EP1256693A1 - Verfahren zur Bestimmung, unter Verwendung digitaler Simulation, der Bedingungen der Restauration mit Hilfe von Formationsfluiden von durch Bohroperationen beschädigten Bohrungen - Google Patents

Verfahren zur Bestimmung, unter Verwendung digitaler Simulation, der Bedingungen der Restauration mit Hilfe von Formationsfluiden von durch Bohroperationen beschädigten Bohrungen Download PDF

Info

Publication number
EP1256693A1
EP1256693A1 EP02290995A EP02290995A EP1256693A1 EP 1256693 A1 EP1256693 A1 EP 1256693A1 EP 02290995 A EP02290995 A EP 02290995A EP 02290995 A EP02290995 A EP 02290995A EP 1256693 A1 EP1256693 A1 EP 1256693A1
Authority
EP
European Patent Office
Prior art keywords
permeability
well
cakes
damaged
cake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02290995A
Other languages
English (en)
French (fr)
Inventor
Yu Didier Ding
Daniel Longeron
Gérard Renard
Annie Audibert-Hayet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0106216A external-priority patent/FR2824651B1/fr
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1256693A1 publication Critical patent/EP1256693A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the present invention relates to a method for determining by simulation numerical optimal conditions to impose in a horizontal (or complex) well drilled through an underground deposit, to gradually eliminate (restore) by natural sweeping using production fluids from the deposit, deposits or cakes that have formed in at least one area around the periphery of the well, following drilling and completion operations.
  • the tests which one can make to characterize the damage of formations in the vicinity of a well are of primary importance. They allow choose the most appropriate drilling fluid to minimize or reduce the deterioration of permeability in the vicinity of wells and also to optimize well cleaning techniques.
  • the method according to the invention makes it possible to simulate the conditions as well as possible optimal to impose in a well drilled through an underground deposit at a any trajectory, for gradual elimination by fluids from the deposit, deposits or cakes that have formed in at least one zone at the periphery of the well, following drilling operations.
  • the simulation carried out according to the method allows tank engineers to better predict the best exploitation plan for the deposit, avoiding disadvantages such as the coming of sand. It also allows drillers, account given known or estimated permeability data, to choose fluids more particularly suitable for drilling wells and installing equipment.
  • Leakage pressure tests are performed with a filtration cell dynamic which can receive carrots with a diameter of 5 cm and a length up to 40 cm.
  • the cell is equipped for example with five sockets pressure located 5, 10, 15, 20 and 25 cm from the entrance face of the carrot.
  • the plugs pressure monitors monitor pressure drops across six sections of the carrot while circulating the mud and circulating the oil back in order to simulate the production of the well.
  • laboratory tests are carried out under representative well conditions (temperature, overpressure and rate of shear applied to mud, carrots saturated with oil and connate water, etc.). Of the oil is then injected in the opposite direction (return current) at a constant flow rate in order to simulate the production of the well.
  • the evolution of return permeabilities is calculated, for each section, depending on the cumulative volume of oil injected.
  • the final value stabilized return permeability is then compared to the initial permeability not deteriorated in order to assess the residual deterioration as a function of the distance by compared to the entrance face of the carrot.
  • a total amount of 10 to 20 PV (maximum one hundred PV) of oil injected was sufficient to obtain a stabilized return permeability value after damage with oil-based mud.
  • the internal filtration cake reduces the permeability of the tank near the well.
  • the reductions in permeability to the end of the drilling period and at the end of a complete cleaning can be obtained from laboratory measurements.
  • the use of the dimensionless form has the advantage of making it possible to group data by geological zones.
  • c 1 (r) corresponds to the permeability curve after damage and c 2 (r) corresponds to the stabilized return permeability curve.
  • the permeability variation curve can be measured from laboratory data and can be considered as independent of the location in a core. Thus, a curve is used for each geological area. This curve is monotonous. Its maximum is generally reached for several m 3 (or several tens of m 3 ) of fluid crossed per unit of porous surface.
  • k ( r , Q ) ( k f ( r ) - k d ( r )) K r ( r, Q ) - K d ( r ) K f ( r ) - K d ( r ) + k d ( r )
  • vs ( r , Q ) ( vs 2 ( r ) - vs 1 ( r )) vs 0 ( Q ) + vs 1 ( r )
