EP1272558A1 - Composite polymer/polymer material with high content in amorphous dispersed phase and preparation method - Google Patents

Composite polymer/polymer material with high content in amorphous dispersed phase and preparation method

Info

Publication number
EP1272558A1
EP1272558A1 EP01923758A EP01923758A EP1272558A1 EP 1272558 A1 EP1272558 A1 EP 1272558A1 EP 01923758 A EP01923758 A EP 01923758A EP 01923758 A EP01923758 A EP 01923758A EP 1272558 A1 EP1272558 A1 EP 1272558A1
Authority
EP
European Patent Office
Prior art keywords
polymer
temperature
forming
dispersed phase
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01923758A
Other languages
German (de)
French (fr)
Inventor
Philippe Cassagnau
Alain Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1272558A1 publication Critical patent/EP1272558A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • B29C48/9185Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling in the direction of the stream of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92019Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a process for the preparation of polymer / polymer micro-composite materials by temperature-controlled extrusion, as well as the resulting micro-composite materials.
  • polymer / polymer micro-composite material designates a material comprising a mixture of immiscible polymers, one of which forms a phase dispersed in the other constituting the matrix.
  • the polymer / polymer micro-composite materials are generally prepared by extrusion at constant or substantially increasing temperature from the supply zone to the die, this extrusion step being followed by a drawing step and an outlet quenching before being implemented again for the intended applications.
  • a dispersed phase of amorphous polymer type it is currently limited to contents of less than 20% (by weight) in the dispersed phase. Beyond that, one cannot control the morphology and the reproducibility of the final material obtained.
  • thermomechanical properties of the micro-composite materials available today are limited and insufficient for their subsequent use.
  • One of the objectives of the present invention is to provide polymer / polymer micro-composite materials heavily loaded with reinforcing polymer of amorphous polymer type, of defined morphology, stable and reproducible.
  • the subject of the invention is a polymer / polymer micro-composite material, comprising an amorphous polymer (I) forming a localized dispersed phase within a thermoplastic or elastomeric polymer (II) forming a matrix, the glass transition temperature of the polymer (I) forming the dispersed phase being at least 20 ° C higher than the melting or softening temperature of the polymer (II) forming the matrix, and the content of amorphous polymer (I) forming the dispersed phase being greater than or equal to 40% by weight.
  • the subject of the invention is also a process for the preparation of such composite materials, characterized in that it comprises the steps consisting in:
  • the invention also relates to a method for obtaining shaped objects, using, as starting material, a micro-composite material as mentioned above at a controlled temperature such that, throughout the formation of the shaped object, the material temperature remains below the melting or softening temperature of the polymer forming the dispersed phase of the micro-composite material used.
  • the inventors have demonstrated that by treating a mixture of polymers (or copolymers) chosen by a “dynamic quenching” process as defined below, it was possible to obtain, in a reproducible and stable manner, micro-composite materials with a high content of amorphous dispersed phase, having improved thermomechanical properties.
  • FIGS. 2 and 3 are photographs taken with a scanning electron microscope showing the morphology of materials obtained from an ethylene vinyl acetate (EVA) / polycarbonate (PC) 50/50 mixture respectively by a traditional process and by the process dynamic quenching according to the invention;
  • EVA ethylene vinyl acetate
  • PC polycarbonate
  • FIG. 4 is a comparative diagram showing the thermodynamic behavior of the materials of Figures 2 and 3 obtained respectively, according to a traditional process ( ⁇ ) and according to the dynamic quenching process of the invention (u), as well as EVA alone ( ⁇ ), at a stress frequency ⁇ equal to 1 rad / sec.
  • a mixture of polymers is first produced comprising at least the polymer (I), intended to form the dispersed phase (called “polymer (I) forming dispersed phase”) and the polymer (II) intended to form the matrix (known as “polymer (II) forming matrix”).
  • polymer within the meaning of the invention, indifferently designates one or more polymers and or copolymers.
  • the polymers (I) and (II) are specifically immiscible polymers, that is to say, within the meaning of the invention, immiscible polymers in the molten state, under the conditions of their use for the preparation of the desired materials, as well as in the final extruded material.
  • the choice of polymers used in the invention is made so that the crystallization or solidification temperature of the polymer (I) intended to form the dispersed phase is significantly higher than the melting or softening temperature polymer (II) intended to form the matrix.
  • “clearly higher temperature” is meant a difference of at least 20 ° C between the temperatures considered, and preferably a difference ranging from 30 ° C to 50 ° C.
  • a difference of the order of 30 ° C that is to say advantageously between 25 and 40 ° C, and typically between 28 and 35 ° C) is more particularly preferred.
  • the polymer (II) can be chosen from semi-crystalline or amorphous thermoplastic polymers, or also from elastomers.
  • polymers suitable as polymer (II) forming a matrix mention may be made of polymers or copolymers of vinyl acetate and of acrylic esters, more particularly polymers or copolymers of ethylene / vinyl acetate or ethylene / acrylic esters .
  • the polymer (II) is an ethylene / vinyl acetate (EVA) polymer.
  • the polymer (I) is in turn specifically chosen from amorphous polymers.
  • amorphous polymers suitable for the purposes of the invention mention may be made of polycarbonates, polystyrenes and acrylic and methacrylic polyesters or their mixtures.
  • the polymer (I) forming a dispersed phase is a polycarbonate.
  • the method of the invention is implemented in an extruder. It is the skill of the person skilled in the art to make the choice of the characteristics of the extruder to be used in particular so as to relatively quickly obtain a homogeneous melt mixture of polymers taking into account the physicochemical characteristics of the extruded material.
  • the extruder used is preferably a twin screw extruder, the length / diameter ratio of which is advantageously greater than or equal to 34.
  • the speed of rotation of the screws as well as the rate of supply of polymers can be adapted by a person skilled in the art so as to limit self-heating and to satisfy the temperature condition explained below.
  • the barrel of an extruder 1 is seen, for which the supply zone A, an intermediate zone I and the zone of the die F have been shown diagrammatically, subject respectively to regulation temperatures defined as explained. below.
  • a die 3 is also placed at the outlet of the extruder.
  • the mixture of polymers 2 is introduced into the feed zone A of the extruder 1.
  • the regulation temperature T a is higher than the melting or softening temperature of each of the polymers of said mixture.
  • the polymers are then quickly melt-mixed so that the polymer forming the minority phase is dispersed homogeneously in the other polymer.
