EP0130177B1 - Sintered iron-base alloy - Google Patents

Sintered iron-base alloy Download PDF

Info

Publication number
EP0130177B1
EP0130177B1 EP19840890116 EP84890116A EP0130177B1 EP 0130177 B1 EP0130177 B1 EP 0130177B1 EP 19840890116 EP19840890116 EP 19840890116 EP 84890116 A EP84890116 A EP 84890116A EP 0130177 B1 EP0130177 B1 EP 0130177B1
Authority
EP
European Patent Office
Prior art keywords
alloy
content
iron
base alloy
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19840890116
Other languages
German (de)
French (fr)
Other versions
EP0130177A1 (en
Inventor
Alfred Dr. Kulmburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0130177A1 publication Critical patent/EP0130177A1/en
Application granted granted Critical
Publication of EP0130177B1 publication Critical patent/EP0130177B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%

Definitions

  • the present invention relates to an iron-based sintered alloy, especially for cold work tools.
  • a sintered alloy for internal combustion engines which, in addition to carbon, chromium, niobium, molybdenum and nickel, expands a minimum content of 0.1% by weight of phosphorus, as a result of which a liquid phase sintering at temperatures below 1,250 ° C. should be achieved.
  • Such an alloy is provided for valve seats, piston rings and the like.
  • Ledeburitic steels with 12% chromium and a carbon content of around 3% have a particularly high carbide content of around 30% by volume. A hardness of approx. 66 to 70 HRc can be achieved with this. These steels are characterized by high hardenability and excellent wear resistance as well as small dimensional changes during hardening. The mechanical strength and the hot formability are relatively low. In order to increase the hot formability, it has already been proposed to remelt such alloys using the electro-slag remelting method. As a result, a slight increase in mechanical strength can be achieved, while at the same time there is an improvement in the hot deformability to approximately twice the value.
  • the object of the present invention is now to provide an iron-based sintered alloy which has an increased carbide content, has increased mechanical strength values compared to a corresponding alloy obtained by melt metallurgy and which has a longer service life due to the increased carbide content , and which has a high thermoformability based on the carbide content.
  • the sintered alloy based on iron, in particular for cold work tools, has a content in% by weight Remainder iron and manufacturing-related impurities 25.
  • a tool e.g. B. ram, cutting tools, stone working tools, punching tools and. Like. are obtained, which has a high hardness and thus dimensional stability.
  • the simultaneous presence of vanadium and tungsten results in a better hardening depth, whereby a higher hardness is caused by the niobium content.
  • An additional content of 0.4 to 0.7% by weight of manganese also improves the sinterability of the alloy.
  • the alloy can additionally have a content of 0.05 to 2.0% by weight of tantalum.
  • the alloy has a content of between 0.02 and 2.0% by weight of boron, it is completely surprising that the hot-formability is fully retained, and at the same time the service life can be increased via the boride content.
  • the alloys listed in Table 1 were produced by melt metallurgy, part of the melt being poured off directly, and another part being held in order to obtain the desired powder in a nitrogen atomization process. This powder was obtained by hot isostatic pressing at a temperature of approximately 1,050 ° C at 1 000 bar and exposure time 3 hours. Samples were produced from the pressed bodies or casting blocks obtained in this way, which were then subjected to the tests. To determine the twist rate at 1,100 ° C., the samples were heated to 1,100 ° C. and held at this temperature for 15 minutes and then twisted in a warm torsion device until they broke. To determine the flexural strength ( QbB ), the sample was adjusted to a hardness of 63 HRc by tempering.
  • Table 2 shows the hardness, the flexural strength and the number of twists up to Fracture at 1100 ° C of the cast samples compared with those obtained by sinter metallurgy. This comparison shows, on the one hand, that the hardness values of the alloys obtained by sinter metallurgy are the same or slightly higher than the comparative alloy. In contrast, the flexural strength of the powder metallurgical alloys is in any case higher. The speed of rotation of sintered metallurgical alloys is significantly higher than that of cast samples.
  • Alloy 2 has good hot formability despite the increased carbon content.
  • tantalum does not impair the strength and a corresponding deformability is still maintained.
  • the increased tantalum and niobium content shows a reduction in the flexural strength and the deformability, which is directly attributable to the increased proportion of carbides.
  • this increases the wear resistance.
  • niobium increases the wear resistance, whereby both the flexural strength and the warm torsion resistance are reduced.
  • alloys 8 and 10 the hot-formability is extremely poor in the cast alloys, whereas this has been retained in the powder-metallurgical alloy.
  • Silicon increases the strength, as can be seen from the values for alloys 9 and 10.
  • the properties of alloy 11 essentially correspond to those of alloy 7, the addition of manganese increasing the sinterability. Due to the high carbon content of alloy 12, the cast alloy has extremely low values, whereas the powder metallurgical values still correspond.
  • the statements for alloy 13 correspond to those for alloy 12. Alloy 14 has a higher strength due to the increased silicon content. the deformability is still fully given. (See tables 1 and 2 page 4 ff,)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Die vorliegende Erfindung bezieht sich auf eine Sinterlegierung auf Eisenbasis, insbesondere für Kaltarbeitswerkzeuge.The present invention relates to an iron-based sintered alloy, especially for cold work tools.

