EP1269105B1 - Charge pyrotechnique a fonctionnement dual - Google Patents

Charge pyrotechnique a fonctionnement dual Download PDF

Info

Publication number
EP1269105B1
EP1269105B1 EP01921435A EP01921435A EP1269105B1 EP 1269105 B1 EP1269105 B1 EP 1269105B1 EP 01921435 A EP01921435 A EP 01921435A EP 01921435 A EP01921435 A EP 01921435A EP 1269105 B1 EP1269105 B1 EP 1269105B1
Authority
EP
European Patent Office
Prior art keywords
charge
pyrotechnic
explosive
nominal
priming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01921435A
Other languages
German (de)
English (en)
Other versions
EP1269105A1 (fr
Inventor
Dominique Chambolle
Jean-Philippe Borgoltz
Philippe Adamski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1269105A1 publication Critical patent/EP1269105A1/fr
Application granted granted Critical
Publication of EP1269105B1 publication Critical patent/EP1269105B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Definitions

  • the present invention is specifically intended to overcome the aforementioned drawbacks by providing a pyrotechnic load dual operation that meets the multi-mission requirements mentioned above.
  • this pyrotechnic charge further comprising a first priming means and a second priming means, the first and second priming means being controllable independently from control means, for optionally transmitting a pyrotechnic order respectively to the nominal explosive charge or secondary explosive charge, the detonation of the secondary explosive charge not causing the initiation of the nominal explosive charge, and wherein the secondary explosive charge is in the form of pellets or bands of a secondary explosive distributed in an inert wave damper material.
  • the pyrotechnic charge of the present invention may further comprise a chip generator cutting line placed between the secondary explosive charge and the chip generator and / or between the protective envelope and the chip generator, and a third priming means, the third priming means being independently controllable from the control means for transmitting a pyrotechnic order to the cutting line, the detonation of the cutting line not damaging the secondary explosive charge and not causing the priming of the nominal explosive charge.
  • the nominal explosive charge is not in contact with the secondary explosive charge.
  • the space between the nominal explosive charge and the flash generator depends in particular directly on the density of the main explosive and the sensitivity of the explosive to initiation.
  • the secondary explosive charge must detonate without priming the nominal explosive.
  • this detonating explosive is essential to respect the chronometry necessary during the engagement phase of the use of the load.
  • the total decomposition after the ignition signal of the secondary explosive charge must preferably be obtained in less than 100 ⁇ s, which imposes a detonation regime.
  • This explosive charge is therefore, in accordance with the present invention, in the form of pellets or strips of a low energy secondary explosive distributed in a material inert wave damper, this set forming an explosive architecture.
  • the secondary explosive may be of the same nature as the nominal explosive if it is sufficiently sensitive. This may be the V350, but also more sensitive, comparable octogenous compositions, or bands, for example V401. According to the present invention, a pentrite composition, easy to shape and very good detonation, can also be used. The secondary explosive can therefore, because of its nature and its conformation in the pyrotechnic charge of the present invention, be initiated in the same way as the nominal explosive.
  • the mass of the secondary explosive to be used is proportional to the kinetic energy ratio that one wishes to communicate to the chips between the two operations. Indeed, for a given "slice of load", the kinetic energy imparted to the chips is a function of the explosive mass that detonates.
  • the inert material may be, for example in the form of a foam such as a porous plastic or a honeycomb, metallic or composite honeycomb structure, having for example a density of about 0, 2 to 0.3.
  • the non-priming of the main explosive is essentially provided by the vacuum formed by the cells of the foam which acts as a damper.
  • the foam can also fill a space left between the nominal explosive and the chip generator. This space can be about 10 mm.
  • the layer formed by the inert material and the explosive secondary can be partially structuring and participate in the mechanical strength of the load.
  • the abovementioned damping material and secondary composition act as a disturbance of the main stress, during fragmentation into “small chips” of the chip generator. This disturbance remains low, due to the energy ratio between the nominal explosive and the secondary explosive.
  • the ignition delay or pyrotechnic delay, existing between the nominal explosive on the one hand and the network of cords and the secondary composition, on the other hand, must make it possible to reduce the influence of a local concentration of explosive, likely to disturb the desired speed field of the chips.
  • the chip generator according to the present invention is capable of generating according to the operating mode, ie according to the pyrotechnic order chosen, respectively large splinters in an "energetic" operation or small chips in low energy operation.
  • the chip generator be of dense metal selected for example from tantalum, tungsten, and steel. Tantalum is preferred for its good ductility properties. Tungsten is also suitable, however it may have problems of metallurgical fragility binding for speeding which limits the effectiveness of chips. The choice of a steel chip generator is also however, the effectiveness of splinters seems less.
  • the generator of the profile and the thickness of the brightness generator are adjusted in each slice, in order to obtain the "good" speed distribution. It is thus possible to generate splinters varying in a ratio of mass and speed of up to twenty (ratio of more than 400 on the kinetic energy).
  • the small chips can be obtained by controlled fragmentation for example by means of an electron beam or by machining: that is to say that the whole chip generator is pre-cut according to inclined lines, for example by inclination close to 45 ° in order to allow the appearance of constraints "spreading" the pre-fragmentation lines with respect to the axis of revolution of the assembly.
  • the large chips can be obtained by cutting the monobloc chip generator using at least two cutting lines or a network of detonating cords. It is possible to use the lines of weakness of the small chips, for example a line on n lines, but it is preferable not to superimpose the cutting network of the big chips and small chips, to leave more latitude for the obtaining large chips and to limit mass losses at both ends of the spark generator cylinder, for example in triangular form.
