EP1248671A1 - Procede et installation d'epuration de gaz issus de thermolyse de dechets - Google Patents

Procede et installation d'epuration de gaz issus de thermolyse de dechets

Info

Publication number
EP1248671A1
EP1248671A1 EP01907653A EP01907653A EP1248671A1 EP 1248671 A1 EP1248671 A1 EP 1248671A1 EP 01907653 A EP01907653 A EP 01907653A EP 01907653 A EP01907653 A EP 01907653A EP 1248671 A1 EP1248671 A1 EP 1248671A1
Authority
EP
European Patent Office
Prior art keywords
gas
treated
water
thermolysis
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01907653A
Other languages
German (de)
English (en)
Inventor
Marc Cantegril
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THIDE ENVIRONNEMENT
Original Assignee
THIDE ENVIRONNEMENT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8846173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1248671(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by THIDE ENVIRONNEMENT filed Critical THIDE ENVIRONNEMENT
Publication of EP1248671A1 publication Critical patent/EP1248671A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to the field of the purification of gases resulting from thermolysis of waste, with a view in particular to the energy recovery of the gases thus purified.
  • waste is understood here to mean any solid or pasty product containing in particular organic matter and comprising, for example industrial or household waste or else products of biomass or the like.
  • thermolysis applied to waste consists in decomposing it under the action of heat.
  • This decomposition produces solids which are generally called carbon solids and which are treated for recycling and / or recovery.
  • This decomposition also produces combustible gases which may contain pollutants which may be released into the environment after combustion.
  • the Applicant has posed the problem of purifying these gases resulting from thermolysis, with a view in particular to energy recovery from these purified gases.
  • the present invention provides a solution to this problem.
  • thermolysis a solution for purifying gases from thermolysis in order in particular to limit the use of smoke treatments made necessary by changes in regulations.
  • thermolysis it also aims to prepare the gases in order to temporarily store them in a gasometer in order to make them usable in standard thermal machines running on natural gas. It also aims to energetically recover the gaseous compounds resulting from thermolysis, in particular for using them in gas burners, combustion chambers, boilers for producing steam or hot water, internal combustion engines, gas turbines, etc.
  • thermolysis of industrial and / or household waste and / or biomass, and containing at least one condensable hydrocarbon
  • it comprises at least one step a) consisting in bringing the gas from the thermolysis into direct contact with an oil flow sent against the current of the gas to be treated and having a temperature gradient with respect to the gas to be treated to cause condensation of at least one liquid phase formed essentially of condensable hydrocarbons and thus obtain a treated gas depleted in condensable hydrocarbons, with a view to energy recovery from this purified gas.
  • the liquid phase formed essentially of condensable hydrocarbon is able to be circulated again against the flow of the gas to be treated, or to be recovered to be used as thermolysis fuel or to be used as fuel from a heat engine running on condensable hydrocarbons.
  • the separation of the condensable hydrocarbons is carried out (for example at the start of the installation) by a flow of oil which is inexpensive from an economic point of view, by example of drain oil or the like.
  • the method further comprises a step b) which consists in bringing the treated gas depleted in condersable hydrocarbons into direct contact with pressurized water having a temperature gradient with respect to the gas to be treated to cause condensation. of a liquid fraction containing essentially water and soluble acid gases and thus obtaining a treated gas further depleted in acid gases and water vapor.
  • the method further comprises a step c) consisting in storing the treated gas thus obtained for use as fuel in thermal machines operating on gas.
  • step i) consists in injecting into the gases from the thermolysis a basic reagent or a mixture of reagents in order to neutralize the acid gases.
  • step ii) consisting in capturing the solid particles resulting from the neutralization of the acid gases as well as the solid particles contained in the gas resulting from the thermolysis.
  • step iii) consisting in washing the treated gas depleted in condensable hydrocarbons and in acid gases with water under pressure and having a gradient of temperature relative to the gas to be treated in order to cause the condensation of a liquid fraction containing essentially water and dissolved carbon dioxide and to obtain a treated gas further depleted in carbon dioxide.
  • the liquid fraction containing essentially water and soluble acid gases is evacuated in a reserve cooled by a water exchanger in order to recirculate the water against the flow of the gas to be treated and to separate the acid gases by desorption at atmospheric pressure.
  • the liquid fraction essentially containing water and dissolved carbon dioxide is evacuated into a reserve cooled by a water exchanger in order to recirculate the water against the flow of the gas to be treated and to separate the carbon dioxide.
  • step c) of storage is supplemented by a step d) of purging the water accumulated during storage.
  • the present invention also relates to a device for treating gases resulting from thermolysis of industrial and / or household waste and / or biomass for the implementation of the process claimed above.
  • FIG. 1 is a general view of the process for purifying gases from thermolysis according to the invention.