  • Variation in permeability in the area occupied by the filter cake internal is modeled with equation (3). Unlike the internal filtration cake, the impact of the external filtration cake described below is modeled in the form of a wall coefficient in the discretized numerical model.
  • a cylindrical mesh r ⁇ x is used for the modeling of the flow of the fluid in the vicinity of a horizontal well ( Figure 3): r is the radial direction, perpendicular to the axis of the well, ⁇ is the angular direction and x is the direction along the well.
  • the limits of the well are discretized and meshes very small can be used to discretize the area occupied by the cake internal filtration.
  • the radius of the well is of the order of a few centimeters, and the thickness of the internal filter cake varies between a few centimeters and a few decimeters.
  • the meshes used in the vicinity of the wells vary between a few millimeters and a few centimeters.
  • well meshes designating the meshes which discretize the limits of the well, the boundary conditions of the well are treated in the well meshes.
  • the discretization coefficient is designated by the digital productivity index IP and not by the transmissivity T, and the flow F is replaced by the flow rate of the well q i .
  • This notation is consistent with the commonly used digital well model, and the wall coefficient can be integrated into the term of the digital productivity index IP.
  • the permeability k r, i varies during the return of fluid in the zone occupied by the internal filtration cake according to the formula presented in the previous section.
  • the transmissivity and the digital productivity index IP also vary in the simulation during the fluid return period.
  • the presence of the external filter cake can be taken into account in the discretization formula via the digital IP index.
  • the pressure of the well p w corresponds to the pressure on the radius r w - d e and not on the radius r w .
  • the pressure drop is high through the external filter cake which is located in the area between r w - d e and r w .
  • the permeability k e of the external filtration cake could generally be much lower than the permeability within the reservoir or in the area occupied by the internal filtration cake.
  • the numerical coefficient IP is very small.
  • ATHOS is a model of numerical modeling developed by IFP.
  • the discretization scheme used is a classic 5-point diagram to model the diffusivity equation in mesh cylindrical.
  • a digital IP is used to connect the pressure in these meshes, the pressure at the bottom of the well and the flow flow to the well.
  • the transmissivities around the well and the PI also change according to the variation of the permeabilities.
  • the curves which define the multiplying coefficients of permeabilities as a function of the distance to the well, c 1 (r) and c 2 (r), are entered into the simulator in the form of tables of values.
  • the corresponding values in each mesh are calculated from these curves using a linear interpolation as explained above.
  • the cumulative pore volume of fluid passing through an interface between two meshes in the radial direction r is used to calculate the multiplying coefficient of transmissivity between these two meshes at each instant considered.
  • Example 1 Disgorging in the presence of the internal cake alone
  • a cylindrical mesh is used for the simulations.
  • the tank is very large in the radial direction with an outside radius of 1750 m where the boundary condition is zero flow. On the borders at both ends of the well, the condition is also of zero flux.
  • the well is discretized in 80 meshes along its length. Each zone of constant permeability is thus discretized in 20 meshes of 0.25 m.
  • the initial pressure in the tank at the level of the well is approximately 320 bar.
  • the reservoir is homogeneous with a permeability of 1000 mD in the porous medium.
  • the external cake does not have a homogeneous presence along the well. In some places, there is no external cake, and in places where the external cake is present, it has a kext permeability of 1 mD and a thickness r ext of 4 mm as in the previous example.
  • the distribution of the presence of the external cake is given in Fig. 13.
  • the pressure difference necessary for the removal of the external cake is always fixed at 0.5 bar.
  • Figures 14 and 15 show the distribution of the external cake and the distribution of the flow along the well for these two cases at different production times.
  • the flows are uniform along the well, because the external cakes are completely torn from the start.
  • the flow distribution varies as a function of time, since the external cakes are torn non-uniformly at different times.
  • Fig. 16 shows the production of the well for these two cases.
  • the production of the well is higher, because all the external cakes are torn from the start.
  • the maximum local flow along the well is always less than 3m 3 / m.day .