  • the brightness generator is such that it can operate without the cutting cords.
  • splitting the chip generator into small chips or large chips is obtained according to the pyrotechnic energy supplied: in small chips if the bias is high, ie if the nominal load is initiated, and in big splinters if the solicitation is weak, ie if the secondary charge is initiated.
  • This can be achieved for example by using a structuring shell placed between the secondary explosive and the chip generator.
  • the ferrule is a cylinder of circular section and of curved generator, for example hyperboloid. The thickness of the cylinder is a priori constant.
  • the ferrule may be for example steel or titanium this which represents a weight gain for the pyrotechnic charge.
  • the large chips may be composed for example of preformed fragmentation projectiles, for example a set of parallelepipeds.
  • the large chips may be bonded together to provide some structural strength for example by gluing or inter-chip welding by means of an electron beam.
  • the small chips can be obtained for example or by controlled fragmentation: the small chips are from a precut accentuated large chips (for example to the electron beam or machining), or by "preformed fragmentation": small chips are parallelepipeds embedded in a matrix.
  • This matrix can be a polymer, a fusible metal, for example aluminum, or an explosive material for a dispersive effect of the chips, if the explosion takes place near the load, or amplifier of efficiency, if explosion takes place in contact with the target.
  • the detonation of the explosive architecture is just reflected by a swelling of the ferrule which speeds up the large chips that remain consistent.
  • the high stress generated has the effect of breaking all the links between the small chips.
  • the influence of the damping material on the dynamics of large chips is negligible, even favorable: it has an attenuation and homogenization effect.
  • the energy loss due to this influence can be offset, if necessary, by a small increase in the explosive mass of explosive architecture.
  • the shock absorber layer may according to the embodiment of the present invention, and in particular depending on the choice of the chip generator material, be necessary to attenuate the intensity of the detonation shock wave of the secondary explosive and thus allow the generation of flakes integrity. This is the case, for example, for a tungsten chip generator obtained by sintering.
  • the chip generator can also ensure the structuring of the pyrotechnic charge with respect to the external mechanical stresses.
  • the envelope serves to protect in its cycle of use the load of the present invention external attacks such as mechanical aggression, thermal, dust, moisture, etc., during its operational life.
  • external attacks such as mechanical aggression, thermal, dust, moisture, etc.
  • the splitter chisels can be placed on either side of the chip generator. They can also be placed between the protective envelope and the chip generator, or between the secondary charge and the chip generator. The position on either side of the splinter generator makes it possible to avoid crossing the cords.
  • the control means may for example comprise a charge control box and a switch.
  • the control unit performs the function of transmitting the firing order from the client, for example an electrical command, to the means, also called system, of initiation.
  • the priming system comprises the first priming means, or primary priming means for the initiation of the nominal load, consisting of a pyrotechnic cord, also called main cord, and an amplifier.
  • the priming system further comprises the second priming means for priming the secondary explosive, as well as a triggering network for the detonating fuses of the generator chips, and a detonation switch placed between the control box and the amplifier.
  • the switch can operate as a switch. It can, depending on the order received from the client, for example the control box, to cut or not the boot line of the nominal explosive.
  • the switch can be integrated into the control box. It does not call into question the safety because in case of untimely operation it does not detonate the charges.
  • the second priming means may comprise, for example, a network of detonating cords for priming said pellets.
  • the initiation of this network of detonating cords can be obtained by adding a derivation from the main cord.
  • the initiation of the cutting line may be obtained by adding a bypass between the control box and the aforementioned bypass for the secondary ignition.
  • the inventors have therefore provided a pyrotechnic charge comprising two types of operation to attack choice and effectively multiple types of targets.
  • the device of the present invention can generate either small fast bursts, effective against a slowly evolving threat, or large slow bursts effective against a rapidly evolving threat.
  • the combination of the two operations in a single load allows a gain in mass and volume in the load carrier, and consequently a gain in efficiency and overall costs: reduction of the number of carriers, simplification of the maintenance and operational implementation etc.
  • Example 1 Pyrotechnic charge according to the present invention with a cutting line of the chip generator.
  • FIG. 1 is a simplified diagram of one embodiment of the pyrotechnic charge according to FIG. the present invention comprising a cutting line of the chip generator.
  • the pyrotechnic charge (1) comprises a nominal explosive charge (3) surrounded by a detonating secondary explosive charge (5) surrounded by a chip generator (7) surrounded by a protective envelope (9), said pyrotechnic charge further comprising a first priming means (11,13) and a second priming means (15), the first and second priming means being independently controllable from control means (17,19), for optionally transmitting a pyrotechnic order respectively to the nominal explosive charge (3) or the secondary explosive charge (5), so that the detonation of the secondary explosive charge does not cause the initiation of the nominal explosive charge.
  • the pyrotechnic charge further comprises two cutting cords (21) of the chip generator placed between the secondary explosive charge (5) and the chip generator (7), and a third initiation means (not shown).
  • the third priming means is controlled independently from the control means (17, 19) for transmitting a pyrotechnic order to the cutting cords (21), so that the detonation of the cutting line does not damage the explosive charge. secondary and does not cause the initiation of the nominal explosive charge.
  • the load is equipped with means of initiation and control, at a height of 0.490 m for an outside radius of 0.0705 m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)