  • the regulation temperature corresponds to the temperature applied (set temperature) to the barrel of the extruder and takes account in particular of the thermal phenomena which can occur at the level of the installation and the self-heating of the treated material which may occur during the extrusion operation.
  • the choice of the regulation temperature depends on the polymers used.
  • the extrusion operation is continued on the polymer blend in the molten state up to the zone of the die F where it will undergo a “dynamic quenching”.
  • dynamic quenching designates a controlled cooling operation, carried out in the extruder, upstream of the die, which causes recrystallization or solidification of the polymer forming phase dispersed in the matrix-forming polymer, under the shear forces and the mechanical stresses imposed by the extruder (rotation of the screws).
  • a polymer / polymer micro-composite material with specific and controlled morphology is thus obtained, having improved thermomechanical properties as explained below.
  • the regulation temperature T fil in the zone of the die F is fixed so that the temperature of the material located in this zone is lower than the recrystallization or solidification temperature of the polymer (I) forming dispersed phase.
  • the regulation temperature T fil is advantageously at least 20 ° C lower than the recrystallization or solidification temperature of the polymer (I) forming the dispersed phase, and it is preferably 30 ° C to 50 ° C lower at this temperature .
  • the temperature in the zone of the die F is significantly lower than the temperature of the supply zone A and it follows a decreasing profile between said zones passing through an intermediate zone I where the temperature T, is lower than that of zone A but does not yet correspond to the “dynamic quenching” temperature.
  • the material is simply cooled to room temperature.
  • the content of polymer (I) forming dispersed phase is specifically greater than 40% by weight (ie greater than 35% by volume) relative to all of the polymers.
  • this content of polymer (I) is less than 60% by weight, and advantageously less than 50% - by weight.
  • the content of polymer (I) can typically be between 40 and 45% by weight.
  • the amorphous polymer (I) is present in finely dispersed form and the dispersed amorphous phase is generally present in the form of rods dispersed in the matrix.
  • the size of these rods is generally of the order of 1 ⁇ m.
  • the average size of the polymer globules (I) dispersed within the polymer (II) matrix is generally of the order of a micron.
  • FIG. 3 A typical example of the morphology obtained according to the “dynamic quenching” method of the invention is given in FIG. 3.
  • FIG. 2 A typical example of the morphology obtained according to the “dynamic quenching” method of the invention is given in FIG. 3.
  • FIG. 2 A typical example of the morphology obtained according to the “dynamic quenching” method of the invention is given in FIG. 3.
  • FIG. 2 A typical example of the morphology obtained according to the “dynamic quenching” method of the invention is given in FIG. 3, by way of comparison, it is observed, in FIG. 2, that a co-continuity of the phases is obtained, by a conventional process in which the quenching operation is carried out independently after extrusion. In this case, it is not possible to access a defined, stable and reproducible morphology, in particular because this morphology considerably depends on the conditions for implementing the method.
  • the composite materials obtained in accordance with the present invention retain their morphology and therefore their properties at temperatures below the melting or softening temperature of the polymer (I) forming their dispersed phase.
  • the materials obtained according to the process of the invention therefore constitute interesting intermediate products which can serve as starting materials for the preparation of shaped articles.
  • they can be implemented according to various techniques chosen according to the shaped object that one wishes to obtain.
  • the processes for preparing shaped articles using the micro-composite materials of the invention as starting materials can thus consist, for example, in one or more extrusion, injection and / or molding.
  • the processing temperature of the micro-composite materials according to the invention (that is to say the material temperature) must specifically remain below the temperature of melting or softening of the polymer (I) forming the dispersed phase.
  • this material temperature is preferably at least 20 ° C lower, and more preferably 30 ° C to 50 ° C lower, than the melting or softening temperature of the polymer (I) forming the dispersed phase.
  • the sheath has nine successive and independent parts for regulating the temperature determining three zones, the supply zone A, the intermediate zone I and the zone of the die F, shown diagrammatically in FIG. 1.
  • These heating zones are also equipped with a pressurized water circuit, controlled by a solenoid valve allowing the evacuation of the calories produced by viscous dissipation of the polymers which is introduced by the mechanical shearing of the screws. This system considerably limits self-heating phenomena.
  • the different heating zones of the sheath are illustrated in FIG. 1.
  • the sector is also regulated independently of the other zones but does not have a water regulation system.
  • the speed of rotation of the screws is fixed at 160 rpm and the total feed rate of the extruder at 3 kg / h.
  • the two polymers (polymer forming matrix and polymer forming dispersed phase) are introduced together into the feed zone A of the extruder.
  • the polymer material temperature is controlled by two infrared (IR) temperature sensors. These sensors measure and control the actual temperature of the molten polymers. They are located in the intermediate zone 4 and at the head of the die 3.
  • a pressure sensor makes it possible to measure and control the pressure at the inlet of the die 3.
  • the tensile tests were carried out on samples cut out at prevails on the extruded bands. The values given for each sample are taken from the average of ten tests.
  • the test specimens are of the H3 type according to standard NF T51-034.
  • test conditions are as follows: - Device: INSTRON 1175, the jaws are self-tightening, pneumatic (force sensor 1 kN)
  • the threshold flow stress is measured at 120 ° C.
  • the temperature range of use of the material is defined as being the region where the material does not flow for applied stresses lower than the critical stress Gp (flow threshold).
  • the use temperature defined according to this threshold stress criterion, must therefore be lower than the melting or softening temperature of the dispersed phase.
  • the matrix consists of a copolymer of ethylene and vinyl acetate containing 28% by weight of vinyl acetate. It is an Atochem copolymer with commercial reference Evatane 2803. Its melting point is 80 ° C. and its crystallization temperature is close to 50 ° C.
  • the dispersed phase consists of polycarbonate (PC), a Bayer product of commercial reference Makrolon 2658.
  • 50% by weight of polycarbonate are dispersed according to the method of the invention in the EVA matrix.
  • thermomechanical properties measured are compared in table 18 to the reference samples obtained by a conventional process of implementation on the same extruder (identical speed and speed of the screws).
  • Figure 4 shows the thermomechanical behavior of the two types of material measured by the variation of the elastic modulus according to the temperature for a stress frequency ⁇ equal to 1 rad / s.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Laminated Bodies (AREA)