  • FIG. 2 is a flowchart illustrating the steps of the method according to the invention.
  • the designs contain elements of a certain character. As such, they will be used to describe the invention and, if necessary, to define it.
  • the installation comprises a thermolysis furnace 1 comprising an inlet interface 3 for receiving the waste to be treated and an outlet interface 5 for discharging the waste treated by thermolysis.
  • the output interface 5 includes an output 7 connected to a station for recovering carbonaceous solids 9.
  • the carbonaceous solids are intended to be treated in order to be recovered and recovered as fuel, for example.
  • the treatment comprises several stages, in particular stages of washing, separation, decantation, rinsing in order to rid the carbonaceous solid materials of the pollutants fixed on the particles of said materials.
  • the outlet interface 5 also includes an outlet 11 for removing the gases from the thermolysis of the waste.
  • the gases from the thermolysis are extracted through a line 13 located, for example, in the upper part of the thermolysis oven 1.
  • Absorbents or reagents are contained, for example in a storage hopper 15 equipped with a sealed reservoir and with a means for controlling the dosing of the reagent, such as a screw doser 17 or a rotary valve or the like, driven by a variable speed electric motor.
  • the pipe 13 has a geometry and a length making it possible to ensure sufficient contact time for the neutralization of the acid gases.
  • a line 21 connects the hopper 15 to a point 19 of the line 13.
  • the hopper 15 has the function of storing the reagent for neutralizing the acid gases contained in the thermolysis gases. These acid gases, in particular Hcl, are capable of contributing, during the cooling of the combustion fumes produced by a burner, to the production of dangerous compounds of the dioxin and furan type.
  • the reagent used is a basic and hot powder, such as calcium hydroxide, calcium bicarbonate or the like, whose mixture with thermolysis gases in turbulent regime leads to an intimate gas / solid contact favorable to the neutralization of gases of the Hcl, H 2 S, S0 3 , S0 2 and others types.
  • the flow rate of the reagent delivered in the gas line is regulated by measurements made continuously on the gases leaving the dust collector which will be described in more detail below.
  • Line 13 is advantageously maintained over its entire length at a temperature slightly higher than that of the gases at the outlet of the thermolysis oven, for example using electric tracing or using steam, to avoid condensation of the hydrocarbon vapors which can impede the circulation of the mixture.
  • Line 13 can be fitted with a chosen device (not shown) so as to facilitate and optimize the mixing of the absorbent and the hot gases.
  • the hot thermolysis gases treated and cleaned up in line 13 can then be separated from the absorbent.
  • the pipe 13 opens into a gas / solid separator 23, for example a cyclone or a set of several cyclones arranged in series and / or in parallel.
  • a gas / solid separator 23 for example a cyclone or a set of several cyclones arranged in series and / or in parallel.
  • the gas / solid separator 23 consists of a dedusting mechanism which has the function not only of capturing the dust contained in the thermolysis gases but also of capturing the absorbent or reagent entrained by the gas flow.
  • the dust removal mechanism 23 consists of at least one soulless screw placed in a horizontal pipe maintained at temperature by electrical tracing or by heating the pipe in a smoke flue.
  • the dust removal screw 25 Periodically, the dust removal screw 25 is rotated and the trapped dust is returned by gravity in theimolysis furnace via a line 27 connecting the dedusting mechanism 23 to the outlet interface 5.
  • the salts from the gas neutralization reactions are mixed with the carbonaceous solid materials produced by thermolysis and treated in the equipment 9 provided for this effect.
  • the dedusting mechanism comprises two dedusting assemblies (for example screws) arranged in parallel to allow alternating the cleaning sequences of the pipes without disturbing the flow of gases and thus ensuring the possibility of continuous operation of the thermolysis installation.
  • the quality of the acid gases as well as the absorbents or reactants which have reacted can be checked online. Such an analysis makes it possible, for example, to determine the quantity of reagents to be added according to the nature of the acid gases and / or to decide on the possibility of recycling or not the absorbent or reagent.
  • the outlet 29 of the dedusting mechanism 23 advantageously opens into a condenser 31 to bring the hot gases coming from thermolysis into direct contact with a flow of oil sent against the current of the gas to be treated and having a gradient of temperature with respect to the gas to be treated to cause the condensation of at least one liquid phase formed essentially of condensable hydrocarbons and thus obtain a treated gas depleted in condensable hydrocarbons.
  • the condenser 31 consists of a packed column 33 sprinkled continuously from the top 35 with a flow of cooled oil.
  • the oils circulate against the flow of hot gases in the packing mass and heat up in contact with the gases.
  • the gases are cooled and part of the hydrocarbons condense.
  • These condensable hydrocarbons are then entrained by the liquid flow which is recovered in lower part 37 of the column and directed towards a storage tank 39 cooled by a water circuit 41.
