EP1250518A2 - Powder metallurgy produced valve body and valve fitted with said valve body - Google Patents

Powder metallurgy produced valve body and valve fitted with said valve body

Info

Publication number
EP1250518A2
EP1250518A2 EP01909578A EP01909578A EP1250518A2 EP 1250518 A2 EP1250518 A2 EP 1250518A2 EP 01909578 A EP01909578 A EP 01909578A EP 01909578 A EP01909578 A EP 01909578A EP 1250518 A2 EP1250518 A2 EP 1250518A2
Authority
EP
European Patent Office
Prior art keywords
valve body
valve
body according
powder
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01909578A
Other languages
German (de)
French (fr)
Other versions
EP1250518B1 (en
Inventor
Gerd Krüger
Hans-Joachim Kaschuba
Franz-Josef Schleifstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bleistahl Produktions-GmbH and Co KG
Volkswagen AG
Original Assignee
Bleistahl Produktions-GmbH and Co KG
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bleistahl Produktions-GmbH and Co KG, Volkswagen AG filed Critical Bleistahl Produktions-GmbH and Co KG
Publication of EP1250518A2 publication Critical patent/EP1250518A2/en
Application granted granted Critical
Publication of EP1250518B1 publication Critical patent/EP1250518B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0214Using a mixture of prealloyed powders or a master alloy comprising P or a phosphorus compound
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/36Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the invention relates to a powder-metallurgically manufactured valve body with high temperature and wear resistance and a valve equipped therewith for internal combustion engines.
  • Intake and exhaust valves for internal combustion engines must meet high requirements for temperature resistance and wear resistance. Particularly in the case of highly compressed modern engines with multi-valve technology and electronic control, it has become increasingly a problem to find materials which can permanently cope with the high temperatures prevailing at the outlet. Accordingly, valves have become more and more complex to manufacture, which has had an impact on the material and processing costs.
  • valve seat - were provided with inductive seat hardening or seat armor. This should keep the wear within acceptable limits, taking into account that too With this technology, valve temperatures of 800 ° C - 900 ° C should not be exceeded. However, this is becoming increasingly difficult to maintain in modern engines.
  • valves and valve bodies have become extremely complicated, particularly when armor is used.
  • the valve body is first produced by heating, compressing, calibrating and rotating, to which a rod section is added by friction welding.
  • Other work steps include straightening, turning, grinding and cladding, grinding and heat treatment to the finished valve with seat armor.
  • the build-up welding can lead to errors, which results in an undesirably high reject rate.
  • valve bodies from a uniform material in as few steps as possible, the material ensuring the necessary wear resistance, service life and heat dissipation, and with a rod to a valve connect.
  • the invention is therefore based on the object to produce valve bodies for valves by powder metallurgy from a suitable material, in particular taking into account the production costs.
  • Seat armor should be dispensable and the valve or the valve body should have sufficient thermal conductivity for temperature control.
  • the valve body should be able to be butt-connected with a conventionally manufactured valve rod to a functional and permanent valve.
  • valve body manufactured by powder metallurgy which has the following composition by weight:
  • the invention further relates to valves manufactured with this valve body.
  • the metal powder used according to the invention is characterized in particular by a very high carbon, molybdenum and phosphorus content.
  • the carbon and phosphorus content cause the formation of temperature-resistant and wear-reducing carbide and phosphide phases, which give the material the necessary service life.
  • Chromium, vanadium and tungsten can be added to vary the range of properties, but are not absolutely necessary in particular for the production of valves and valve parts.
  • An appreciable sulfur content can serve as an internal lubricant, especially if it is MoS 2 , but is generally not necessary for valves and parts.
  • the valve body produced by powder metallurgy according to the invention can be produced by conventional press-sintering processes. This also includes hot isostatic pressing, although this is not absolutely necessary.
  • valve bodies according to the invention can be produced from the corresponding element powders.
  • finished alloy components for the production, for example a finished alloy steel component, a phosphorus-molybdenum steel, optionally MoS 2 and, if necessary, graphite, in each case in powder form.
  • metal powders of irregular shape produced by atomization processes which can give the pressed part produced therefrom a certain internal cohesion by means of teeth.
  • customary auxiliaries can be added, for example wax, in an amount of up to 1% by weight, based on the alloy powder.
  • Dendritic or spattery powders with an average diameter of less than 150 ⁇ m are preferably used, preferably less than 50 ⁇ m.
  • Carbon is expediently admixed as graphite with an average size of 10 ⁇ m or less, if not already sufficiently represented in the finished alloy powder.
  • the PMoFe steel powder, as can be used here, is described in WO-A-91/18123.
  • Powder composition with 0.5 to 2.0% carbon, 5.0 to 14% molybdenum, 0.2 to 1, 0% phosphorus, 0.1 to 1, 2% manganese, maximum 0.50% chromium and maximum 0, 40% sulfur. Other elements in this case are less than 2% represented, the rest is iron.
  • the composition is based on weight percent.
  • the finished valve body should have a density of at least 7.7 g / cm 3 .
  • valves or valve bodies according to the invention show high wear resistance even at the high temperatures and loads in the valve train, in particular for exhaust valves.
  • valve body is made of the materials described above.
  • the shaft is made conventionally, ie without powder metallurgy techniques, from a conventional material.
  • the valve body and valve rod are butted together. In the case of the butt fit, the connection by means of a friction welding process is preferred, although other joining processes can also be used.
  • valve bodies these have the advantage over conventional valve bodies that they consist of a uniform material, ie they do not require local modification in order to adapt them to the particular circumstances of a piston outlet of an internal combustion engine. In addition to advantages in terms of production technology, this also means that the product is less susceptible to faults and damage, both in the manufacturing and in the operating phase.
  • the valve bodies according to the invention are produced from the premixed or finished alloy powder as follows. First, the blank is pressed out of the powder with the aid of a conventional wax as a lubricant under customary pressing pressures to give moldings with a sufficient density. The pressure is expediently between 500 and 900 MPa. After pressing, the product is first dewaxed under a hydrogen-nitrogen protective gas atmosphere at a temperature of 500 to 750 ° C and then in an oven at a temperature of more than 900 ° C, preferably more than 1000 ° C, up to 1150 ° C, sintered. Pressures and temperatures essentially depend on the desired density of the molded part and on the composition of the metal powder. After cooling, the parts are left on and subjected to the necessary post-treatment steps.
  • valve body and valve stem according to the invention are made in separate work steps and then joined.
  • the valve body is manufactured using powder metallurgy, the stump conventionally. In this constellation, the body and shaft can be joined together by friction welding. After the joining step, the valve is reworked.
  • Fig. 1 shows a valve body 1, which is made by powder metallurgy and is provided for butt connection to a stem 2.
  • a sintered body made of sintered molybdenum-phosphor steel with a density of 6.9 g / cm 3 was obtained.
  • the molded body showed good wear resistance and a finely divided structure of various carbides in a tempered martensitic matrix with embedded solid lubricant under high surface loads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Taps Or Cocks (AREA)
  • Formation And Processing Of Food Products (AREA)
  • Ceramic Capacitors (AREA)
  • Secondary Cells (AREA)
  • Lift Valve (AREA)
  • Gears, Cams (AREA)

