EP1250518B1 - Powder metallurgy produced valve body and valve fitted with said valve body - Google Patents

Powder metallurgy produced valve body and valve fitted with said valve body Download PDF

Info

Publication number
EP1250518B1
EP1250518B1 EP01909578A EP01909578A EP1250518B1 EP 1250518 B1 EP1250518 B1 EP 1250518B1 EP 01909578 A EP01909578 A EP 01909578A EP 01909578 A EP01909578 A EP 01909578A EP 1250518 B1 EP1250518 B1 EP 1250518B1
Authority
EP
European Patent Office
Prior art keywords
valve body
valve
powder
body according
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01909578A
Other languages
German (de)
French (fr)
Other versions
EP1250518A2 (en
Inventor
Gerd Krüger
Hans-Joachim Kaschuba
Franz-Josef Schleifstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bleistahl Produktions-GmbH and Co KG
Volkswagen AG
Original Assignee
Bleistahl Produktions-GmbH and Co KG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bleistahl Produktions-GmbH and Co KG, Volkswagen AG filed Critical Bleistahl Produktions-GmbH and Co KG
Publication of EP1250518A2 publication Critical patent/EP1250518A2/en
Application granted granted Critical
Publication of EP1250518B1 publication Critical patent/EP1250518B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a powder metallurgically produced valve body with high temperature and wear resistance and a valve equipped therewith for internal combustion engines.
  • Intake and exhaust valves for internal combustion engines must meet high requirements for temperature resistance and wear resistance. Especially in high-density modern engines with multi-valve technology and electronic control, it has become increasingly a problem to find materials that meet the prevailing at the outlet high temperatures in the long term. Valves have become increasingly expensive in production, which has been reflected in the material and processing costs.
  • valve seat - were provided with an inductive seat hardening or a seat armor. This is to keep the wear within acceptable limits, taking into account that too Valve temperatures of 800 C ° - 900 C ° should not be exceeded with this technology. However, this is increasingly difficult to meet in modern engines.
  • valves and valve bodies has become extremely complicated especially when performing a seat armor.
  • the valve body is first manufactured by heating, upsetting, calibrating and rotating, to which a rod section is attached by friction welding. Further operations include straightening, turning, grinding and build-up welding, grinding and heat treatment to the finished valve with seat armor.
  • Further operations include straightening, turning, grinding and build-up welding, grinding and heat treatment to the finished valve with seat armor.
  • in the field of seat armor can lead to errors by the build-up welding, with the result of an undesirably high reject rate.
  • valve bodies of a uniform material in as few steps as possible, the material ensuring the necessary wear resistance, service life and heat dissipation, and to connect it with a rod to form a valve.
  • a method for producing at least the wear layer of heavy duty sintered parts in connection with the valve control of an internal combustion engine are known from DE 41 04 909 A1.
  • the powder metallurgically produced sintered parts are characterized by a high chromium and carbon content and are used for cams for valve control. The use of such sintered parts for valve body is not provided.
  • FR 2 596 067 A discloses powder metallurgy produced parts, such as valve seats, with high temperature and wear resistance, made of a powder of 0.6-1.5% by weight of C; ⁇ 1% Mn; ⁇ 2% Si; 1-17% W; 1-10% Mo; 3-15% Cr; 0.5-6% V; ⁇ 15% Co; ⁇ 15% Cu, balance Fe; a powder of copper-phosphorus or iron-boron; and graphite powder such that the C content is 0.6-25%, and the P or B content is 0.7-1.5%.
  • powder metallurgy In the production of complex moldings, powder metallurgy often has the advantage over conventional techniques that the material properties can be optimized and the number of processing steps can be reduced.
  • the invention is therefore the object of powder valve metallurgical valves for valves made of a suitable material, especially taking into account the manufacturing effort.
  • a seat armor should be dispensed with and have the valve or the valve body sufficient for temperature control thermal conductivity.
  • the valve body should be connected to a conventionally manufactured valve stem blunt to a functional and durable valve.
  • the invention further relates to valves made with this valve bodies.
  • the metal powder used according to the invention is characterized in particular by a rather high content of carbon, molybdenum and phosphorus.
  • the carbon and phosphorus content cause the formation of temperature-resistant and wear-reducing carbide and phosphide phases, which give the material the necessary life.
  • Chromium, vanadium and tungsten may be added to vary the range of properties, but are not particularly required for the production of valves and valve parts.