Description

    Domaine technique de l'invention
  • La présente invention se rapporte à une charge pyrotechnique à fonctionnement dual.
  • Il s'agit d'une charge répondant à plusieurs missions, appelée aussi charge multi-missions, disposant de deux modes de fonctionnement permettant d'attaquer efficacement plusieurs types de cibles.
  • La multiplicité des menaces et, la réduction demandée des coûts unitaires impliquent un besoin de charges nouvelles qui soient polyvalentes ou versatiles.
  • Art antérieur
  • Ce type de charge multi-missions est à l'étude dans divers centres américains, comme le montre une simple recherche sur Internet, par exemple l'étude d'une charge antiaérienne et antimissile balistique sur le missile de la "Navy"-SM2-block IVA sur le site www.chinfo.navy.1000/navpalib/weapons/missiles/standart /standarthtml.
  • La plupart des charges militaires embarquées telles que les missiles, les obus, les mines etc., sont des charges à projection d'éclats générés par l'explosion d'un dispositif pyrotechnique susceptibles d'augmenter les dégâts sur la cible visée.
  • Mais ces charges sont soumises entre autres contraintes de conception à des limitations en masse et en volume. Ceci a conduit à rechercher des dispositifs optimisés autour d'un point de fonctionnement, et de fait à une seule fonction. Ce point de fonctionnement dépend de la mission et du porteur des charges.
  • Il existe un grand nombre de charges à éclats dans des systèmes divers. Le document Conventionnal warhead systems - Physics ingenneering - Richard M. Lloyd-Progress in astronautics and aeronautics - Paul Zarchan - Vol.179, préface mars 1998, Lavoisier, décrit un certain nombre de ces charges.
  • Ces charges de l'art antérieur ont cependant toutes en commun qu'elles ne présentent qu'un seul mode de fonctionnement, voir la configuration de la charge pyrotechnique décrite dans le document US-A-4 655 139, qui couvre les caractéristiques du préambule de la revendication 1.
  • Exposé de l'invention
  • La présente invention a précisément pour but de pallier les inconvénients précités en fournissant une charge pyrotechnique à fonctionnement dual qui répond notamment aux besoins multi-missions rappelés précédemment.
  • La charge pyrotechnique selon l'invention comprend une charge explosive nominale entourée d'une charge explosive secondaire détonante entourée d'un générateur d'éclats entouré d'une enveloppe de protection,
  • cette charge pyrotechnique comprenant en outre un premier moyen d'amorçage et un deuxième moyen d'amorçage, les premier et deuxième moyens d'amorçage pouvant être commandés indépendamment à partir de moyens de commande, pour transmettre au choix un ordre pyrotechnique respectivement à la charge explosive nominale ou à la charge explosive secondaire, la détonation de la charge explosive secondaire ne provoquant pas l'amorçage de la charge explosive nominale, et dans laquelle la charge explosive secondaire est sous la forme de pastilles ou de bandes d'un explosif secondaire répartis dans un matériau inerte amortisseur d'ondes.
  • Ainsi, cette charge pyrotechnique a deux modes de fonctionnement selon la charge explosive à laquelle est transmis l'ordre pyrotechnique : un mode dit "énergétique" contre des missiles évoluant rapidement, c'est-à-dire à une vitesse relative ≥ 1500 m/s, un mode dit "jeu énergétique" contre des missiles évoluant lentement c'est-à-dire à une vitesse relative < 1500 m/s.
  • La charge pyrotechnique de la présente invention peut comprendre en outre un cordeau de découpe du générateur d'éclats placé entre la charge explosive secondaire et le générateur d'éclats et/ou entre l'enveloppe de protection et le générateur d'éclats, et un troisième moyen d'amorçage, le troisième moyen d'amorçage pouvant être commandé indépendamment à partir des moyens de commande pour transmettre un ordre pyrotechnique au cordeau de découpe, la détonation du cordeau de découpe n'endommageant pas la charge explosive secondaire et ne provoquant pas l'amorçage de la charge explosive nominale.
  • La charge explosive nominale a de préférence une densité d'énergie la plus forte possible pour réduire sa masse, ainsi qu'une densité la plus forte possible afin qu'elle ne soit pas amorcée par la détonation de la charge explosive secondaire. Cet explosif nominal peut-être par exemple :
    • la composition explosive vendue par la Société SNPE (FRANCE) commercialement sous le nom de V350 est décrite dans la demande de brevet FR-A-2 671 549, et
    • la composition explosive vendue par la société SNPE connue sous le nom de V401 à base d'octogène (HMX) dans un liant fluoré, qui est plus énergétique que la précédente,
    • toute composition comparable en densité, sensibilité et énergie divulguée à ce jour.
  • De préférence, la charge explosive nominale n'est pas en contact avec la charge explosive secondaire. L'espace existant entre la charge d'explosif nominale et le générateur d'éclat dépend notamment directement de la densité volumique de l'explosif principal et de la sensibilité de cet explosif à l'amorçage.
  • Selon l'invention la charge explosive secondaire doit détoner sans amorcer l'explosif nominal. Le fait que cet explosif détone est indispensable pour respecter la chronométrie nécessaire en phase d'engagement de l'utilisation de la charge. En effet, la décomposition totale après le signal d'amorçage de la charge explosive secondaire doit de préférence être obtenue en moins de 100 µs, ce qui impose un régime de détonation.
  • Cette charge explosive est donc, conformément à la présente invention, sous la forme de pastilles ou de bandes d'un explosif secondaire peu énergétique réparties dans un matériau inerte amortisseur d'ondes, cet ensemble formant une architecture explosive.
