EP1253498B1 - Voltage regulator - Google Patents

Voltage regulator

Info

Publication number
EP1253498B1
EP1253498B1 EP02008935A EP02008935A EP1253498B1 EP 1253498 B1 EP1253498 B1 EP 1253498B1 EP 02008935 A EP02008935 A EP 02008935A EP 02008935 A EP02008935 A EP 02008935A EP 1253498 B1 EP1253498 B1 EP 1253498B1
Authority
EP
European Patent Office
Prior art keywords
transistor
current
voltage regulator
flowing
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02008935A
Other languages
German (de)
French (fr)
Other versions
EP1253498A1 (en
Inventor
Peter Gregorius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1253498A1 publication Critical patent/EP1253498A1/en
Application granted granted Critical
Publication of EP1253498B1 publication Critical patent/EP1253498B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to a device according to claim 1, i. a voltage regulator whose output voltage depends on the control of a transistor contained in the voltage regulator.
  • FIG. 1 A voltage regulator of this type is shown in FIG. 1
  • the arrangement shown in FIG. 5 contains a DC voltage regulator and a load resistor Zout connected thereto.
  • the voltage regulator includes a differential amplifier (a differential transconductance amplifier) OTA1, an NMOS transistor MN1, a first resistor Rfb, a second resistor Re, a third resistor Rs, a first capacitor Cs1, a second capacitor Cs2, and a third capacitor Cs3.
  • a differential amplifier a differential transconductance amplifier
  • NMOS transistor MN1 a first resistor Rfb, a second resistor Re, a third resistor Rs, a first capacitor Cs1, a second capacitor Cs2, and a third capacitor Cs3.
  • the voltage regulator generates an output voltage Vout, which is tapped at the source terminal of the transistor MN1, and which is supplied to the load Zout as a supply voltage.
  • the drain terminal of the transistor MN1 is supplied with a power voltage supplying the voltage regulator, and the gate terminal is connected to the output terminal of the transconductance amplifier OTA1.
  • the transconductance amplifier OTA1 has two input terminals from which one input voltage Vin is supplied and from which the other is supplied with a voltage (feedback) dependent on the output voltage Vout; the transconductance amplifier OTA1 forms the difference between these voltages and outputs the result to the gate of the transistor MN1.
  • the feedback voltage is applied to one between the resistors Rfb and Re lying node x2 tapped; the resistors Rfb and Re are connected in series and arranged between the source of the transistor MN1 and ground.
  • FIG. 6 shows the small-signal equivalent circuit of the arrangement shown in FIG.
  • the voltage regulator described is a series regulator (Series Voltage Regulator) with an NMOS transistor in drain basic circuit as a driver stage. It will be understood and need not be further explained that the voltage regulator shown is capable of producing a constant output voltage Vout dependent solely on Vin and the feedback factor (determined by resistors Rfb and Re). However, this is especially true for complex loads Zout, i. In the case of loads with inductive and / or capacitive components, this is not guaranteed under all circumstances: the system may become unstable in this case.
  • the stability problems would not occur if it were ensured by a suitable dimensioning of Rfb and Re that the current Is1 flowing through the transistor MN1 does not fall below a certain minimum value even with a large Zout, ie low load current, the transistor MN1 thus has a certain value Minimum slope (a certain minimum output conductance).
  • Minimum slope a certain minimum output conductance
  • the provision of a large (transverse) current flowing through the transistor MN1 and the resistors Rfb and Re is associated with various disadvantages.
  • such a voltage regulator has a high intrinsic energy requirement and the transistor MN1 must be made larger than would be the case with a small cross-current.
  • the necessary minimum cross-flow to ensure the stability is not available for driving the load Zout available.
  • the dependence of the stability of the voltage regulator on the minimum cross-flow can be explained as follows:
  • the arrangement according to FIG. 5 can be understood simply as a two-terminal system.
  • the stability criterion here requires that the two poles are at least a factor of n ⁇ 10 apart.
  • the first pole fp1 is simplified according to equation 1.1. f p 1 ⁇ 1 2 * ⁇ * C m 1 * 1 / G m OTA 1
  • the first dominant pole is determined by the transconductance gm of the transconductance amplifier OTA1 as well as by the stabilization capacitance Cm1.
  • the first pole is invariant. it is determined by the necessary bandwidth of the arrangement.
  • Equation 1.2 gives the mathematical relationship to the calculation of the second pole.
  • the second pole fp2 is directly proportional to the output conductance of the driving transistor.
  • the present invention is therefore based on the object of finding a voltage regulator which, with minimum own energy requirement, provides reliable stabilization under all circumstances and is also easy to design and implement.
  • the stabilizing circuit can ensure that the current flowing through the transistor in phases, and only in phases in which this would be too small to ensure a stable operation of the voltage regulator is increased.
  • the voltage regulator can be constructed so that the cross-current flowing through the transistor in phases in which it is not increased by the stabilizing circuit, is very low, whereby the current flowing through the transistor at high loads is only slightly larger than that of the Load drawn electricity.
  • the voltage regulator according to the invention has a lower own energy demand, because the flow of the additional cross-flow is indeed caused only in certain phases.
  • the stabilization circuit is also easy to design and implement and easily adaptable to the particular circumstances. It can also be used substantially unchanged in all types of voltage regulators be whose output voltage depends on the driving of a transistor.
  • the voltage regulators described below are DC voltage regulators. However, it should be noted at this point that the peculiarities of the voltage regulator described below can also be used in voltage regulators for time-varying voltages.
  • FIG. 1 shows an arrangement which comprises a particularly stabilized voltage regulator and a load impedance Zout connected thereto.
  • the voltage regulator is a series-voltage regulator which, like the voltage regulator shown in FIG. 5 and initially described with reference thereto, includes a differential amplifier (a differential transconductance amplifier) OTA1, an NMOS transistor MN1, a first resistor Rfb and a second resistor Re, which are also interconnected and cooperate as in the voltage regulator shown in FIG.
  • the voltage regulator shown in FIG. 1 furthermore contains a stabilization circuit which, however, has a completely different construction and functions as the elements Rs, Cs1, Cs2 and Cs3 of the voltage regulator according to FIG. 5 which serve for the stabilization.
  • the stabilization circuit consists of a second differential amplifier (a second differential transconductance amplifier) OTA2, NMOS transistors MN2, MN3, MN4, MN5, and MN6, and a PMOS transistor MP3.
  • a second differential amplifier a second differential transconductance amplifier
  • Transistor MN2 has its drain connected to a supply voltage supplying power to the voltage regulator, the gate is connected to the output terminal of first transconductance amplifier OTA1, and the source is connected to node x3.
  • the source terminal is connected to the node x3, the gate terminal is connected to the output terminal of the second transconductance amplifier OTA2, and the drain terminal is connected to the source terminal of the transistor MN4.
  • the transconductance amplifier OTA2 has two input terminals from which one is supplied with the voltage set at the node x3 and from which the other is supplied with the voltage Vout; the transconductance amplifier OTA2 is the difference between them Voltages and outputs them to the gate terminal of the transistor MP3.
  • the (lying on the ground side of the source) transistor MN4 is connected to the transistor MN5 to a current mirror, wherein a current flowing through the transistor MN4 Irep causes the transistor MN3 is traversed by a current Irep '.
  • the drain terminal of the transistor MN3 (which is also grounded on the source side) is connected to a node x1. Further, a reference current source outputting a current Iref and the drain terminal of the transistor MN5 are connected to this node x1.
  • the (on the source side grounded) transistor MN5 is connected to the transistor MN6 to a current mirror, wherein a current flowing through the transistor MN5 Ic causes the transistor MN6 is traversed by a current Ic '.
  • the drain terminal of the transistor MN6 (which is also grounded on the source side) is connected to the drain of the transistor MN1;
  • This transistor MN6 represents an additional load for the transistor MN1, by which the magnitude of the current Is1 flowing through the transistor MN1 can be varied while the transistor MN1 remains at the same level.
  • the transistor MN1 is traversed by a current corresponding to the sum of the currents Ic ', Iq, and Iout, where Ic' is the current flowing through the transistor MN6, Iq is the current flowing through the voltage divider Rfb, Re, and Iout the load Zout is flowing through current.
  • the transconductance amplifier OTA2 and the transistor MP3 ensure that the same potential is set at the source terminal of the transistor MN2 (at the node x3) as on Source of the transistor MN1. This means that the potential Vout also sets at node x3.
  • the arrangement of transconductance amplifier OTA2 and transistor MP3 can be understood as a voltage follower which generates a replica of the output voltage Vout at node x3.
  • the transistors MN1 and MN2 are thus in terms of voltage in the same operating point, which serves to improve the synchronization of both transistors to each other.
  • a current flowing through the transistor MN2 is in a certain proportion to the current flowing through the transistor MN1.
  • the transistor is preferably much weaker than the transistor MN1, so that the current Irep flowing through the transistor MN2 is much smaller than the current Ic '+ Iq + Iout flowing through the transistor MN1.
  • the transistor MN2 thus produces a replica current Irep to the transistor MN1 flowing through current Ic '+ Iq + Iout.
  • the current Irep flowing through the transistor MN2 also flows through the transistor MP3 and the transistor MN4.
  • the passage of the current Irep through the transistor MN4 causes the transistor MN3 is traversed by a current Irep 'in a certain proportion to the current Irep.
  • the difference of Irep' and of the node x1 flows Iref corresponding current Ic through the transistor MN5.
  • the flow of the current Ic through the transistor MN5 causes the transistor MN6 is traversed by a standing in a certain proportion to the current Ic current Ic '.
  • the transistor MN1 is traversed by an additional cross-current Ic '. This is the case when the load impedance Zout is large, ie, the load current Iout is small.
  • the stabilization circuit can thus be achieved that the transistor MN1 is traversed by an additional cross-current Ic 'when the sum of the currents Iout and Iq is small, and that the transistor MN1 is traversed by any additional cross-current Ic' when the sum of Currents Iout and Iq is large, more specifically large enough to ensure stable operation of the voltage regulator.
  • the voltage regulator according to FIG. 1 also contains capacitors Cm1 and Cm2 via which the output terminals of the transconductance amplifiers OTA1 and OTA2 are connected to ground and which serve for frequency compensation of the transconductance amplifiers OTA1 and OTA2.
  • FIG. 1 A low drop output regulator with a stabilization circuit which corresponds to the stabilization circuit described above is shown in FIG.
  • the transconductance amplifier OTA1 (also called an error amplifier) regulates the gate-source voltage of the transistor MN1 (MP1) until the voltage at the output has returned to the nominal value.
  • the current flowing through the transistor MN2 is given neglecting non-idealities (mismatch etc.) as: I rep ⁇ ⁇ n MN 2 * W MN 2 * L MN 1 ⁇ n MN 1 * W MN 1 * L MN 2 * I s 1
  • W denotes the width of the transistor mentioned in the respective index
  • L the length of the transistor named in the respective index
  • the process constant of the transistor and transistor type named in the respective index.
  • the process constants are identical for transistors of the same type and thus, if not required, are not mentioned below.
  • Is1 Islmin adjusting current Irep (see equations 1.5 and 1.6)
  • I rep min W MN 2 * L MN 1 W MN 1 * L MN 2 * V in R e
  • I ref - I c - I re p ' 0 I re p ' ⁇ W MN 3 * L MN 4 W MN 4 * L MN 3 * I rep I c ' ⁇ W MN 6 * L MN 5 W MN 5 * L MN 6 * I c
  • the current Is1 in the transistor MN1 decreases and thus also the current in transistor MN2.
  • the circuit can now be dimensioned in consideration of the stability of the transistor MN1 (MP1) necessary for stability.
  • the transconductance amplifier OTA1 has a simplified transfer function with a dominant pole. Parasitic poles and zeros are ignored.
  • gm OTA1 denotes the transconductance of the transconductance amplifier OTA1.
  • f c 1 1 2 * ⁇ * R 1 * [ C G s MP 1 + ( C G d MP 1 + C m 1 ) * [ 1 +
  • f c 2 1 2 * ⁇ * R 2 * ( C 1 + C m 1 + C G s MP 1 )
  • the circuit can now be dimensioned accordingly.
  • a structure and a value must be defined at the beginning of the dimensioning. This can be done from a specification for the bandwidth of the OTA according to equation 1.16.
  • the gain of the driving transistor one can make the assumption that the minimum current Iq flows as Is1.
  • the circuit gets according reserve in the stability.
  • the series-voltage regulator has an Rmin ': R Wed.
  • Equations 1.35 and 1.29 for the arrangements shown in Figures 1 and 2, the minimum cross current which must flow through the output transistors MN1 and MP1, respectively, can now be determined to provide stability for a given load capacitance.
  • the resistor Rmin (Rmin ') serves as an auxiliary size for sizing.
  • the current through an assumed resistance Rmin (Rmin ') can now be divided between the current Iq by voltage divider Rfb and Re and the current Ic' accordingly. The circuit is thus completely dimensioned.
  • the transfer function in the frequency level of the closed loop can be derived from the small signal equivalent circuit shown in FIG.
  • G a v a c ( s ) 20 * log ( Z in ( s ) Z in ( s ) + R e ⁇ R f b * A v dead ( s ) * ( R e + R f b ) ⁇ C 1 ( R e + R f b ) ⁇ C 1 + R out 1 + R e R e + R f b * ( Z in ( s ) Z in ( s ) + R e ⁇ R f b * A v dead ( s ) * ( R e + R f b ) ⁇ C 1 ( R e + R f b ) ⁇ C 1 + R out ) )
  • G a v d c 20 * log ( R e + R f R e )
  • the transfer function shows an increase in the frequency range to the expected DC gain, instability or at least ringing (overshoot) can be assumed.
  • the circuit can be dimensioned accordingly.
  • FIG. 3 shows, by way of example, current and voltage profiles in a properly dimensioned voltage regulator with a stabilization circuit of the type described above.
  • FIG. 4 shows a stabilization circuit in which a hysteresis is provided for switching on and off the additional cross-current Ic '.
  • the stabilization circuit shown in FIG. 4 additionally contains NMOS transistors MN7 and MN8 as well as a current source supplying a reference current Iref2.
  • the transistors MN7 and MN8 are connected to a current mirror, wherein the drain of the transistor MN7 and the gates of the transistors MN7 and MN8 are connected to the node x1, the drain of the transistor MN8 to the drain of the transistor MN4, the gates of the transistors MN3 and MN4 and the reference current Iref2 supplying power source is connected, and the sources of the transistors MN7 and MN8 are connected to ground.
  • I hys ( W MN 4 * L MN 3 W MN 3 * L MN 4 - W MN 7 * L MN 8th W MN 8th * L MN 7 ) * I ref 1
  • the described stabilizer circuits can be modified in a variety of ways.
  • the size of the additional cross-current Ic ' is set so that the current flowing through the transistor MN1 or MP1 is just large enough, ie. is not significantly greater than is necessary to ensure stable operation of the voltage regulator.
  • the cross-flow flowing through the transistor is made large by default, and that the stabilizing circuit ensures that the cross-flow is reduced when the magnitude of the current flowing through the transistor (or a current dependent on the magnitude of this current) exceeds a certain threshold.
  • the change in the current flowing through the transistor MN1 or MP1 is achieved by a reconfiguration of the arrangement, for example by opening, closing or switching of switches via which the transistor can be connected to components or current sinks acting as load elements.
  • the stabilization circuits of the described voltage regulators are easy to design and implement independently of the details of the practical implementation, and can ensure reliable stabilization under all circumstances with minimum self-energy consumption of the voltage regulators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Amplifiers (AREA)