  • An appreciable sulfur content, especially when present as MoS 2 can serve as an internal lubricant, but is generally not required for valves and parts.
  • the powder metallurgically produced valve bodies according to the invention can be produced by conventional press-sintering processes. This includes hot-isostatic pressing, although this is not absolutely necessary. In general, densification to 7.5 g / cm 3 is sufficient, although for many purposes a higher density, in particular about 7.7 g / cm 3 or more, is very advantageous. By increasing the density and the concomitant reduction of the pore volume also results in an improvement of the thermal conductivity and thus the temperature behavior. Furthermore, this increases the stability.
  • valve bodies according to the invention can be produced from the corresponding element powders.
  • ready-alloyed constituents for the production for example a finished-alloy steel component, a phospho-molybdenum steel, optionally MoS 2 and, if additionally required, graphite, in each case in powder form.
  • metal powders produced by atomization process of irregular shape which can impart a certain inner cohesion to the pressed part produced therefrom by toothing.
  • conventional auxiliaries can be added, for example wax, in an amount of up to 1% by weight, based on the alloy powder.
  • dendritic or spiky powders of an average diameter of less than 150 .mu.m are used, preferably less than 50 .mu.m.
  • Carbon is suitably admixed as graphite with a mean Konrworth of 10 microns or less, if not already represented sufficiently in the finished alloy powder.
  • the PMoFe steel powder as can be used here, is described in WO-A-91/18123.
  • valve bodies Particularly preferred for the production of valve bodies is a powder composition having 0.5 to 2.0% carbon, 5.0 to 14% molybdenum, 0.2 to 1.0% phosphorus, 0.1 to 1.2% manganese, maximum 0.50% chromium and max. 0.40% sulfur. Other elements in this case are less than 2% represented, the rest is iron.
  • the composition is measured by weight percent.
  • the finished valve body should have a density of at least 7.7 g / cm 3 .
  • valve bodies according to the invention and valves produced therewith result in a significant reduction in the processing steps.
  • steps are as follows:
  • valves or valve body according to the invention show a high wear resistance even at high temperatures and loads in the valve train in particular for exhaust valves.
  • valve body consists of the materials described above.
  • the stem is made conventionally, ie without powder metallurgical techniques, from a conventional material.
  • Valve body and valve stem are connected butt. In the blunt fit, the connection by a friction welding method is preferred, although other joining methods can be used.
  • valve body As far as the invention valve body, they have the advantage over conventional valve bodies that they consist of a single material, d. H. do not require local modification to suit the particularities of a piston outlet of an internal combustion engine. In addition to production-related advantages, this results in a lower susceptibility to malfunction and damage of the product both in the manufacturing and in the operating phase.
  • the valve bodies according to the invention are prepared from the premixed or finished alloy powder as follows. First, the blank is pressed from the powder with the aid of a conventional wax as a lubricant under conventional pressing pressures into moldings with a sufficient density. The pressing pressure is expediently between 500 and 900 MPa. After pressing, the product is first dewaxed under a hydrogen-nitrogen blanket gas atmosphere at a temperature of 500 to 750 ° C and then in an oven at a temperature of more than 900 ° C, preferably more than 1000 ° C, up to 1150 ° C, sintered. Pressures and temperatures depend essentially on the desired density of the molding and on the composition of the metal powder. After cooling, the parts are tempered and subjected to the required post-treatment steps.
  • valve body and valve stem are set in separate steps and then joined.
  • the valve body is made powder metallurgy, the shank stump conventional. In this constellation body and shaft can be joined together by friction welding. After the joining step, the valve is reworked.
  • Fig. 1 shows a valve body 1, which is made by powder metallurgy and is provided for blunt connection with a shaft 2.
  • a sintered body of sintered molybdenum-phosphorus steel having a density of 6.9 g / cm 3 was obtained.
  • the molded body exhibited good wear resistance at high surface load and finely divided in the microstructure, various carbides in a tempered martensitic matrix with embedded solid lubricant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Taps Or Cocks (AREA)
  • Gears, Cams (AREA)
  • Lift Valve (AREA)
  • Secondary Cells (AREA)
  • Ceramic Capacitors (AREA)
  • Formation And Processing Of Food Products (AREA)