Abstract

The invention concerns a micro-composite polymer/polymer material comprising an amorphous polymer (I) forming a dispersed phase localised inside a thermoplastic or elastomeric polymer (II) forming a matrix, the glass transition temperature of polymer (I) forming a dispersed phase being higher by at least 20 °C than the melting or softening point of matrix-forming polymer (II), and the amorphous polymer content (I) forming the dispersed phase being not less than 40 wt. %. The invention also concerns a method for obtaining said material comprising steps which consist in: extruding, at regulated temperature, said melted polymer mixture, said regulating temperature being decreasing from the feeding zone (A) to the die zone (F) of said extruding machine (1) so that the material temperature in said die zone (F) is lower than the temperature of recrystallisation or solidification of polymer (II), and higher than the melting or softening point of amorphous polymer (I); and cooling at room temperature the resulting micro-composite material.

Description

MATERIAUX COMPOSITES POLYMERE/POLYMERE A HAUTE TENEUR EN PHASE DISPERSEE AMORPHE ET PROCEDE POUR LEUR PREPARATION POLYMER / POLYMER COMPOSITE MATERIALS WITH HIGH AMORPHOUS DISPERSE PHASE CONTENT AND PROCESS FOR THEIR PREPARATION
La présente invention a trait à un procédé pour la préparation de matériaux micro-composites polymère/polymère par extrusion à température régulée, ainsi que les matériaux micro-composites résultant.The present invention relates to a process for the preparation of polymer / polymer micro-composite materials by temperature-controlled extrusion, as well as the resulting micro-composite materials.
L'expression "matériau micro-composite polymère/polymère" désigne un matériau comprenant un mélange de polymères non miscibles dont l'un forme une phase dispersée dans l'autre constituant la matrice. Les matériaux micro-composite polymère/polymère sont généralement préparés par extrusion à température constante ou sensiblement croissante de la zone d'alimentation à la filière, cette étape d'extrusion étant suivie d'une étape d'étirage et d'une trempe en sortie de filière avant d'être remis en œuvre pour les applications visées. Dans le cas d'une phase dispersée de type polymère amorphe, on est actuellement limité à des teneurs inférieures à 20% (en poids) en phase dispersée. Au-delà, on ne peut contrôler la morphologie et la reproductibilité du matériau final obtenu.The expression “polymer / polymer micro-composite material” designates a material comprising a mixture of immiscible polymers, one of which forms a phase dispersed in the other constituting the matrix. The polymer / polymer micro-composite materials are generally prepared by extrusion at constant or substantially increasing temperature from the supply zone to the die, this extrusion step being followed by a drawing step and an outlet quenching before being implemented again for the intended applications. In the case of a dispersed phase of amorphous polymer type, it is currently limited to contents of less than 20% (by weight) in the dispersed phase. Beyond that, one cannot control the morphology and the reproducibility of the final material obtained.
D'une manière générale, les propriétés thermomécaniques des matériaux micro-composites dont on peut disposer aujourd'hui sont limitées et insuffisantes pour leur mise en oeuvre subséquente.In general, the thermomechanical properties of the micro-composite materials available today are limited and insufficient for their subsequent use.
Un des objectifs de la présente invention est de fournir des matériaux micro-composites polymère/polymère fortement chargés en polymère de renfort de type polymère amorphe, de morphologie définie, stable et reproductible.One of the objectives of the present invention is to provide polymer / polymer micro-composite materials heavily loaded with reinforcing polymer of amorphous polymer type, of defined morphology, stable and reproducible.
Un autre objectif de l'invention est de fournir un procédé pour la préparation des matériaux micro-composites précités pouvant être mis en œuvre de manière simple et reproductible avec des teneurs en phase dispersée élevées. Un autre objectif de l'invention est de fournir un tel procédé de préparation de - matériaux micro-composites tels qu'indiqués ci-dessus permettant d'obtenir des matériaux à propriétés thermomécaniques améliorées. Un autre objectif de la présente invention est encore de fournir des matériaux micro-composites polymère/polymère pouvant être mis en œuvre à titre de matériaux de départ dans des procédés de préparation d'objets conformés, sans que leurs propriétés thermomécaniques ne soient affectées.Another object of the invention is to provide a process for the preparation of the aforementioned micro-composite materials which can be implemented in a simple and reproducible manner with high contents in dispersed phase. Another object of the invention is to provide such a method of preparation - micro-composite materials as indicated above allowing to obtain improved thermomechanical properties to materials. Another objective of the present invention is also to provide polymer / polymer micro-composite materials which can be used as starting materials in processes for preparing shaped articles, without their thermomechanical properties being affected.
Plus précisément, selon un premier aspect, l'invention a pour objet un matériau micro-composite polymère/polymère, comprenant un polymère amorphe (I) formant une phase dispersée localisée au sein d'un polymère thermoplastique ou élastomère (II) formant matrice, la température de transition vitreuse du polymère (I) formant phase dispersée étant supérieure d'au moins 20°C à la température de fusion ou de ramollissement du polymère (II) formant matrice, et la teneur en polymère amorphe (I) formant phase dispersée étant supérieure ou égale à 40% en poids.More specifically, according to a first aspect, the subject of the invention is a polymer / polymer micro-composite material, comprising an amorphous polymer (I) forming a localized dispersed phase within a thermoplastic or elastomeric polymer (II) forming a matrix, the glass transition temperature of the polymer (I) forming the dispersed phase being at least 20 ° C higher than the melting or softening temperature of the polymer (II) forming the matrix, and the content of amorphous polymer (I) forming the dispersed phase being greater than or equal to 40% by weight.
L'invention a également pour objet un procédé pour la préparation de tels matériaux composites, caractérisé en ce qu'il comprend les étapes consistant à :The subject of the invention is also a process for the preparation of such composite materials, characterized in that it comprises the steps consisting in:
- introduire, à température régulée dans la zone d'alimentation (A) d'une extrudeuse (1 ), un mélange (2) comprenant lesdits polymères (I) et (II), la température de régulation dans cette zone étant supérieure à la température de fusion ou de ramollissement de chacun des polymères dudit mélange (2) ;- Introducing, at a regulated temperature into the feed zone (A) of an extruder (1), a mixture (2) comprising said polymers (I) and (II), the regulation temperature in this zone being greater than the melting or softening temperature of each of the polymers of said mixture (2);
- extruder, à température régulée ledit mélange de polymères à l'état fondu, ladite température de régulation étant décroissante de la zone d'alimentation (A) à la zone de la filière (F) de ladite extrudeuse (1 ) de sorte que la température matière dans ladite zone de la filière (F) soit inférieure à la température de recristallisation ou de solidification du polymère (II) et supérieure à la température de fusion ou de ramollissement du polymère amorphe (I) ; et- Extruding, at a controlled temperature, said mixture of polymers in the molten state, said control temperature being decreasing from the supply zone (A) to the zone of the die (F) of said extruder (1) so that the material temperature in said zone of the die (F) is lower than the recrystallization or solidification temperature of the polymer (II) and higher than the melting or softening temperature of the amorphous polymer (I); and
- refroidir à température ambiante le matériau micro-composite résultant.- cool the resulting micro-composite material to room temperature.
L'invention est également relative à un procédé pour l'obtention d'objets conformés, mettant en œuvre, à titre de matériau de départ, un matériau micro-composite tel que précité à une température contrôlée telle que, tout au long de la formation de l'objet conformé, la température matière reste inférieure à la température de fusion ou de ramollissement du polymère formant la phase dispersée du matériau micro-composite utilisé.The invention also relates to a method for obtaining shaped objects, using, as starting material, a micro-composite material as mentioned above at a controlled temperature such that, throughout the formation of the shaped object, the material temperature remains below the melting or softening temperature of the polymer forming the dispersed phase of the micro-composite material used.
Les inventeurs ont mis en évidence qu'en traitant un mélange de polymères (ou de copolymères) choisis par un procédé de « trempe dynamique » tel que défini ci-après, on pouvait obtenir, de manière reproductible et stable, des matériaux micro-composites à forte teneur en phase dispersée amorphe, présentant des propriétés thermomécaniques améliorées.The inventors have demonstrated that by treating a mixture of polymers (or copolymers) chosen by a “dynamic quenching” process as defined below, it was possible to obtain, in a reproducible and stable manner, micro-composite materials with a high content of amorphous dispersed phase, having improved thermomechanical properties.