  • L'explosif secondaire peut être de même nature que l'explosif nominal si celui-ci est suffisamment sensible. Ce peut être le V350, mais aussi des compositions octogènes plus sensibles, comparables, ou de bandes, par exemple du V401. Selon la présente invention, une composition à la pentrite, aisée à mettre en forme et de très bonne capacité à détoner, peut aussi être utilisée. L'explosif secondaire peut donc, du fait de sa nature et de sa conformation dans la charge pyrotechnique de la présente invention, être amorcé de la même façon que l'explosif nominal.
  • La masse de l'explosif secondaire à utiliser est proportionnelle au rapport d'énergie cinétique que l'on souhaite communiquer aux éclats entre les deux fonctionnements. En effet, pour une "tranche de charge" donnée, l'énergie cinétique communiquée aux éclats est fonction de la masse d'explosif qui détone.
  • Selon l'invention, le matériau inerte peut être, par exemple sous la forme d'une mousse telle qu'un plastique poreux ou un nid d'abeille, structure alvéolaire métallique ou composite, ayant par exemple une densité allant d'environ 0,2 à 0,3.
  • Le non-amorçage de l'explosif principal est essentiellement assuré par le vide formé par les alvéoles de la mousse qui assure un rôle d'amortisseur.
  • La mousse peut aussi assurer le remplissage d'un espace laissé entre l'explosif nominal et le générateur d'éclats. Cet espace peut être d'environ 10 mm. La couche formée par le matériau inerte et l'explosif secondaire peut être partiellement structurante et participer à la tenue mécanique de la charge.
  • Pour le fonctionnement "énergétique", le matériau amortisseur et la composition secondaire précités interviennent comme une perturbation de la sollicitation principale, lors de la fragmentation en "petits éclats" du générateur d'éclats. Cette perturbation reste faible, du fait du rapport énergétique entre l'explosif nominal et l'explosif secondaire. Le retard d'amorçage ou retard pyrotechnique, existant entre d'une part l'explosif nominal, et d'autre part le réseau de cordeaux et la composition secondaire, doit permettre de réduire l'influence d'une concentration locale d'explosif, susceptible de perturber le champ de vitesse souhaité des éclats.
  • Le générateur d'éclats selon la présente invention est susceptible de générer suivant le mode de fonctionnement, c'est à dire suivant l'ordre pyrotechnique choisi, respectivement des gros éclats en un fonctionnement "énergétique" ou des petits éclats en fonctionnement peu énergétique.
  • Afin de maximiser l'efficacité des éclats, il est préférable que le générateur d'éclats soit en métal dense choisi par exemple parmi le tantale, le tungstène, et l'acier. Le tantale est préféré pour ses bonnes propriétés de ductilité. Le tungstène convient aussi, cependant il peut présenter des problèmes de fragilité métallurgique contraignants pour la mise en vitesse ce qui limite l'efficacité des éclats. Le choix d'un générateur d'éclats en acier est également possible l'efficacité des éclats semble toutefois moindre.
  • Le générateur d'éclats peut être constitué d'un ensemble monobloc. Il peut être sous la forme d'une pièce de révolution, d'épaisseur variable. Le profil exact de ce générateur et l'épaisseur sont déterminés pour obtenir précisément le champ de vitesse désiré en fonctionnement énergétique. Dans une "tranche de charge", la vitesse des éclats dépend en première approximation, pour un rayon de charge donné :
    • du rayon moyen du générateur d'éclat, en faisant l'hypothèse que l'épaisseur de la charge explosive secondaire est constante et que les variations de rayon moyen du générateur d'éclats correspondent à des variations du rayon de la charge nominale,
    • de l'épaisseur du générateur d'éclat.
  • Qualitativement, plus le rayon moyen est important, plus les éclats seront rapides, et plus l'épaisseur sera faible, plus les éclats seront rapides.
  • La génératrice du profil et l'épaisseur du générateur d'éclat sont donc ajustées par tranche, afin d'obtenir la "bonne" répartition de vitesse. Il est ainsi possible de générer des éclats variant dans un rapport de masse et de vitesse allant jusqu'à vingt (rapport de plus de 400 sur l'énergie cinétique).
  • Les petits éclats peuvent être obtenus par fragmentation contrôlée par exemple au moyen d'un faisceau d'électrons ou par usinage : c'est-à-dire que l'ensemble du générateur d'éclats est prédécoupé selon des lignes inclinées, par exemple par inclinaison voisine de 45° afin de permettre l'apparition de contraintes "écartant" les lignes de pré-fragmentation par rapport à l'axe de révolution de l'ensemble.
  • Les gros éclats peuvent être obtenus par découpe du générateur d'éclats monobloc à l'aide d'au moins deux cordeaux de découpe ou d'un réseau de cordeaux détonants. Il est possible d'utiliser les lignes de fragilisation des petits éclats, par exemple une ligne sur n lignes, mais il est préférable de ne pas superposer le réseau de découpe des gros éclats et des petits éclats, afin de laisser plus de latitude pour l'obtention des gros éclats et pour limiter les pertes de masse aux deux bouts du cylindre du générateur d'éclats, par exemple sous forme triangulaire.