Abstract

Sintered molded part is made of a material containing (in wt.%): 0.5-2.0 carbon, 5.0-16 molybdenum, 0.2-1.0 phosphorus, 0.1-1.4 manganese, 0-5 chromium, 0-5 sulfur, 0-7 tungsten, 0-3 vanadium, less than 2 other elements and a balance of iron. Preferred Features: The part has a density of at least 7.5 g/cm3>. The part is produced from a partially alloyed metal powder. The starting powder contains 0.5-1.5 wt.% carbon, 3.0-15.0 wt.% molybdenum and 0.2-10 wt.% phosphorus.

Description

Pulvermetallurαisch hergestellter Ventilkörper und damit ausgestattetes Ventil Powder metallurgically manufactured valve body and valve equipped therewith
Die Erfindung betrifft einen pulvermetallurgisch hergestellten Ventilkörper mit hoher Temperatur- und Verschleißfestigkeit und ein damit ausgestattetes Ventil für Verbrennungsmotoren.The invention relates to a powder-metallurgically manufactured valve body with high temperature and wear resistance and a valve equipped therewith for internal combustion engines.
Einlaß- und Auslaßventile für Verbrennungsmotoren müssen hohen Anforderun- gen an die Temperaturbeständigkeit und Verschleißfestigkeit genügen. Insbesondere bei hochverdichteten modernen Motoren mit Mehrventiltechnik und elektronischer Steuerung ist es zunehmend zum Problem geworden, Materialien zu finden, die den am Auslaß herrschenden hohen Temperaturen auf Dauer gerecht werden. Ventile sind entsprechend in der Fertigung immer aufwendiger geworden, was sich auf die Material- und Verarbeitungskosten niedergeschlagen hat.Intake and exhaust valves for internal combustion engines must meet high requirements for temperature resistance and wear resistance. Particularly in the case of highly compressed modern engines with multi-valve technology and electronic control, it has become increasingly a problem to find materials which can permanently cope with the high temperatures prevailing at the outlet. Accordingly, valves have become more and more complex to manufacture, which has had an impact on the material and processing costs.
Für die Fertigung von Ventilkörpern bzw. ganzen Ventilen sind verschiedentlich pulvermetallurgische Verfahren vorgeschlagen worden. Solche pulvermetallurgischen Verfahren haben in die Fertigung der Ventilsitzringe vielfach Eingang gefunden, aber sich bei Ventilkörpern oder Ventilen bislang nicht durchsetzen können. Gründe hierfür waren nicht ausreichende Standfestigkeit der Materialien und ein nicht ausreichendes Temperaturverhalten.Various powder metallurgical processes have been proposed for the production of valve bodies or entire valves. Such powder metallurgical processes have found their way into the manufacture of valve seat rings in many cases, but have so far not been able to establish themselves in valve bodies or valves. The reasons for this were insufficient stability of the materials and insufficient temperature behavior.
Zur Verbesserung der Leistungsfähigkeit herkömmlich gefertigter Ventile wurden besonders belastete Bereiche - insbesondere der Ventilsitz - mit einer induktiven Sitzhärtung oder einer Sitzpanzerung versehen. Hierdurch soll der Verschleiß in akzeptablen Grenzen gehalten werden, wobei zu berücksichtigen ist, daß auch bei dieser Technik Ventiltemperaturen von 800 C° - 900 C° nicht überschritten werden sollten. Dies ist aber bei modernen Motoren zunehmend schwerer einzuhalten.To improve the performance of conventionally manufactured valves, particularly stressed areas - in particular the valve seat - were provided with inductive seat hardening or seat armor. This should keep the wear within acceptable limits, taking into account that too With this technology, valve temperatures of 800 ° C - 900 ° C should not be exceeded. However, this is becoming increasingly difficult to maintain in modern engines.
Die konventionelle Herstellung von Ventilen und Ventilkörpern ist insbesondere bei Durchführung einer Sitzpanzerung außerordentlich kompliziert geworden. Ausgehend von einem Stangenabschnitt wird durch Erwärmen, Stauchen, Kalibrieren und Drehen zunächst der Ventilkörper gefertigt, an den durch Reibschweißen ein Stangenabschnitt angefügt wird. Weitere Arbeitsschritte umfassen das Richten, Drehen, Schleifen und die Auftragsschweißung, Schleifung und Wärmebehandlung zum fertigen Ventil mit Sitzpanzerung. Insbesondere im Bereich der Sitzpanzerung kann es durch die Auftragsschweißung zu Fehlern kommen, mit der Folge einer unerwünscht hohen Ausschußquote.The conventional manufacture of valves and valve bodies has become extremely complicated, particularly when armor is used. Starting from a rod section, the valve body is first produced by heating, compressing, calibrating and rotating, to which a rod section is added by friction welding. Other work steps include straightening, turning, grinding and cladding, grinding and heat treatment to the finished valve with seat armor. In particular in the area of seat armor, the build-up welding can lead to errors, which results in an undesirably high reject rate.