  • the temperature of the tarpaulin oils is adjusted according to the characteristics of the oily condensates, for example 10 ° C. above the fluidity temperature.
  • the excess condensed oil flow is periodically extracted from the tank 39 and directed to a storage 43 before evacuation or internal recovery 45, that is to say recovered to be used as fuel for thermolysis or to be used as an oxidizer for a thermal machine operating on condensable hydrocarbons.
  • the temperature of the oil flow in the upper part 35 of the column before being brought into contact with the gas to be treated is of the order of 80 ° C.
  • the temperature of the hot gases from the thermolysis at outlet 29 of the dust removal mechanism before contacting with the oil flow is of the order of 350 ° C.
  • the temperature of the liquid phase formed essentially of condensable hydrocarbons after bringing the oil flow into contact is of the order of 150 ° C.
  • oil flow is understood here to mean any flow of mineral or organic component having an oily consistency and advantageously having combustible characteristics.
  • the oil flow consists of drain oil or "FOD N ° 2" type oil (for "fuel oil domestic”). Then, during treatment, the oil flow can consist of condensable hydrocarbons from the oil / gas separation according to the invention.
  • the oil flow is circulated by a pump 47 disposed between the lower part of the tank 39 and the upper part 35 of the column 31.
  • the treated gas depleted in condensable hydrocarbons is extracted from column 31 by a pipe 49.
  • the pipe 49 opens into a condenser or washer 51 to bring the hydrocarbon-depleted gas into direct contact with pressurized water in order to wash this gas and to further eliminate the acid gases.
  • this contacting is carried out using a water ejector 55 in an enclosure 51.
  • the ejector 55 is supplied by a pipe 57 from a reserve tank 59 by a flow pump 61 and variable pressure.
  • thermolysis gases from line 49 are sucked in and cooled by the flow of water coming from line 57.
  • the traces of residual acid gases are dissolved in the liquid which is continuously discharged towards the reserve tank 59 cooled by a water exchanger 63.
  • a metering pump 53 regulated by a pH sensor, maintains the waters of the tank 59 at a basic pH value by injection of basic reagent.
  • the condensed water surpluses are continuously evacuated via a pipe 65 to the washing 9 of the carbonaceous solids of the thermolysis installation by the pump 61.
  • the treated gas depleted in condensable hydrocarbons and in acid gases is extracted from the condenser 51 by a pipe 67.
  • the pipe 67 opens into a condenser or washer 69 in order to bring the gas depleted in hydrocarbon and acid gases into direct contact with water under pressure in order to wash this gas and also eliminate carbon dioxide.
  • This washing step consists in washing the treated gas depleted in condensable hydrocarbons and in acid gases with water under pressure and having a temperature gradient with respect to the treated gas to cause the condensation of a liquid fraction essentially containing water and carbon dioxide and thus obtain a treated gas further depleted in carbon dioxide C0 2 .
  • the gas washer 69 consists of an enclosure 71 under pressure composed of a reservoir and a water ejector 73 supplied from a reserve tank 75 by a pump 77 with variable flow and pressure.
  • thermolysis gases from line 67 are sucked in by the flow of pressurized water routed through line 79 connecting the tank 75 to the ejector 73.
  • Part of the soluble gases essentially consisting of carbon dioxide, is dissolved in the liquid which is then removed under pressure and continuously to the reserve tank 75.
  • the fraction of insoluble gas constitutes the purified combustible gas with high calorific value. This gas is extracted from the washer 69 through a pipe 81.
  • the excess condensed water is periodically removed via a pipe 89 to the rinse 9 of the carbonaceous solids of the thermolysis installation.
  • the storage of the purified gases and coming from the pipe 81 comprises a step of purging the water accumulated during the storage.
  • This purge consists of an enclosure 91 for relaxing the thermolysis gases.
  • the condensate trap works on the cooling / expansion principle. Its function is to reduce the pressure of the purified gases to a value compatible with the storage system.
  • the pressure of the purified and stored gases is of the order of 8 bars while the pressure at the outlet of the gas washer 69 is of the order of 15 bars.
  • the expansion of the gases causes the residual water vapor to cool and condense.
  • This residual water vapor is evacuated via line 93 to the rinsing station 9 for the carbonaceous solids of the thermolysis installation.
  • a gasometer 95 which may be of the flexible type for low pressure applications or of the rigid type for medium pressure applications.
  • Regulation of gas treatment is ensured by adjusting certain parameters, in particular the flow rate of the water circulation pumps in the ejectors as well as the gas pressure in the tanks.
  • the regulation is ensured by a computerized system centralizing the information from sensors of different physical quantities such as gas pressure, gas temperature, carbon dioxide content of the purified gas, pH of the tarpaulin water, level of the oil and water, gasometer filling level, cooling water flow, and cooling water inlet and outlet temperature.