  • Selon une variante de la présente invention le générateur d'éclat est tel qu'il peut fonctionner sans les cordeaux de découpe. Selon cette variante, le fractionnement du générateur d'éclats en petits éclats ou en gros éclats est obtenu suivant l'énergie pyrotechnique fournie : en petits éclats si la sollicitation est élevée, c'est à dire si la charge nominale est amorcée, et en gros éclats si la sollicitation est faible, c'est à dire si la charge secondaire est amorcée. Ceci peut être réalisé par exemple en utilisant une virole structurante placée entre l'explosif secondaire et le générateur d'éclats. La virole est un cylindre de section circulaire et de génératrice courbe, par exemple hyperboloïde. L'épaisseur du cylindre est a priori constante. La virole peut être par exemple en acier ou en titane ce qui représente un gain de poids pour la charge pyrotechnique. Les gros éclats peuvent être composés par exemple de projectiles à fragmentation préformée, par exemple d'un ensemble de parallélépipèdes. Les gros éclats peuvent être liés entre eux pour assurer une certaine tenue structurale par exemple par collage ou par soudure inter éclats au moyen d'un faisceau d'électrons. Les petits éclats peuvent être obtenus par exemple soit par fragmentation contrôlée : les petits éclats sont issus d'une prédécoupe accentué des gros éclats (par exemple au faisceau d'électrons ou usinage), soit par "fragmentation préformée" : les petits éclats sont des parallélépipèdes noyés dans une matrice. Cette matrice peut être un polymère, un métal fusible, par exemple de l'aluminium, ou une matière explosive pour un effet dispersif des éclats, si l'explosion a lieu près de la charge, ou amplificateur d'efficacité, si explosion a lieu au contact de la cible.
  • Dans cette variante, la détonation de l'architecture explosive se traduit juste par un gonflement de la virole qui met en vitesse les gros éclats qui restent cohérents. Lorsque tout l'explosif détone la sollicitation importante générée a pour effet de rompre toutes les liaisons entre les petits éclats.
  • L'influence du matériau amortisseur sur la dynamique des gros éclats est négligeable, voire favorable : elle a un effet d'atténuation et d'homogénéisation. La perte énergétique due a cette influence peut être compensée, si nécessaire, par un accroissement faible, de la masse d'explosif de l'architecture explosive. La couche d'amortisseur peut suivant le mode de réalisation de la présente invention, et notamment suivant le choix du matériau du générateur d'éclats, être nécessaire pour atténuer l'intensité de l'onde de choc de détonation de l'explosif secondaire et permettre ainsi la génération d'éclats intègres. C'est le cas par exemple pour un générateur d'éclats en tungstène obtenu par frittage.
  • A partir du même principe, c'est à dire à partir de compositions explosives qui détonent distinctement, il est possible d'augmenter le nombre de modes de fonctionnement, en remplaçant l'architecture explosive et le générateur d'éclats par une succession de couches explosives qui peuvent être amorcées séparément, délivrant ainsi par paliers plusieurs gammes d'énergie cinétique d'éclats.
  • Selon l'invention, le générateur d'éclats peut également assurer la structuration de la charge pyrotechnique par rapport aux sollicitations mécaniques externes.
  • L'enveloppe a pour fonction de protéger dans son cycle d'utilisation la charge de la présente invention des agressions extérieures telles que les agressions mécaniques, thermiques, les poussières, l'humidité, etc., pendant sa vie opérationnelle. La nature de cette enveloppe dépend en conséquence fortement de l'environnement d'utilisation de la charge.
  • En outre, elle intervient dans le fonctionnement de la charge car elle fait partie de la matière projetée. Elle doit autant que possible ne pas perturber la mise en vitesse des éclats dans le mode "peu énergétique".
  • Par exemple, dans une application en tant que missile effectuant un vol aérobie, elle doit pouvoir résister à un flux thermique qui est dimensionnant
  • Elle peut être réalisée par exemple en matière composite isolante.
  • Lorsqu'ils sont présents les cordeaux de découpe du générateur d'éclats peuvent être placés de part-et d'autre du générateur d'éclats. Ils peuvent aussi être placés soit entre l'enveloppe de protection et le générateur d'éclats, soit entre la charge secondaire et le générateur d'éclats. La position de part et d'autre du générateur d'éclats permet d'éviter les croisements des cordeaux.
  • Les moyens de commande peuvent par exemple comprendre un boîtier de commande charge et un commutateur. Le boîtier de commande assure la fonction de transmission de l'ordre de mise à feu en provenance du donneur d'ordre, par exemple d'une commande électrique, vers les moyens, appelé aussi système, d'amorçage.
  • Le système d'amorçage comprend le premier moyen d'amorçage, ou moyen d'amorçage principal, destiné à l'amorçage de la charge nominale, constitué d'un cordeau pyrotechnique, appelé aussi cordeau principal, et d'un amplificateur. Le système d'amorçage comprend en outre le deuxième moyen d'amorçage pour l'amorçage de l'explosif secondaire, ainsi qu'un réseau d'amorçage des cordeaux détonants de découpe du générateur d'éclats, et un commutateur détonique placé entre le boîtier de commande et l'amplificateur.
  • Le commutateur peut fonctionner en interrupteur. Il peut permettre en fonction de l'ordre reçu en provenance du donneur d'ordre, par exemple du boîtier de commande, de couper ou non la ligne d'amorçage de l'explosif nominal. Le commutateur peut être intégré au boîtier de commande. Il ne remet pas en cause la sécurité car en cas de fonctionnement intempestif il ne fait pas détoner les charges.
  • Lorsque l'explosif secondaire est sous forme de pastilles d'explosif le deuxième moyen d'amorçage peut comprendre par exemple un réseau de cordeaux détonnants, pour amorcer lesdites pastilles. L'amorçage de ce réseau de cordeaux détonnants, peut être obtenu par ajout d'une dérivation à partir du cordeau principal. L'amorçage du cordeau de découpe peut être obtenu par ajout d'une dérivation entre le boîtier de commande et la dérivation précitée pour l'amorçage secondaire.