Lösungen, eine geeignete Sitzpanzerung mit Hilfe pulvermetallurgisch hergestellter Panzerungen durchzuführen, haben keinen Serienstatus erlangt. Die Aufbringung der Sitzpanzerung führte nicht zu einer Verminderung der Fehlerquote. Vielmehr erwies sich die pulvermetallurgisch hergestellte Panzerung bei den nachfolgenden Verfahrensschritten als anfällig für Rißbildungen.Solutions to carry out a suitable seat armor with the help of armor made from powder metallurgy have not achieved serial status. The application of the armor did not reduce the error rate. Rather, the armor made by powder metallurgy proved to be susceptible to crack formation in the subsequent process steps.
Die für eine Sitzpanzerung oder -härtung benötigten Materialien und zusätz- liehen Verfahrensschritte lassen es wünschenswert erscheinen, Ventilkörper aus einem einheitlichen Material in möglichst wenigen Schritten herzustellen, wobei das Material die notwendige Verschleißfestigkeit, Standzeit und Wärmeabfuhr gewährleistet, und mit einer Stange zu einem Ventil zu verbinden.The materials and additional process steps required for seat armor or hardening make it seem desirable to manufacture valve bodies from a uniform material in as few steps as possible, the material ensuring the necessary wear resistance, service life and heat dissipation, and with a rod to a valve connect.
Verfahren zum Herstellen zumindest der Verschleißschicht hochbelastbarer Sinterteile in Zusammenhang mit der Ventilsteuerung einer Verbrennungskraftmaschine sind aus der DE 41 04 909 A1 bekannt. Die dort pulvermetallurgisch hergestellten Sinterteile zeichnen sich durch einen hohen Chrom- und Kohlenstoffgehalt aus und werden für Nocken zur Ventilsteuerung eingesetzt. Die Verwendung solcher Sinterteile für Ventilkörper ist nicht vorgesehen. Bei der Herstellung aufwendiger Formteile hat die Pulvermetallurgie gegenüber konventionellen Techniken häufig den Vorteil, daß die Materialeigenschaften optimiert und die Zahl der Bearbeitungsschritte vermindert werden kann.Methods for producing at least the wear layer of heavy-duty sintered parts in connection with the valve control of an internal combustion engine are known from DE 41 04 909 A1. The sintered parts produced there by powder metallurgy are characterized by a high chromium and carbon content and are used for cams for valve control. The use of such sintered parts for valve bodies is not provided. In the production of complex molded parts, powder metallurgy often has the advantage over conventional techniques that the material properties can be optimized and the number of processing steps can be reduced.
Der Erfindung liegt deshalb die Aufgabe zugrunde, Ventilkörper für Ventile pulvermetallurgisch aus einem dafür geeigneten Material herzustellen, insbesondere unter Berücksichtigung auch des Fertigungsaufwandes. Dabei soll eine Sitzpanzerung verzichtbar sein und das Ventil bzw. der Ventilkörper eine zur Temperatursteuerung ausreichende Wärmeleitfähigkeit aufweisen. Der Ventilkörper soll mit einer konventionell gefertigten Ventilstange stumpf zu einem funktionsfähigen und dauerhaften Ventil verbunden werden können.The invention is therefore based on the object to produce valve bodies for valves by powder metallurgy from a suitable material, in particular taking into account the production costs. Seat armor should be dispensable and the valve or the valve body should have sufficient thermal conductivity for temperature control. The valve body should be able to be butt-connected with a conventionally manufactured valve rod to a functional and permanent valve.
Diese Aufgabe wird mit einem pulvermetallurgisch hergestellten Ventilkörper gelöst, der die folgende Zusammensetzung nach Gewicht aufweist:This object is achieved with a valve body manufactured by powder metallurgy, which has the following composition by weight:
0,5 % bis 2,0 % C; 5,0 % bis 16 % Mo; 0,2 % bis 1 ,0 % P; 0,1 % bis 1 ,4 % Mn; 0 % bis 5 % Cr; 0 % bis 5 % S; 0 % bis 7 % W; 0 % bis 3 % V; < 2 % andere Elemente und Rest Fe.0.5% to 2.0% C; 5.0% to 16% Mo; 0.2% to 1.0% P; 0.1% to 1.4% Mn; 0% to 5% Cr; 0% to 5% S; 0% to 7% W; 0% to 3% V; <2% other elements and remainder Fe.
Die Erfindung betrifft ferner mit diesem Ventilkörpern gefertigte Ventile.The invention further relates to valves manufactured with this valve body.