Abstract

Sintered molded part is made of a material containing (in wt.%): 0.5-2.0 carbon, 5.0-16 molybdenum, 0.2-1.0 phosphorus, 0.1-1.4 manganese, 0-5 chromium, 0-5 sulfur, 0-7 tungsten, 0-3 vanadium, less than 2 other elements and a balance of iron. Preferred Features: The part has a density of at least 7.5 g/cm3>. The part is produced from a partially alloyed metal powder. The starting powder contains 0.5-1.5 wt.% carbon, 3.0-15.0 wt.% molybdenum and 0.2-10 wt.% phosphorus.

Description

Die Erfindung betrifft einen pulvermetallurgisch hergestellten Ventilkörper mit hoher Temperatur- und Verschleißfestigkeit und ein damit ausgestattetes Ventil für Verbrennungsmotoren.The invention relates to a powder metallurgically produced valve body with high temperature and wear resistance and a valve equipped therewith for internal combustion engines.

Einlaß- und Auslaßventile für Verbrennungsmotoren müssen hohen Anforderungen an die Temperaturbeständigkeit und Verschleißfestigkeit genügen. Insbesondere bei hochverdichteten modernen Motoren mit Mehrventiltechnik und elektronischer Steuerung ist es zunehmend zum Problem geworden, Materialien zu finden, die den am Auslaß herrschenden hohen Temperaturen auf Dauer gerecht werden. Ventile sind entsprechend in der Fertigung immer aufwendiger geworden, was sich auf die Material- und Verarbeitungskosten niedergeschlagen hat.Intake and exhaust valves for internal combustion engines must meet high requirements for temperature resistance and wear resistance. Especially in high-density modern engines with multi-valve technology and electronic control, it has become increasingly a problem to find materials that meet the prevailing at the outlet high temperatures in the long term. Valves have become increasingly expensive in production, which has been reflected in the material and processing costs.

Für die Fertigung von Ventilkörpern bzw. ganzen Ventilen sind verschiedentlich pulvermetallurgische Verfahren vorgeschlagen worden. Solche pulvermetallurgischen Verfahren haben in die Fertigung der Ventilsitzringe vielfach Eingang gefunden, aber sich bei Ventilkörpern oder Ventilen bislang nicht durchsetzen können. Gründe hierfür waren nicht ausreichende Standfestigkeit der Materialien und ein nicht ausreichendes Temperaturverhalten.Various powder metallurgical processes have been proposed for the production of valve bodies or whole valves. Such powder metallurgy methods have been widely used in the manufacture of valve seat rings, but so far can not prevail in valve bodies or valves. Reasons for this were not sufficient stability of the materials and an insufficient temperature behavior.

Zur Verbesserung der Leistungsfähigkeit herkömmlich gefertigter Ventile wurden besonders belastete Bereiche - insbesondere der Ventilsitz - mit einer induktiven Sitzhärtung oder einer Sitzpanzerung versehen. Hierdurch soll der Verschleiß in akzeptablen Grenzen gehalten werden, wobei zu berücksichtigen ist, daß auch bei dieser Technik Ventiltemperaturen von 800 C° - 900 C° nicht überschritten werden sollten. Dies ist aber bei modernen Motoren zunehmend schwerer einzuhalten.To improve the performance of conventionally manufactured valves particularly stressed areas - in particular the valve seat - were provided with an inductive seat hardening or a seat armor. This is to keep the wear within acceptable limits, taking into account that too Valve temperatures of 800 C ° - 900 C ° should not be exceeded with this technology. However, this is increasingly difficult to meet in modern engines.

Die konventionelle Herstellung von Ventilen und Ventilkörpern ist insbesondere bei Durchführung einer Sitzpanzerung außerordentlich kompliziert geworden. Ausgehend von einem Stangenabschnitt wird durch Erwärmen, Stauchen, Kalibrieren und Drehen zunächst der Ventilkörper gefertigt, an den durch Reibschweißen ein Stangenabschnitt angefügt wird. Weitere Arbeitsschritte umfassen das Richten, Drehen, Schleifen und die Auftragsschweißung, Schleifung und Wärmebehandlung zum fertigen Ventil mit Sitzpanzerung. Insbesondere im Bereich der Sitzpanzerung kann es durch die Auftragsschweißung zu Fehlern kommen, mit der Folge einer unerwünscht hohen Ausschußquote.The conventional production of valves and valve bodies has become extremely complicated especially when performing a seat armor. Starting from a rod section, the valve body is first manufactured by heating, upsetting, calibrating and rotating, to which a rod section is attached by friction welding. Further operations include straightening, turning, grinding and build-up welding, grinding and heat treatment to the finished valve with seat armor. In particular, in the field of seat armor can lead to errors by the build-up welding, with the result of an undesirably high reject rate.

Lösungen, eine geeignete Sitzpanzerung mit Hilfe pulvermetallurgisch hergestellter Panzerungen durchzuführen, haben keinen Serienstatus erlangt. Die Aufbringung der Sitzpanzerung führte nicht zu einer Verminderung der Fehlerquote. Vielmehr erwies sich die pulvermetallurgisch hergestellte Panzerung bei den nachfolgenden Verfahrensschritten als anfällig für Rißbildungen.Solutions to perform a suitable seat armor with the help of powder metallurgical armor made, have not achieved series status. The application of the seat armor did not lead to a reduction of the error rate. Rather, the powder metallurgically produced armor proved in the subsequent process steps as susceptible to cracking.

Die für eine Sitzpanzerung oder -härtung benötigten Materialien und zusätzlichen Verfahrensschritte lassen es wünschenswert erscheinen, Ventilkörper aus einem einheitlichen Material in möglichst wenigen Schritten herzustellen, wobei das Material die notwendige Verschleißfestigkeit, Standzeit und Wärmeabfuhr gewährleistet, und mit einer Stange zu einem Ventil zu verbinden.The materials and additional process steps required for a seat armor or hardening make it desirable to produce valve bodies of a uniform material in as few steps as possible, the material ensuring the necessary wear resistance, service life and heat dissipation, and to connect it with a rod to form a valve.