Description

Die vorliegende Erfindung betrifft eine Vorrichtung gemäß Patentanspruch 1, d.h. einen Spannungsregler, dessen Ausgangsspannung von der Ansteuerung eines im Spannungsregler enthaltenen Transistors abhängt.The present invention relates to a device according to claim 1, i. a voltage regulator whose output voltage depends on the control of a transistor contained in the voltage regulator.

Ein Spannungsregler dieser Art ist in Figur 5 dargestellt.A voltage regulator of this type is shown in FIG.

Die in der Figur 5 gezeigte Anordnung enthält einen Gleichspannungsregler und einen daran angeschlossenen Lastwiderstand Zout.The arrangement shown in FIG. 5 contains a DC voltage regulator and a load resistor Zout connected thereto.

Der Spannungsregler enthält einen Differenzverstärker (einen differentiellen Transkonduktanzverstärker) OTA1, einen NMOS-Transistor MN1, einen ersten Widerstand Rfb, einen zweiten Widerstand Re, einen dritten Widerstand Rs, einen ersten Kondensator Cs1, einen zweiten Kondensator Cs2, und einen dritten Kondensator Cs3.The voltage regulator includes a differential amplifier (a differential transconductance amplifier) OTA1, an NMOS transistor MN1, a first resistor Rfb, a second resistor Re, a third resistor Rs, a first capacitor Cs1, a second capacitor Cs2, and a third capacitor Cs3.

Der Spannungsregler erzeugt eine Ausgangsspannung Vout, welche am Sourceanschluß des Transistors MN1 abgegriffen wird, und welche der Last Zout als Versorgungsspannung zugeführt wird. Der Drainanschluß des Transistors MN1 wird mit einer den Spannungsregler mit Energie versorgenden Versorgungsspannung beaufschlagt, und der Gateanschluß ist mit dem Ausgangsanschluß des Transkonduktanzverstärkers OTA1 verbunden. Der Transkonduktanzverstärker OTA1 weist zwei Eingangsanschlüsse auf, von welchen einem eine Eingangsspannung Vin zugeführt wird, und von welchen dem anderen eine von der Ausgangsspannung Vout abhängende (rückgekoppelte) Spannung zugeführt wird; der Transkonduktanzverstärker OTA1 bildet die Differenz zwischen diesen Spannungen und gibt das Ergebnis an den Gateanschluß des Transistors MN1 aus. Die rückgekoppelte Spannung wird an einem zwischen den Widerständen Rfb und Re liegenden Knotenpunkt x2 abgegriffen; die Widerstände Rfb und Re sind in Reihe geschaltet und zwischen dem Sourceanschluß des Transistors MN1 und Masse angeordnet.The voltage regulator generates an output voltage Vout, which is tapped at the source terminal of the transistor MN1, and which is supplied to the load Zout as a supply voltage. The drain terminal of the transistor MN1 is supplied with a power voltage supplying the voltage regulator, and the gate terminal is connected to the output terminal of the transconductance amplifier OTA1. The transconductance amplifier OTA1 has two input terminals from which one input voltage Vin is supplied and from which the other is supplied with a voltage (feedback) dependent on the output voltage Vout; the transconductance amplifier OTA1 forms the difference between these voltages and outputs the result to the gate of the transistor MN1. The feedback voltage is applied to one between the resistors Rfb and Re lying node x2 tapped; the resistors Rfb and Re are connected in series and arranged between the source of the transistor MN1 and ground.

Figur 6 zeigt das Kleinsignal-Ersatzschaltbild der in der Figur 5 gezeigten Anordnung.FIG. 6 shows the small-signal equivalent circuit of the arrangement shown in FIG.

Der beschriebene Spannungsregler ist ein Serienregler (Series Voltage Regulator) mit einem NMOS-Transistor in Drain-Grundschaltung als Treiberstufe. Es dürfte einleuchten und bedarf keiner näheren Erläuterung, daß der gezeigte Spannungsregler in der Lage ist, eine alleine von Vin und dem (durch die Widerstände Rfb und Re bestimmten) Rückkoppelfaktor abhängende konstante Ausgangsspannung Vout zu erzeugen. Dies ist jedoch insbesondere bei komplexen Lasten Zout, d.h. bei Lasten mit induktiven und/oder kapazitiven Komponenten nicht unter allen Umständen gewährleistet: das System kann in diesem Fall instabil werden.The voltage regulator described is a series regulator (Series Voltage Regulator) with an NMOS transistor in drain basic circuit as a driver stage. It will be understood and need not be further explained that the voltage regulator shown is capable of producing a constant output voltage Vout dependent solely on Vin and the feedback factor (determined by resistors Rfb and Re). However, this is especially true for complex loads Zout, i. In the case of loads with inductive and / or capacitive components, this is not guaranteed under all circumstances: the system may become unstable in this case.

Die Stabilitätsprobleme würden nicht auftreten, wenn durch eine geeignete Dimensionierung von Rfb und Re dafür gesorgt werden würde, daß der durch den Transistor MN1 fließende Strom Is1 auch bei großem Zout, also geringem Laststrom, einen gewissen Minimalwert nicht unterschreitet, der Transistor MN1 also eine gewisse Mindest-Steilheit (einen gewissen Mindest-Ausgangsleitwert) aufweist. Das Vorsehen eines über den Transistor MN1 und die Widerstände Rfb und Re fließenden großen (Quer)Stromes ist allerdings mit diversen Nachteilen verbunden. Insbesondere hat ein solcher Spannungsregler einen hohen Eigenenergiebedarf und muß der Transistor MN1 größer ausgebildet werden als es bei einem geringen Querstrom der Fall wäre. Zudem steht der notwendige Mindest-Querstrom zur Sicherstellung der Stabilität nicht zum Treiben der Last Zout zur Verfügung.The stability problems would not occur if it were ensured by a suitable dimensioning of Rfb and Re that the current Is1 flowing through the transistor MN1 does not fall below a certain minimum value even with a large Zout, ie low load current, the transistor MN1 thus has a certain value Minimum slope (a certain minimum output conductance). The provision of a large (transverse) current flowing through the transistor MN1 and the resistors Rfb and Re, however, is associated with various disadvantages. In particular, such a voltage regulator has a high intrinsic energy requirement and the transistor MN1 must be made larger than would be the case with a small cross-current. In addition, the necessary minimum cross-flow to ensure the stability is not available for driving the load Zout available.

Die Abhängigkeit der Stabilität des Spannungsreglers vom Mindest-Querstrom läßt sich wie folgt erklären: Die Anordnung nach Figur 5 kann vereinfacht als Zweipolsystem verstanden werden. Das Stabilitätskriterium fordert hierbei, dass die beiden Pole mindestens um einen Faktor von n≥10 auseinander liegen.The dependence of the stability of the voltage regulator on the minimum cross-flow can be explained as follows: The arrangement according to FIG. 5 can be understood simply as a two-terminal system. The stability criterion here requires that the two poles are at least a factor of n≥10 apart.

Der erste Pol fp1 ergibt sich vereinfacht nach Gleichung 1.1. f p 1 1 2 * π * C m 1 * 1 / g m OTA 1

Figure imgb0001
The first pole fp1 is simplified according to equation 1.1. f p 1 1 2 * π * C m 1 * 1 / G m OTA 1
Figure imgb0001

Es ist zu erkennen, daß der erste dominante Pol von der Steilheit gm des Transkonduktanzverstärker OTA1 als auch von der Stabilisierungkapazität Cm1 bestimmt wird. In der Praxis ist der erste Pol invariant. er wird bestimmt durch die notwendige Bandbreite der Anordnung.It can be seen that the first dominant pole is determined by the transconductance gm of the transconductance amplifier OTA1 as well as by the stabilization capacitance Cm1. In practice, the first pole is invariant. it is determined by the necessary bandwidth of the arrangement.