Das erfindungsgemäß zum Einsatz kommende Metallpulver zeichnet sich insbesondere durch einen recht hohen Kohlenstoff-, Molybdän- und Phosphorgehalt aus.The metal powder used according to the invention is characterized in particular by a very high carbon, molybdenum and phosphorus content.
Der Kohlenstoff- und Phosphorgehalt bewirken die Ausbildung von temperaturbeständigen und verschleißmindernden Carbid- und Phosphidphasen, die dem Werkstoff die nötige Lebensdauer verleihen. Chrom, Vanadium und Wolfram können zur Variation des Eigenschaftsspektrums hinzugesetzt werden, sind aber insbesondere zur Herstellung von Ventilen und Ventilteilen nicht unbedingt erforderlich. Ein nennenswerter Schwefelgehalt kann, insbesondere bei Vorliegen als MoS2, als interner Schmierstoff dienen, ist aber bei Ventilen und den Teilen in der Regel nicht erforderlich. Die erfindungsgemäßen pulvermetallurgisch hergestellten Ventilkörper können nach herkömmlichen Preß-Sinter-Verfahren hergestellt werden. Dazu gehört auch das heiß-isostatische Pressen, obwohl dies nicht unbedingt erforderlich ist. Im Allgemeinen ist eine Verdichtung auf 7,5 g/cm3 ausreichend, wenn auch für zahlreiche Zwecke eine höhere Dichte, insbesondere etwa 7,7 g/cm3 oder mehr sehr vorteilhaft ist. Durch eine Erhöhung der Dichte und die damit einhergehende Verminderung des Porenvolumens ergibt sich auch eine Verbesserung der Wärmeleitfähigkeit und damit des Temperaturverhaltens. Weiterhin wird dadurch die Standfestigkeit erhöht.The carbon and phosphorus content cause the formation of temperature-resistant and wear-reducing carbide and phosphide phases, which give the material the necessary service life. Chromium, vanadium and tungsten can be added to vary the range of properties, but are not absolutely necessary in particular for the production of valves and valve parts. An appreciable sulfur content can serve as an internal lubricant, especially if it is MoS 2 , but is generally not necessary for valves and parts. The valve body produced by powder metallurgy according to the invention can be produced by conventional press-sintering processes. This also includes hot isostatic pressing, although this is not absolutely necessary. In general, compression to 7.5 g / cm 3 is sufficient, although a higher density, in particular about 7.7 g / cm 3 or more, is very advantageous for numerous purposes. By increasing the density and the associated reduction in the pore volume, there is also an improvement in the thermal conductivity and thus the temperature behavior. Furthermore, the stability is increased.
Die erfindungsgemäßen Ventilkörper können aus den entsprechenden Elementpulvern hergestellt werden. Zumeist ist es allerdings zweckmäßig, fertiglegierte Bestandteile für die Herstellung zu verwenden, beispielsweise eine fertiglegierte Stahlkomponente, einen Phosphor-Molybdän-Stahl, gegebenenfalls MoS2 und, falls zusätzlich erforderlich, Graphit, jeweils in Pulverform. Besonders bevorzugt ist der Einsatz von durch Atomisierungsverfahren hergestellten Metallpulvern unregelmäßiger Form, die den daraus hergestellten Preßteil durch Verzahnung einen gewissen inneren Zusammenhalt verleihen können. Zur Verbesserung der Verarbeitbarkeit, Verminderung des Verschleißes in den Pressen und zur Verbesserung des Zusammenhaltes können übliche Hilfsstoffe zugesetzt werden, beispielsweise Wachs, in einer Menge von bis zu 1 Gew.-%, bezogen auf die Legierungspulver.The valve bodies according to the invention can be produced from the corresponding element powders. In most cases, however, it is expedient to use finished alloy components for the production, for example a finished alloy steel component, a phosphorus-molybdenum steel, optionally MoS 2 and, if necessary, graphite, in each case in powder form. It is particularly preferred to use metal powders of irregular shape produced by atomization processes, which can give the pressed part produced therefrom a certain internal cohesion by means of teeth. To improve processability, reduce wear in the presses and improve cohesion, customary auxiliaries can be added, for example wax, in an amount of up to 1% by weight, based on the alloy powder.
Vorzugsweise werden dendritische bzw. spratzige Pulver eines mittleren Durchmessers von weniger als 150 μm eingesetzt, vorzugsweise weniger als 50 μm. Kohlenstoff wird zweckmäßigerweise als Graphit mit einer mittleren Konrgröße von 10 μm oder weniger zugemischt, wenn nicht bereits ausreichend im fertiglegierten Pulver vertreten. Das PMoFe-Stahlpulver, wie es hier eingesetzt werden kann, ist in der WO-A-91/18123 beschrieben.Dendritic or spattery powders with an average diameter of less than 150 μm are preferably used, preferably less than 50 μm. Carbon is expediently admixed as graphite with an average size of 10 μm or less, if not already sufficiently represented in the finished alloy powder. The PMoFe steel powder, as can be used here, is described in WO-A-91/18123.