  • the installation according to the invention can also be completed by a condenser with tubular bundles (indirect) placed after the packed condenser (direct).
  • This indirect condenser makes it possible to capture a light fraction of condensable hydrocarbons.
  • the fluid used in the bundle is water or an oil suitable for the condensation function.
  • the water heated in the tube bundle condenser is cooled by exchanger and recirculated. Thanks to the invention, the raw thermolysis gas is purified in the following proportions by mass.
  • the water content can go from 30 to 50% to 0.
  • Gases with significant calorific value such as gases in CO, H 2 , CH 4 , C 2 H 4 , C 2 H 6 , C 3 + are advantageously recovered and stored according to the invention.
  • the condensable hydrocarbons (at room temperature) are eliminated, as are the components Hcl, H 2 S and S0 2 .
  • Step a) of gas / hydrocarbon separation is very advantageous since it avoids the dissolution of hydrocarbons (phenol for example) which are very difficult and costly to separate from water.
  • Step b) of neutralization of the acids after separation of the hydrocarbons is useful because it makes it possible to eliminate polluting and corrosive gases.
  • Stage c) of storage preferably accompanied by the stage of purge d), aims to achieve an energy recovery of the purified gases under good conditions.
  • step iii) of washing carbon dioxide gases advantageously contributes to the elimination of inert gases and thus reduces the necessary storage capacities.
  • the water used in the purification of gases is recovered according to the invention in the treatment station for carbonaceous solids, so as to also be treated in a closed circuit, which eliminates the release of water. worn out.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Industrial Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

Le procédé de traitement de gaz issus de thermolyse de déchets industriels et/ou ménagers et/ou de biomasse, et contenant au moins un hydrocarbure condensable comprend au moins une étape a) consistant à mettre en contact direct le gaz provenant de la thermolyse, avec un flux d'huiles envoyé à contre-courant du gaz à traiter et présentant un gradient de température par rapport au gaz à traiter pous provoquer la condensation d'au moins une phase liquide formée essentiellement d'hydrocarbure condensable et obtenir ainsi un gaz traité appauvri en hydrocarbure condensable, en vue d'une valorisation énergétique de ce gaz épuré.

Description

Procédé et installation d'épuration de gaz issus de thermolyse de déchets
La présente invention se rapporte au domaine de l'épuration de gaz issus de thermolyse de déchets, en vue notamment de la valorisation énergétique des gaz ainsi épurés.
On entend ici par déchets, tout produit solide ou pâteux contenant notamment de la matière organique et comprenant par exemple des déchets industriels ou ménagers ou bien encore des produits de biomasse ou analogues.
D'une manière générale, une thermolyse appliquée à des déchets consiste à les décomposer sous l'action de la chaleur. Cette décomposition produit des solides que l'on appelle généralement des solides carbonés et que l'on traite pour les recycler et/ou valoriser. Cette décomposition produit aussi des gaz combustibles pouvant contenir des polluants susceptibles d'être libérés dans l'environnement après combustion.
La Demanderesse s'est posé le problème d'épurer ces gaz issus de la thermolyse, en vue notamment d'une valorisation énergétique de ces gaz épurés.
La présente invention apporte justement une solution à ce problème.
Elle vise donc à proposer une solution d'épuration des gaz issus de thermolyse afin de limiter notamment le recours à des traitements de fumées rendus nécessaires par l'évolution des réglementations.
Elle vise aussi à préparer les gaz afin de les stocker temporairement en gazomètre afin de les rendre utilisables dans des machines thermiques standards fonctionnant au gaz naturel. Elle vise aussi à valoriser énergétiquement les composés gazeux issus de la thermolyse, notamment pour les utiliser dans des brûleurs à gaz, chambres de combustion, chaudières de production de vapeur ou d'eau chaude, moteurs à combustion interne, turbines à gaz, etc.
Ainsi, elle porte sur un procédé de traitement de gaz issus de thermolyse de déchets industriels et/ou ménagers et/ou de biomasεe, et contenant au moins un hydrocarbure condensable, caractérisé en ce qu'il comporte au moins une étape a) consistant à mettre en contact direct le gaz provenant de la thermolyse avec un flux d'huile envoyé à contre-courant du gaz à traiter et présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'au moins une phase liquide formée essentiellement d'hydrocarbures condensables et obtenir ainsi un gaz traité appauvri en hydrocarbures condensables, en vue d'une valorisation énergétique de ce gaz épuré.
Grâce à l'invention, la phase liquide formée essentiellement d'hydrocarbure condensable est apte à être circulée à nouveau à contre-courant du gaz à traiter, ou être récupérée pour être utilisée en tant que combustible de la thermolyse ou être utilisée en tant que carburant d'une machine thermique fonctionnant aux hydrocarbures condensables.