Verfahren zum Herstellen zumindest der Verschleißschicht hochbelastbarer Sinterteile in Zusammenhang mit der Ventilsteuerung einer Verbrennungskraftmaschine sind aus der DE 41 04 909 A1 bekannt. Die dort pulvermetallurgisch hergestellten Sinterteile zeichnen sich durch einen hohen Chrom- und Kohlenstoffgehalt aus und werden für Nocken zur Ventilsteuerung eingesetzt. Die Verwendung solcher Sinterteile für Ventilkörper ist nicht vorgesehen.A method for producing at least the wear layer of heavy duty sintered parts in connection with the valve control of an internal combustion engine are known from DE 41 04 909 A1. The powder metallurgically produced sintered parts are characterized by a high chromium and carbon content and are used for cams for valve control. The use of such sintered parts for valve body is not provided.

FR 2 596 067 A offenbart pulvermetallurgisch hergestellte Teile, etwa Ventilsitze, mit hoher Temperatur- und Verschleßfestigkeit, hergestellt aus einem Pulver mit 0.6-1,5 Gewicht-%C; ≤ 1% Mn; ≤ 2% Si; 1-17% W; 1-10% Mo; 3-15%Cr; 0,5-6% V; ≤ 15% Co ; ≤ 15% Cu, Rest Fe; einem Pulver aus Kupfer-Phosphor oder Eisen-Bor; und Graphit-Pulver, sodass der C-Inhalt 0,6-25% , und der P-oder B-Inhalt 0,7-1,5% ist.FR 2 596 067 A discloses powder metallurgy produced parts, such as valve seats, with high temperature and wear resistance, made of a powder of 0.6-1.5% by weight of C; ≤ 1% Mn; ≤ 2% Si; 1-17% W; 1-10% Mo; 3-15% Cr; 0.5-6% V; ≤ 15% Co; ≤ 15% Cu, balance Fe; a powder of copper-phosphorus or iron-boron; and graphite powder such that the C content is 0.6-25%, and the P or B content is 0.7-1.5%.

Bei der Herstellung aufwendiger Formteile hat die Pulvermetallurgie gegenüber konventionellen Techniken häufig den Vorteil, daß die Materialeigenschaften optimiert und die Zahl der Bearbeitungsschritte vermindert werden kann.In the production of complex moldings, powder metallurgy often has the advantage over conventional techniques that the material properties can be optimized and the number of processing steps can be reduced.

Der Erfindung liegt deshalb die Aufgabe zugrunde, Ventilkörper für Ventile pulvermetallurgisch aus einem dafür geeigneten Material herzustellen, insbesondere unter Berücksichtigung auch des Fertigungsaufwandes. Dabei soll eine Sitzpanzerung verzichtbar sein und das Ventil bzw. der Ventilkörper eine zur Temperatursteuerung ausreichende Wärmeleitfähigkeit aufweisen. Der Ventilkörper soll mit einer konventionell gefertigten Ventilstange stumpf zu einem funktionsfähigen und dauerhaften Ventil verbunden werden können.The invention is therefore the object of powder valve metallurgical valves for valves made of a suitable material, especially taking into account the manufacturing effort. Here, a seat armor should be dispensed with and have the valve or the valve body sufficient for temperature control thermal conductivity. The valve body should be connected to a conventionally manufactured valve stem blunt to a functional and durable valve.

Diese Aufgabe wird mit einem pulvermetallurgisch hergestellten Ventilkörper gelöst, der die folgende Zusammensetzung nach Gewicht aufweist:

  • 0,5 % bis 2,0 % C; 5,0 % bis 16 % Mo; 0,2 % bis 1,0 % P; 0,1 % bis
  • 1,4%Mn; 0 % bis 5 % Cr; 0 % bis 5 % S: 0 % bis 7 % W; 0 % bis 3 % V;
  • < 2 % andere Elemente und Rest Fe.
This object is achieved with a valve body produced by powder metallurgy, which has the following composition by weight:
  • 0.5% to 2.0% C; 5.0% to 16% Mo; 0.2% to 1.0% P; 0.1% to
  • 1.4% Mn; 0% to 5% Cr; 0% to 5% S: 0% to 7% W; 0% to 3% V;
  • <2% other elements and remainder Fe.

Die Erfindung betrifft ferner mit diesem Ventilkörpern gefertigte Ventile.The invention further relates to valves made with this valve bodies.

Das erfindungsgemäß zum Einsatz kommende Metallpulver zeichnet sich insbesondere durch einen recht hohen Kohlenstoff-, Molybdän- und Phosphorgehalt aus.The metal powder used according to the invention is characterized in particular by a rather high content of carbon, molybdenum and phosphorus.

Der Kohlenstoff- und Phosphorgehalt bewirken die Ausbildung von temperaturbeständigen und verschleißmindemden Carbid- und Phosphidphasen, die dem Werkstoff die nötige Lebensdauer verleihen. Chrom, Vanadium und Wolfram können zur Variation des Eigenschaftsspektrums hinzugesetzt werden, sind aber insbesondere zur Herstellung von Ventilen und Ventilteilen nicht unbedingt erforderlich. Ein nennenswerter Schwefelgehalt kann, insbesondere bei Vorliegen als MoS2, als intemer Schmierstoff dienen, ist aber bei Ventilen und den Teilen in der Regel nicht erforderlich.The carbon and phosphorus content cause the formation of temperature-resistant and wear-reducing carbide and phosphide phases, which give the material the necessary life. Chromium, vanadium and tungsten may be added to vary the range of properties, but are not particularly required for the production of valves and valve parts. An appreciable sulfur content, especially when present as MoS 2 , can serve as an internal lubricant, but is generally not required for valves and parts.