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Earth Drilling (AREA)
EP02290995A 2001-05-09 2002-04-19 Verfahren zur Bestimmung, unter Verwendung digitaler Simulation, der Bedingungen der Restauration mit Hilfe von Formationsfluiden von durch Bohroperationen beschädigten Bohrungen Withdrawn EP1256693A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0106216 2001-05-09
FR0106216A FR2824651B1 (fr) 2001-05-09 2001-05-09 Methode pour determiner par simulation numerique les conditions de restauration par les fluides d'un gisement, d'un puits complexe endommage par les operations de forage
FR0107764 2001-06-12
FR0107764A FR2824652B1 (fr) 2001-05-09 2001-06-12 Methode pour determiner par simulation numerique les conditions de restauration par les fluides d'un gisement, d'un puits complexe endommage par les operations de forage

Publications (1)

Publication Number Publication Date
EP1256693A1 true EP1256693A1 (de) 2002-11-13

Family

ID=26213007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290995A Withdrawn EP1256693A1 (de) 2001-05-09 2002-04-19 Verfahren zur Bestimmung, unter Verwendung digitaler Simulation, der Bedingungen der Restauration mit Hilfe von Formationsfluiden von durch Bohroperationen beschädigten Bohrungen

Country Status (5)

Country Link
US (1) US7099811B2 (de)
EP (1) EP1256693A1 (de)
CA (1) CA2383289A1 (de)
FR (1) FR2824652B1 (de)
NO (1) NO322361B1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7284623B2 (en) * 2001-08-01 2007-10-23 Smith International, Inc. Method of drilling a bore hole
NO20050200L (no) * 2004-01-13 2005-07-14 Weatherford Lamb System for a evaluere over-og underbalanserte boreoperasjoner
GB2439488A (en) * 2004-01-13 2007-12-27 Weatherford Lamb Estimating the viability of a reservoir for drilling
WO2007018858A2 (en) * 2005-07-27 2007-02-15 Exxonmobil Upstream Research Company Well modeling associated with extraction of hydrocarbons from subsurface formations
MX2007016586A (es) * 2005-07-27 2008-03-04 Exxonmobil Upstream Res Co Modelaje de pozo asociado con extraccion de hidrocarburos a partir de yacimientos subterraneos.
EP1922663A4 (de) * 2005-07-27 2015-11-04 Exxonmobil Upstream Res Co Bohrlochmodellierung im zusammenhang mit der extraktion von kohlenwasserstoffen aus oberflächenformationen
US20080065362A1 (en) * 2006-09-08 2008-03-13 Lee Jim H Well completion modeling and management of well completion
US8768672B2 (en) * 2007-08-24 2014-07-01 ExxonMobil. Upstream Research Company Method for predicting time-lapse seismic timeshifts by computer simulation
WO2009029133A1 (en) * 2007-08-24 2009-03-05 Exxonmobil Upstream Research Company Method for multi-scale geomechanical model analysis by computer simulation
US8548782B2 (en) 2007-08-24 2013-10-01 Exxonmobil Upstream Research Company Method for modeling deformation in subsurface strata
US8265915B2 (en) * 2007-08-24 2012-09-11 Exxonmobil Upstream Research Company Method for predicting well reliability by computer simulation
WO2009085395A1 (en) * 2007-12-31 2009-07-09 Exxonmobil Upstream Research Company Methods and systems for determining near-wellbore characteristics and reservoir properties
CN102282562B (zh) 2009-01-13 2015-09-23 埃克森美孚上游研究公司 优化井作业计划
US9085957B2 (en) 2009-10-07 2015-07-21 Exxonmobil Upstream Research Company Discretized physics-based models and simulations of subterranean regions, and methods for creating and using the same
WO2011097055A2 (en) * 2010-02-02 2011-08-11 Conocophillips Company Multilevel percolation aggregation solver for petroleum reservoir simulations
EP2599031A4 (de) 2010-07-29 2014-01-08 Exxonmobil Upstream Res Co Verfahren und systeme für eine auf maschinenlernen beruhende flusssimulation
AU2011283193B2 (en) 2010-07-29 2014-07-17 Exxonmobil Upstream Research Company Methods and systems for machine-learning based simulation of flow
WO2014058777A1 (en) * 2012-10-09 2014-04-17 Shell Oil Company Method for heating a subterranean formation penetrated by a wellbore
RU2525093C1 (ru) 2013-07-30 2014-08-10 Шлюмберже Текнолоджи Б.В. Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора
AU2014389498B2 (en) * 2014-04-04 2017-06-22 Halliburton Energy Services, Inc. Determining treatment fluid composition using a mini-reservoir device
RU2613903C2 (ru) * 2015-06-11 2017-03-21 Шлюмберже Текнолоджи Б.В. Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации
US11041976B2 (en) 2017-05-30 2021-06-22 Exxonmobil Upstream Research Company Method and system for creating and using a subsurface model in hydrocarbon operations
RU2703359C1 (ru) * 2018-12-13 2019-10-16 Общество с ограниченной ответственностью (ООО) "ЛУКОЙЛ-ПЕРМЬ" Инженерный симулятор процесса добычи и транспортировки продукции скважин
CN110880048B (zh) * 2019-11-06 2022-06-21 国网湖北省电力有限公司宜昌供电公司 一种梯级水库生态随机优化调度模型及求解方法
CN111581854B (zh) * 2020-06-02 2023-05-26 中国地质大学(北京) 一种考虑非平衡各向异性相对渗透率的油藏状态预测方法
CN112129680A (zh) * 2020-08-19 2020-12-25 中国石油天然气股份有限公司 天然气注采对储气库储层破坏程度的确定方法
CN113705123B (zh) * 2020-08-26 2022-08-12 中国石油大学(北京) 外来颗粒损害油气层建模方法、损害程度时空演化4d定量与智能诊断方法及其系统
CN113266333B (zh) * 2021-06-29 2023-04-18 西北大学 一种通过挤入饱和co2盐水改善油砂储层渗透率的方法
US11867048B2 (en) * 2021-09-30 2024-01-09 Saudi Arabian Oil Company Method and system based on quantified flowback for formation damage removal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING ET AL.: "Modelling of near-wellbore damage removal by natural cleanup in horizontal open hole completed wells, paper SPE-68951", SPE EUROPEAN FORMATION DAMAGE CONFERENCE, 21 May 2001 (2001-05-21) - 22 May 2110 (2110-05-22), The Hague, The Netherlands, pages 1 - 14, XP002187166 *

