 (de) Elektrooptischer distanzmesser
EP1141663A1 (de) Fibre bragg grating sensors for measuring a physical magnitude
DE69016720T2 (de) Optischer Sensor mit Modeninterferenzmessung.
EP1421393B1 (de) Optische stromsensoren
DE69318534T2 (de) Gerät zur messung der optischen wellenlänge
DE10140482B4 (de) Verfahren und Vorrichtung zur Störgrößenkompensation eines optischen Sensors
DE3528294A1 (de) Verfahren zur faseroptischen, spektral kodierten uebertragung des wertes einer veraenderlichen physikalischen messgroesse
DE69202780T2 (de) Verfahren und Vorrichtung für interferometrische Absolutmessungen physikalischer Grössen.
DE4116039A1 (de) Interferometrisches verfahren und interferometer zur durchfuehrung desselben
DE19844976C2 (de) Optische Anordnung mit einem Interferometer zur Bestimmung einer Wellenlängenänderung und Verwendung der Anordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VETCO GRAY CONTROLS LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060801