Die erfindungsgemäßen pulvermetallurgisch hergestellten Ventilkörper können nach herkömmlichen Preß-Sinter-Verfahren hergestellt werden. Dazu gehört auch das heiß-isostatische Pressen, obwohl dies nicht unbedingt erforderlich ist. Im Allgemeinen ist eine Verdichtung auf 7,5 g/cm3 ausreichend, wenn auch für zahlreiche Zwecke eine höhere Dichte, insbesondere etwa 7,7 g/cm3 oder mehr sehr vorteilhaft ist. Durch eine Erhöhung der Dichte und die damit einhergehende Verminderung des Porenvolumens ergibt sich auch eine Verbesserung der Wärmeleitfähigkeit und damit des Temperaturverhaltens. Weiterhin wird dadurch die Standfestigkeit erhöht.The powder metallurgically produced valve bodies according to the invention can be produced by conventional press-sintering processes. This includes hot-isostatic pressing, although this is not absolutely necessary. In general, densification to 7.5 g / cm 3 is sufficient, although for many purposes a higher density, in particular about 7.7 g / cm 3 or more, is very advantageous. By increasing the density and the concomitant reduction of the pore volume also results in an improvement of the thermal conductivity and thus the temperature behavior. Furthermore, this increases the stability.

Die erfindungsgemäßen Ventilkörper können aus den entsprechenden Elementpulvern hergestellt werden. Zumeist ist es allerdings zweckmäßig, fertiglegierte Bestandteile für die Herstellung zu verwenden, beispielsweise eine fertiglegierte Stahlkomponente, einen Phosphor-Molybdän-Stahl, gegebenenfalls MoS2 und, falls zusätzlich erforderlich, Graphit, jeweils in Pulverform. Besonders bevorzugt ist der Einsatz von durch Atomisierungsverfahren hergestellten Metallpulvern unregelmäßiger Form, die den daraus hergestellten Preßteil durch Verzahnung einen gewissen inneren Zusammenhalt verleihen können. Zur Verbesserung der Verarbeitbarkeit, Verminderung des Verschleißes in den Pressen und zur Verbesserung des Zusammenhaltes können übliche Hilfsstoffe zugesetzt werden, beispielsweise Wachs, in einer Menge von bis zu 1 Gew.-%, bezogen auf die Legierungspulver.The valve bodies according to the invention can be produced from the corresponding element powders. In most cases, however, it is expedient to use ready-alloyed constituents for the production, for example a finished-alloy steel component, a phospho-molybdenum steel, optionally MoS 2 and, if additionally required, graphite, in each case in powder form. Particularly preferred is the use of metal powders produced by atomization process of irregular shape, which can impart a certain inner cohesion to the pressed part produced therefrom by toothing. To improve the processability, reduce the wear in the presses and improve cohesion, conventional auxiliaries can be added, for example wax, in an amount of up to 1% by weight, based on the alloy powder.

Vorzugsweise werden dendritische bzw. spratzige Pulver eines mittleren Durchmessers von weniger als 150 µm eingesetzt, vorzugsweise weniger als 50 µm. Kohlenstoff wird zweckmäßigerweise als Graphit mit einer mittleren Konrgröße von 10 µm oder weniger zugemischt, wenn nicht bereits ausreichend im fertiglegierten Pulver vertreten. Das PMoFe-Stahlpulver, wie es hier eingesetzt werden kann, ist in der WO-A-91/18123 beschrieben.Preferably, dendritic or spiky powders of an average diameter of less than 150 .mu.m are used, preferably less than 50 .mu.m. Carbon is suitably admixed as graphite with a mean Konrgröße of 10 microns or less, if not already represented sufficiently in the finished alloy powder. The PMoFe steel powder, as can be used here, is described in WO-A-91/18123.

Besonders bevorzugt für die Herstellung von Ventilkörpern ist eine Pulverzusammensetzung mit 0,5 bis 2,0 % Kohlenstoff, 5,0 bis 14 % Molybdän, 0,2 bis 1,0 % Phosphor, 0,1 bis 1,2 % Mangan, maximal 0,50 % Chrom und maximal 0,40 % Schwefel. Andere Elemente sind in diesem Fall mit weniger als 2 % vertreten, der Rest ist Eisen. Die Zusammensetzung bemißt sich nach Gewichtsprozent.Particularly preferred for the production of valve bodies is a powder composition having 0.5 to 2.0% carbon, 5.0 to 14% molybdenum, 0.2 to 1.0% phosphorus, 0.1 to 1.2% manganese, maximum 0.50% chromium and max. 0.40% sulfur. Other elements in this case are less than 2% represented, the rest is iron. The composition is measured by weight percent.