Avantageusement, la séparation des hydrocarbures condensables, par exemple des hydrocarbures lourds de type essence lourde, kérosène, gasoil et autres, est réalisée (par exemple au démarrage de l'installation) par un flux d'huile bon marché sur le plan économique, par exemple de l'huile de vidange ou analogue.
De plus, la Demanderesse a observé qu'en procédant en premier lieu à la séparation des hydrocarbures, le traitement d'épuration du gaz issu de la thermolyse permet non seulement de recycler ces hydrocarbures mais aussi d'améliorer le cycle d'épuration de ce gaz, notamment en limitant la pollution des eaux de lavage par des hydrocarbures et/ou huiles. De préférence, le procédé comprend en outre une étape b) qui consiste à mettre en contact direct le gaz traité appauvri en hydrocarbures condersabl.es avec de l'eau sous pression présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et des gaz acides solubles et obtenir ainsi un gaz traité appauvri en outre en gaz acides et en vapeur d'eau.
De préférence, le procédé comprend en outre une étape c) consistant à stocker le gaz traité ainsi obtenu en vue d'une utilisation en tant que carburant dans des machines thermiques fonctionnant au gaz.
Avantageusement, le procédé comprend avant l'étape a) une étape i) consistant à injecter dans les gaz issus de la thermolyse un réactif basique ou un mélange de réactifs afin de neutraliser les gaz acides.
Avantageusement, entre l'étape i) et l'étape a), il est prévu en outre une étape ii) consistant à capter les particules solides résultant de la neutralisation des gaz acides ainsi que les particules solides contenues dans le gaz issu de la thermolyse.
Avant stockage, c'est-à-dire avant étape c), il est possible de rajouter une étape iii) consistant à laver le gaz traité appauvri en hydrocarbures condensables et en gaz acides avec de l'eau sous pression et présentant un gradient de tempéra- ture par rapport au gaz à traiter pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et du gaz carbonique dissous et obtenir un gaz traité appauvri en outre en gaz carbonique.
De préférence, la fraction liquide contenant essentiellement de l'eau et des gaz acides solubles est évacuée dans une réserve refroidie par un échangeur d'eau afin de recirculer l'eau à contre-courant du gaz à traiter et de séparer les gaz acides par désorption à pression atmosphérique. De même, la fraction liquide contenant essentiellement de l'eau et du gaz carbonique dissous est évacuée dans une réserve refroidie par un échangeur d'eau afin de recirculer l'eau à contre-courant du gaz à traiter et de séparer le gaz carbonique.
En pratique, l'étape c) de stockage est complétée d'une étape d) de purge de l'eau accumulée au cours du stockage.
La présente invention a également pour objet un dispositif de traitement de gaz issus de thermolyse de déchets industriels et/ou ménagers et/ou de biomasse pour la mise en oeuvre du procédé revendiqué ci-avant.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description détaillée ci- après et des dessins dans lesquels :
- la figure 1 est une vue générale du procédé d'épuration de gaz issus de thermolyse selon l'invention, et
- la figure 2 est un organigramme illustrant les étapes du procédé selon l'invention.
Les dessins comportent des éléments de caractère certain. A ce titre, ils serviront à la description de l'invention, et le cas échéant à la définition de celle-ci.
En référence à la figure 1, l'installation comprend un four de thermolyse 1 comportant une interface d'entrée 3 pour recevoir les déchets à traiter et une interface de sortie 5 pour évacuer les déchets traités par thermolyse.
L'interface de sortie 5 comporte une sortie 7 reliée à un poste de récupération des matières solides carbonées 9. Les matières solides carbonées sont destinées à être traitées afin d'être récupérées et valorisées en tant que combustible par exemple. Le traitement comprend plusieurs étapes, notamment des étapes de lavage, séparation, décantation, rinçage afin de débarrasser les matières solides carbonées des polluants fixés sur les particules desdites matières.
L'interface de sortie 5 comprend également une sortie 11 pour évacuer les gaz issus de la thermolyse des déchets.
Les gaz issus de la thermolyse sont extraits par une conduite 13 située, par exemple, dans la partie supérieure du four à thermolyse 1.
Des absorbants ou réactifs sont contenus, par exemple dans une trémie de stockage 15 équipée d'un réservoir étanche et d'un moyen de contrôle de dosage du réactif, tel qu'un doseur à vis 17 ou une vanne rotative ou analogue, entraînée par un moteur électrique à vitesse variable.
La conduite 13 possède une géométrie et une longueur permettant d'assurer un temps de contact suffisant pour la neutralisation des gaz acides.
Le réactif ou le mélange de réactifs délivré par la trémie 15 et la vanne de contrôle 17 est injecté dans les gaz sous forme pulvérulente. Une conduite 21 relie la trémie 15 à un point 19 de la conduite 13.