Also Published As

Publication number Publication date
CA2383289A1 (fr) 2002-11-09
US7099811B2 (en) 2006-08-29
US20020188431A1 (en) 2002-12-12
NO322361B1 (no) 2006-09-25
NO20022204L (no) 2002-11-11
FR2824652A1 (fr) 2002-11-15
FR2824652B1 (fr) 2003-10-31
NO20022204D0 (no) 2002-05-08

Similar Documents

Publication Publication Date Title
EP1256693A1 (de) Verfahren zur Bestimmung, unter Verwendung digitaler Simulation, der Bedingungen der Restauration mit Hilfe von Formationsfluiden von durch Bohroperationen beschädigten Bohrungen
EP2253797B1 (de) Verfahren zur Förderung in einem porösen Medium mittels einer Modellierung der Flüssigkeitsströme
CA2383764C (fr) Methode pour modeliser des deplacements de fluides dans un milieu poreux tenant compte d'effets d'hysteresis
EP0125164A1 (de) Verfahren zur Ermittlung der Eigenschaften einer flüssigkeitsführenden, unterirdischen Formation
EP3144468A1 (de) Verfahren zur charakterisierung des bruchnetzes eines bruchlagers, und verfahren zu dessen ausbeutung
EP1167948A1 (de) Verfahren zur Auswertung der physikalischen Parameter einer unterirdischen Lagerstätte, ausgehend von dort entnommenen Felsabfällen
EP2120068A1 (de) Abschätzverfahren der physischen Parameter einer geologischen Formation
FR3076316A1 (fr) Representation efficace des resultats de simulation tridimensionnelle complexes pour les operations en temps reel
WO2009027598A1 (fr) Procede, programme et systeme informatique de conciliation de donnees de modele de reservoir d'hydrocarbure
Bedrikovetsky et al. Formation-damage evaluation from nonlinear skin growth during coreflooding
FR3065253A1 (fr) Procede de localisation de position de masse tige
FR3053723A1 (fr) Environnement geologique susceptible de deformer un tubage apres l'injection de fractures hydrauliques
FR3039853A1 (de)
FR3086779A1 (fr) Mise en correspondance avec un historique de production automatisée à l’aide de l’optimisation bayésienne
EP1506344B1 (de) Verfahren zur schichtweisen bestimmung der vorratsqualität eines ölbohrlochs
Maréchal et al. New analytical solution for the study of hydraulic interaction between Alpine tunnels and groundwater
FR2807167A1 (fr) Procede pour determiner la resistivite d'une formation traversee par un puits tube
EP3626929A1 (de) Verfahren zum abbau eines kohlenwasserstofflagers durch einspritzung eines polymers
Gonzalez et al. A Novel Application of Standard Surveillance Techniques to Formation Damage Control by Identifying the Location of the Obstruction and Quantifying Skin Type
FR3040509A1 (de)
FR2824651A1 (fr) Methode pour determiner par simulation numerique les conditions de restauration par les fluides d'un gisement, d'un puits complexe endommage par les operations de forage
EP2315055B1 (de) Interpretationsmethode für wiederholt gemessene seismische Daten
Ali et al. Bringing the Best to Downhole Fluid Sampling by Evaluating the Focused Sampling Technique With Multiple Packer Types in Exploration and Development Wells–Case Studies From South East Asia
FR2897692A1 (fr) Procede et systeme d'identification et d'evaluation de risque de defaillance d'un systeme de confinement geologique
EP3192964A1 (de) Verfahren zur produktion von kohlenwasserstoffen, das einen produktivitätsindex der brunnen unter wärmeeffekt umfasst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030513

AKX Designation fees paid

Designated state(s): GB IT NL

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081101