Für die erfindungsgemäßen Ventilkörper empfiehlt es sich, das Flüssigphasen-Sinterverfahren anzuwenden. Der fertige Ventilkörper sollte eine Dichte von wenigstens 7,7 g/cm3 aufweisen.For the valve body according to the invention, it is recommended to use the liquid phase sintering method. The finished valve body should have a density of at least 7.7 g / cm 3 .

Gegenüber dem eingangs beschriebenen konventionellen Fertigungsverfahren für komplette Ventile ergibt sich für die erfindungsgemäßen pulvermetallurgisch hergestellten Ventilkörper und damit gefertigten Ventile eine deutliche Verminderung der Verarbeitungsschritte. Bei der Herstellung eines erfindungsgemäßen Ventiles aus einem separat gefertigten Ventilkörper und einem Stangenabschnitt stellen sich die Schritte wie folgt dar:In contrast to the conventional production method for complete valves described above, the valve bodies according to the invention and valves produced therewith result in a significant reduction in the processing steps. In the manufacture of a valve according to the invention from a separately manufactured valve body and a rod section, the steps are as follows:

Zunächst Pressen, Sintern und Anlassen des Ventilkörpers, danach Bereitstellen des Stangenabschnittes, Fügen von Ventilkörper und Stangenabschnitt, etwa in einem Reibschweißverfahren, Richten, Drehen, Schleifen und Wärmebehandeln des fertigen Ventils. Die deutliche Verminderung der Zahl der Produktionsschritte erhöht die Fertigungsgenauigkeit und vermindert die Fehlerwahrscheinlichkeit. Des weiteren läßt sich durch die verminderte Anzahl von Fertigungsschritten flexibler auf sich verändernde Systemanforderungen reagieren.First pressing, sintering and tempering the valve body, then providing the rod portion, joining the valve body and rod portion, such as in a friction welding process, straightening, turning, grinding and heat treating the finished valve. The significant reduction in the number of production steps increases the manufacturing accuracy and reduces the probability of errors. Furthermore, the reduced number of manufacturing steps makes it possible to respond more flexibly to changing system requirements.

Die erfindungsgemäßen Ventile bzw. Ventilkörper zeigen eine hohe Verschleißfestigkeit auch bei den hohen Temperaturen und Belastungen im Ventiltrieb insbesondere für Auslaßventile.The valves or valve body according to the invention show a high wear resistance even at high temperatures and loads in the valve train in particular for exhaust valves.

Was die Ventile selbst anbetrifft, besteht der Ventilkörper aus den vorstehend beschriebenen Werkstoffen. Der Schaft wird konventionell, d. h. ohne pulvermetallurgische Techniken, aus einem konventionellen Werkstoff gefertigt. Ventilkörper und Ventilstange werden stumpf miteinander verbunden. Bei der stumpfen Passung ist die Verbindung durch ein Reibschweißverfahren bevorzugt, wenn auch andere Fügeverfahren zum Einsatz kommen können.As far as the valves themselves are concerned, the valve body consists of the materials described above. The stem is made conventionally, ie without powder metallurgical techniques, from a conventional material. Valve body and valve stem are connected butt. In the blunt fit, the connection by a friction welding method is preferred, although other joining methods can be used.

Soweit die Erfindung Ventilkörper betrifft, haben diese gegenüber herkömmlichen Ventilkörpern den Vorteil, daß sie aus einem einheitlichen Material bestehen, d. h. nicht einer lokalen Modifizierung bedürfen, um sie den besonderen Gegebenheiten eines Kolbenauslasses eines Verbrennungsmotors anzupassen. Dies bringt neben produktionstechnischen Vorteilen eine geringere Stör- und Schadensanfälligkeit des Produktes sowohl in der Herstellungs- als auch in der Betriebsphase.As far as the invention valve body, they have the advantage over conventional valve bodies that they consist of a single material, d. H. do not require local modification to suit the particularities of a piston outlet of an internal combustion engine. In addition to production-related advantages, this results in a lower susceptibility to malfunction and damage of the product both in the manufacturing and in the operating phase.