Besonders bevorzugt für die Herstellung von Ventilkörpern ist eineOne is particularly preferred for the production of valve bodies
Pulverzusammensetzung mit 0,5 bis 2,0 % Kohlenstoff, 5,0 bis 14 % Molybdän, 0,2 bis 1 ,0 % Phosphor, 0,1 bis 1 ,2 % Mangan, maximal 0,50 % Chrom und maximal 0,40 % Schwefel. Andere Elemente sind in diesem Fall mit weniger als 2 % vertreten, der Rest ist Eisen. Die Zusammensetzung bemißt sich nach Gewichtsprozent.Powder composition with 0.5 to 2.0% carbon, 5.0 to 14% molybdenum, 0.2 to 1, 0% phosphorus, 0.1 to 1, 2% manganese, maximum 0.50% chromium and maximum 0, 40% sulfur. Other elements in this case are less than 2% represented, the rest is iron. The composition is based on weight percent.
Für die erfindungsgemäßen Ventilkörper empfiehlt es sich, das Flüssigphasen- Sinterverfahren anzuwenden. Der fertige Ventilkörper sollte eine Dichte von wenigstens 7,7 g/cm3 aufweisen.For the valve body according to the invention it is advisable to use the liquid phase sintering process. The finished valve body should have a density of at least 7.7 g / cm 3 .
Gegenüber dem eingangs beschriebenen konventionellen Fertigungsverfahren für komplette Ventile ergibt sich für die erfindungsgemäßen pulvermetallurgisch hergestellten Ventilkörper und damit gefertigten Ventile eine deutliche Verminderung der Verarbeitungsschritte. Bei der Herstellung eines erfindungsgemäßen Ventiles aus einem separat gefertigten Ventilkörper und einem Stangenabschnitt stellen sich die Schritte wie folgt dar:Compared to the conventional manufacturing process for complete valves described at the beginning, the processing steps for the valve bodies according to the invention and the valves thus manufactured are significantly reduced. The steps in the manufacture of a valve according to the invention from a separately manufactured valve body and a rod section are as follows:
Zunächst Pressen, Sintern und Anlassen des Ventilkörpers, danach Bereitstellen des Stangenabschnittes, Fügen von Ventilkörper und Stangenabschnitt, etwa in einem Reibschweißverfahren, Richten, Drehen, Schleifen und Wärmebehandeln des fertigen Ventils. Die deutliche Verminderung der Zahl der Produktionsschritte erhöht die Fertigungsgenauigkeit und vermindert die Fehlerwahrscheinlichkeit. Des weiteren läßt sich durch die verminderte Anzahl von Fertigungsschritten flexibler auf sich verändernde Systemanforderungen reagieren.First pressing, sintering and tempering the valve body, then providing the rod section, joining the valve body and rod section, for example in a friction welding process, straightening, turning, grinding and heat treating the finished valve. The significant reduction in the number of production steps increases manufacturing accuracy and reduces the likelihood of errors. Furthermore, the reduced number of manufacturing steps allows more flexible reaction to changing system requirements.
Die erfindungsgemäßen Ventile bzw. Ventilkörper zeigen eine hohe Verschleißfestigkeit auch bei den hohen Temperaturen und Belastungen im Ventiltrieb insbesondere für Auslaßventile.The valves or valve bodies according to the invention show high wear resistance even at the high temperatures and loads in the valve train, in particular for exhaust valves.
Was die Ventile selbst anbetrifft, besteht der Ventilkörper aus den vorstehend beschriebenen Werkstoffen. Der Schaft wird konventionell, d. h. ohne pulvermetallurgische Techniken, aus einem konventionellen Werkstoff gefertigt. Ventilkörper und Ventilstange werden stumpf miteinander verbunden. Bei der stumpfen Passung ist die Verbindung durch ein Reibschweißverfahren bevorzugt, wenn auch andere Fügeverfahren zum Einsatz kommen können. Soweit die Erfindung Ventilkörper betrifft, haben diese gegenüber herkömmlichen Ventilkörpern den Vorteil, daß sie aus einem einheitlichen Material bestehen, d. h. nicht einer lokalen Modifizierung bedürfen, um sie den besonderen Gegebenheiten eines Kolbenauslasses eines Verbrennungsmotors anzupassen. Dies bringt neben produktionstechnischen Vorteilen eine geringere Stör- und Schadensanfälligkeit des Produktes sowohl in der Herstellungs- als auch in der Betriebsphase.As for the valves themselves, the valve body is made of the materials described above. The shaft is made conventionally, ie without powder metallurgy techniques, from a conventional material. The valve body and valve rod are butted together. In the case of the butt fit, the connection by means of a friction welding process is preferred, although other joining processes can also be used. As far as the invention relates to valve bodies, these have the advantage over conventional valve bodies that they consist of a uniform material, ie they do not require local modification in order to adapt them to the particular circumstances of a piston outlet of an internal combustion engine. In addition to advantages in terms of production technology, this also means that the product is less susceptible to faults and damage, both in the manufacturing and in the operating phase.