  • Dans le cas du fonctionnement "peu énergétique" de la charge pyrotechnique de la présente invention, il est préférable de régler le décalage de l'amorçage du cordeau détonant et de la composition secondaire par rapport à celui de l'explosif nominal. Ceci peut être assuré par exemple en ajustant la longueur des chemins détoniques, mais aussi en ajoutant des lignes à retard introduisant des retards d'amorçage.
  • Les inventeurs ont donc fourni une charge pyrotechnique comprenant deux types de fonctionnement permettant d'attaquer au choix et efficacement plusieurs types de cibles. Le dispositif de la présente invention permet de générer soit des petits éclats rapides, efficaces contre une menace évoluant lentement, soit des gros éclats lents efficaces contre une menace évoluant rapidement.
  • En outre, l'association des deux fonctionnements dans une seule charge permet un gain de masse et de volume au niveau du porteur des charges, et en conséquence un gain d'efficacité et de coûts globaux : réduction du nombre de porteurs, simplification de la maintenance et de la mise en oeuvre opérationnelle etc.
  • D'autres caractéristiques et avantages apparaîtront encore à la lecture des exemples qui suivent, donnés à titre illustratif et non limitatif, en référence à la figure annexée.
  • Brève description de la figure
    • la figure 1 est un schéma simplifié d'un mode de réalisation de la charge pyrotechnique selon l'invention comprenant un cordeau de découpe du générateur d'éclats.
    Exemples Exemple 1 :Charge pyrotechnique selon la présente invention avec un cordeau de découpe du générateur d'éclats.
  • La figure 1 est un schéma simplifié d'un mode de réalisation de la charge pyrotechnique selon la présente invention comprenant un cordeau de découpe du générateur d'éclats.
  • La charge pyrotechnique (1) comprend une charge explosive nominale (3) entourée d'une charge explosive secondaire détonante (5) entourée d'un générateur d'éclats (7) entouré d'une enveloppe de protection (9), ladite charge pyrotechnique comprenant en outre un premier moyen d'amorçage (11,13) et un deuxième moyen d'amorçage (15), les premier et deuxième moyens d'amorçage pouvant être commandés indépendamment- à partir de moyens de commande (17,19), pour transmettre au choix un ordre pyrotechnique respectivement à la charge explosive nominale (3) ou à la charge explosive secondaire (5), de telle manière que la détonation de la charge explosive secondaire ne provoque pas l'amorçage de la charge explosive nominale.
  • La charge pyrotechnique comprend en outre deux cordeaux de découpe (21) du générateur d'éclats placés entre la charge explosive secondaire (5) et le générateur d'éclats (7), et un troisième moyen d'amorçage (non représenté). Le troisième moyen d'amorçage est commandé indépendamment à partir des moyens de commande (17,19) pour transmettre un ordre pyrotechnique aux cordeaux de découpe (21), de telle manière que la détonation du cordeau de découpe n'endommage pas la charge explosive secondaire et ne provoque pas l'amorçage de la charge explosive nominale.
  • Les caractéristiques de cette charge sont les suivantes :
    • Explosif nominal : V350 de densité 1,70 ; sous forme d'une pièce de révolution, de rayon moyen 0,048, de masse 6,157 kg.
    • Explosif lent : V350 de même nature, inséré dans 0,146 kg de mousse, de densité 0,1 sur une épaisseur de 0,096 m, entourant le bloc d'explosif nominal : 0,127 kg de V350, sous forme de bandes d'épaisseur 8 mm, est réparti régulièrement dans la mousse.
    • Générateur d'éclats : bloc de tantale, entourant les deux compositions précédentes, d'épaisseur 0,0018 m, de masse 5,351 kg, prédécoupée à l'extérieur selon deux hélices sécantes. Deux cordons de découpe en HNS noyé dans du Pb (hexanitrostilbène) sont disposés autour du générateur d'éclats, le long des deux hélices sécantes : longueur totale de 5,60 m, diamètre extérieur d'environ 4 mm, masse totale de 1600 g dont 33,6 g de HNS.
    • Protection thermique : en composite mousse, acier, épaisseur de 10,6 mm pour une masse de 0,276 kg (densité de 0,13).
  • La charge est munie de moyens d'amorçage et de commande, a une hauteur de 0,490 m pour un rayon extérieur de 0,0705 m.
  • Fonctionnement de la charge pyrotechnique de la présente invention décrite dans l'exemple 1
  • Le fonctionnement est le suivant :
    • l'interrupteur pyrotechnique reçoit ou pas l'ordre de l'organe de décision de couper la ligne d'amorçage nominale,
    • le boîtier de commande reçoit l'ordre, par exemple électrique, de l'organe de décision d'initier l'explosion.
    a) fonctionnement énergétique
    • l'ordre pyrotechnique est transmis à l'amplificateur qui amorce l'explosif nominal et potentiellement le Cordeau Détonant et l'Explosif Secondaire.
    • La composition principale détone, libérant l'énergie de l'explosif nominal et entraînent ainsi la mise en vitesse des petits éclats rapides. La gerbe d'éclats est optimisée par convergence de gerbe pour diminuer la surface touchée sur la cible. La composition principale détone avant l'architecture pyrotechnique (explosif secondaire) et le cordeau détonant de découpe, rendant a priori caduque le fonctionnement de ces derniers.
    b) fonctionnement peu énergétique
    • l'ordre pyrotechnique n'est transmis qu'aux Cordeaux Détonants de découpe et à la composition secondaire,
    • les Cordeaux Détonants découpent les "gros éclats", sans endommager la composition secondaire ni amorcer l'explosif nominal, et
    • la Composition Secondaire détone sans amorcer l'explosif nominal par action de l'architecture explosive qui permet d'amortir l'onde de détonation. Une faible énergie est alors libérée de la Composition Secondaire, mettant en vitesse les gros éclats.