Aus der DE-OS 22 04 886 wird eine Legierung mit etwa 5 Gew.-% Molybdän, 6 Gew.-% Wolfram, 4 Gew.-% Chrom, 2 Gew.-% Vanadium, 1 Gew.-% Kohlenstoff und Rest Eisen bekannt, die durch Mischung einer Legierung aus 24 Gew.-% Wolfram, 17 Gew.-% Chrom, 8 Gew.-% Vanadium, 19 Gew.-% Molybdän, 2 Gew.-% Silizium und 4 Gew.-% Kohlenstoff und einem duktilen Eisenpulver mit nachfolgendem Verpressen und Sintern erhalten wird.From DE-OS 22 04 886 an alloy with about 5 wt .-% molybdenum, 6 wt .-% tungsten, 4 wt .-% chromium, 2 wt .-% vanadium, 1 wt .-% carbon and the rest iron known by mixing an alloy of 24 wt .-% tungsten, 17 wt .-% chromium, 8 wt .-% vanadium, 19 wt .-% molybdenum, 2 wt .-% silicon and 4 wt .-% carbon and a ductile iron powder with subsequent pressing and sintering is obtained.

Aus der DE-OS 30 15 897 wird eine Sinterlegierung für Verbrennungsmotoren bekannt, die neben Kohlenstoff, Chrom, Niob, Molybdän und Nickel einen Mindestgehalt von 0,1 Gew.-% Phosphor ausweit, wodurch ein Flüssigphasensintern bei Temperaturen unterhalb von 1 250 °C erreicht werden soll. Eine derartige Legierung ist für Ventilsitze, Kolbenringe und dgl. vorgesehen.From DE-OS 30 15 897 a sintered alloy for internal combustion engines is known which, in addition to carbon, chromium, niobium, molybdenum and nickel, expands a minimum content of 0.1% by weight of phosphorus, as a result of which a liquid phase sintering at temperatures below 1,250 ° C. should be achieved. Such an alloy is provided for valve seats, piston rings and the like.

12 % Chrom aufweisende ledeburitische Stähle mit einem Kohlenstoff-Gehalt von etwa 3 %, weisen einen besonders hohen Carbidanteil von ca. 30 Vol.-% auf. Damit läßt sich eine Härte von ca. 66 bis 70 HRc erreichen. Diese Stähle zeichnen sich durch hohe Härtbarkeit und ausgezeichnete Verschleißbeständigkeit sowie geringe Maßänderungen beim Härten aus. Die mechanische Festigkeit sowie die Warmverformbarkeit ist relativ gering. Um die Warmverformbarkeit zu erhöhen, wurde bereits vorgeschlagen, derartige Legierungen mit dem Elektroschlackeumschmelzvertahren umzuschmelzen. Dadurch kann zwar eine leichte Steigerung der mechanischen Festigkeit erreicht werden, wobei gleichzeitig eine Verbesserung der Warmverformbarkeit auf ca. den doppelten Wert eintritt.Ledeburitic steels with 12% chromium and a carbon content of around 3% have a particularly high carbide content of around 30% by volume. A hardness of approx. 66 to 70 HRc can be achieved with this. These steels are characterized by high hardenability and excellent wear resistance as well as small dimensional changes during hardening. The mechanical strength and the hot formability are relatively low. In order to increase the hot formability, it has already been proposed to remelt such alloys using the electro-slag remelting method. As a result, a slight increase in mechanical strength can be achieved, while at the same time there is an improvement in the hot deformability to approximately twice the value.