Der zweite Pol wird vereinfacht bestimmt durch die Lastkapazität Cout am Ausgang Vout, die Lastimpedanz Zout, und den Ausgangsleitwert gds des treibenden Transistor MN1. Die Gleichung 1.2 gibt den mathematischen Zusammenhang zur Errechnung des zweiten Pols wieder. f p 2 1 2 * π * C out * ( 1 / g d s MN 1 Z out ( R e + R f b ) )

Figure imgb0002
The second pole is simplified by the load capacitance Cout at the output Vout, the load impedance Zout, and the output conductance gds of the driving transistor MN1. Equation 1.2 gives the mathematical relationship to the calculation of the second pole. f p 2 1 2 * π * C out * ( 1 / G d s MN 1 Z out ( R e + R f b ) )
Figure imgb0002

Mit der vorstehend erwähnten vereinfachten Dimensionierungsvorschrift, wonach bei gegebener Last afp2 ≥ 10*fp1 gelten soll, kann der notwendige Mindest-Querstrom und somit der Widerstandswert Rmin (die Summe der Widerstände Re und Rfb) errechnet werden.With the above-mentioned simplified dimensioning rule, according to which afp2 ≥ 10 * fp1 should apply for a given load, the necessary minimum cross-current and thus the resistance Rmin (the sum of the resistances Re and Rfb) can be calculated.

Der zweite Pol fp2 hängt direkt proportional vom Ausgangsleitwert des treibenden Transistors ab. Der Mindest-Ausgangsleitwert des Transistors ist direkt proportional zum eingestellten Mindest-Querstrom Iq=Is1 und somit letztendlich die Mindest-Phasenreserve der Anordnung.The second pole fp2 is directly proportional to the output conductance of the driving transistor. The minimum output conductance of the transistor is directly proportional to the set minimum cross-current Iq = Is1 and thus ultimately the minimum phase margin of the device.

Diese Zusammenhänge sind, wie vorstehend bereits erläutert wurde, nachteilig.These relationships are, as already explained above, disadvantageous.

Man ist daher schon seit langem auf der Suche nach Alternativen zur Beeinflussung der Stabilität von Spannungswandlern, die diese Nachteile nicht aufweisen.It has therefore long been looking for alternatives to influence the stability of voltage transformers that do not have these disadvantages.

Eine Möglichkeit hierfür besteht im Vorsehen von zusätzlichen Elementen, durch welche sich auf die Übertragungsfunktion des Systems, genauer gesagt auf die Lage der Pol- und Nullstellen derselben Einfluß nehmen läßt um somit eine Mindest-Phasenreserve zur Stabilisierung zu garantieren. Bei dem in der Figur 5 gezeigten Spannungsregler wurde von dieser Möglichkeit gebrauch gemacht. Die zusätzlichen Elemente umfassen den Widerstand Rs1 und die Kondensatoren Cs1, Cs2, und Cs3. Von den genannten Elementen sind

  • der Widerstand Rs1 und der Kondensator Cs1 in Reihe geschaltet und zwischen dem Ausgangsanschluß des Transkonduktanzverstärkers OTA1 und Masse angeordnet,
  • der Kondensator Cs2 zwischen dem Rückkoppelzweig und Masse angeordnet, und
  • der Kondensator Cs3 parallel zum Widerstand Rfb angeordnet.
One way of doing this is to provide additional elements which allow the transfer function of the system, more specifically the position of the poles and zeroes, to be used to guarantee a minimum phase margin for stabilization. In the case of the voltage regulator shown in FIG. 5, use was made of this possibility. The additional elements include resistor Rs1 and capacitors Cs1, Cs2, and Cs3. Of the mentioned elements are
  • the resistor Rs1 and the capacitor Cs1 are connected in series and arranged between the output terminal of the transconductance amplifier OTA1 and ground,
  • the capacitor Cs2 is arranged between the feedback branch and ground, and
  • the capacitor Cs3 arranged parallel to the resistor Rfb.

Durch die genannten Elemente kann Einfluß auf die Lage der Pol- und Nullstellen der Übertragungsfunktion und damit auch auf das Stabilitätsverhalten des Systems genommen werden. Allerdings ist es schwierig und aufwendig, und teilweise sogar unmöglich, die genannten Elemente so zu dimensionieren, daß der Spannungsregler über den gesamten Lastbereich stabil arbeitet.By means of the mentioned elements influence on the position of the poles and zeros of the transfer function and thus also on the stability behavior of the system can be taken. However, it is difficult and expensive, and sometimes even impossible, to dimension the elements mentioned so that the voltage regulator operates stably over the entire load range.

Es existiert eine Vielzahl von Veröffentlichungen, in welchen diese und weitere Möglichkeiten zur Stabilisierung von Spannungsreglern beschrieben sind. Es wird beispielsweise auf

  • Thomas M. Frederiksen: "A Monolithic High-Power Series Voltage Regulator", IEEE Journal of Solid-State Circuits, Dezember 1968, Seite 380 ff.,
  • Gabriel A. Rincon-Mora et al.: "A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator", IEEE Journal of Solid-State Circuits, Vol.33, No. 1., January 1998, Seiten 36 ff., und
  • Gerrit W. den Besten et al.: "Embedded 5V-to-3.3V Voltage Regulator for Supplying Digital IC's in 3.3V CMOS Technology", IEEE Journal of Solid-State Circuits, Vol 33, No. 7, July 1998, Seite 956 ff.
und die darin genannten weiteren Fundstellen verwiesen.There are a variety of publications in which these and other ways to stabilize voltage regulators are described. It will be up for example
  • Thomas M. Frederiksen: "A Monolithic High-Power Series Voltage Regulator", IEEE Journal of Solid-State Circuits, December 1968, page 380 et seq.,
  • Gabriel A. Rincon-Mora et al .: "Low Voltage, Low Quiescent Current, Low Dropout Regulator", IEEE Journal of Solid State Circuits, Vol.33, no. 1st, January 1998, pages 36 ff., And
  • Gerrit W. den Besten et al .: "Embedded 5V-to-3.3V Voltage Regulator for Supplying Digital ICs in 3.3V CMOS Technology", IEEE Journal of Solid-State Circuits, Vol. 7, July 1998, page 956 et seq.
and the other references cited therein.

Unter den bekannten Möglichkeiten zur Stabilisierung von Spannungsreglern befindet sich keine, die einfach entwerfbar und realisierbar ist und bei geringem Eigenenergiebedarf eine unter allen Umständen zuverlässige Stabilisierung gewährleisten kann.Among the known possibilities for the stabilization of voltage regulators is none that can be easily designed and realized and can guarantee a stable stabilization under all circumstances with low own energy requirements.

Die gilt nicht nur für den vorstehend beschriebenen Series Voltage Regulator, sondern auch für die sogenannten Low Drop Output Regulators (LDO-Regler), welche als treibenden Transistor einen PMOS-Transistor in Source-Grundschaltung aufweisen.This applies not only to the above-described Series Voltage Regulator, but also to the so-called Low Drop Output Regulators (LDO), which have as a driving transistor, a PMOS transistor in source-ground circuit.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Spannungsregler zu finden, der bei minimalem Eigenenergiebedarf eine unter allen Umständen zuverlässige Stabilisierung gewährleisten kann, und zudem einfach entwerfbar und realisierbar ist.The present invention is therefore based on the object of finding a voltage regulator which, with minimum own energy requirement, provides reliable stabilization under all circumstances and is also easy to design and implement.

Diese Aufgabe wird erfindungsgemäß durch den in Patentanspruch 1 beanspruchten Spannungsregler gelöst.This object is achieved by the claimed in claim 1 voltage regulator.

Die Stabilisierungsschaltung kann dafür sorgen, daß der durch den Transistor fließende Strom in Phasen, und zwar nur in Phasen, in welchen dieser zu klein wäre, um einen stabilen Betrieb des Spannungsreglers zu gewährleisten, erhöht wird.The stabilizing circuit can ensure that the current flowing through the transistor in phases, and only in phases in which this would be too small to ensure a stable operation of the voltage regulator is increased.

Dadurch entfällt die Notwendigkeit, den Transistor dauerhaft von einem hohen Querstrom durchfließen zu lassen. Der Spannungsregler kann so aufgebaut werden, daß der Querstrom, der den Transistor durchfließt, in Phasen, in welchen er durch die Stabilisierungsschaltung nicht erhöht wird, sehr gering ist, wodurch der den Transistor durchfließende Strom bei großen Lasten nur unwesentlich größer ist als der von der Last gezogene Strom.This eliminates the need to allow the transistor to flow permanently from a high cross-flow. The voltage regulator can be constructed so that the cross-current flowing through the transistor in phases in which it is not increased by the stabilizing circuit, is very low, whereby the current flowing through the transistor at high loads is only slightly larger than that of the Load drawn electricity.

Dies hat den positiven Effekt, daß der Transistor in alleiniger Abhängigkeit von der maximalen Last dimensioniert werden kann, also nicht aus Gründen der Stabilität des Spannungsreglers größer ausgebildet werden muß. Darüber hinaus hat der erfindungsgemäße Spannungsregler einen geringeren Eigenenergiebedarf, denn das Fließen des zusätzlichen Querstromes wird ja nur in bestimmten Phasen veranlaßt.This has the positive effect that the transistor can be dimensioned in sole dependence on the maximum load, so it must not be made larger for reasons of stability of the voltage regulator. In addition, the voltage regulator according to the invention has a lower own energy demand, because the flow of the additional cross-flow is indeed caused only in certain phases.

Die Stabilisierungsschaltung ist darüber hinaus einfach entwerfbar und realisierbar und problemlos an die jeweiligen Gegebenheiten anpaßbar. Sie kann darüber hinaus im wesentlichen unverändert bei allen Arten von Spannungsreglern eingesetzt werden, deren Ausgangsspannung von der Ansteuerung eines Transistors abhängt.The stabilization circuit is also easy to design and implement and easily adaptable to the particular circumstances. It can also be used substantially unchanged in all types of voltage regulators be whose output voltage depends on the driving of a transistor.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen, der folgenden Beschreibung und den Figuren entnehmbar.Advantageous developments of the invention are the dependent claims, the following description and the figures removable.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Figuren näher erläutert. Es zeigen

Figur 1
einen Series Voltage Regulator mit einer im folgenden näher beschriebenen Stabilisierungsschaltung,
Figur 2
einen Low Drop Output Regulator mit der im folgenden näher beschriebenen Stabilisierungsschaltung,
Figur 3
die zeitlichen Verläufe ausgewählter Ströme und Spannungen in der in der Figur 1 gezeigten Anordnung,
Figur 4
einen Series Voltage Regulator mit einer modifizierten Stabilisierungsschaltung,
Figur 5
einen herkömmlichen Series-Voltage Regulator, und
Figur 6
ein vereinfachtes Kleinsignal-Ersatzschaltbild der in der Figur 5 gezeigten Anordnung.
The invention will be explained in more detail by means of embodiments with reference to the figures. Show it
FIG. 1
a series voltage regulator with a stabilization circuit described in more detail below,
FIG. 2
a low drop output regulator with the stabilization circuit described in more detail below,
FIG. 3
the time profiles of selected currents and voltages in the arrangement shown in FIG. 1,
FIG. 4
a series voltage regulator with a modified stabilization circuit,
FIG. 5
a conventional Series Voltage Regulator, and
FIG. 6
a simplified small-signal equivalent circuit diagram of the arrangement shown in Figure 5.

Die im folgenden beschriebenen Spannungsregler sind Gleichspannungsregler. Es sei jedoch bereits an dieser Stelle darauf hingewiesen, daß sich die Besonderheiten der im folgenden beschriebenen Spannungsregler auch bei Spannungsreglern für zeitlich variierende Spannungen einsetzen lassen.The voltage regulators described below are DC voltage regulators. However, it should be noted at this point that the peculiarities of the voltage regulator described below can also be used in voltage regulators for time-varying voltages.

In Figur 1 ist eine Anordnung gezeigt, welche einen besonders stabilisierten Spannungsregler und einen daran angeschlossenen Lastimpedanz Zout umfaßt.FIG. 1 shows an arrangement which comprises a particularly stabilized voltage regulator and a load impedance Zout connected thereto.