L'invention est décrite plus en détail ci-après en référence aux dessins dans lesquels : - la figure 1 schématise l'étape d'extrusion du procédé selon l'invention ;The invention is described in more detail below with reference to the drawings in which: - Figure 1 shows schematically the extrusion step of the process according to the invention;
- les figures 2 et 3 sont des photographies prises au microscope électronique à balayage montrant la morphologie de matériaux obtenus à partir d'un mélange éthylène vinyle acétate (EVA) / polycarbonate (PC) 50/50 respectivement par un procédé traditionnel et par le procédé de trempe dynamique selon l'invention ;- Figures 2 and 3 are photographs taken with a scanning electron microscope showing the morphology of materials obtained from an ethylene vinyl acetate (EVA) / polycarbonate (PC) 50/50 mixture respectively by a traditional process and by the process dynamic quenching according to the invention;
- la figure 4 est un diagramme comparatif montrant le comportement thermodynamique des matériaux des figures 2 et 3 obtenus respectivement, selon un procédé traditionnel (À) et selon le procédé de trempe dynamique de l'invention (u), ainsi que de l'EVA seul (Φ), à une fréquence de sollicitation ω égale à 1 rad/sec.- Figure 4 is a comparative diagram showing the thermodynamic behavior of the materials of Figures 2 and 3 obtained respectively, according to a traditional process (À) and according to the dynamic quenching process of the invention (u), as well as EVA alone (Φ), at a stress frequency ω equal to 1 rad / sec.
De façon générale, dans le procédé de l'invention, on réalise tout d'abord un mélange de polymères comprenant au moins le polymère (I), destiné à former la phase dispersée (dit « polymère (I) formant phase dispersée ») et le polymère (II) destiné à former la matrice (dit « polymère (II) formant matrice »). Le terme « polymère », au sens de l'invention, désigne indifféremment un ou plusieurs polymères et ou copolymères.In general, in the process of the invention, a mixture of polymers is first produced comprising at least the polymer (I), intended to form the dispersed phase (called “polymer (I) forming dispersed phase”) and the polymer (II) intended to form the matrix (known as “polymer (II) forming matrix”). The term “polymer”, within the meaning of the invention, indifferently designates one or more polymers and or copolymers.
Les polymères (I) et (II) sont spécifiquement des polymères non miscibles, c'est-à-dire, au sens de l'invention, des polymères non miscibles à l'état fondu, dans les conditions de leur mise en œuvre pour la préparation des matériaux désirés, ainsi que dans le matériau extrudé final.The polymers (I) and (II) are specifically immiscible polymers, that is to say, within the meaning of the invention, immiscible polymers in the molten state, under the conditions of their use for the preparation of the desired materials, as well as in the final extruded material.
De façon générale, le choix des polymères mis en œuvre dans l'invention est opéré de telle sorte que la température de cristallisation ou de solidification du polymère (I) destiné à former la phase dispersée soit nettement supérieure à la température de fusion ou de ramollissement du polymère (II) destiné à former la matrice. Par « température nettement supérieure », on entend une différence d'au moins 20°C entre les températures considérées, et de préférence une différence allant de 30°C à 50°C. Une différence de l'ordre de 30°C (c'est-à-dire avantageusement comprise entre 25 et 40°C, et typiquement entre 28 et 35°C) est plus particulièrement préférée.In general, the choice of polymers used in the invention is made so that the crystallization or solidification temperature of the polymer (I) intended to form the dispersed phase is significantly higher than the melting or softening temperature polymer (II) intended to form the matrix. By "clearly higher temperature" is meant a difference of at least 20 ° C between the temperatures considered, and preferably a difference ranging from 30 ° C to 50 ° C. A difference of the order of 30 ° C (that is to say advantageously between 25 and 40 ° C, and typically between 28 and 35 ° C) is more particularly preferred.
Le polymère (II) peut être choisi parmi les polymères thermoplastiques semi-cristallins ou amorphes, ou encore parmi les élastomères.The polymer (II) can be chosen from semi-crystalline or amorphous thermoplastic polymers, or also from elastomers.
Parmi les exemples de polymères convenables à titre de polymère (II) formant matrice, on peut citer les polymères ou copolymères d'acétate de vinyles et d'esters acryliques, plus particulièrement les polymères ou copolymères éthylène/acétate de vinyle ou éthylène/esters acryliques. Typiquement, le polymère (II) est un polymère éthylène/acétate de vinyle (EVA).Among the examples of polymers suitable as polymer (II) forming a matrix, mention may be made of polymers or copolymers of vinyl acetate and of acrylic esters, more particularly polymers or copolymers of ethylene / vinyl acetate or ethylene / acrylic esters . Typically, the polymer (II) is an ethylene / vinyl acetate (EVA) polymer.
Le polymère (I) est quant à lui spécifiquement choisi parmi les polymères amorphes.The polymer (I) is in turn specifically chosen from amorphous polymers.
Parmi les polymères amorphes convenables aux fins de l'invention, on peut citer les polycarbonates, les polystyrènes et les polyesters acryliques et méthacryliques ou leurs mélanges. Typiquement, le polymère (I) formant phase dispersée est un polycarbonate. Le procédé de l'invention est mis en œuvre dans une extrudeuse. Il est des compétences de l'homme du métier d'effectuer le choix des caractéristiques de l'extrudeuse à mettre en oeuvre notamment de façon à obtenir relativement rapidement un mélange homogène par voie fondue des polymères en tenant compte des caractéristiques physico-chimiques de la matière extrudée.Among the amorphous polymers suitable for the purposes of the invention, mention may be made of polycarbonates, polystyrenes and acrylic and methacrylic polyesters or their mixtures. Typically, the polymer (I) forming a dispersed phase is a polycarbonate. The method of the invention is implemented in an extruder. It is the skill of the person skilled in the art to make the choice of the characteristics of the extruder to be used in particular so as to relatively quickly obtain a homogeneous melt mixture of polymers taking into account the physicochemical characteristics of the extruded material.
L'extrudeuse mise en œuvre est de préférence une extrudeuse double vis, dont le rapport Longueur/Diamètre est avantageusement supérieur ou égal à 34.The extruder used is preferably a twin screw extruder, the length / diameter ratio of which is advantageously greater than or equal to 34.
La vitesse de rotation des vis ainsi que le débit d'alimentation en polymères peuvent être adaptés par l'homme du métier de manière à limiter les auto-échauffements et à satisfaire la condition de température explicitée ci- après.The speed of rotation of the screws as well as the rate of supply of polymers can be adapted by a person skilled in the art so as to limit self-heating and to satisfy the temperature condition explained below.
En référence à la figure 1 , on voit le fourreau d'une extrudeuse 1 pour laquelle on a schématisé successivement la zone d'alimentation A, une zone intermédiaire I et la zone de la filière F soumises respectivement à des températures de régulation définies comme explicité ci-après. Une filière 3 est en outre placée en sortie de l'extrudeuse.With reference to FIG. 1, the barrel of an extruder 1 is seen, for which the supply zone A, an intermediate zone I and the zone of the die F have been shown diagrammatically, subject respectively to regulation temperatures defined as explained. below. A die 3 is also placed at the outlet of the extruder.
On introduit le mélange de polymères 2 dans la zone d'alimentation A de l'extrudeuse 1. La température de régulation Ta, est supérieure à la température de fusion ou de ramollissement de chacun des polymères dudit mélange. Les polymères sont alors rapidement mélangés par voie fondue de sorte que le polymère formant la phase minoritaire soit dispersé de façon homogène dans l'autre polymère.The mixture of polymers 2 is introduced into the feed zone A of the extruder 1. The regulation temperature T a is higher than the melting or softening temperature of each of the polymers of said mixture. The polymers are then quickly melt-mixed so that the polymer forming the minority phase is dispersed homogeneously in the other polymer.
On rappelle, d'une manière générale, que la température de régulation correspond à la température appliquée (température de consigne ) au fourreau de l'extrudeuse et tient compte notamment des phénomènes thermiques pouvant intervenir au niveau de l'installation et des auto-échauffements de la matière traitée qui peuvent se produire lors de l'opération d'extrusion. Le choix de la température de régulation dépend des polymères mis en œuvre.It is generally recalled that the regulation temperature corresponds to the temperature applied (set temperature) to the barrel of the extruder and takes account in particular of the thermal phenomena which can occur at the level of the installation and the self-heating of the treated material which may occur during the extrusion operation. The choice of the regulation temperature depends on the polymers used.