Die Aufgabe der vorliegenden Erfindung besteht nun darin, eine Sinterlegierung auf Eisenbasis zu schaffen, die einen erhöhten Gehalt an Carbiden aufweist, gesteigerte Werte in der mechanischen Festigkeit gegenüber einer entsprechenden schmelzmetallurgisch gewonnenen Legierung besitzt, die auf Grund des erhöhten Carbid-Gehaltes eine höhere Standzeit aufweist, und die bezogen auf den Carbid-Gehalt eine hohe Warmverformbarkeit aufweist.The object of the present invention is now to provide an iron-based sintered alloy which has an increased carbide content, has increased mechanical strength values compared to a corresponding alloy obtained by melt metallurgy and which has a longer service life due to the increased carbide content , and which has a high thermoformability based on the carbide content.

Die erfindungsgemäße Sinterlegierung auf Eisenbasis, insbesondere für Kaltarbeitswerkzeuge, weist in Gew.-% einen Gehalt an

Figure imgb0001
Rest Eisen und herstellungsbedingte Verunreinigungen 25 auf.The sintered alloy based on iron, in particular for cold work tools, has a content in% by weight
Figure imgb0001
Remainder iron and manufacturing-related impurities 25.

Durch den hohen Anteil an Kohlenstoff und an Carbidbildnern kann ein Werkzeug, z. B. Preßstempel, Schneidwerkzeuge, Gesteinsbearbeitungswerkzeuge, Stanzwerkzeuge u. dgl., erhalten werden, das eine hohe Härte und damit Formbeständigkeit aufweist. Durch die gleichzeitige Anwesenheit von Vanadium und Wolfram wird eine bessere Einhärttiefe erreicht, wobei über den Niob-Gehalt eine höhere Härte bedingt wird.Due to the high proportion of carbon and carbide formers, a tool, e.g. B. ram, cutting tools, stone working tools, punching tools and. Like. Are obtained, which has a high hardness and thus dimensional stability. The simultaneous presence of vanadium and tungsten results in a better hardening depth, whereby a higher hardness is caused by the niobium content.

Völlig überraschend war, daß bei Zusatz von zwischen 0,2 und 0,5 Gew.-% Silizium eine Steigerung der mechanischen Festigkeit zu erreichen ist. Dieser Effekt könnte darauf zurückzuführen sein, daß bei der Herstellung des Metallpulvers sich der Silizium-Gehalt günstiger auf die sphärische Ausgestaltung der einzelnen Partikelchen auswirkt, wodurch ein günstigeres Sinterverhalten eintritt.It was completely surprising that with the addition of between 0.2 and 0.5% by weight of silicon an increase in the mechanical strength can be achieved. This effect could be due to the fact that the silicon content has a more favorable effect on the spherical configuration of the individual particles during the production of the metal powder, as a result of which a more favorable sintering behavior occurs.

Ein zusätzlicher Gehalt von 0,4 bis 0,7 Gew.-% Mangan bewirkt ebenfalls eine bessere Sinterfähigkeit der Legierung.An additional content of 0.4 to 0.7% by weight of manganese also improves the sinterability of the alloy.

Um die Standzeit des Werkzeuges zu erhöhen, kann zusätzlich die Legierung einen Gehalt zwischen 0,05 bis 2,0 Gew.-% Tantal aufweisen.In order to increase the service life of the tool, the alloy can additionally have a content of 0.05 to 2.0% by weight of tantalum.