Der Spannungsregler ist ein Series-Voltage Regulator, der wie der in der Figur 5 gezeigte und eingangs unter Bezugnahme darauf beschriebene Spannungsregler einen Differenzverstärker (einen differentiellen Transkonduktanzverstärker) OTA1, einen NMOS-Transistor MN1, einen ersten Widerstand Rfb und einen zweiten Widerstand Re enthält, welche auch wie bei dem in der Figur 5 gezeigten Spannungsregler verschaltet sind und kooperieren. Der in der Figur 1 gezeigte Spannungsregler enthält darüber hinaus eine Stabilisierungsschaltung, welche jedoch völlig anders aufgebaut ist und arbeitet als die zur Stabilisierung dienenden Elemente Rs, Cs1, Cs2 und Cs3 des Spannungsreglers gemäß Figur 5.The voltage regulator is a series-voltage regulator which, like the voltage regulator shown in FIG. 5 and initially described with reference thereto, includes a differential amplifier (a differential transconductance amplifier) OTA1, an NMOS transistor MN1, a first resistor Rfb and a second resistor Re, which are also interconnected and cooperate as in the voltage regulator shown in FIG. The voltage regulator shown in FIG. 1 furthermore contains a stabilization circuit which, however, has a completely different construction and functions as the elements Rs, Cs1, Cs2 and Cs3 of the voltage regulator according to FIG. 5 which serve for the stabilization.

Die Stabilisierungsschaltung besteht aus einem zweiten Differenzverstärker (einem zweiten differentiellen Transkonduktanzverstärker) OTA2, NMOS-Transistoren MN2, MN3, MN4, MN5, und MN6, und einem PMOS-Transistor MP3.The stabilization circuit consists of a second differential amplifier (a second differential transconductance amplifier) OTA2, NMOS transistors MN2, MN3, MN4, MN5, and MN6, and a PMOS transistor MP3.

Vom Transistor MN2 ist der Drainanschluß mit einer den Spannungsregler mit Energie versorgenden Versorgungsspannung beaufschlagt, ist der Gateanschluß mit dem Ausgangsanschluß des ersten Transkonduktanzverstärkers OTA1 verbunden, und ist der Sourceanschluß mit einem Knotenpunkt x3 verbunden.Transistor MN2 has its drain connected to a supply voltage supplying power to the voltage regulator, the gate is connected to the output terminal of first transconductance amplifier OTA1, and the source is connected to node x3.

Vom Transistor MP3 ist der Sourceanschluß mit dem Knotenpunkt x3 verbunden, ist der Gateanschluß mit dem Ausgangsanschluß des zweiten Transkonduktanzverstärkers OTA2 verbunden, und ist der Drainanschluß mit dem Sourceanschluß des Transistors MN4 verbunden.From the transistor MP3, the source terminal is connected to the node x3, the gate terminal is connected to the output terminal of the second transconductance amplifier OTA2, and the drain terminal is connected to the source terminal of the transistor MN4.

Der Transkonduktanzverstärker OTA2 weist zwei Eingangsanschlüsse auf, von welchem einem die sich am Knotenpunkt x3 einstellenden Spannung zugeführt wird, und von welchen dem anderen die Spannung Vout zugeführt wird; der Transkonduktanzverstärker OTA2 bildet die Differenz zwischen diesen Spannungen und gibt diese an den Gateanschluß des Transistors MP3 aus.The transconductance amplifier OTA2 has two input terminals from which one is supplied with the voltage set at the node x3 and from which the other is supplied with the voltage Vout; the transconductance amplifier OTA2 is the difference between them Voltages and outputs them to the gate terminal of the transistor MP3.

Der (sourceseitig auf Masse liegende) Transistor MN4 ist mit dem Transistor MN5 zu einem Stromspiegel verschaltet, wobei ein den Transistor MN4 durchfließender Strom Irep bewirkt, daß der Transistor MN3 von einem Strom Irep' durchflossen wird.The (lying on the ground side of the source) transistor MN4 is connected to the transistor MN5 to a current mirror, wherein a current flowing through the transistor MN4 Irep causes the transistor MN3 is traversed by a current Irep '.

Der Drainanschluß des (sourceseitig ebenfalls auf Masse liegenden) Transistors MN3 ist mit einem Knotenpunkt x1 verbunden. Mit diesem Knotenpunkt x1 sind ferner eine einen Strom Iref ausgebende Referenzstromquelle sowie der Drainanschluß des Transistors MN5 verbunden.The drain terminal of the transistor MN3 (which is also grounded on the source side) is connected to a node x1. Further, a reference current source outputting a current Iref and the drain terminal of the transistor MN5 are connected to this node x1.

Der (sourceseitig auf Masse liegende) Transistor MN5 ist mit dem Transistor MN6 zu einem Stromspiegel verschaltet, wobei ein den Transistor MN5 durchfließender Strom Ic bewirkt, daß der Transistor MN6 von einem Strom Ic' durchflossen wird.The (on the source side grounded) transistor MN5 is connected to the transistor MN6 to a current mirror, wherein a current flowing through the transistor MN5 Ic causes the transistor MN6 is traversed by a current Ic '.

Der Drainanschluß des (sourceseitig ebenfalls auf Masse liegenden) Transistors MN6 ist mit dem Drainanschluß des Transistors MN1 verbunden; dieser Transistor MN6 stellt für den Transistor MN1 eine zusätzliche Last dar, durch welche bei gleichbleibender Ansteuerung des Transistors MN1 die Größe des durch den Transistor MN1 fließenden Stromes Is1 veränderbar ist.The drain terminal of the transistor MN6 (which is also grounded on the source side) is connected to the drain of the transistor MN1; This transistor MN6 represents an additional load for the transistor MN1, by which the magnitude of the current Is1 flowing through the transistor MN1 can be varied while the transistor MN1 remains at the same level.

Der Transistor MN1 wird von einem Strom durchflossen, der der Summe der Ströme Ic', Iq, und Iout entspricht, wobei Ic' der über den Transistor MN6 fließende Strom ist, Iq der über den Spannungsteiler Rfb, Re fließende Strom ist, und Iout der die Last Zout durchfließende Strom ist.The transistor MN1 is traversed by a current corresponding to the sum of the currents Ic ', Iq, and Iout, where Ic' is the current flowing through the transistor MN6, Iq is the current flowing through the voltage divider Rfb, Re, and Iout the load Zout is flowing through current.

Der Transkonduktanzverstärker OTA2 und der Transistor MP3 sorgen dafür, daß sich am Sourceanschluß des Transistors MN2 (am Knotenpunkt x3) das selbe Potential einstellt wie am Sourceanschluß des Transistors MN1. D.h., daß sich auch am Knotenpunkt x3 das Potential Vout einstellt. Vereinfacht läßt sich die Anordnung von Transkonduktanzverstärker OTA2 und Transistor MP3 als Spannungsfolger auffassen der eine Replika der Ausgangsspannung Vout am Knoten x3 erzeugt. Die Transistoren MN1 und MN2 befinden sich somit spannungsmäßig im gleichen Arbeitspunkt, was der Verbesserung des Gleichlaufs beider Transistoren zueinander dient.The transconductance amplifier OTA2 and the transistor MP3 ensure that the same potential is set at the source terminal of the transistor MN2 (at the node x3) as on Source of the transistor MN1. This means that the potential Vout also sets at node x3. In simple terms, the arrangement of transconductance amplifier OTA2 and transistor MP3 can be understood as a voltage follower which generates a replica of the output voltage Vout at node x3. The transistors MN1 and MN2 are thus in terms of voltage in the same operating point, which serves to improve the synchronization of both transistors to each other.

Deshalb, und weil der Transistor MN2 durch das selbe Signal wie der Transistor MN1 gateseitig angesteuert wird, wird der Transistor MN2 von einem Strom durchflossen, der in einem bestimmten Verhältnis zu dem den Transistor MN1 durchfließenden Strom steht. Der Transistor ist vorzugsweise sehr viel schwächer ausgebildet als der Transistor MN1, so daß der den Transistor MN2 durchfließende Strom Irep sehr viel kleiner ist als der den Transistor MN1 durchfließende Strom Ic'+Iq +Iout. Der Transistor MN2 stellt somit einen Replikastrom Irep zum Transistor MN1 durchfließende Strom Ic'+Iq+Iout her.Therefore, and because the transistor MN2 is driven on the gate side by the same signal as the transistor MN1, a current flowing through the transistor MN2 is in a certain proportion to the current flowing through the transistor MN1. The transistor is preferably much weaker than the transistor MN1, so that the current Irep flowing through the transistor MN2 is much smaller than the current Ic '+ Iq + Iout flowing through the transistor MN1. The transistor MN2 thus produces a replica current Irep to the transistor MN1 flowing through current Ic '+ Iq + Iout.

Der den Transistor MN2 durchfließende Strom Irep fließt auch durch den Transistor MP3 und den Transistor MN4. Das Fließen des Stromes Irep durch den Transistor MN4 bewirkt, daß der Transistor MN3 durch einen in einem bestimmten Verhältnis zum Strom Irep stehenden Strom Irep' durchflossen wird.The current Irep flowing through the transistor MN2 also flows through the transistor MP3 and the transistor MN4. The passage of the current Irep through the transistor MN4 causes the transistor MN3 is traversed by a current Irep 'in a certain proportion to the current Irep.

Wenn der Strom Irep' größer als oder gleich groß wie der Strom Iref ist, wird der Knotenpunkt x1 auf Massepotential gezogen, wodurch der vom Knoten x1 zum Sourceanschluß des Transistors MN5 fließende Strom Ic und damit auch der gespiegelte Strom Ic' zu 0 werden und durch den Transistor MN1 kein zusätzlicher Querstrom fließt. Dies ist der Fall wenn die Lastimpedanz Zout klein genug, d.h. der Laststrom Iout groß genug ist.When the current Irep 'is greater than or equal to the current Iref, the node x1 is pulled to ground potential, whereby the current Ic flowing from the node x1 to the source of the transistor MN5 and thus also the mirrored current Ic' become 0 and through the transistor MN1 no additional cross-flow flows. This is the case when the load impedance Zout is small enough, i. the load current Iout is big enough.

Wenn andererseits der Strom Irep' kleiner als der Strom Iref ist, fließt vom Knoten x1 ein der Differenz von Irep' und Iref entsprechender Strom Ic durch den Transistor MN5. Das Fließen des Stromes Ic durch den Transistor MN5 bewirkt, daß der Transistor MN6 durch einen in einem bestimmten Verhältnis zum Strom Ic stehenden Strom Ic' durchflossen wird. Dadurch wird der Transistor MN1 durch einen zusätzlichen Querstrom Ic' durchflossen. Dies ist der Fall wenn die Lastimpedanz Zout groß, d.h. der Laststrom Iout klein ist.On the other hand, if the current Irep 'is smaller than the current Iref, then the difference of Irep' and of the node x1 flows Iref corresponding current Ic through the transistor MN5. The flow of the current Ic through the transistor MN5 causes the transistor MN6 is traversed by a standing in a certain proportion to the current Ic current Ic '. As a result, the transistor MN1 is traversed by an additional cross-current Ic '. This is the case when the load impedance Zout is large, ie, the load current Iout is small.

Durch die Stabilisierungsschaltung kann also erreicht werden, daß der Transistor MN1 von einem zusätzlichen Querstrom Ic' durchflossen wird, wenn die Summe der Ströme Iout und Iq klein ist, und daß der Transistor MN1 von keinem zusätzlichen Querstrom Ic' durchflossen wird, wenn die Summe der Ströme Iout und Iq groß ist, genauer gesagt groß genug ist, um einen stabilen Betrieb des Spannungsreglers zu gewährleisten.By the stabilization circuit can thus be achieved that the transistor MN1 is traversed by an additional cross-current Ic 'when the sum of the currents Iout and Iq is small, and that the transistor MN1 is traversed by any additional cross-current Ic' when the sum of Currents Iout and Iq is large, more specifically large enough to ensure stable operation of the voltage regulator.