Die erfindungsgemäßen Ventilkörper werden aus dem vorgemischten bzw. fertiglegierten Pulver wie folgt hergestellt. Zunächst wird der Rohling aus dem Pulver unter Zuhilfenahme eines üblichen Wachses als Gleitmittel unter üblichen Preßdrücken zu Formlingen mit einer ausreichenden Dichte verpreßt. Der Preßdruck liegt dabei zweckmäßigerweise zwischen 500 und 900 MPa. Nach dem Pressen wird das Produkt zunächst unter einer Wasserstoff-Stickstoff-Schutzgasatmosphäre bei einer Temperatur von 500 bis 750°C entwachst und anschließend in einem Ofen bei einer Temperatur von mehr als 900°C, vorzugsweise mehr als 1000°C, bis zu 1150°C, gesintert. Drücke und Temperaturen hängen dabei im wesentlichen von der gewünschten Dichte des Formteils und von der Zusammensetzung des Metallpulvers ab. Nach dem Abkühlen werden die Teile angelassen und den erforderlichen Nachbehandlungsschritten unterworfen.The valve bodies according to the invention are prepared from the premixed or finished alloy powder as follows. First, the blank is pressed from the powder with the aid of a conventional wax as a lubricant under conventional pressing pressures into moldings with a sufficient density. The pressing pressure is expediently between 500 and 900 MPa. After pressing, the product is first dewaxed under a hydrogen-nitrogen blanket gas atmosphere at a temperature of 500 to 750 ° C and then in an oven at a temperature of more than 900 ° C, preferably more than 1000 ° C, up to 1150 ° C, sintered. Pressures and temperatures depend essentially on the desired density of the molding and on the composition of the metal powder. After cooling, the parts are tempered and subjected to the required post-treatment steps.

Wie erwähnt, werden für die Herstellung von erfindungsgemäßen Ventilen für Verbrennungsmotoren, Ventilkörper und Ventilschaft in getrennten Arbeitsschritten herzgestellt und anschließend gefügt. Der Ventilkörper wird dabei pulvermetallurgisch hergestellt, der Schaftstumpf konventionell. Bei dieser Konstellation können Körper und Schaft durch Reibschweißen miteinander verbunden werden. Nach dem Fügeschritt wird das Ventil nachbearbeitet.As mentioned, for the production of valves according to the invention for internal combustion engines, valve body and valve stem are set in separate steps and then joined. The valve body is made powder metallurgy, the shank stump conventional. In this constellation body and shaft can be joined together by friction welding. After the joining step, the valve is reworked.

Fig. 1 zeigt einen Ventilkörper 1, der pulvermetallurgisch gefertigt ist und zur stumpfen Verbindung mit einem Schaft 2 vorgesehen ist.Fig. 1 shows a valve body 1, which is made by powder metallurgy and is provided for blunt connection with a shaft 2.

Beispiel:Example:

Für einen erfindungsgemäßen Ventilkörper wurde Metallpulver der folgenden chemischen Zusammensetzung nach Gewicht verwandt:

  • 0,9 % Kohlenstoff, 8,2 % Molybdän, 4,8 % Wolfram, 1,4 % Vanadium, 0,42 % Phosphor, 3,2 % Chrom und 1,2 % Schwefel.
For a valve body according to the invention, metal powder of the following chemical composition by weight was used:
  • 0.9% carbon, 8.2% molybdenum, 4.8% tungsten, 1.4% vanadium, 0.42% phosphorus, 3.2% chromium and 1.2% sulfur.

Andere Elemente waren zu etwa 1,9 % vertreten, der Rest war Eisen.Other elements were represented by about 1.9%, the rest was iron.

Es wurde ein Sinterkörper aus gesintertem Molybdän-Phosphor-Stahl einer Dichte von 6,9 g/cm3 erhalten. Der Formkörper zeigte bei hoher Oberflächenbelastung eine gute Verschleißbeständigkeit und im Gefüge feinverteilte, verschiedene Carbide in einer angelassenen martensitischen Matrix mit eingelagertem Festschmierstoff.A sintered body of sintered molybdenum-phosphorus steel having a density of 6.9 g / cm 3 was obtained. The molded body exhibited good wear resistance at high surface load and finely divided in the microstructure, various carbides in a tempered martensitic matrix with embedded solid lubricant.

Claims (10)

  1. A valve body produced by a powder metallurgical method and having a high resistance to temperatures and wear, characterized by the following composition by weight:
    0.5 % to 2.0 % C; 5.0 % to 16 % Mo; 0.2 % to 1.0 % P; 0.1 % to
    1.4 % Mn; 0 % to 5 % Cr; 0 % to 5 % S; 0 % to 7 % W; 0 % to 3 % V,
    < 2 % of other elements with the remainder being Fe.
  2. The valve body according to claim 1, characterized in that said body having a density of at least 7.5 g/cm3.
  3. The valve body according to claims 1 or 2, characterized in that said body is produced from a metal powder that is used, at least to some extent, in the form of a completely alloyed material.
  4. The valve body according to claim 3, characterized in that the basic powder contains completely alloyed PMoFe powder.
  5. The valve body according to one of the above claims, characterized in that the basic powder is used in the process in atomized condition.
  6. The valve body according to one of the above claims,
       characterized in that the following composition by weight is used:
    0.5 % to 2.0 % C; 5.0 % to 14 % Mo; 0.2 % to 1.0 % P; 0.1 % to 1.2 % Mn
    max. 0.5 % Cr,
    max. 0.4 % S ,
    < 2 % other elements,
    remainder Fe.
  7. The valve body according to one of the above claims and having a density of at least 7.7 g/cm3.
  8. The valve body according to one of the above claims, characterized in that said body being compacted by means of the liquid-phase sintering process.
  9. A valve, characterized by a valve body according to one of the above claims and a shaft made by conventional methods and connected by a butt joining process.
  10. The valve according to claim 9, characterized in that valve body and valve shaft are connected by friction welding.
EP01909578A 2000-01-06 2001-01-04 Powder metallurgy produced valve body and valve fitted with said valve body Expired - Lifetime EP1250518B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10000158 2000-01-06
DE10000158 2000-01-06
PCT/EP2001/000036 WO2001049979A2 (en) 2000-01-06 2001-01-04 Powder metallurgy produced valve body and valve fitted with said valve body