La trémie 15 a pour fonction de stocker le réactif de neutralisation des gaz acides contenus dans les gaz de thermolyse. Ces gaz acides, notamment Hcl, sont susceptibles de contribuer, lors du refroidissement des fumées de combus- tion produites par un brûleur, à la production de composés dangereux du type dioxines et furannes.
L'élimination ou plus exactement la neutralisation des gaz acides est également rendue nécessaire lorsque l'on souhaite utiliser le gaz issu de thermolyse en machine thermique, moteur ou turbine à gaz.
Le réactif utilisé est un pulvérulent basique et chaud, tel que du hydroxyde de calcium, bicarbonate de calcium ou autre, dont le mélange aux gaz de thermolyse en régime turbulent entraîne un contact intime gaz/solide favorable à la neutralisation des gaz de type Hcl, H2S, S03, S02 et autres.
Le débit du réactif délivré dans la conduite de gaz est régulé par des mesures faites en continu sur les gaz en sortie de dépoussiéreur que l'on décrira plus en détail ci- après.
La conduite 13 est avantageusement maintenue sur toute sa longueur à une température légèrement supérieure de celle des gaz à la sortie du four de thermolyse, par exemple à l'aide d'un traçage électrique ou grâce à de la vapeur, pour éviter la condensation des vapeurs d'hydrocarbures pouvant gêner la circulation du mélange.
La conduite 13 peut être équipée d'un dispositif choisi (non représenté) de manière à faciliter et optimiser le mélange de l'absorbant et des gaz chauds. Les gaz chauds de thermolyse traités et dépollués dans la conduite 13 peuvent ensuite être séparés de l'absorbant.
Pour cela, la conduite 13 débouche dans un séparateur gaz/solide 23, par exemple un cyclone ou un ensemble de plusieurs cyclones disposés en série et/ou en parallèle.
De préférence, le séparateur gaz/solide 23 est constitué d'un mécanisme de dépoussiérage qui a pour fonction non seulement la captation des poussières contenues dans les gaz de thermolyse mais aussi la captation de l'absorbant ou réactif entraîné par le flux de gaz.
Le mécanisme de dépoussiérage 23 est constitué d'au moins une vis sans âme placée dans une tuyauterie horizontale maintenue en température par un traçage électrique ou par un réchauffage de la tuyauterie dans un carneau de fumée.
Périodiquement, la vis de dépoussiérage 25 est mise en rotation et les poussières piégées sont renvoyées par gravité dans le four de theimolyse via une conduite 27 reliant le mécanisme de dépoussiérage 23 à l'interface de sortie 5. Les sels issus des réactions de neutralisation des gaz sont mélangés aux matières solides carbonées produites par la thermolyse et traitées dans les équipements 9 prévus à cet effet.
De préférence, le mécanisme de dépoussiérage comprend deux ensembles (vis par exemple) de dépoussiérage disposés en parallèle pour permettre d'alterner les séquences de nettoyage des tuyauteries sans perturber l'écoulement des gaz et assurer ainsi la possibilité d'un fonctionnement continu de l'installation de thermolyse.
Un contrôle de la qualité des gaz acides ainsi que des absorbants ou réactifs ayant réagis peut être effectué en ligne. Une telle analyse permet, par exemple, de déterminer la quantité des réactifs à ajouter en fonction de la nature des gaz acides et/ou de décider de la possibilité de recycler ou non l'absorbant ou réactif.
Selon l'invention, la sortie 29 du mécanisme de dépoussiérage 23 débouche avantageusement dans un condenseur 31 pour mettre en contact direct les gaz chauds provenant de la thermolyse avec un flux d'huile envoyé à contre-courant du gaz à traiter et présentant un gradient de température par rapport au gaz a traiter pour provoquer la condensation d'au moins une phase liquide formée essentiellement d'hydrocarbures condensables et obtenir ainsi un gaz traité appauvri en hydrocarbures condensables.
En pratique, le condenseur 31 est constitué d'une colonne à garnissage 33 arrosée en continu par le haut 35 d'un flux d'huile refroidi. Les huiles circulent à contre-courant des gaz chauds dans la masse de garnissage et se réchauffent au contact des gaz. Les gaz sont refroidis et une partie des hydrocarbures condensent. Ces hydrocarbures condensables sont ensuite entraînés par le flux liquide qui est récupéré en partie basse 37 de la colonne et dirigé vers une bâche de stockage 39 refroidie par un circuit d'eau 41.
La température des huiles de la bâche est ajustée en fonction des caractéristiques des condensats huileux, par exemple 10 °C au-dessus de la température de fluidité.