Darüber hinaus enthält der Spannungsregler gemäß Figur 1 noch Kondensatoren Cm1 und Cm2, über welche die Ausgangsanschlüsse der Transkonduktanzverstärker OTA1 und OTA2 mit Masse verbunden sind, und welche zur Frequenzkompensation der Transkonduktanzverstärker OTA1 und OTA2 dienen.In addition, the voltage regulator according to FIG. 1 also contains capacitors Cm1 and Cm2 via which the output terminals of the transconductance amplifiers OTA1 and OTA2 are connected to ground and which serve for frequency compensation of the transconductance amplifiers OTA1 and OTA2.

Im wesentlichen die selbe Stabilisierungsschaltung kann bei einem sogenannten Low Drop Output Regulator zum Einsatz kommen. Ein Low Drop Output Regulator mit einer Stabilisierungsschaltung, welche der vorstehend beschriebenen Stabilisierungsschaltung entspricht, ist in Figur 2 dargestellt.Essentially the same stabilization circuit can be used in a so-called low drop output regulator. A low drop output regulator with a stabilization circuit which corresponds to the stabilization circuit described above is shown in FIG.

Die in der Figur 2 dargestellte Anordnung unterscheidet sich von der in der Figur 1 dargestellten Anordnung nur dadurch,

  • daß anstelle des NMOS-Treibertransistors MN1 in Drain-Grundschaltung ein PMOS-Treibertransistor MP1 in Source-Grundschaltung verwendet wird, und
  • daß die Frequenzkompensation des ersten Transkonduktanzverstärkers OTA1 durch eine zwischen dem Ausgangsanschluß des Transkonduktanzverstärkers OTA1 und dem Ausgangsanschluß des Spannungsreglers (dem Drainanschluß des Transistors MP1) angeordnete Reihenschaltung eines Kondensators Cm1 und eines Widerstandes Rm1 erfolgt (Stichwort: Millerkompensation bzw. Polsplitting) .
The arrangement shown in FIG. 2 differs from the arrangement shown in FIG. 1 only in that
  • in that, instead of the NMOS driver transistor MN1 in the drain basic circuit, a PMOS driver transistor MP1 in source basic circuit is used, and
  • in that the frequency compensation of the first transconductance amplifier OTA1 is effected by a connection between the output terminal of the Transconductance amplifier OTA1 and the output terminal of the voltage regulator (the drain terminal of the transistor MP1) arranged series connection of a capacitor Cm1 and a resistor Rm1 takes place (keyword: Miller compensation or Polsplitting).

Die Funktion der in den Figur 1 und 2 gezeigten Anordnungen und deren Dimensionierung werden im folgenden nochmals detaillierter beschrieben.The function of the arrangements shown in FIGS. 1 and 2 and their dimensioning will be described in more detail below.

Die Ausgangsspannung Vout des Spannungsreglers ergibt sich unter Vernachlässigung von Nichtidealitäten zu: V out Vin * R f b + R e R e

Figure imgb0003
The output voltage Vout of the voltage regulator results, ignoring non-idealities: V out Vin * R f b + R e R e
Figure imgb0003

Bei sich ändernder Last verändert sich die Ausgangsspannung Vout. Der Transkonduktanzverstärker OTA1 (auch Fehlerverstärker genannt) regelt die Gate-Source-Spannung des Transistors MN1 (MP1) nach, bis sich am Ausgang die Spannung erneut auf den Nominalwert eingestellt hat.When the load changes, the output voltage Vout changes. The transconductance amplifier OTA1 (also called an error amplifier) regulates the gate-source voltage of the transistor MN1 (MP1) until the voltage at the output has returned to the nominal value.

Wenn der Laststrom Iout oberhalb einer unteren Schwelle Ioutmin liegt, ist der Strom Ic' gleich 0, und gilt für die Summe der Ströme am im folgenden als Knoten Vout bezeichneten Abgriffspunkt von Vout: I out + I q I s 1 = 0

Figure imgb0004
If the load current Iout is above a lower threshold Ioutmin, the current Ic 'is equal to 0, and applies to the sum of the currents at the tap point of Vout referred to below as node Vout: I out + I q - I s 1 = 0
Figure imgb0004

Der durch den Transistor MN2 fließende Strom ergibt sich unter Vernachlässigung von Nichtidealitäten (Mismatch etc.) als: I rep β n MN 2 * W MN 2 * L MN 1 β n MN 1 * W MN 1 * L MN 2 * I s 1

Figure imgb0005
wobei W die Breite des im jeweiligen Index genannten Transistors, L die Länge des im jeweiligen Index genannten Transistors, und β die Prozesskonstante des im jeweiligen Index genannten Transistors und Transistortyps bezeichnen. Zur Vereinfachung wird davon ausgegangen, dass die Prozeßkonstante für Transistoren gleichen Typs identisch sind und somit, wenn nicht erforderlich, nachfolgend nicht genannt werden.The current flowing through the transistor MN2 is given neglecting non-idealities (mismatch etc.) as: I rep β n MN 2 * W MN 2 * L MN 1 β n MN 1 * W MN 1 * L MN 2 * I s 1
Figure imgb0005
where W denotes the width of the transistor mentioned in the respective index, L the length of the transistor named in the respective index, and β the process constant of the transistor and transistor type named in the respective index. For the sake of simplicity, it is assumed that the process constants are identical for transistors of the same type and thus, if not required, are not mentioned below.

Der Strom Is1 ist minimal, wenn Iout und Ic' gleich 0 sind und beträgt I s 1 min = V out R f b + R e = Vin * ( R f b + R e ) R e * 1 ( R f b + R e ) = V in R e

Figure imgb0006
The current Is1 is minimal when Iout and Ic 'are equal to 0 and equal I s 1 min = V out R f b + R e = Vin * ( R f b + R e ) R e * 1 ( R f b + R e ) = V in R e
Figure imgb0006

Der sich bei Is1 = Islmin einstellende Strom Irep beträgt (siehe Gleichungen 1.5 und 1.6) I rep min = W MN 2 * L MN 1 W MN 1 * L MN 2 * V in R e

Figure imgb0007
Ferner gilt I ref I c I re p = 0
Figure imgb0008
I re p W MN 3 * L MN 4 W MN 4 * L MN 3 * I rep
Figure imgb0009
I c W MN 6 * L MN 5 W MN 5 * L MN 6 * I c
Figure imgb0010
Is1 = Islmin adjusting current Irep (see equations 1.5 and 1.6) I rep min = W MN 2 * L MN 1 W MN 1 * L MN 2 * V in R e
Figure imgb0007
Furthermore, applies I ref - I c - I re p ' = 0
Figure imgb0008
I re p ' W MN 3 * L MN 4 W MN 4 * L MN 3 * I rep
Figure imgb0009
I c ' W MN 6 * L MN 5 W MN 5 * L MN 6 * I c
Figure imgb0010

Nimmt der Laststrom Iout ausgehend von einem Maximalwert ab, so sinkt der Strom Is1 im Transistor MN1 (MP1) und somit auch der Strom im Transistor MN2. Wenn der Strom Irep' kleiner als Iref wird, steigt das Potential am Knoten x1. Wird die sich am Knoten x1 einstellende Spannung V(x1) größer als Vthn (Schwellspannung des Transistors MN5), so fließt durch den Transistor MN5 ein Strom Ic, und durch den Transistor MN6 ein Strom Ic'. In diesem Moment setzt sich der Strom im Knoten Vout wie folgt zusammen. I out + I q + I c I s 1 = 0

Figure imgb0011
If the load current Iout decreases starting from a maximum value, then the current Is1 in the transistor MN1 (MP1) decreases and thus also the current in transistor MN2. When the current Irep 'becomes smaller than Iref, the potential at the node x1 increases. If the voltage V (x1) which is established at the node x1 becomes greater than Vthn (threshold voltage of the transistor MN5), a current Ic flows through the transistor MN5 and a current Ic 'through the transistor MN6. At this moment, the current in node Vout is composed as follows. I out + I q + I c ' - I s 1 = 0
Figure imgb0011

Aus den Gleichungen 1.3 bis 1.11 ergibt sich I re p [ ( W MN 2 L MN 1 W MN 1 L MN 2 ) ( I out + V in R e ) ] W MN 3 L MN 4 W MN 4 L MN 3

Figure imgb0012
I c ( I ref [ ( W MN 2 L MN 1 W MN 1 L MN 2 ) ( I out + V in R e ) ] W MN 3 L MN 4 W MN 4 L MN 3 ) W MN 6 L MN 5 W MN 5 L MN 6
Figure imgb0013
From the equations 1.3 to 1.11 results I re p ' [ ( W MN 2 * L MN 1 W MN 1 * L MN 2 ) * ( I out + V in R e ) ] * W MN 3 * L MN 4 W MN 4 * L MN 3
Figure imgb0012
I c ' ( I ref - [ ( W MN 2 * L MN 1 W MN 1 * L MN 2 ) * ( I out + V in R e ) ] * W MN 3 * L MN 4 W MN 4 * L MN 3 ) * W MN 6 * L MN 5 W MN 5 * L MN 6
Figure imgb0013

Daraus ergeben sich nun die Bedingungen für den Strom Ic': für   I out < I ref * W MN 1 L MN 2 W MN 2 L MN 1 W MN 4 L MN 3 W MN 3 L MN 4 I q I c > 0

Figure imgb0014
für   I out > I ref * W MN 1 L MN 2 W MN 2 L MN 1 W MN 4 L MN 3 W MN 3 L MN 4 I q I c = 0
Figure imgb0015
This results in the conditions for the current Ic ': For I out < I ref * W MN 1 * L MN 2 W MN 2 * L MN 1 * W MN 4 * L MN 3 W MN 3 * L MN 4 - I q I c ' > 0
Figure imgb0014
For I out > I ref * W MN 1 * L MN 2 W MN 2 * L MN 1 * W MN 4 * L MN 3 W MN 3 * L MN 4 - I q I c ' = 0
Figure imgb0015

Mit den Gleichung 1.14a und 1.14b kann nun unter Berücksichtigung der zur Stabilität notwendigen Steilheit des Transistors MN1 (MP1) die Schaltung dimensioniert werden.With the equation 1.14a and 1.14b, the circuit can now be dimensioned in consideration of the stability of the transistor MN1 (MP1) necessary for stability.

Zunächst wird beschrieben, wie sich der notwendige Strom Ic' aus der Forderung nach der Stabilität und somit einer Mindestphasenreserve ermitteln läßt. Dabei wird davon ausgegangen, daß der Transkonduktanzverstärker OTA1 eine vereinfachte Übertragungsfunktion mit einem dominanten Pol besitzt. Parasitäre Pole und Nullstellen werden nicht berücksichtigt.First, it will be described how the necessary current Ic 'can be determined from the requirement for stability and thus a minimum phase reserve. It is assumed that the transconductance amplifier OTA1 has a simplified transfer function with a dominant pole. Parasitic poles and zeros are ignored.

Die Laplace-Übertragungsfunktion im Frequenzbereich des Transkonduktanzverstärkers ist dann A OTA 1 ( s ) 1 1 + s * C m 1 * 1 / g m OTA 1

Figure imgb0016
und deren Polfrequenz beträgt f p 1 = 1 2 * π * C m 1 * 1 / g m OTA 1
Figure imgb0017

wobei gmOTA1 die Steilheit des Transkonduktanzverstärkers OTA1 bezeichnet.The Laplace transfer function in the frequency domain of the transconductance amplifier is then A OTA 1 ( s ) 1 1 + s * C m 1 * 1 / G m OTA 1
Figure imgb0016
and whose pole frequency is f p 1 = 1 2 * π * C m 1 * 1 / G m OTA 1
Figure imgb0017

where gm OTA1 denotes the transconductance of the transconductance amplifier OTA1.