Weist die Legierung einen Gehalt zwischen 0,02 und 2,0 Gew.-% Bor auf, so zeigt sich völlig überraschend, daß die Warmverformbarkeit voll erhalten bleibt, wobei gleichzeitig über den Borid-Gehalt eine Erhöhung der Standzeit eintreten kann.If the alloy has a content of between 0.02 and 2.0% by weight of boron, it is completely surprising that the hot-formability is fully retained, and at the same time the service life can be increased via the boride content.

Im folgenden wird die Erfindung anhand der Beispiele näher erläutert.The invention is explained in more detail below with the aid of the examples.

Die in der Tabelle 1 angegebenen Legierungen wurden schmelzmetallurgisch hergestellt, wobei ein Teil der Schmelze direkt abgegossen wurde, und ein weiterer Teil zur Gewinnung des gewünschten Pulvers im Stickstoff-Verdüsungsverfahren gehalten wurde, Dieses Pulver wurde durch heißisostatisches Verpressen bei einer Temperatur von ca. 1 050 °C bei 1 000 Bar und Einwirkungszeit 3 Stunden, verarbeitet. Aus den so gewonnenen Preßkörpern bzw. Gußblöcken wurden Proben hergestellt, die sodann den Untersuchungen unterworfen wurden. Zur Bestimmung der Verdrehzahl bei 1 100 °C wurden die Proben auf 1 100 °C erhitzt und 15 min auf dieser Temperatur gehalten und sodann in einer Warmtorsionseinrichtung bis zum Bruch verdreht. Zur Bestimmung der Biegebruchfestigkeit (QbB) wurde die Probe durch Vergüten auf eine Härte von 63 HRc eingestellt.The alloys listed in Table 1 were produced by melt metallurgy, part of the melt being poured off directly, and another part being held in order to obtain the desired powder in a nitrogen atomization process. This powder was obtained by hot isostatic pressing at a temperature of approximately 1,050 ° C at 1 000 bar and exposure time 3 hours. Samples were produced from the pressed bodies or casting blocks obtained in this way, which were then subjected to the tests. To determine the twist rate at 1,100 ° C., the samples were heated to 1,100 ° C. and held at this temperature for 15 minutes and then twisted in a warm torsion device until they broke. To determine the flexural strength ( QbB ), the sample was adjusted to a hardness of 63 HRc by tempering.

In der Tabelle 2 sind die Härte, die Biegebruchfestigkeit sowie die Anzahl der Verdrehung bis zum Bruch bei 1100°C von den gegossenen Proben, denjenigen, die auf sintermetallurgischem Wege gewonnen wurden, gegenübergestellt. Dieser Gegenüberstellung kann man einerseits entnehmen, daß die Härtewerte der sintermetallurgisch gewonnenen Legierungen gleich bzw. geringfügig höher als der Vergleichslegierung liegen. Demgegenüber liegt die Biegebruchfestigkeit der pulvermetallurgischen Legierungen jedenfalls höher. Die Verdrehzahl liegt bei den sintermetallurgischen Legierungen wesentlich höher als bei den gegossenen Proben.Table 2 shows the hardness, the flexural strength and the number of twists up to Fracture at 1100 ° C of the cast samples compared with those obtained by sinter metallurgy. This comparison shows, on the one hand, that the hardness values of the alloys obtained by sinter metallurgy are the same or slightly higher than the comparative alloy. In contrast, the flexural strength of the powder metallurgical alloys is in any case higher. The speed of rotation of sintered metallurgical alloys is significantly higher than that of cast samples.