Die erfindungsgemäßen Ventilkörper werden aus dem vorgemischten bzw. fertiglegierten Pulver wie folgt hergestellt. Zunächst wird der Rohling aus dem Pulver unter Zuhilfenahme eines üblichen Wachses als Gleitmittel unter üblichen Preßdrücken zu Formungen mit einer ausreichenden Dichte verpreßt. Der Preßdruck liegt dabei zweckmäßigerweise zwischen 500 und 900 MPa. Nach dem Pressen wird das Produkt zunächst unter einer Wasserstoff-Stickstoff- Schutzgasatmosphäre bei einer Temperatur von 500 bis 750°C entwachst und anschließend in einem Ofen bei einer Temperatur von mehr als 900°C, vorzugsweise mehr als 1000°C, bis zu 1150°C, gesintert. Drücke und Temperaturen hängen dabei im wesentlichen von der gewünschten Dichte des Formteils und von der Zusammensetzung des Metallpulvers ab. Nach dem Abkühlen werden die Teile angelassen und den erforderlichen Nachbehandlungsschritten unterworfen.The valve bodies according to the invention are produced from the premixed or finished alloy powder as follows. First, the blank is pressed out of the powder with the aid of a conventional wax as a lubricant under customary pressing pressures to give moldings with a sufficient density. The pressure is expediently between 500 and 900 MPa. After pressing, the product is first dewaxed under a hydrogen-nitrogen protective gas atmosphere at a temperature of 500 to 750 ° C and then in an oven at a temperature of more than 900 ° C, preferably more than 1000 ° C, up to 1150 ° C, sintered. Pressures and temperatures essentially depend on the desired density of the molded part and on the composition of the metal powder. After cooling, the parts are left on and subjected to the necessary post-treatment steps.
Wie erwähnt, werden für die Herstellung von erfindungsgemäßen Ventilen für Verbrennungsmotoren, Ventilkörper und Ventiischaft in getrennten Arbeitsschritten herzgestellt und anschließend gefügt. Der Ventilkörper wird dabei pulvermetallurgisch hergestellt, der Schaftstumpf konventionell. Bei dieser Konstellation können Körper und Schaft durch Reibschweißen miteinander verbunden werden. Nach dem Fügeschritt wird das Ventil nachbearbeitet.As mentioned, for the manufacture of valves for internal combustion engines, valve body and valve stem according to the invention are made in separate work steps and then joined. The valve body is manufactured using powder metallurgy, the stump conventionally. In this constellation, the body and shaft can be joined together by friction welding. After the joining step, the valve is reworked.
Fig. 1 zeigt einen Ventilkörper 1 , der pulvermetallurgisch gefertigt ist und zur stumpfen Verbindung mit einem Schaft 2 vorgesehen ist. Beispiel:Fig. 1 shows a valve body 1, which is made by powder metallurgy and is provided for butt connection to a stem 2. Example:
Für einen erfindungsgemäßen Ventilkörper wurde Metallpulver der folgenden chemischen Zusammensetzung nach Gewicht verwandt:Metal powder of the following chemical composition by weight was used for a valve body according to the invention:
0,9 % Kohlenstoff, 8,2 % Molybdän, 4,8 % Wolfram, 1 ,4 % Vanadium, 0,42 % Phosphor, 3,2 % Chrom und 1 ,2 % Schwefel.0.9% carbon, 8.2% molybdenum, 4.8% tungsten, 1.4% vanadium, 0.42% phosphorus, 3.2% chromium and 1.2% sulfur.
Andere Elemente waren zu etwa 1 ,9 % vertreten, der Rest war Eisen.Around 1.9% of other elements were represented, the rest was iron.
Es wurde ein Sinterkörper aus gesintertem Molybdän-Phosphor-Stahl einer Dichte von 6,9 g/cm3 erhalten. Der Formkörper zeigte bei hoher Oberflächenbelastung eine gute Verschleißbeständigkeit und im Gefüge feinverteilte, verschiedene Carbide in einer angelassenen martensitischen Matrix mit eingelagertem Festschmierstoff. A sintered body made of sintered molybdenum-phosphor steel with a density of 6.9 g / cm 3 was obtained. The molded body showed good wear resistance and a finely divided structure of various carbides in a tempered martensitic matrix with embedded solid lubricant under high surface loads.