Publications (2)

Publication Number Publication Date
EP1250518A2 EP1250518A2 (en) 2002-10-23
EP1250518B1 true EP1250518B1 (en) 2005-09-21

Family

ID=7626758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909578A Expired - Lifetime EP1250518B1 (en) 2000-01-06 2001-01-04 Powder metallurgy produced valve body and valve fitted with said valve body

Country Status (5)

Country Link
EP (1) EP1250518B1 (en)
AT (1) ATE305084T1 (en)
AU (2) AU3727401A (en)
DE (2) DE10031960A1 (en)
WO (2) WO2001049979A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109473A1 (en) 2011-08-04 2012-03-15 Daimler Ag Sintered component e.g. cam for assembled camshaft of internal combustion engine, comprises surface portion of sintered component, boundary layer compaction, and hardened region, where compression layer is produced in surface portion
CN113564491A (en) * 2021-07-02 2021-10-29 安徽森拓新材料有限公司 High-performance powder metallurgy valve guide pipe material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270518A (en) * 1985-05-22 1986-11-29 Toyota Motor Corp Sintered camshaft
JPS62124256A (en) * 1985-11-21 1987-06-05 Kawasaki Steel Corp Graphite-precipitated sintered steel for sliding member
FR2596067B1 (en) * 1986-03-19 1991-02-08 Metafram Alliages Fritte PROCESS FOR MANUFACTURING SINTERED RAPID STEEL PARTS
GB2197663B (en) * 1986-11-21 1990-07-11 Manganese Bronze Ltd High density sintered ferrous alloys
EP0742844A1 (en) * 1994-02-07 1996-11-20 Stackpole Limited Hi-density sintered alloy

Also Published As

Publication number Publication date
DE10031960A1 (en) 2001-07-12
AU2372001A (en) 2001-07-16
WO2001049436A3 (en) 2002-02-14
WO2001049436A2 (en) 2001-07-12
EP1250518A2 (en) 2002-10-23
ATE305084T1 (en) 2005-10-15
DE50107484D1 (en) 2005-10-27
AU3727401A (en) 2001-07-16
WO2001049979A3 (en) 2002-02-28
WO2001049979A2 (en) 2001-07-12

Similar Documents

Publication Publication Date Title
DE3327282C2 (en) Sintered alloy for valve seats
DE2846122C2 (en) Sintered alloy for the manufacture of sliding elements for engines
EP3007842B2 (en) Method for producing heat- and wear-resistant molded parts, in particular engine components
DE102010055463A1 (en) Sintered valve guide and manufacturing method therefor
DE3744550C2 (en)
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
DE3708035A1 (en) WEAR-RESISTANT, SINTERED IRON-BASED ALLOY
EP3323902B1 (en) Steel material containing hard particles prepared by powder metallurgy, method for producing a component from such a steel material and component produced from the steel material
EP3906327A1 (en) Hard powder particles with improved compressibility and green strength
EP0881958B1 (en) Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear
EP3530400A1 (en) Method for producing a component, in particular a vehicle component, and correspondingly manufactured component
DE3730082C2 (en)
EP1250518B1 (en) Powder metallurgy produced valve body and valve fitted with said valve body
DE19708197B4 (en) Sintered sliding element and method for its production
DE2063846B2 (en) Process for the manufacture of molded bodies from high-speed steel
DE3736350C2 (en)
EP0130177B1 (en) Sintered iron-base alloy
US6712872B2 (en) Powder metallurgy produced valve body and valve fitted with said valve body
EP0719349B1 (en) Process of producing sintered articles
WO2018095610A1 (en) Powder metallurgy produced steel material, method for producing a component from said type of steel material and component produced from the steel material
DE10336407B4 (en) Powder metallurgically produced bearing parts for turbochargers and method for producing such bearing parts
DE102018214344A1 (en) Process for the manufacture of a powder metallurgical product
DE10000156A1 (en) Press-sintered molded part is produced from an iron alloy powder containing alloying additions of molybdenum, phosphorus, manganese
DE112005002568T5 (en) Sintered alloys for cam lobes and other high wear items
DE10016830A1 (en) Sintered molded part produced by powder metallurgy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20050921

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50107484

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060221

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070329

Year of fee payment: 7

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20060131

Owner name: BLEISTAHL-PRODUKTIONS G.M.B.H. & CO KG

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070314

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131