Für die weiteren Betrachtungen wird vorerst die Frequenzgangskompensationsschaltung, bestehend aus Cm1 und Rm1 vernachlässigt. Für den Transkonduktanzverstärker OTA1 und die Ausgangsstufe kann man folgende Festlegungen treffen: R 1 = 1 g d s p + 1 g d s n

Figure imgb0018
C 1 = C g s MP 1 + C g d MP 1 * ( 1 + | A v 11 MP 1 | )
Figure imgb0019
R 2 = 1 g d s MP 1 R out R min ; R min = V in I s min
Figure imgb0020
C 2 = C 1 + C g d MP 1 * ( 1 + | A v 11 MP 1 | )
Figure imgb0021
A v 11 = g m MP 1 * ( 1 g d s MP 1 R min )
Figure imgb0022

wobei

  • R1 den Ausgangswiderstand des Transkonduktanzverstärkers OTA1,
  • gdsp den Ausgangsleitwert eines P-Kanal MOS-Transistors,
  • gdsn den Ausgangsleitwert eines N-Kanal MOS-Transistors,
  • C1 die Summe der Lastkapazitäten am Knoten X4 (Ausgang OTA1),
  • CgsMP1 die Gate-Source-Kapazität des Transistors MP1,
  • CgdMP1 die Gate-Drain-Kapazität des Transistors MP1,
  • Av11 die Gleichspannungsverstärkung der Ausgangsstufe (z.B. Transistor MP1),
  • R2 den Ausgangswiderstand der Treiberanordnung,
  • gdsMP1 den Ausgangsleitwert des Transistors MP1,
  • Rout den rein resistiven Lastwiderstand am Knoten Vout,
  • Rmin die minimalste Summenresitivität aus Rfb und Re als Hilfsgröße zur Dimensionierung,
  • C2 die transformierte Lastkapazität zur Berechnung des zweiten Pols fp2', und
  • gmMP1 die Steilheit des Ausgangstransistors MP1
bezeichnen.For the further considerations, the frequency response compensation circuit consisting of Cm1 and Rm1 is neglected for the time being. For the transconductance amplifier OTA1 and the output stage, the following definitions can be made: R 1 = 1 G d s p + 1 G d s n
Figure imgb0018
C 1 = C G s MP 1 + C G d MP 1 * ( 1 + | A v 11 MP 1 | )
Figure imgb0019
R 2 = 1 G d s MP 1 R out R min ; R min = V in I s min
Figure imgb0020
C 2 = C 1 + C G d MP 1 * ( 1 + | A v 11 MP 1 | )
Figure imgb0021
A v 11 = G m MP 1 * ( 1 G d s MP 1 R min )
Figure imgb0022

in which
  • R1 the output resistance of the transconductance amplifier OTA1,
  • gdsp the output conductance of a p-channel MOS transistor,
  • gdsn the output conductance of an N-channel MOS transistor,
  • C1 is the sum of the load capacities at node X4 (output OTA1),
  • Cgs MP1, the gate-source capacitance of the transistor MP1,
  • Cgd MP1 the gate-drain capacitance of the transistor MP1,
  • Av11 the DC gain of the output stage (eg transistor MP1),
  • R2 the output resistance of the driver arrangement,
  • gds MP1 the output conductance of the transistor MP1,
  • Rout the purely resistive load resistor at node Vout,
  • Rmin the minimum sum resistivity of Rfb and Re as an auxiliary size for sizing,
  • C2 the transformed load capacitance for the calculation of the second pole fp2 ', and
  • gm MP1, the transconductance of the output transistor MP1
describe.

Für Serien-Shunt-Feedback-Konfiguration wie die in den Figuren 1 und 2 gezeigten Spannungsregler kann man unter Vernachlässigung der Frequenzgangskompensation zwei Pole angeben: f p 1 = 1 2 * π * R 1 * C 1

Figure imgb0023
f p 2 = 1 2 * π * R 2 * C 2
Figure imgb0024
For series shunt feedback configuration, such as the voltage regulator shown in FIGS. 1 and 2, two poles may be omitted, ignoring the frequency response compensation: f p 1 ' = 1 2 * π * R 1 * C 1
Figure imgb0023
f p 2 ' = 1 2 * π * R 2 * C 2
Figure imgb0024

Aus der allgemeinen Stabilitätstheorie ist bekannt, daß, um eine ausreichend große Phasenreserve zu garantieren, fp2'>>fp1' sein muß. Geht nun der Laststrom Iout gegen 0 (geht Rl gegen unendlich), so wandert der Pol fp2' auf den Pol fp1' zu. Die Phasenreserve nimmt ab, das System wird instabil.From the general stability theory it is known that in order to guarantee a sufficiently large phase reserve, fp2 'must be >> fp1'. If now the load current Iout approaches 0 (Rl approaches infinity), the pole fp2 'moves to the pole fp1'. The phase reserve decreases, the system becomes unstable.

Unter Berücksichtigung der Frequenzgangskompensation ergeben sich die Pole wie folgt: f c 1 = 1 2 * π * R 1 * [ C g s MP 1 + ( C g d MP 1 + C m 1 ) * [ 1 + | A v 11 | ] ]

Figure imgb0025
f c 2 = 1 2 * π * R 2 * ( C 1 + C m 1 + C g s MP 1 )
Figure imgb0026
Taking into account the frequency response compensation, the poles are as follows: f c 1 = 1 2 * π * R 1 * [ C G s MP 1 + ( C G d MP 1 + C m 1 ) * [ 1 + | A v 11 | ] ]
Figure imgb0025
f c 2 = 1 2 * π * R 2 * ( C 1 + C m 1 + C G s MP 1 )
Figure imgb0026

Aus den Gleichungen 1.22 und 1.23 kann man nun die Gesamtübertragungsfunktion in der Frequenzebene als System zweiter Ordnung darstellen. A v tot ( s ) = V out ( s ) V in ( s ) = g m OTA 1 * R 1 * A v 11 ( 1 + s * f / f c 1 ) * ( 1 + s * f / f c 2 )

Figure imgb0027
From the equations 1.22 and 1.23 one can now represent the total transfer function in the frequency plane as a second-order system. A v dead ( s ) = V out ( s ) V in ( s ) = G m OTA 1 * R 1 * A v 11 ( 1 + s * f / f c 1 ) * ( 1 + s * f / f c 2 )
Figure imgb0027

Unter der Annahme, daß f1c<<f2c, und der Überlegung, daß bei einer Frequenz von fu der Betrag der Gain |Avtot(s) |=1 ist ergibt sich: | A v tot ( s ) | = g m OTA 1 * R 1 * A v 11 1 + ( f / f c 1 ) 2 = 1

Figure imgb0028
f u = f c 1 * g m OTA 1 * R 1 * A v 11
Figure imgb0029
Assuming that f1c << f2c, and considering that at a frequency of fu the amount of gain | Avtot (s) | = 1 yields: | A v dead ( s ) | = G m OTA 1 * R 1 * A v 11 1 + ( f / f c 1 ) 2 = 1
Figure imgb0028
f u = f c 1 * G m OTA 1 * R 1 * A v 11
Figure imgb0029

Unter der Annahme das die Lastkapazität, der maximale Laststrom, und minimale Laststrom bekannt ist, kann man nun entweder die Kompensationskapazität Cm1 und/oder den minimalen Querstrom Is1 im Transistor MP1/MN1 berechnen. Um Stabilität zu garantieren, sollte folgende Festlegung gelten: f c 2 > 10 * f u f c 2 > 10 * f c 1 * g m OTA 1 * R 1 * A v 11

Figure imgb0030
Assuming that the load capacitance, the maximum load current, and the minimum load current are known, one can now calculate either the compensation capacitance Cm1 and / or the minimum cross current Is1 in the transistor MP1 / MN1. To guarantee stability, the following should apply: f c 2 > 10 * f u f c 2 > 10 * f c 1 * G m OTA 1 * R 1 * A v 11
Figure imgb0030

Somit ergeben sich (unter Berücksichtigung der Gleichung 1.25) für Rmin bzw. für Cm1 folgende Zusammenhänge: R min = V in I q + I c = 1 / [ 2 π * 10 f c 1 * g m OTA 1 * R 1 * A v 11 * ( C 1 + C m 1 + C g d MP 1 ) g d s MP 1 1 R out ]

Figure imgb0031
Thus, taking into account Equation 1.25, Rmin and Cm1 have the following relationships: R min = V in I q + I c ' = 1 / [ 2 π * 10 f c 1 * G m OTA 1 * R 1 * A v 11 * ( C 1 + C m 1 + C G d MP 1 ) - G d s MP 1 - 1 R out ]
Figure imgb0031

Mit der Gleichungen 1.29, 1.14 und 1.15 kann nun die Schaltung entsprechend dimensioniert werden. Für die Transkonduktanz gmOTA1 des OTA1 muß zu Beginn der Dimensionierung eine Struktur und ein Wert festgelegt werden. Das kann aus einer Vorgabe für die Bandbreite des OTA nach Gleichung 1.16 geschehen. Für die Verstärkung des treibenden Transistors kann man die Annahme treffen, das der minimale Strom Iq als Is1 fließt. Somit erhält die Schaltung entsprechend Reserve in der Stabilität.With the equations 1.29, 1.14 and 1.15, the circuit can now be dimensioned accordingly. For the transconductance gm OTA1 of the OTA1, a structure and a value must be defined at the beginning of the dimensioning. This can be done from a specification for the bandwidth of the OTA according to equation 1.16. For the gain of the driving transistor one can make the assumption that the minimum current Iq flows as Is1. Thus, the circuit gets according reserve in the stability.

Wie aus den vorstehenden Gleichungen ersichtlich ist, wurden diese teilweise für den in Figur 2 gezeigten Low Drop Output Voltage Regulator erstellt. Die damit hergeleiteten Zusammenhänge können unter Berücksichtigung der folgenden Formeln auf den in Figur 1 gezeigten Series Voltage Regulator übertragen werden. A v 12 = g m MN 1 * R out g m MN 1 * R out + 1

Figure imgb0032
R 2 = 1 g m MN 1 + g m b MN 1 + g d s MN 1 R out R min
Figure imgb0033
C 2 = C 1 + C d b 1
Figure imgb0034
C 1 = C g s 1 + C g d 1 * ( 1 + | g m MN 1 * R out g m MN 1 * R out + 1 | )
Figure imgb0035
f c 1 = 1 2 * π * R 1 * [ C g s MN 1 + ( C g d MN 1 + C m 1 ) * [ 1 + | A v 12 | ] ]
Figure imgb0036
As can be seen from the above equations, these have been made in part for the Low Drop Output Voltage Regulator shown in FIG. The relationships deduced therefrom may be transferred to the Series Voltage Regulator shown in FIG. 1 taking into account the following formulas. A v 12 = G m MN 1 * R out G m MN 1 * R out + 1
Figure imgb0032
R 2 ' = 1 G m MN 1 + G m b MN 1 + G d s MN 1 R out R min
Figure imgb0033
C 2 ' = C 1 + C d b 1
Figure imgb0034
C 1 ' = C G s 1 + C G d 1 * ( 1 + | G m MN 1 * R out G m MN 1 * R out + 1 | )
Figure imgb0035
f c 1 ' = 1 2 * π * R 1 * [ C G s MN 1 + ( C G d MN 1 + C m 1 ) * [ 1 + | A v 12 | ] ]
Figure imgb0036

Unter den gleichen Annahmen wie für die LDO-Konfiguration ergibt sich für den Series-Voltage Regulator ein Rmin': R mi n = V in I q + I c = 1 / [ 2 π * 10 f c 1 g m OTA 1 * R 1 * A v 12 ( C 1 + C m 1 + C g s MN 1 ) g m MN 1 + g m b MN 1 + g d s MN 1 1 R out ]

Figure imgb0037
Under the same assumptions as for the LDO configuration, the series-voltage regulator has an Rmin ': R Wed. n ' = V in I q + I c ' = 1 / [ 2 π * 10 f c 1 ' * G m OTA 1 * R 1 * A v 12 * ( C 1 + C m 1 + C G s MN 1 ) - G m MN 1 + G m b MN 1 + G d s MN 1 - 1 R out ]
Figure imgb0037

Mit den Gleichungen 1.35 und 1.29 kann nun für die in den Figuren 1 und 2 dargestellten Anordnungen der minimale Querstrom bestimmt werden, der durch den Ausgangstransistor MN1 bzw. MP1 fließen muß, um bei einer gegebenen Lastkapazität eine Stabilität zu gewährleisten. Hier sei nochmals darauf hingewiesen, dass der Widerstand Rmin (Rmin') als Hilfsgröße zur Dimensionierung dient. Der Strom durch einen angenommen Widerstand Rmin (Rmin') kann nun entsprechend zwischen dem Strom Iq durch Spannungsteiler Rfb und Re und dem Strom Ic' aufgeteilt werden. Die Schaltung ist somit vollständig dimensionierbar.With Equations 1.35 and 1.29, for the arrangements shown in Figures 1 and 2, the minimum cross current which must flow through the output transistors MN1 and MP1, respectively, can now be determined to provide stability for a given load capacitance. Here again it should be noted that the resistor Rmin (Rmin ') serves as an auxiliary size for sizing. The current through an assumed resistance Rmin (Rmin ') can now be divided between the current Iq by voltage divider Rfb and Re and the current Ic' accordingly. The circuit is thus completely dimensioned.