Claims

Patentansprüche claims
1. Pulvermetallurgisch hergestellter Ventilkörper mit hoher Temperatur- und Verschleißfestigkeit, gekennzeichnet durch die folgende1. Powder metallurgically manufactured valve body with high temperature and wear resistance, characterized by the following
Zusammensetzung nach Gewicht:Composition by weight:
0,5 % bis 2,0 % C; 5,0 % bis 16 % Mo; 0,2 % bis 1 ,0 % P; 0,1 % bis 1 ,4 % Mn; 0 % bis 5 % Cr; 0 % bis 5 % S; 0 % bis 7 % W; 0 % bis 3 % V < 2 % andere Elemente; Rest Fe.0.5% to 2.0% C; 5.0% to 16% Mo; 0.2% to 1.0% P; 0.1% to 1.4% Mn; 0% to 5% Cr; 0% to 5% S; 0% to 7% W; 0% to 3% V <2% other elements; Rest of Fe.
2. Ventilkörper nach Anspruch 1 , dadurch gekennzeichnet, daß er eine Dichte von wenigstens 7,5 g/cm3 aufweist.2. Valve body according to claim 1, characterized in that it has a density of at least 7.5 g / cm 3 .
3. Ventilkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß er aus einem Metallpulver hergestellt ist, das zumindest teilweise fertiglegiert eingesetzt wurde.3. Valve body according to claim 1 or 2, characterized in that it is made of a metal powder which has been used at least partially fully alloyed.
4. Ventilkörper nach Anspruch 3, dadurch gekennzeichnet, daß das Ausgangspulver fertiglegiertes PMoFe-Pulver enthält.4. Valve body according to claim 3, characterized in that the starting powder contains alloyed PMoFe powder.
5. Ventilkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Ausgangspulver in atomisiertem Zustand eingesetzt wurde. 5. Valve body according to one of the preceding claims, characterized in that the starting powder was used in an atomized state.
6. Ventilkörper nach einem der vorstehenden Ansprüche, gekennzeichnet durch die folgende Zusammensetzung nach Gewicht:6. Valve body according to one of the preceding claims, characterized by the following composition by weight:
0,5 % bis 2,0 % C; 5,0 % bis 14 % Mo; 0,2 % bis 1 ,0 % P; 0,1 % bis 1 ,2 % Mn s max. 0,5 % Cr max. 0,4 % S < 2 % andere Elemente Rest Fe.0.5% to 2.0% C; 5.0% to 14% Mo; 0.2% to 1.0% P; 0.1% to 1, 2% Mn s max. 0.5% Cr max. 0.4% S <2% other elements rest Fe.
7. Ventilkörper nach einem der vorstehenden Ansprüche mit einer 0 Dichte von wenigstens 7,7 g/cm3.7. Valve body according to one of the preceding claims with a 0 density of at least 7.7 g / cm 3 .
8. Ventilkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß er durch Flüssigphasensintem verdichtet ist.8. Valve body according to one of the preceding claims, characterized in that it is compressed by liquid phase sinter.
9. Ventil, gekennzeichnet durch einen Ventilkörper nach einem der vorstehenden Ansprüche und einen konventionell hergestellten und stumpf angefügten Schaft.9. Valve, characterized by a valve body according to one of the preceding claims and a conventionally produced and butt-joined stem.
10. Ventil nach Anspruch 9, dadurch gekennzeichnet, daß Ventilkörper und -schaff durch Reibschweißen miteinander verbunden sind. 10. Valve according to claim 9, characterized in that the valve body and -schaff are connected to each other by friction welding.
EP01909578A 2000-01-06 2001-01-04 Powder metallurgy produced valve body and valve fitted with said valve body Expired - Lifetime EP1250518B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10000158 2000-01-06
DE10000158 2000-01-06
PCT/EP2001/000036 WO2001049979A2 (en) 2000-01-06 2001-01-04 Powder metallurgy produced valve body and valve fitted with said valve body