Claims (12)

  1. Charge pyrotechnique (1) comprenant une charge explosive nominale (3) entourée d'une charge explosive secondaire détonante (5) entourée d'un générateur d'éclats (7) entouré d'une enveloppe de protection,
    dans laquelle ladite charge pyrotechnique comprend en outre un premier moyen d'amorçage (11,13) et un deuxième moyen d'amorçage (15), les premier et deuxième moyens d'amorçage pouvant être commandés indépendamment à partir de moyens de commande (17,19), pour transmettre au choix un ordre pyrotechnique respectivement à la charge explosive nominale (3) ou à la charge explosive secondaire (5),
    la détonation de la charge explosive secondaire (5) ne provoquant pas l'amorçage de la charge explosive nominale (3), et caractérisée en ce que
    la charge explosive secondaire (5) est sous la forme de pastilles ou de bandes d'un explosif secondaire réparties dans un matériau inerte amortisseur d'ondes, dans laquelle le générateur d'éclats génère respectivement, suivant l'ordre pyrotechnique choisi, des petits éclats ou des gros éclats, et
    dans laquelle le générateur d'éclats comporte un double réseau de fragmentation contrôlée.
  2. Charge pyrotechnique selon la revendication 1, comprenant aux moins deux cordeaux de découpe du générateur d'éclats placé entre la charge explosive secondaire et le générateur d'éclats et/ou entre l'enveloppe de protection et le générateur d'éclats, et un troisième moyen d'amorçage,
    le troisième moyen d'amorçage pouvant être commandé indépendamment à partir des moyens de commande pour transmettre un ordre pyrotechnique au cordeau de découpe,
    la détonation du cordeau de découpe n'endommageant pas la charge explosive secondaire et ne provoquant pas l'amorçage de la charge explosive nominale.
  3. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle les moyens de commande comprennent un boîtier de commande charge et un commutateur.
  4. Charge pyrotechnique selon la revendication 1 ou 2, comprenant en outre un amplificateur d'amorçage relié à la charge explosive nominale.
  5. Charge pyrotechnique selon la revendication 1, dans laquelle le matériau inerte est une mousse telle qu'un plastique poreux ou un nid d'abeille, structure alvéolaire métallique ou composite.
  6. Charge pyrotechnique selon la revendication 5, dans laquelle le matériau inerte a une densité allant d'environ 0.2 à 0.3.
  7. Charge pyrotechnique selon la revendication 1, dans laquelle le matériau inerte assure essentiellement le non-amorçage de la charge explosive nominale par la détonation de la charge explosive secondaire.
  8. Charge pyrotechnique selon la revendication 1, comprenant en outre une virole structurante placée entre l'explosif secondaire et le générateur d'éclats.
  9. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle le générateur d'éclats est un système composite de projectiles à fragmentations préformées.
  10. Charge pyrotechnique selon la revendication 1, dans laquelle le générateur d'éclats est en tantale.
  11. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle le générateur d'éclats assure la structuration de la charge pyrotechnique.
  12. Charge pyrotechnique selon la revendication 1 ou 2, dans laquelle l'enveloppe extérieure est constituée d'une matière composite isolante.
EP01921435A 2000-03-30 2001-03-28 Charge pyrotechnique a fonctionnement dual Expired - Lifetime EP1269105B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0004044A FR2807156B1 (fr) 2000-03-30 2000-03-30 Charge pyrotechnique a fonctionnement dual
FR0004044 2000-03-30
PCT/FR2001/000944 WO2001075390A1 (fr) 2000-03-30 2001-03-28 Charge pyrotechnique a fonctionnement dual