Le flux d'huile condensée en excès est extrait périodiquement de la bâche 39 et dirigé vers un stockage 43 avant évacuation ou valorisation en interne 45, c'est-à-dire récupéré pour être utilisé en tant que combustible de la thermolyse ou à être utilisé en tant que comburant d'une machine thermique fonctionnant aux hydrocarbures condensables .
Par exemple, la température du flux d'huile en partie haute 35 de la colonne avant mise en contact avec le gaz à traiter est de l'ordre de 80°C.
La température des gaz chauds issus de la thermolyse en sortie 29 du mécanisme de dépoussiérage avant mise en contact avec le flux d'huile est de l'ordre de 350°C.
En partie basse 37, la température de la phase liquide formée essentiellement d'hydrocarbures condensables après mise en contact du flux d'huile est de l'ordre de 150°C.
On entend ici par flux d'huile, tout flux de composant minéral ou organique ayant une consistance huileuse et présentant avantageusement des caractéristiques combustibles.
Par exemple, au démarrage de l'installation, le flux d'huile est constitué d'huile de vidange ou d'huile de type "FOD N° 2" (pour "fuel oil domestic"). Ensuite, en cours de traitement, le flux d'huile peut être constitué d'hydrocarbu- res condensables issus de la séparation huile/gaz selon 1' invention. La circulation du flux d'huile est réalisée par une pompe 47 disposée entre la partie basse de la bâche 39 et la partie haute 35 de la colonne 31.
Le gaz traité appauvri en hydrocarbures condensables est extrait de la colonne 31 par une conduite 49.
Avantageusement, la conduite 49 débouche dans un condenseur ou laveur 51 pour mettre en contact direct le gaz appauvri en hydrocarbure avec de l'eau sous pression afin de laver ce gaz et d'éliminer en outre les gaz acides.
En pratique, cette mise en contact est réalisée à l'aide d'un éjecteur à eau 55 dans une enceinte 51. L'éjecteur 55 est alimenté par une conduite 57 à partir d'une bâche de réserve 59 par une pompe 61 à débit et pression variables.
Les gaz de thermolyse issus de la conduite 49 sont aspirés et refroidis par le flux d'eau venant de la conduite 57. Les traces de gaz acides résiduels sont dissoutes dans le liquide qui est évacué en continu vers la bâche de réserve 59 refroidie par un échangeur à eau 63.
Avantageusement, une pompe doseuse 53, régulée par un capteur de pH, maintient les eaux de la bâche 59 à une valeur de pH basique par injection de réactif basique. Les excédents d'eau condensés sont évacués en continu par une conduite 65 vers le lavage 9 des solides carbonés de l'installation de thermolyse par la pompe 61.
Le gaz traité appauvri en hydrocarbures condensables et en gaz acides est extrait du condenseur 51 par une conduite 67.
Avantageusement, la conduite 67 débouche dans un condenseur ou laveur 69 pour mettre en contact direct le gaz appauvri en hydrocarbure et en gaz acides avec de l'eau sous pression afin de laver ce gaz et d'éliminer en outre les gaz carboniques . Cette étape de lavage consiste à laver le gaz traité appauvri en hydrocarbures condensables et en gaz acides avec de l'eau sous pression et présentant un gradient de température par rapport au gaz traité pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et du gaz carbonique et obtenir ainsi un gaz traité appauvri en outre en gaz carboniques C02.
En pratique, le laveur de gaz 69 est constitué d'une enceinte 71 sous pression composée d'un réservoir et d'un éjecteur à eau 73 alimenté à partir d'une bâche de réserve 75 par une pompe 77 à débit et pression variables.
Les gaz de thermolyse issus de la conduite 67 sont aspirés par le flux d'eau sous pression acheminée par la conduite 79 reliant la bâche 75 à l'éjecteur 73.
Une partie des gaz solubles, essentiellement constituée de gaz carboniques, est dissoute dans le liquide qui est ensuite évacué sous pression et en continu vers la bâche de réserve 75.
La fraction de gaz insoluble constitue le gaz combustible épuré à fort pouvoir calorifique. Ce gaz est extrait du laveur 69 par une conduite 81.
Le flux de liquide 83 issu du laveur 69 et contenant les gaz en solution est détendu 85 à la pression atmosphérique et purgé 87 à l'air comprimé des gaz résiduels.
Les excédents d'eau condensés sont évacués périodiquement via une conduite 89 vers le rinçage 9 des solides carbonés de l'installation de thermolyse.
Avantageusement, le stockage des gaz épurés et issus de la conduite 81, comprend une étape de purge de l'eau accumulée au cours du stockage. Cette purge est constituée d'une enceinte 91 de détente des gaz de thermolyse. La piège à condensats fonctionne selon le principe du refroidissement/détente. Sa fonction est de ramener la pression des gaz épurés à une valeur compatible avec le système de stockage.