Die Legierung 2 weist trotz des erhöhten Kohlenstoffgehaltes gute Warmverformbarkeit auf. Wie bei Legierung 3 zu entnehmen, beeinträchtigt Tantal nicht die Festigkeit und eine entsprechende Verformbarkeit bleibt weiterhin erhalten. Bei den Legierungen 4. 5 und 6 kann durch den erhöhten Tantal- und Niobgehalt eine Absenkung der Biegefestigkeit und der Verformbarkeit festgestellt werden, was unmittelbar auf den erhöhten Anteil von Carbiden zurückzuführen ist. Allerdings wird dadurch die Verschleißfestigkeit angehoben. Ein Zusatz von Niob erhöht, wie bei Legierung 7 zu entnehmen, die Verschleißbeständigkeit, wobei sowohl die Biegebruchfestigkeit als auch die Warmtorsionsbeständigkeit erniedrigt wird. Bei den Legierungen 8 und 10 ist die Warmverformbarkeit bei den Gußlegierungen außerordentlich schlecht, wohingegen diese bei der pulvermetallurgischen Legierung erhalten geblieben ist. Silizium erhöht, wie den Werten zu den Legierungen 9 und 10 zu entnehmen, die Festigkeit. Die Eingenschaften der Legierung 11 entsprechen im wesentlichen jenen der Legierung 7, wobei der Zusatz von Mangan die Sinterbarkeit erhöht. Auf Grund des hohen Kohlenstoffgehaltes der Legierung 12 weist die Gußlegierung außerordentlich niedrige Werte auf, wohingegen die pulvermetallurgischen Werte durchaus noch entsprechen. Die Aussagen für die Legierung 13 entsprechen jenen für die Legierung 12. Die Legierung 14 weist auf Grund des erhöhten Siliziumgehaltes eine höhere Festigkeit auf. wobei die Verformbarkeit noch voll gegeben ist.
(Siehe Tabellen 1 und 2 Seite 4 ff,)

Figure imgb0002
Figure imgb0003
Alloy 2 has good hot formability despite the increased carbon content. As can be seen with alloy 3, tantalum does not impair the strength and a corresponding deformability is still maintained. In the case of the alloys 4. 5 and 6, the increased tantalum and niobium content shows a reduction in the flexural strength and the deformability, which is directly attributable to the increased proportion of carbides. However, this increases the wear resistance. The addition of niobium, as can be seen in alloy 7, increases the wear resistance, whereby both the flexural strength and the warm torsion resistance are reduced. In the case of alloys 8 and 10, the hot-formability is extremely poor in the cast alloys, whereas this has been retained in the powder-metallurgical alloy. Silicon increases the strength, as can be seen from the values for alloys 9 and 10. The properties of alloy 11 essentially correspond to those of alloy 7, the addition of manganese increasing the sinterability. Due to the high carbon content of alloy 12, the cast alloy has extremely low values, whereas the powder metallurgical values still correspond. The statements for alloy 13 correspond to those for alloy 12. Alloy 14 has a higher strength due to the increased silicon content. the deformability is still fully given.
(See tables 1 and 2 page 4 ff,)
Figure imgb0002
Figure imgb0003

Claims (2)

1. Sintered iron-base alloy with carbon, chromium, niobium, molybdenum, vanadium, tungsten, and optionally boron and/or tantalum, more particularly for cold-working tools, characterised in that it comprises the following percentages by weight :
Figure imgb0005
preferably 0.02 to 0.5 silicon, preferably 0.4 to 0.7 manganese, preferably 0.05 to 2.0 tantalum, preferably 0.02 to 2.0 boron, the remainer being iron and impurities resulting from manufacture.
2. Use of the sintered alloy according to claim 1 for cold-working tools.
EP19840890116 1983-06-23 1984-06-20 Sintered iron-base alloy Expired EP0130177B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2316/83 1983-06-23
AT0231683A AT383619B (en) 1983-06-23 1983-06-23 IRON-BASED SINTER ALLOY

Publications (2)

Publication Number Publication Date
EP0130177A1 EP0130177A1 (en) 1985-01-02
EP0130177B1 true EP0130177B1 (en) 1986-12-03

Family

ID=3532106

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840890116 Expired EP0130177B1 (en) 1983-06-23 1984-06-20 Sintered iron-base alloy

Country Status (3)