On poursuit l'opération d'extrusion sur le mélange de polymères à l'état fondu jusqu'à la zone de la filière F où il va subir une « trempe dynamique ». L'expression « trempe dynamique » désigne une opération de refroidissement contrôlé, réalisée dans l'extrudeuse, en amont de la filière, qui provoque la recristallisation ou la solidification du polymère formant phase dispersée dans le polymère formant matrice, sous les forces de cisaillement et les contraintes mécaniques imposées par l'extrudeuse (rotation des vis). On obtient ainsi un matériau micro-composite polymère/polymère à morphologie spécifique et contrôlée, présentant des propriétés thermomécaniques améliorées comme explicité ci-après.The extrusion operation is continued on the polymer blend in the molten state up to the zone of the die F where it will undergo a “dynamic quenching”. The expression “dynamic quenching” designates a controlled cooling operation, carried out in the extruder, upstream of the die, which causes recrystallization or solidification of the polymer forming phase dispersed in the matrix-forming polymer, under the shear forces and the mechanical stresses imposed by the extruder (rotation of the screws). A polymer / polymer micro-composite material with specific and controlled morphology is thus obtained, having improved thermomechanical properties as explained below.
A cet effet, la température de régulation Tfil dans la zone de la filière F est fixée de sorte que la température de la matière située dans cette zone soit inférieure à la température de recristallisation ou de solidification du polymère (I) formant phase dispersée. La température de régulation Tfil est avantageusement inférieure d'au moins 20°C à la température de recristallisation ou de solidification du polymère (I) formant phase dispersée, et elle est de préférence inférieure de 30°C à 50°C à cette température.To this end, the regulation temperature T fil in the zone of the die F is fixed so that the temperature of the material located in this zone is lower than the recrystallization or solidification temperature of the polymer (I) forming dispersed phase. The regulation temperature T fil is advantageously at least 20 ° C lower than the recrystallization or solidification temperature of the polymer (I) forming the dispersed phase, and it is preferably 30 ° C to 50 ° C lower at this temperature .
En d'autres termes, la température dans la zone de la filière F est nettement inférieure à la température de la zone d'alimentation A et elle suit un profil décroissant entre lesdites zones en passant par une zone intermédiaire I où la température T, est inférieure à celle de la zone A mais ne correspond pas encore à la température de « trempe dynamique ».In other words, the temperature in the zone of the die F is significantly lower than the temperature of the supply zone A and it follows a decreasing profile between said zones passing through an intermediate zone I where the temperature T, is lower than that of zone A but does not yet correspond to the “dynamic quenching” temperature.
En sortie de la filière 3, le matériau est simplement refroidit à la température ambiante.At the outlet of the die 3, the material is simply cooled to room temperature.
Par mise en œuvre du procédé de l'invention, on obtient un matériau à morphologie contrôlable et reproductible, fortement chargé en polymère de renfort sans que cette forte teneur en polymère (I) ne diminue les propriétés de cohésion du matériau. Selon l'invention, la teneur en polymère (I) formant phase dispersée est spécifiquement supérieure à 40 % en poids (soit supérieure à 35% en volume) par rapport à la totalité des polymères. Notamment de façon à ne pas obtenir de matériaux trop fragiles, on préfère généralement que cette teneur en polymère (I) soit inférieure à 60 % en poids, et de façon avantageuse inférieure à 50 %- en poids. Ainsi, la teneur en polymère (I) peut typiquement être comprise entre 40 et 45 % en poids. Dans le matériau obtenu à l'issu du procédé de l'invention, le polymère amorphe (I) est présent sous forme finement dispersée et la phase amorphe dispersée se présente généralement sous la forme de bâtonnets dispersés dans la matrice. La taille de ces bâtonnets est généralement de l'ordre de 1 μm. Quelle que soit la morphologie exacte de la phase dispersée, la taille moyenne des globules de polymère (I) dispersées au sein de la matrice de polymère (II) est généralement de l'ordre du micron.By implementing the method of the invention, a material with controllable and reproducible morphology is obtained, heavily loaded with reinforcing polymer without this high content of polymer (I) decreasing the cohesion properties of the material. According to the invention, the content of polymer (I) forming dispersed phase is specifically greater than 40% by weight (ie greater than 35% by volume) relative to all of the polymers. In particular so as not to obtain materials which are too fragile, it is generally preferred that this content of polymer (I) is less than 60% by weight, and advantageously less than 50% - by weight. Thus, the content of polymer (I) can typically be between 40 and 45% by weight. In the material obtained at the end of the process of the invention, the amorphous polymer (I) is present in finely dispersed form and the dispersed amorphous phase is generally present in the form of rods dispersed in the matrix. The size of these rods is generally of the order of 1 μm. Whatever the exact morphology of the dispersed phase, the average size of the polymer globules (I) dispersed within the polymer (II) matrix is generally of the order of a micron.
Un exemple typique de la morphologie obtenue selon le procédé de « trempe dynamique » de l'invention est donné en figure 3. A titre comparatif, on observe, dans la figure 2, que l'on obtient une co- continuité des phases, par un procédé classique où l'opération de trempe est réalisée, de manière indépendante, après extrusion. Dans ce cas, on ne peut accéder à une morphologie définie, stable et reproductible notamment du fait que cette morphologie dépend considérablement des conditions de mise en œuvre du procédé.A typical example of the morphology obtained according to the “dynamic quenching” method of the invention is given in FIG. 3. By way of comparison, it is observed, in FIG. 2, that a co-continuity of the phases is obtained, by a conventional process in which the quenching operation is carried out independently after extrusion. In this case, it is not possible to access a defined, stable and reproducible morphology, in particular because this morphology considerably depends on the conditions for implementing the method.
Les matériaux composites obtenus conformément à la présente invention conservent leur morphologie et par conséquent leurs propriétés aux températures inférieures à la température de fusion ou de ramollissement du polymère (I) formant leur phase dispersée. Les matériaux obtenus selon le procédé de l'invention constituent de ce fait des produits intermédiaires intéressants qui peuvent servir de matériaux de départ pour l'élaboration d'articles façonnés. Dans ce cadre, ils peuvent être mis en œuvre selon diverses techniques choisies en fonction de l'objet conformé que l'on souhaite obtenir. Les procédés de préparation d'articles façonnés mettant en œuvre les matériaux micro-composites de l'invention à titre de matériaux de départ peuvent ainsi consister, par exemple, en une ou plusieurs opération(s) d'extrusion, d'injection et/ou de moulage.The composite materials obtained in accordance with the present invention retain their morphology and therefore their properties at temperatures below the melting or softening temperature of the polymer (I) forming their dispersed phase. The materials obtained according to the process of the invention therefore constitute interesting intermediate products which can serve as starting materials for the preparation of shaped articles. In this context, they can be implemented according to various techniques chosen according to the shaped object that one wishes to obtain. The processes for preparing shaped articles using the micro-composite materials of the invention as starting materials can thus consist, for example, in one or more extrusion, injection and / or molding.
Quel que soit le traitement appliqué, au cours de la formation des articles conformés, la température de mise en œuvre des matériaux micro- composites selon l'invention (c'est-à-dire la température matière) doit spécifiquement rester inférieure à la température de fusion ou de ramollissement du polymère (I) formant la phase dispersée. Dans le cas général, cette température matière est de préférence inférieure d'au moins 20°C, et plus préférentiellement inférieure de 30°C à 50°C, à la température de fusion ou de ramollissement du polymère (I) formant la phase dispersée.Whatever the treatment applied, during the formation of the shaped articles, the processing temperature of the micro-composite materials according to the invention (that is to say the material temperature) must specifically remain below the temperature of melting or softening of the polymer (I) forming the dispersed phase. In the case generally, this material temperature is preferably at least 20 ° C lower, and more preferably 30 ° C to 50 ° C lower, than the melting or softening temperature of the polymer (I) forming the dispersed phase.