Publications (2)

Publication Number Publication Date
EP1269105A1 EP1269105A1 (fr) 2003-01-02
EP1269105B1 true EP1269105B1 (fr) 2006-11-29

Family

ID=8848670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01921435A Expired - Lifetime EP1269105B1 (fr) 2000-03-30 2001-03-28 Charge pyrotechnique a fonctionnement dual

Country Status (4)

Country Link
EP (1) EP1269105B1 (fr)
DE (1) DE60124882T2 (fr)
FR (1) FR2807156B1 (fr)
WO (1) WO2001075390A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840402B1 (fr) 2002-05-31 2004-07-16 Giat Ind Sa Enveloppe generatrice d'eclats, charge explosive et munition mettant en oeuvre une telle enveloppe
DE102021002470B4 (de) 2021-05-10 2023-09-21 TDW Gesellschaft für verteidigungstechnische Wirksysteme mit beschränkter Haftung Skalierbares Wirksystem und Gefechtskopf

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428232A1 (fr) * 1978-06-05 1980-01-04 Mulleman Michel Enveloppe de corps de bombe a fragmentation preparee
DE3016861C2 (de) * 1980-05-02 1984-07-12 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Gefechtskopf mit einer Hülle zur Splitterbildung
US4655139A (en) * 1984-09-28 1987-04-07 The Boeing Company Selectable deployment mode fragment warhead
FR2599134B1 (fr) * 1986-05-23 1988-08-26 Matra Tete militaire pour engin
FR2671549A1 (fr) 1991-01-16 1992-07-17 Commissariat Energie Atomique Composition explosive et procedes de preparation d'une poudre et d'une piece de cette composition.

Also Published As

Publication number Publication date
DE60124882T2 (de) 2007-05-31
DE60124882D1 (de) 2007-01-11
WO2001075390A1 (fr) 2001-10-11
FR2807156A1 (fr) 2001-10-05
FR2807156B1 (fr) 2002-12-13
EP1269105A1 (fr) 2003-01-02

Similar Documents

Publication Publication Date Title
EP1734333B1 (fr) Munition ou composant de munition constituant un engin volant tel un drône
FR2599134A1 (fr) Tete militaire pour engin
EP3102906A1 (fr) Charge creuse et application pour la separation de deux etages d&#39;un engin aeronautique ou sa neutralisation
EP0221218B1 (fr) Tête militaire à charges formées montées en tandem
FR2545923A1 (fr) Projectile assurant le percage des blindages
FR2552870A1 (fr) Perfectionnement aux tetes militaires a charges formees montees en tandem
CH635422A5 (fr) Charge explosive.
EP1269105B1 (fr) Charge pyrotechnique a fonctionnement dual
EP0138640B1 (fr) Charge militaire explosive
FR2552869A1 (fr) Tete militaire a charges creuses a sequence
FR2691794A1 (fr) Projectile combiné contre buts blindés.
EP3663703B1 (fr) Tête militaire perforante
EP0677718B1 (fr) Projectile destiné à agresser des cibles dures
EP1099926B1 (fr) Charge militaire duale, pour missile surface air, contre cibles conventionnelles et missiles balistiques tactiques
FR2706997A1 (en) Device for protecting an armoured structure from high energy projectiles
EP1302741B1 (fr) Munition explosive
EP1521053A1 (fr) Munition anti bunker
FR2993355A1 (fr) Munition a rayon de letalite reduit et procede de fabrication d&#39;une telle munition
FR2569834A1 (fr) Tete militaire a charges formees montees en tandem
EP0664433B1 (fr) Projectile de perforation et munition équipée d&#39;un tel dispositif
EP0193427A1 (fr) Tête militaire à charges formées montées en tandem
FR2863699A1 (fr) Bombe polyvalente a charge creuse
EP3633313A1 (fr) Enveloppe pour munition et munition incorporant une telle enveloppe
FR2874253A1 (fr) Tete active sous-marine a focalisation amelioree de la puissance explosive.
FR2626358A1 (fr) Perfectionnements aux engins, notamment aux obus explosifs, a charge explosive composite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE GB IT

17Q First examination report despatched

Effective date: 20050511

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60124882

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120315

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120320

Year of fee payment: 12

Ref country code: IT

Payment date: 20120327

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60124882

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130328