Um die rechnerischen Ergebnisse zu überprüfen, kann aus dem in der Figur 6 dargestellten Kleinsignal-Ersatzschaltbild die Übertragungsfunktion in der Frequenzebene der geschlossenen Regelschleife abgeleitet werden. G a v a c ( s ) = 20 * log ( Z in ( s ) Z in ( s ) + R e R f b * A v tot ( s ) * ( R e + R f b ) C 1 ( R e + R f b ) C 1 + R out 1 + R e R e + R f b * ( Z in ( s ) Z in ( s ) + R e R f b * A v tot ( s ) * ( R e + R f b ) C 1 ( R e + R f b ) C 1 + R out ) )

Figure imgb0038
G a v d c 20 * log ( R e + R f R e )
Figure imgb0039
In order to check the mathematical results, the transfer function in the frequency level of the closed loop can be derived from the small signal equivalent circuit shown in FIG. G a v a c ( s ) = 20 * log ( Z in ( s ) Z in ( s ) + R e R f b * A v dead ( s ) * ( R e + R f b ) C 1 ( R e + R f b ) C 1 + R out 1 + R e R e + R f b * ( Z in ( s ) Z in ( s ) + R e R f b * A v dead ( s ) * ( R e + R f b ) C 1 ( R e + R f b ) C 1 + R out ) )
Figure imgb0038
G a v d c 20 * log ( R e + R f R e )
Figure imgb0039

Zeigt die Übertragungsfunktion eine Überhöhung im Frequenzbereich zur erwarteten DC-Gain, so ist von einer Instabilität bzw. mindestens von einem Ringing (Überschwingen) auszugehen.If the transfer function shows an increase in the frequency range to the expected DC gain, instability or at least ringing (overshoot) can be assumed.

Mit den oben genannten Gleichungen kann die Schaltung entsprechend dimensioniert werden.With the above equations, the circuit can be dimensioned accordingly.

Figur 3 zeigt beispielhaft Strom- und Spannungsverläufe in einem ordnungsgemäß dimensionierten Spannungsregler mit einer Stabilisierungsschaltung der vorstehend beschriebenen Art.FIG. 3 shows, by way of example, current and voltage profiles in a properly dimensioned voltage regulator with a stabilization circuit of the type described above.

In Figur 4 ist eine Stabilisierungsschaltung dargestellt, bei welcher für das Einschalten und das Ausschalten des zusätzlichen Querstromes Ic' eine Hysterese vorgesehen ist.FIG. 4 shows a stabilization circuit in which a hysteresis is provided for switching on and off the additional cross-current Ic '.

Die in der Figur 4 gezeigte Anordnung entspricht weitestgehend der in der Figur 1 gezeigten Anordnung; mit den gleichen Bezugszeichen bezeichnete Elemente sind identische oder einander entsprechende Elemente.The arrangement shown in Figure 4 largely corresponds to the arrangement shown in Figure 1; Elements denoted by the same reference numerals are identical or corresponding elements.

Die in der Figur 4 gezeigte Stabilisierungsschaltung enthält zusätzlich NMOS-Transistoren MN7 und MN8 sowie eine einen Referenzstrom Iref2 liefernde Stromquelle.The stabilization circuit shown in FIG. 4 additionally contains NMOS transistors MN7 and MN8 as well as a current source supplying a reference current Iref2.

Die Transistoren MN7 und MN8 sind zu einem Stromspiegel verschaltet, wobei der Drainanschluß des Transistors MN7 und die Gateanschlüsse der Transistoren MN7 und MN8 mit dem Knoten x1 verbunden sind, der Drainanschluß der Transistors MN8 mit dem Drainanschluß des Transistors MN4, den Gateanschlüssen der Transistoren MN3 und MN4 und der den Referenzstrom Iref2 liefernden Stromquelle verbunden ist, und die Sourceanschlüsse der Transistoren MN7 und MN8 mit Masse verbunden sind.The transistors MN7 and MN8 are connected to a current mirror, wherein the drain of the transistor MN7 and the gates of the transistors MN7 and MN8 are connected to the node x1, the drain of the transistor MN8 to the drain of the transistor MN4, the gates of the transistors MN3 and MN4 and the reference current Iref2 supplying power source is connected, and the sources of the transistors MN7 and MN8 are connected to ground.

Durch die zusätzlichen Maßnahmen wird erreicht, daß der Schwellenwert, der von Irep unterschritten werden muß, damit der zusätzliche Querstrom Ic' fließt, kleiner ist als der Schwellenwert, der von Irep überschritten werden muß, damit kein zusätzliche Querstrom Ic' mehr fließt.As a result of the additional measures it is achieved that the threshold, which must be exceeded by Irep, so that the additional cross-current Ic 'flows, is smaller than the threshold, which must be exceeded by Irep, so that no additional cross-current Ic' flows more.

Die Hysterese wird charakterisiert durch: I hys = ( W MN 4 * L MN 3 W MN 3 * L MN 4 W MN 7 * L MN 8 W MN 8 * L MN 7 ) * I ref 1

Figure imgb0040
The hysteresis is characterized by: I hys = ( W MN 4 * L MN 3 W MN 3 * L MN 4 - W MN 7 * L MN 8th W MN 8th * L MN 7 ) * I ref 1
Figure imgb0040

Die beschriebenen Stabilisierungsschaltungen können auf mannigfaltige Art und Weise modifiziert werden.The described stabilizer circuits can be modified in a variety of ways.

Beispielsweise kann vorgesehen werden, daß die Größe des zusätzlichen Querstromes Ic' so eingestellt wird, daß der den Transistor MN1 bzw. MP1 durchfließende Strom jeweils gerade groß genug ist, d.h. nicht wesentlich größer ist, als es erforderlich ist, um einen stabilen Betrieb des Spannungsreglers zu gewährleisten.For example, it can be provided that the size of the additional cross-current Ic 'is set so that the current flowing through the transistor MN1 or MP1 is just large enough, ie. is not significantly greater than is necessary to ensure stable operation of the voltage regulator.

Es könnte auch vorgesehen werden, die Größe des zusätzlichen Querstromes Ic' in mehreren Stufen zu veränderbar zu machen.It could also be provided to make the size of the additional cross-flow Ic 'in several stages to be changeable.

Ferner könnte vorgesehen werden, daß der durch den Transistor fließende Querstrom standardmäßig groß gemacht wird, und daß die Stabilisierungsschaltung dafür sorgt, daß der Querstrom verringert wird, wenn die Größe des durch den Transistor fließenden Stromes (oder ein von der Größe dieses Stromes abhängender Strom) einen bestimmten Schwellenwert überschreitet.Furthermore, it could be provided that the cross-flow flowing through the transistor is made large by default, and that the stabilizing circuit ensures that the cross-flow is reduced when the magnitude of the current flowing through the transistor (or a current dependent on the magnitude of this current) exceeds a certain threshold.

Unabhängig hiervon kann vorgesehen werden, daß die Veränderung des den Transistors MN1 bzw. MP1 durchfließenden Stromes durch eine Umkonfigurierung der Anordnung erfolgt, beispielsweise durch Öffnen, Schließen oder Umschalten von Schaltern, über welche der Transistor mit als Lastelemente wirkenden Bauteilen oder Stromsenken verbunden werden kann.Regardless of this, it can be provided that the change in the current flowing through the transistor MN1 or MP1 is achieved by a reconfiguration of the arrangement, for example by opening, closing or switching of switches via which the transistor can be connected to components or current sinks acting as load elements.

Die Stabilisierungsschaltungen der beschriebenen Spannungsregler sind unabhängig von den Einzelheiten der praktischen Realisierung einfach entwerfbar und realisierbar, und können bei minimalem Eigenenergiebedarf der Spannungsregler eine unter allen Umständen zuverlässige Stabilisierung gewährleisten. The stabilization circuits of the described voltage regulators are easy to design and implement independently of the details of the practical implementation, and can ensure reliable stabilization under all circumstances with minimum self-energy consumption of the voltage regulators.

Claims (10)

  1. Voltage regulator, having a transistor (MN1, MP1) and a variable load (Rfb, Re, MN6) connected in series with the transistor,
    - where the output voltage (Vout) of the voltage regulator is tapped off at a point situated between the transistor (MN1, MP1) and the load (Rfb, Re, MN6), and where the output voltage (Vout) of the voltage regulator is dependent on the actuation of the transistor (MN1, MP1), and
    - where the voltage regulator contains a stabilization circuit which produces a replica current (Irep) for the current (Is1) flowing through the transistor (MN1) and, if the generated current (Irep) has a magnitude below a particular limit value, increases the variable load (Rfb, Re, MN6) and consequently also the current (Is1) flowing through the transistor (MN1, MP1).
  2. Voltage regulator according to Claim 1,
    characterized
    in that the current (Is1) flowing through the transistor (MN1, MP1) is varied by opening or closing a switch via which the transistor (MN1, MP1) is connected to a component acting as load element or to a current sink.
  3. Voltage regulator according to Claim 1,
    characterized
    in that the current (Is1) flowing through the transistor (MN1, MP1) is varied by varying the actuating of a component which is arranged in a circuit path containing the transistor.
  4. Voltage regulator according to Claim 3,
    characterized
    in that the current (Is1) flowing through the transistor (MN1, MP1) is varied by varying the actuation of a second transistor (MN6) connected in series with the transistor.
  5. Voltage regulator according to Claim 4,
    characterized
    in that the second transistor (MN6) is connected up to a third transistor (MN5) to form a current mirror, and in that the current flowing through the second transistor is dependent on the current flowing through the third transistor.
  6. Voltage regulator according to Claim 1,
    characterized
    in that the current (Irep) generated by the stabilization circuit is generated using a fourth transistor (MN2, MP2) which is actuated like the transistor (MN1, MP1).
  7. Voltage regulator according to Claim 6,
    characterized
    in that the fourth transistor (MN2, MP2) has smaller dimensions than the transistor (MN1, MP1).
  8. Voltage regulator according to Claim 6 or 7,
    characterized
    in that the stabilization circuit ensures that the fourth transistor (MN2, MP2) is operated at the same operating point as the transistor (MN1, MP1) .
  9. Voltage regulator according to one of Claims 6 to 8,
    characterized
    in that the fourth transistor (MN2, MP2) has a fifth transistor (MN4) connected in series with it, where this fifth transistor is connected up to a sixth transistor (MN3) to form a second current mirror, where the drain connection of the sixth transistor is supplied with a reference current (Iref), and where the drain connection of the sixth transistor is connected to the drain connection of the primary transistor (MN5) of the first current mirror (MN5, MN6).
  10. Voltage regulator according to one of the preceding claims,
    characterized
    in that the current (Is1) flowing through the transistor (MN1, MP1) is varied by the stabilization circuit using a hysteresis loop.
EP02008935A 2001-04-24 2002-04-22 Voltage regulator Expired - Lifetime EP1253498B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10119858 2001-04-24
DE10119858A DE10119858A1 (en) 2001-04-24 2001-04-24 voltage regulators