Les procédés pour la préparation d'objets conformés mettant en œuvre les matériaux micro-composites décrits précédemment, dans les conditions de température contrôlée indiquées ci-dessus, constituent un objet particulier de l'invention.The processes for the preparation of shaped objects using the micro-composite materials described above, under the controlled temperature conditions indicated above, constitute a particular object of the invention.
Les caractéristiques et avantages de l'invention apparaîtront plus en détails, au vu des exemples exposés ci-après.The characteristics and advantages of the invention will appear in more detail, in the light of the examples set out below.
EXEMPLESEXAMPLES
MATERIEL ET METHODEMATERIAL AND METHOD
Pour la réalisation des exemples décrits ci-dessous, on a utilisé une extrudeuse double vis co-rotatives à vis interpénétrées. Tous les éléments de vis ont deux filets. Le diamètre des vis est de 34 mm et l'entraxe de 30 mm. Le rapport Longueur / Diamètre (L/D) de l'extrudeuse est de L/D = 34.For the production of the examples described below, a co-rotating twin screw extruder with interpenetrated screws was used. All screw elements have two threads. The diameter of the screws is 34 mm and the distance between centers is 30 mm. The length / diameter ratio (L / D) of the extruder is L / D = 34.
Le fourreau possède neuf parties successives et indépendantes pour la régulation de la température déterminant trois zones, la zone d'alimentation A, la zone intermédiaire I et la zone de la filière F, schématisées à la figure 1.The sheath has nine successive and independent parts for regulating the temperature determining three zones, the supply zone A, the intermediate zone I and the zone of the die F, shown diagrammatically in FIG. 1.
Ces zones de chauffage sont également équipées d'un circuit d'eau pressurisé, piloté par électrovanne permettant l'évacuation des calories produites par dissipation visqueuse des polymères qui est introduite par le cisaillement mécanique des vis. Ce système permet de limiter considérablement les phénomènes d'auto-échauffement.These heating zones are also equipped with a pressurized water circuit, controlled by a solenoid valve allowing the evacuation of the calories produced by viscous dissipation of the polymers which is introduced by the mechanical shearing of the screws. This system considerably limits self-heating phenomena.
Les différentes zones de chauffage du fourreau sont illustrées sur la figure 1.The different heating zones of the sheath are illustrated in FIG. 1.
La filière est constituée d'une filière plate de type porte manteau ayant les dimensions suivantes : largueur L=50 mm, longueur 1=30 mm et épaisseur h=2 mm. La- filière est également régulée indépendamment des autres zones mais ne possède pas de système de régulation d'eau. Pour tout le procédé décrit, la vitesse de rotation des vis est fixée à 160 trs/min et le débit total d'alimentation de l'extrudeuse à 3 kg/h. Les deux polymères (polymère formant matrice et polymère formant phase dispersée) sont introduits ensemble dans la zone d'alimentation A de l'extrudeuse. La température matière du polymère est contrôlée par deux capteurs de température Infrarouge (IR). Ces capteurs permettent de mesurer et de contrôler la température réelle des polymères fondus. Ils sont localisés dans la zone l4 intermédiaire et en tête de la filière 3. Un capteur de pression permet de mesurer et de contrôler la pression à l'entrée de la filière 3. Les tests de traction ont été réalisés sur des échantillons découpés à l'emporte pièce sur les bandes extrudées. Les valeurs données pour chaque échantillon sont issues de la moyenne de dix tests. Les éprouvettes d'essais sont de type H3 selon la norme NF T51-034.The die consists of a flat die type coat rack having the following dimensions: width L = 50 mm, length 1 = 30 mm and thickness h = 2 mm. The sector is also regulated independently of the other zones but does not have a water regulation system. For the entire process described, the speed of rotation of the screws is fixed at 160 rpm and the total feed rate of the extruder at 3 kg / h. The two polymers (polymer forming matrix and polymer forming dispersed phase) are introduced together into the feed zone A of the extruder. The polymer material temperature is controlled by two infrared (IR) temperature sensors. These sensors measure and control the actual temperature of the molten polymers. They are located in the intermediate zone 4 and at the head of the die 3. A pressure sensor makes it possible to measure and control the pressure at the inlet of the die 3. The tensile tests were carried out on samples cut out at prevails on the extruded bands. The values given for each sample are taken from the average of ten tests. The test specimens are of the H3 type according to standard NF T51-034.
Les conditions des tests sont les suivantes : - Appareil : INSTRON 1175, les mâchoires sont auto-serrantes, pneumatiques (capteur de force 1 kN)The test conditions are as follows: - Device: INSTRON 1175, the jaws are self-tightening, pneumatic (force sensor 1 kN)
- Température : température ambiante (23°C) .- Temperature: room temperature (23 ° C).
- Vitesse d'essai : 50 mm/min- Test speed: 50 mm / min
En viscoélasticité linéaire, la contrainte seuil d'écoulement est mesurée à 120°C. Le domaine de température d'utilisation du matériau est défini comme étant le domaine où le matériau ne flue pas pour des contraintes appliquées inférieures à la contrainte critique Gp (seuil d'écoulement). La température d'usage, définie selon ce critère de contrainte seuil, doit donc être inférieure à la température de fusion ou de ramollissement de la phase dispersée. In linear viscoelasticity, the threshold flow stress is measured at 120 ° C. The temperature range of use of the material is defined as being the region where the material does not flow for applied stresses lower than the critical stress Gp (flow threshold). The use temperature, defined according to this threshold stress criterion, must therefore be lower than the melting or softening temperature of the dispersed phase.
EXEMPLE 1 Composite EVA/PCEXAMPLE 1 EVA / PC composite
La matrice est constituée d'un copolymère d'éthylène et d'acétate de vinyle contenant 28% en poids d'acétate de vinyle. Il s'agit d'un copolymère Atochem de référence commerciale Evatane 2803. Sa température de fusion est de 80°C et sa température de cristallisation voisine de 50°C.The matrix consists of a copolymer of ethylene and vinyl acetate containing 28% by weight of vinyl acetate. It is an Atochem copolymer with commercial reference Evatane 2803. Its melting point is 80 ° C. and its crystallization temperature is close to 50 ° C.
La phase dispersée est constituée de polycarbonate (PC), un produit Bayer de référence commerciale Makrolon 2658.The dispersed phase consists of polycarbonate (PC), a Bayer product of commercial reference Makrolon 2658.
50% en poids de polycarbonate sont dispersés selon le procédé de l'invention dans la matrice EVA.50% by weight of polycarbonate are dispersed according to the method of the invention in the EVA matrix.
Les consignes de températures des différentes zones de régulation de températures sont données dans le tableau 1.The temperature setpoints for the different temperature control zones are given in table 1.
TABLEAU 1TABLE 1
Les températures matières indiquées par les capteurs infrarouge ainsi que la pression mesurée en tête de filière sont données dans le tableau 2 :The material temperatures indicated by the infrared sensors as well as the pressure measured at the head of the die are given in table 2:
TABLEAU 2TABLE 2
Une fine dispersion de la phase PC est obtenue par le procédé de l'invention et permet, ainsi d'avoir une concentration élevée en PC tout en gardant les propriétés de cohésion du matériau pour les températures d'utilisation inférieures à la température de transition vitreuse du polycarbonate. EXEMPLE 2 (Exemple comparatif)A fine dispersion of the PC phase is obtained by the process of the invention and thus makes it possible to have a high concentration of PC while retaining the cohesion properties of the material for the use temperatures below the glass transition temperature. polycarbonate. EXAMPLE 2 (Comparative example)
Par un procédé classique de mise en œuvre, une morphologie co- continue des deux phases est obtenue comme montré en figure 2.By a conventional implementation process, a co-continuous morphology of the two phases is obtained as shown in FIG. 2.
Cette morphologie n'est pas stable et dépend considérablement des conditions de mise en œuvre.This morphology is not stable and depends considerably on the conditions of implementation.
Les propriétés thermomécaniques mesurées sont comparées dans le tableau 18 aux échantillons références obtenus par un procédé classique de mise en œuvre sur la même extrudeuse (débit et vitesse des vis identiques).The thermomechanical properties measured are compared in table 18 to the reference samples obtained by a conventional process of implementation on the same extruder (identical speed and speed of the screws).
TABLEAU 3TABLE 3
La figure 4 montre le comportement thermomécanique des deux types de matériau mesuré par la variation du module élastique en fonction de la température pour une fréquence de sollicitation ω égale à 1 rad/s. Figure 4 shows the thermomechanical behavior of the two types of material measured by the variation of the elastic modulus according to the temperature for a stress frequency ω equal to 1 rad / s.