Publications (2)

Publication Number Publication Date
EP1250518A2 true EP1250518A2 (en) 2002-10-23
EP1250518B1 EP1250518B1 (en) 2005-09-21

Family

ID=7626758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909578A Expired - Lifetime EP1250518B1 (en) 2000-01-06 2001-01-04 Powder metallurgy produced valve body and valve fitted with said valve body

Country Status (5)

Country Link
EP (1) EP1250518B1 (en)
AT (1) ATE305084T1 (en)
AU (2) AU3727401A (en)
DE (2) DE10031960A1 (en)
WO (2) WO2001049979A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109473A1 (en) 2011-08-04 2012-03-15 Daimler Ag Sintered component e.g. cam for assembled camshaft of internal combustion engine, comprises surface portion of sintered component, boundary layer compaction, and hardened region, where compression layer is produced in surface portion
CN113564491A (en) * 2021-07-02 2021-10-29 安徽森拓新材料有限公司 High-performance powder metallurgy valve guide pipe material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270518A (en) * 1985-05-22 1986-11-29 Toyota Motor Corp Sintered camshaft
JPS62124256A (en) * 1985-11-21 1987-06-05 Kawasaki Steel Corp Graphite-precipitated sintered steel for sliding member
FR2596067B1 (en) * 1986-03-19 1991-02-08 Metafram Alliages Fritte PROCESS FOR MANUFACTURING SINTERED RAPID STEEL PARTS
GB2197663B (en) * 1986-11-21 1990-07-11 Manganese Bronze Ltd High density sintered ferrous alloys
JPH09511546A (en) * 1994-02-07 1997-11-18 スタックポール リミテッド High density sintered alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0149979A3 *

Also Published As

Publication number Publication date
WO2001049979A2 (en) 2001-07-12
EP1250518B1 (en) 2005-09-21
WO2001049436A2 (en) 2001-07-12
WO2001049979A3 (en) 2002-02-28
DE10031960A1 (en) 2001-07-12
ATE305084T1 (en) 2005-10-15
WO2001049436A3 (en) 2002-02-14
AU2372001A (en) 2001-07-16
DE50107484D1 (en) 2005-10-27
AU3727401A (en) 2001-07-16

Similar Documents

Publication Publication Date Title
DE3327282A1 (en) SINTER ALLOY FOR VALVE SEATS
EP3007842B2 (en) Method for producing heat- and wear-resistant molded parts, in particular engine components
EP3325194B1 (en) Tribological system comprising a valve seat insert (vsi) and a valve
WO2003064710A1 (en) Sinterable metal powder mixture for the production of sintered components
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
WO2003064083A2 (en) Method for producing sintered components from a sinterable material
DE102013004817A1 (en) Sintered alloy and process for its production
DE3744550C2 (en)
EP3906327A1 (en) Hard powder particles with improved compressibility and green strength
EP2582477B1 (en) Structural component made of an iron-based sinter-alloy having reduced metal adhesion and method for its production
EP0881958B1 (en) Material for the powder-metallurgical production of shaped parts, in particular valve seat rings or valve guides with high resistance to wear
EP3530400A1 (en) Method for producing a component, in particular a vehicle component, and correspondingly manufactured component
DE3730082C2 (en)
AT505698B1 (en) METHOD FOR PRODUCING A SINTER-CURABLE SINTER MOLDING PART
EP1250518B1 (en) Powder metallurgy produced valve body and valve fitted with said valve body
US6712872B2 (en) Powder metallurgy produced valve body and valve fitted with said valve body
DE10336407B4 (en) Powder metallurgically produced bearing parts for turbochargers and method for producing such bearing parts
EP0719349B1 (en) Process of producing sintered articles
EP0130177B1 (en) Sintered iron-base alloy
DE102018214344A1 (en) Process for the manufacture of a powder metallurgical product
DE10000156A1 (en) Press-sintered molded part is produced from an iron alloy powder containing alloying additions of molybdenum, phosphorus, manganese
DE102004042385A1 (en) Slip ring has a sacrificial interface of stellite or formed by nickel chromium alloy containing tungsten carbide and applied by hot isostatic press
WO2001049438A2 (en) Powder metallurgy produced press-sinter shaped part
WO2001049437A2 (en) Powder metallurgy produced sinter shaped part
DE10016830A1 (en) Sintered molded part produced by powder metallurgy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20050921

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50107484

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060221

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070131

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070329

Year of fee payment: 7

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20060131

Owner name: BLEISTAHL-PRODUKTIONS G.M.B.H. & CO KG

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070314

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050921

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131