Publications (2)

Publication Number Publication Date
EP1253498A1 EP1253498A1 (en) 2002-10-30
EP1253498B1 true EP1253498B1 (en) 2006-10-04

Family

ID=7682407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02008935A Expired - Lifetime EP1253498B1 (en) 2001-04-24 2002-04-22 Voltage regulator

Country Status (3)

Country Link
US (1) US6700361B2 (en)
EP (1) EP1253498B1 (en)
DE (2) DE10119858A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6703815B2 (en) 2002-05-20 2004-03-09 Texas Instruments Incorporated Low drop-out regulator having current feedback amplifier and composite feedback loop
US7026824B2 (en) * 2003-10-31 2006-04-11 Faraday Technology Corp. Voltage reference generator with negative feedback
DE102004029966A1 (en) * 2004-06-21 2006-01-12 Infineon Technologies Ag Reverse polarity protection circuit with low voltage drop
TWI261406B (en) * 2004-07-08 2006-09-01 Analog Integrations Corp Charge pump DC/DC converter with constant-frequency operation
US7205828B2 (en) * 2004-08-02 2007-04-17 Silicon Laboratories, Inc. Voltage regulator having a compensated load conductance
KR100621104B1 (en) 2004-08-25 2006-09-19 삼성전자주식회사 Electronic device
DE102004062249B4 (en) * 2004-12-23 2007-12-06 Infineon Technologies Ag voltage regulators
FR2881537B1 (en) * 2005-01-28 2007-05-11 Atmel Corp STANDARD CMOS REGULATOR WITH LOW FLOW, HIGH PSRR, LOW NOISE WITH NEW DYNAMIC COMPENSATION
US7589507B2 (en) * 2005-12-30 2009-09-15 St-Ericsson Sa Low dropout regulator with stability compensation
US8054055B2 (en) * 2005-12-30 2011-11-08 Stmicroelectronics Pvt. Ltd. Fully integrated on-chip low dropout voltage regulator
FR2898701A1 (en) * 2006-03-15 2007-09-21 St Microelectronics Sa GENERATING A REFERENCE VOLTAGE
TW200919922A (en) * 2007-10-16 2009-05-01 Richtek Technology Corp Linear charger and method for controlling charging current
FR2925166B1 (en) * 2007-12-17 2010-05-21 St Microelectronics Sa METHOD AND DEVICE FOR MEASURING CURRENT FOR DC / DC CONVERTER
FR2925167B1 (en) * 2007-12-17 2010-02-19 St Microelectronics Sa CURRENT MEASURING DEVICE
US8278893B2 (en) * 2008-07-16 2012-10-02 Infineon Technologies Ag System including an offset voltage adjusted to compensate for variations in a transistor
US8378652B2 (en) * 2008-12-23 2013-02-19 Texas Instruments Incorporated Load transient response time of LDOs with NMOS outputs with a voltage controlled current source
US8232781B2 (en) * 2008-12-23 2012-07-31 Stmicroelectronics S.R.L. Device for measuring the current flowing through a power transistor of a voltage regulator
JP5361614B2 (en) * 2009-08-28 2013-12-04 ルネサスエレクトロニクス株式会社 Buck circuit
US9112422B1 (en) 2010-03-09 2015-08-18 Vlt, Inc. Fault tolerant power converter
US8610415B2 (en) * 2011-03-07 2013-12-17 Fairchild Semiconductor Corporation Lambda correction for current foldback
US8674672B1 (en) * 2011-12-30 2014-03-18 Cypress Semiconductor Corporation Replica node feedback circuit for regulated power supply
RU2592719C2 (en) * 2012-03-16 2016-07-27 Интел Корпорейшн Reference voltage generator with low impedance
US8742819B2 (en) * 2012-09-25 2014-06-03 Texas Instruments Incorporated Current limiting circuitry and method for pass elements and output stages
US9122292B2 (en) * 2012-12-07 2015-09-01 Sandisk Technologies Inc. LDO/HDO architecture using supplementary current source to improve effective system bandwidth
FR3000576B1 (en) * 2012-12-27 2016-05-06 Dolphin Integration Sa POWER CIRCUIT
US20140266106A1 (en) * 2013-03-14 2014-09-18 Vidatronic, Inc. Ldo and load switch supporting a wide range of load capacitance
US8917070B2 (en) * 2013-03-14 2014-12-23 Vidatronic, Inc. LDO and load switch supporting a wide range of load capacitance
US9170593B2 (en) * 2013-05-16 2015-10-27 Fairchild Semiconductor Corporation Voltage regulator with improved line rejection
US9793707B2 (en) * 2013-05-28 2017-10-17 Texas Instruments Incorporated Fast transient precision power regulation apparatus
US10185339B2 (en) * 2013-09-18 2019-01-22 Texas Instruments Incorporated Feedforward cancellation of power supply noise in a voltage regulator
US9535439B2 (en) * 2013-11-08 2017-01-03 Texas Instruments Incorporated LDO current limit control with sense and control transistors
US9436196B2 (en) * 2014-08-20 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Voltage regulator and method
DE102015216493B4 (en) 2015-08-28 2021-07-08 Dialog Semiconductor (Uk) Limited Linear regulator with improved stability
US9588541B1 (en) * 2015-10-30 2017-03-07 Qualcomm Incorporated Dual loop regulator circuit
US10277105B1 (en) 2016-04-05 2019-04-30 Vlt, Inc. Method and apparatus for delivering power to semiconductors
US10785871B1 (en) 2018-12-12 2020-09-22 Vlt, Inc. Panel molded electronic assemblies with integral terminals
US11336167B1 (en) 2016-04-05 2022-05-17 Vicor Corporation Delivering power to semiconductor loads
US10903734B1 (en) 2016-04-05 2021-01-26 Vicor Corporation Delivering power to semiconductor loads
US10158357B1 (en) 2016-04-05 2018-12-18 Vlt, Inc. Method and apparatus for delivering power to semiconductors
US9946283B1 (en) 2016-10-18 2018-04-17 Qualcomm Incorporated Fast transient response low-dropout (LDO) regulator
WO2018228774A1 (en) * 2017-06-13 2018-12-20 Firecomms Limited A power efficient integrated circuit low output impedance voltage regulator
US10411599B1 (en) 2018-03-28 2019-09-10 Qualcomm Incorporated Boost and LDO hybrid converter with dual-loop control
US10444780B1 (en) 2018-09-20 2019-10-15 Qualcomm Incorporated Regulation/bypass automation for LDO with multiple supply voltages
US10591938B1 (en) 2018-10-16 2020-03-17 Qualcomm Incorporated PMOS-output LDO with full spectrum PSR
US10545523B1 (en) 2018-10-25 2020-01-28 Qualcomm Incorporated Adaptive gate-biased field effect transistor for low-dropout regulator
US11372436B2 (en) 2019-10-14 2022-06-28 Qualcomm Incorporated Simultaneous low quiescent current and high performance LDO using single input stage and multiple output stages
CN111414037B (en) * 2020-03-10 2022-01-25 佛山科学技术学院 LDO voltage stabilizing circuit
TWI774491B (en) * 2021-07-28 2022-08-11 瑞昱半導體股份有限公司 Voltage regulator device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT938775B (en) * 1971-08-25 1973-02-10 Ates Componenti Elettron INTEGRATED VOLTAGE STABILIZER WITH NEGATIVE INTERNAL RESISTANCE
US4928056A (en) * 1988-10-06 1990-05-22 National Semiconductor Corporation Stabilized low dropout voltage regulator circuit
DE59010535D1 (en) * 1990-12-22 1996-11-14 Itt Ind Gmbh Deutsche Voltage regulator with a CMOS transconductance amplifier with floating operating point
DE69229995T2 (en) * 1992-06-30 2000-03-16 St Microelectronics Srl Voltage regulator for storage devices
US5519313A (en) * 1993-04-06 1996-05-21 North American Philips Corporation Temperature-compensated voltage regulator
JP2925470B2 (en) * 1995-03-17 1999-07-28 東光株式会社 Series control type regulator
US5825165A (en) * 1996-04-03 1998-10-20 Micro Linear Corporation Micropower switch controller for use in a hysteretic current-mode switching regulator
US5808506A (en) * 1996-10-01 1998-09-15 Information Storage Devices, Inc. MOS charge pump generation and regulation method and apparatus
US6154015A (en) * 1998-07-14 2000-11-28 Ricoh Company, Ltd. DC-DC converter
US6144250A (en) * 1999-01-27 2000-11-07 Linear Technology Corporation Error amplifier reference circuit
US6157180A (en) * 1999-03-04 2000-12-05 National Semiconductor Corporation Power supply regulator circuit for voltage-controlled oscillator
EP1061428B1 (en) * 1999-06-16 2005-08-31 STMicroelectronics S.r.l. BiCMOS/CMOS low drop voltage regulator
EP1065580B1 (en) * 1999-06-30 2003-11-12 STMicroelectronics S.r.l. Voltage regulating circuit for a capacitive load
US6300749B1 (en) * 2000-05-02 2001-10-09 Stmicroelectronics S.R.L. Linear voltage regulator with zero mobile compensation
US6310467B1 (en) * 2001-03-22 2001-10-30 National Semiconductor Corporation LDO regulator with thermal shutdown system and method
US6593726B1 (en) * 2002-02-15 2003-07-15 Micron Technology, Inc. Voltage converter system and method having a stable output voltage

Also Published As

Publication number Publication date
US20030011350A1 (en) 2003-01-16
DE10119858A1 (en) 2002-11-21
DE50208307D1 (en) 2006-11-16
US6700361B2 (en) 2004-03-02
EP1253498A1 (en) 2002-10-30

Similar Documents

Publication Publication Date Title
EP1253498B1 (en) Voltage regulator
DE68926201T2 (en) Operational amplifier circuit
DE69626991T2 (en) Power transistor control circuit for voltage regulators
DE69011756T2 (en) Current mirror circuit.
DE69727783T2 (en) voltage regulators
DE60017049T2 (en) Linear regulator with low series voltage drop
DE102015216493B4 (en) Linear regulator with improved stability
DE3423017C2 (en)
DE60105932T2 (en) VOLTAGE-LIMITING PRELOAD CIRCUIT FOR REDUCING DEGRADATION EFFECTS IN MOS CASCODE CIRCUITS
DE69727349T2 (en) Voltage reference source with low supply voltage range and active feedback for PLL
DE102019204594B3 (en) INDIRECT LEAK COMPENSATION FOR MULTI-STAGE AMPLIFIERS
DE69216626T2 (en) Power amplifier with signal-dependent quiescent current setting
DE102010000498A1 (en) Frequency compensation method for stabilizing a regulator using an external transistor in a high voltage domain
DE102009054113A1 (en) Process, voltage and temperature control for high-speed, high-gain amplifiers with variable gain and low power consumption based on Mosfet resistors
DE3713107C2 (en) Circuit for generating constant voltages in CMOS technology
DE69115551T2 (en) Buffer circuit
DE10142707A1 (en) Multistage differential amplifier includes current source that additionally feeds current into feedback loop, to prevent current mirror from being switched OFF
DE10207802A1 (en) CMOS differential amplifier
DE10064207A1 (en) Circuit arrangement for low-noise, fully differential amplification
DE112019003896T5 (en) LDO voltage regulator circuit with two inputs
DE112021005632T5 (en) LOW DROPOUT REGULATOR WITH INRUSH CURRENT LIMITATION
DE102005044630B4 (en) voltage regulators
EP0523266A1 (en) Integratable current mirror
DE112021001841T5 (en) CONSTANT VOLTAGE GENERATION CIRCUIT
DE69914037T2 (en) CMOS circuit for generating a current reference

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030329

AKX Designation fees paid

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20050310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061004

REF Corresponds to:

Ref document number: 50208307

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190624

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208307

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210423

Year of fee payment: 20