Claims

REVENDICATIONS
1. Matériau micro-composite polymère/polymère, comprenant un polymère amorphe (I) formant une phase dispersée localisée au sein d'un polymère thermoplastique ou elastomère (II) formant matrice, la température de transition vitreuse du polymère (I) formant phase dispersée étant supérieure d'au moins 20°C à la température de fusion ou de ramollissement du polymère (II) formant matrice, et la teneur en polymère amorphe (I) formant phase dispersée étant supérieure ou égale à 40% en poids.1. Polymer / polymer micro-composite material, comprising an amorphous polymer (I) forming a dispersed phase localized within a thermoplastic polymer or elastomer (II) forming a matrix, the glass transition temperature of the polymer (I) forming a dispersed phase being at least 20 ° C higher than the melting or softening temperature of the polymer (II) forming the matrix, and the content of amorphous polymer (I) forming the dispersed phase being greater than or equal to 40% by weight.
2. Matériau selon la revendication 1 , caractérisé en ce que le polymère amorphe (I) formant phase dispersée est choisi parmi les polycarbonates, les polystyrènes, les polyesters acryliques ou méthacryliques, ou les mélanges de ces composés.2. Material according to claim 1, characterized in that the amorphous polymer (I) forming a dispersed phase is chosen from polycarbonates, polystyrenes, acrylic or methacrylic polyesters, or mixtures of these compounds.
3. Matériau selon la revendication 1 ou la revendication 2, caractérisé en ce que le polymère amorphe (I) formant phase dispersée est. un polycarbonate.3. Material according to claim 1 or claim 2, characterized in that the amorphous polymer (I) forming dispersed phase is. polycarbonate.
4. Matériau selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la phase dispersée se présente sous forme de bâtonnets.4. Material according to any one of claims 1 to 3, characterized in that the dispersed phase is in the form of rods.
5. Matériau selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la taille moyenne des globules de polymères (I) dispersés dans la matrice de polymère (II) est de l'ordre du micron.5. Material according to any one of claims 1 to 4, characterized in that the average size of the polymer globules (I) dispersed in the polymer matrix (II) is of the order of a micron.
6. Matériau selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la température de transition vitreuse du polymère amorphe (I) formant phase dispersée est supérieure de 30°C à 50°C à la température de fusion ou de ramollissement du polymère (II) formant matrice.6. Material according to any one of claims 1 to 5, characterized in that the glass transition temperature of the amorphous polymer (I) forming dispersed phase is 30 ° C to 50 ° C above the melting or softening temperature of polymer (II) forming a matrix.
7. Matériau selon la revendication 6, caractérisé en ce que la température de transition vitreuse du polymère amorphe (I) formant phase dispersée est supérieure de 30°C à la température de fusion ou de ramollissement du polymère (II) formant matrice.7. Material according to claim 6, characterized in that the glass transition temperature of the amorphous polymer (I) forming dispersed phase is 30 ° C higher than the melting or softening temperature of the polymer (II) forming the matrix.
8. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce que le polymère (II) formant matrice est choisi parmi les polymères ou copolymères d'acétate de vinyle et d'esters acryliques.8. Material according to any one of the preceding claims, characterized in that the polymer (II) forming a matrix is chosen from polymers or copolymers of vinyl acetate and acrylic esters.
9. Matériau selon la revendication 8, caractérisé en ce que le polymère (II) formant matrice est choisi parmi les polymères ou copolymères éthylène/acétate de vinyle ou éthylène/ester acryliques.9. Material according to claim 8, characterized in that the polymer (II) forming a matrix is chosen from polymers or copolymers of ethylene / vinyl acetate or ethylene / acrylic ester.
10. Matériau selon la revendication 9, caractérisé en ce que le polymère (II) formant matrice est l'éthyiène vinyle acétate (EVA).10. Material according to claim 9, characterized in that the polymer (II) forming a matrix is ethylene vinyl acetate (EVA).
11. Procédé pour la préparation d'un matériau micro-composite polymère/polymère selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend les étapes consistant à :11. Process for the preparation of a polymer / polymer micro-composite material according to any one of claims 1 to 10, characterized in that it comprises the steps consisting in:
- introduire, à température régulée dans la zone d'alimentation (A) d'une extrudeuse (1 ), un mélange (2) comprenant lesdits polymères (l) et (II), la température de régulation dans cette zone étant supérieure à la température de fusion ou de ramollissement de chacun des polymères dudit mélange (2) ;- Introducing, at a regulated temperature into the feed zone (A) of an extruder (1), a mixture (2) comprising said polymers (l) and (II), the regulation temperature in this zone being greater than the melting or softening temperature of each of the polymers of said mixture (2);
- extruder, à température régulée ledit mélange de polymères à l'état fondu, ladite température de régulation étant décroissante de la zone d'alimentation (A) à la zone de la filière (F) de ladite extrudeuse (1 ) de sorte que la température matière dans ladite zone de la filière (F) soit inférieure à la température de recristallisation ou de solidification du polymère (II) et supérieure à la température de fusion ou de ramollissement du polymère amorphe (I) ; et- Extruding, at a controlled temperature, said mixture of polymers in the molten state, said control temperature being decreasing from the supply zone (A) to the zone of the die (F) of said extruder (1) so that the material temperature in said zone of the die (F) is lower than the recrystallization or solidification temperature of the polymer (II) and higher than the melting or softening temperature of the amorphous polymer (I); and
- refroidir à température ambiante le matériau micro-composite résultant.- cool the resulting micro-composite material to room temperature.
12. Procédé selon la revendication 1 1 , caractérisé en ce que la température de régulation dans la zone de la filière (F) est inférieure d'au moins 20°C à la température de recristallisation ou de solidification du polymère (II).12. Method according to claim 1 1, characterized in that the regulation temperature in the zone of the die (F) is lower by at least minus 20 ° C at the recrystallization or solidification temperature of the polymer (II).
13. Procédé selon la revendication 12, caractérisé en ce que la température de régulation dans la zone de la filière (F) est inférieure de 30°C à13. The method of claim 12, characterized in that the regulation temperature in the area of the die (F) is 30 ° C lower than
50°C à la température de recristallisation ou de solidification du polymère (II).50 ° C at the recrystallization or solidification temperature of the polymer (II).
14. Procédé selon l'une quelconque des revendications 1 1 à 13, caractérisé en ce que le mélange de polymères à l'état fondu est extrudé dans une extrudeuse double-vis.14. Method according to any one of claims 1 1 to 13, characterized in that the mixture of polymers in the molten state is extruded in a twin-screw extruder.
15. Procédé selon la revendication 14, caractérisé en ce que l'extrudeuse présente un rapport longueur / diamètre (L/D) supérieur ou égal à 34.15. The method of claim 14, characterized in that the extruder has a length / diameter ratio (L / D) greater than or equal to 34.
16. Procédé de préparation d'un article conformé, mettant en œuvre, à titre de matériau de départ, un matériau micro-composite selon l'une quelconque des revendications 1 à 10, ou un matériau micro-composite obtenu à l'issu d'un procédé selon l'une quelconque des revendications 11 à 15, la température étant contrôlée au cours de la formation dudit article conformé de telle sorte que la température matière reste inférieure à la température de fusion ou de ramollissement du polymère (I) formant la phase dispersée dudit matériau micro-composite.16. A method of preparing a shaped article, using, as starting material, a micro-composite material according to any one of claims 1 to 10, or a micro-composite material obtained at the end of 'A method according to any one of claims 11 to 15, the temperature being controlled during the formation of said shaped article so that the material temperature remains below the melting or softening temperature of the polymer (I) forming the dispersed phase of said micro-composite material.
17. Procédé selon la revendication 16, caractérisé en ce que la température matière reste inférieure d'au moins 20°C à la température de fusion ou de ramollissement du polymère (I) formant la phase dispersée du matériau micro-composite. 17. The method of claim 16, characterized in that the material temperature remains at least 20 ° C lower than the melting or softening temperature of the polymer (I) forming the dispersed phase of the micro-composite material.
EP01923758A 2000-04-06 2001-04-06 Composite polymer/polymer material with high content in amorphous dispersed phase and preparation method Withdrawn EP1272558A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0004420 2000-04-06
FR0004420A FR2807440A1 (en) 2000-04-06 2000-04-06 POLYMER / POLYMER MICRO-COMPOSITE MATERIALS AND PROCESS FOR THEIR PREPARATION
PCT/FR2001/001057 WO2001077223A1 (en) 2000-04-06 2001-04-06 Composite polymer/polymer material with high content in amorphous dispersed phase and preparation method