Country Link
EP (1) EP0130177B1 (en)
AT (1) AT383619B (en)
DE (1) DE3461548D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124411B2 (en) 2008-04-08 2018-11-13 Federal-Mogul Llc Method for producing powder metal compositions for wear and temperature resistance applications and method of producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT391324B (en) * 1987-12-23 1990-09-25 Boehler Gmbh POWDER METALLURGICALLY PRODUCED FAST WORK STEEL, WEARING PART MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
AU4887796A (en) * 1995-03-10 1996-10-02 Powdrex Limited Stainless steel powders and articles produced therefrom by powder metallurgy
US9546412B2 (en) 2008-04-08 2017-01-17 Federal-Mogul Corporation Powdered metal alloy composition for wear and temperature resistance applications and method of producing same
US9624568B2 (en) * 2008-04-08 2017-04-18 Federal-Mogul Corporation Thermal spray applications using iron based alloy powder
KR20150132856A (en) * 2013-03-15 2015-11-26 페더럴-모걸 코오포레이숀 Powder metal compositions for wear and temperature resistance applications and method of producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591349A (en) * 1969-08-27 1971-07-06 Int Nickel Co High carbon tool steels by powder metallurgy
SE344968C (en) * 1970-08-28 1976-02-02 Hoeganaes Ab POWDER MATERIAL FOR THE MANUFACTURE OF HIGH ALLOY STEEL WITH GOOD TURNING RESISTANCE AND HEAT HARDNESS
DE2141786A1 (en) * 1971-08-20 1973-02-22 Boehler & Co Ag Geb USE OF LEDEBURITIC CHROME STEELS FOR THE PRODUCTION OF FORMING TOOLS FOR CHIPLESS FORMING WITH HIGH PRESSURE CAPACITY AND CUTTING EDGES
DE2324071A1 (en) * 1972-05-18 1973-12-06 Stora Kopparbergs Bergslags Ab COLD MACHINING STEEL, ESPECIALLY FOR CHIPPING MACHINING
US4249945A (en) * 1978-09-20 1981-02-10 Crucible Inc. Powder-metallurgy steel article with high vanadium-carbide content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10124411B2 (en) 2008-04-08 2018-11-13 Federal-Mogul Llc Method for producing powder metal compositions for wear and temperature resistance applications and method of producing same

Also Published As

Publication number Publication date
ATA231683A (en) 1986-12-15
EP0130177A1 (en) 1985-01-02
DE3461548D1 (en) 1987-01-15
AT383619B (en) 1987-07-27

Similar Documents

Publication Publication Date Title
DE2846122C2 (en) Sintered alloy for the manufacture of sliding elements for engines
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
DE3782064T2 (en) HIGH DENSITY SINKED IRON ALLOY.
DE602006000160T2 (en) Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy
DE69734515T2 (en) SINTERED HARD ALLOY
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
DE69010125T2 (en) Sintered materials.
DE3744550C2 (en)
DE102005022104A1 (en) Sintered iron based alloy with dispersed hard particles
DE2407410B2 (en) Carbide hard metal with precipitation hardenable metallic matrix
DE4036614A1 (en) VALVE SEAT IN A SINTERED FE-BASED ALLOY WITH HIGH WEAR RESISTANCE
DE3015897A1 (en) WEAR-RESISTANT SINTER ALLOY
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
DE69414529T2 (en) Fe-based superalloy
DE3041565C2 (en)
DE3837006C3 (en) hard metal
DE19950595C1 (en) Production of sintered parts made of aluminum sintered mixture comprises mixing pure aluminum powder and aluminum alloy powder to form a sintered mixture, mixing with a pressing auxiliary agent, pressing, and sintering
DE60300728T2 (en) Iron-based sintered alloy for use as a valve seat
DE69503591T2 (en) Heat-resistant, sintered iron alloy for a valve seat
EP0348380B2 (en) Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
DE60002470T2 (en) SINTERSTAHL MATERIAL
DE3730082C2 (en)
EP0130177B1 (en) Sintered iron-base alloy
DE69521516T2 (en) IRON BASE POWDER WITH CHROME, MOLYBDEN AND MANGANESE
DE69007201T2 (en) Heat-resistant steel can be used for valves of internal combustion engines.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19850624

17Q First examination report despatched

Effective date: 19860220

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3461548

Country of ref document: DE

Date of ref document: 19870115

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910412

Year of fee payment: 8

Ref country code: FR

Payment date: 19910412

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910423

Year of fee payment: 8

Ref country code: CH

Payment date: 19910423

Year of fee payment: 8

Ref country code: BE

Payment date: 19910423

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910607

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: VEREINIGTE EDELSTAHLWERKE A.G. VEW

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84890116.1

Effective date: 19930109