Publications (1)

Publication Number Publication Date
EP1272558A1 true EP1272558A1 (en) 2003-01-08

Family

ID=8848954

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01921511A Withdrawn EP1272557A1 (en) 2000-04-06 2001-04-06 Micro-composite polymer/polymer materials with semicrystalline dispersed phase and preparation method
EP01923758A Withdrawn EP1272558A1 (en) 2000-04-06 2001-04-06 Composite polymer/polymer material with high content in amorphous dispersed phase and preparation method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01921511A Withdrawn EP1272557A1 (en) 2000-04-06 2001-04-06 Micro-composite polymer/polymer materials with semicrystalline dispersed phase and preparation method

Country Status (7)

Country Link
US (2) US20030166778A1 (en)
EP (2) EP1272557A1 (en)
JP (2) JP2003532751A (en)
AU (2) AU2001250452A1 (en)
CA (2) CA2405282A1 (en)
FR (1) FR2807440A1 (en)
WO (2) WO2001077222A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494055B2 (en) * 2004-03-25 2010-06-30 坂本工業株式会社 Polymer alloy molding method and container molding method
EP2483348B2 (en) * 2009-10-02 2019-11-27 Dow Global Technologies LLC Block composites and impact modified compositions
US8476366B2 (en) * 2009-10-02 2013-07-02 Dow Global Technologies, Llc Block compositions in thermoplastic vulcanizate applications
JP5608540B2 (en) * 2010-12-20 2014-10-15 花王株式会社 Method for producing polylactic acid resin composition
CN109535682B (en) * 2018-11-13 2021-04-06 金发科技股份有限公司 Polyethylene/polycarbonate alloy with high bonding wire strength and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3480569A (en) * 1966-01-03 1969-11-25 Monsanto Co Polymer foams reinforced with polyamides,polyesters and polycarbonates
JPS6049084B2 (en) * 1978-11-06 1985-10-31 古河電気工業株式会社 Method for manufacturing crosslinked polyolefin resin molded products with improved properties
JPS59207966A (en) * 1983-05-13 1984-11-26 Mikuni Seisakusho:Kk Composite material composition utilizing synthetic fiber scrap
US5145892A (en) * 1985-12-19 1992-09-08 Chisso Corporation Polypropylene resin composition
US4737546A (en) * 1986-08-15 1988-04-12 General Electric Company Moldable polycarbonate resin and copolyester-carbonate compositions of improved processability
US5288842A (en) * 1991-01-30 1994-02-22 International Business Machines Corporation Morphological composite materials formed from different precursors
US5981007A (en) * 1992-03-31 1999-11-09 Foster-Miller, Inc. Extruded thermoplastic, liquid crystalline polymers and blends thereof having a planar morphology
CA2170616A1 (en) * 1993-08-30 1995-03-09 Dennis C. Young Recycling of carpet scrap
DE4444505C2 (en) * 1994-12-14 1998-02-19 Hp Chemie Pelzer Res & Dev Self-adhesive reinforcing material, process for its production and use for the production of textile nonwovens
US5567757A (en) * 1995-07-18 1996-10-22 Rjf International Corporation Low specific gravity binder for magnets
US6319998B1 (en) * 1998-03-04 2001-11-20 Exxon Mobil Chemical Patents Inc. Method for making polymer blends by using series reactors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0177223A1 *

Also Published As

Publication number Publication date
JP2003530454A (en) 2003-10-14
AU2001250452A1 (en) 2001-10-23
AU2001248492A1 (en) 2001-10-23
EP1272557A1 (en) 2003-01-08
CA2405282A1 (en) 2001-10-18
FR2807440A1 (en) 2001-10-12
WO2001077223A1 (en) 2001-10-18
WO2001077222A1 (en) 2001-10-18
US20030181596A1 (en) 2003-09-25
US20030166778A1 (en) 2003-09-04
JP2003532751A (en) 2003-11-05
CA2405111A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
CA2372211A1 (en) Polyolefins and method for the production thereof
FR2509742A1 (en)
EP0106764B1 (en) Process for the manufacture of thermoplastic composites with a matrix and a polymeric fibrillated reinforcing phase
FR2588005A1 (en) MALTITOL POWDER DIRECTLY COMPRESSIBLE AND PROCESS FOR PREPARING THE SAME
EP1272558A1 (en) Composite polymer/polymer material with high content in amorphous dispersed phase and preparation method
CA1328551C (en) Process for the fabrication of films from semi-crystalline fluid polymers
EP2117805A2 (en) Cooling jig for extruding pctfe strings and method for extruding pctfe strings
BE1010654A3 (en) Process of implementation of a thermoplastic semi-crystalline.
EP0494473A1 (en) Granules of coated vinylacetate and ethylene copolymer, process to produce them and their use as adhesives
JP4786065B2 (en) Ultra high molecular weight polyethylene resin composition for cutting film, thick molded body for cutting film, method for producing ultra high molecular weight polyethylene cutting film, and cutting film
BE891470A (en) METHOD AND APPARATUS FOR COMPRESSING A POLYMERIC POWDER INTO FULL DENSITY SHAPED OBJECTS, AND PRODUCTS OBTAINED
EP0113638B1 (en) Polyvinyl alcohol film and its use in the preparation of gas-impermeable composite films
EP1409583B1 (en) Thermoplastic halogenated polymer compositions, method for preparing same and use thereof
EP0434115A1 (en) Polyolefin-based plastic composition containing a particulate mineral filler, and multilayer structures constituted with this composition
BE1008919A3 (en) Graft copolymers of vinyl chloride with a high impact resistance, method for production and use copolymers for extrusion profiles.
WO2003024692A1 (en) Method of processing a used hdpe by means of extrusion-blow moulding
BE1008934A3 (en) TUBE, PLATE OR ARTICLE biaxially oriented.
EP0878286B1 (en) Die for film extrusion
BE696619A (en)
FR3099494A1 (en) HOLLOW FIBER
FR2649113A1 (en) THERMOPLASTIC COMPOSITION OF ACRILIC RESIN
WO2014195328A1 (en) Fillers used as an agent making it possible to reduce deterioration of barrier properties
FR3109905A1 (en) Manufacturing of Rubber Mixtures in a Rubber Mixture Manufacturing Line Incorporating One or More Twin-Screw Mixing and Extrusion Machine (s)
FR3074494A1 (en) COMPOSITE MATERIAL COMPRISING A FIBRILLARY PHASE FORMED IN-SITU IN THE MATRIX
BE539002A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20040211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20040525