Par exemple, la pression des gaz épurés et stockés est de l'ordre de 8 bars tandis que la pression en sortie du laveur de gaz 69 est de l'ordre de 15 bars. La détente des gaz provoque le refroidissement et la condensation de la vapeur d'eau résiduelle. Cette vapeur d'eau résiduelle est évacuée via la conduite 93 vers le poste de rinçage 9 des solides carbonés de l'installation de thermolyse.
Le stockage est réalisé à l'aide d'un gazomètre 95 qui peut être de type souple pour des applications basse pression ou de type rigide pour des applications moyenne pression.
La régulation du traitement des gaz est assurée en ajustant certains paramètres notamment le débit des pompes de circulation d'eau dans les éjecteurs ainsi que la pression de gaz dans les réservoirs.
La régulation est assurée par un système informatisé centra- lisant les informations de capteurs des différentes grandeurs physiques telles que pression des gaz, température des gaz, teneur en gaz carbonique du gaz épuré, pH des eaux de bâches, niveau des bâches à huile et à eau, niveau de remplissage du gazomètre, débit des eaux de refroidissement, et température d'entrée et de sortie des eaux de refroidissement.
L'installation selon l'invention peut également être complétée par un condenseur à faisceaux tubulaires (indirect) placé après le condenseur à garnissage (direct). Ce condenseur indirect permet de capter une fraction légère d'hydrocarbures condensables. Le fluide utilisé dans le faisceau est de l'eau ou une huile adaptée à la fonction de condensation. Les eaux réchauffées dans le condenseur à faisceaux tubulaires sont refroidies par échangeur et recirculées. Grâce à l'invention, le gaz brut de thermolyse est épuré dans les proportions suivantes en masse.
La teneur en eau peut passer selon l'invention, de 30 à 50 % à 0.
En gaz carbonique, la proportion est ramenée de 30 à 35 % à 15 % au plus selon l'invention.
Les gaz au pouvoir calorifique important, tels que les gaz en CO, H2 , CH4, C2H4, C2H6, C3+ sont avantageusement récupérés et stockés selon l'invention.
En revanche, les hydrocarbures condensables (à température ambiante) sont éliminés, de même que les composants Hcl, H2S et S02.
En référence à la figure 2 , on a résumé, sous la forme d'un organigramme, les différentes étapes du traitement des gaz issus de thermolyse.
L'étape a) de séparation gaz/hydrocarbure est très avantageuse car elle évite la mise en solution d'hydrocarbures (phénol par exemple) très difficiles et coûteux à séparer des eaux.
L'étape b) de neutralisation des acides après séparation des hydrocarbures est utile car elle permet d'éliminer des gaz polluants et corrosifs.
L'étape c) de stockage, accompagnée de préférence de l'étape de purge d), vise à réaliser une valorisation énergétique des gaz épurés dans de bonnes conditions.
L'étape i) de neutralisation des gaz acides avant séparation des hydrocarbures et l'étape ii) de dépoussiérage, visent à améliorer de façon significative l'épuration des gaz issus de la thermolyse. De même, l'étape iii) de lavage des gaz carboniques concoure avantageusement à l'élimination des gaz inertes et diminue ainsi les capacités de stockage nécessaires.
Par ailleurs, il convient de remarquer que les eaux utilisées dans l'épuration des gaz sont récupérées selon l'invention dans le poste de traitement des solides carbonés, afin d'être également traitées en circuit fermé, ce qui élimine le dégagement d'eaux usées vers l'extérieur.

Claims

Revendications
1. Procédé de traitement de gaz issus de thermolyse de déchets industriels et/ou ménagers et/ou de biomasse, et contenant au moins un hydrocarbure condensable, caractérisé en ce qu'il comprend au moins une étape a) consistant à mettre en contact direct le gaz provenant de la thermolyse, avec un flux d'huiles envoyé à contre-courant du gaz à traité et présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'au moins une phase liquide formée essentiellement d'hydrocarbure condensable et obtenir ainsi un gaz traité appauvri en hydrocarbure condensable, en vue d'une valorisation énergétique dudit gaz épuré.
2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend en outre une étape b) qui consiste à mettre en contact direct le gaz traité appauvri en hydrocarbure condensable avec de l'eau sous pression et présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et des gaz acides solubles et obtenir un gaz traité appauvri en outre en gaz acide.
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce qu'il comprend en outre une étape c) consistant à stocker le gaz traité ainsi obtenu en vue d'une utilisation en tant que comburant dans des machines thermiques fonctionnant au gaz.
4. Procédé selon la revendication 1, caractérisé en ce qu'il comprend avant l'étape a) une étape i) consistant à injecter dans le gaz issu de la thermolyse un réactif ou un mélange de réactifs afin de neutraliser les gaz acides.
5. Procédé selon la revendication 4, caractérisé en ce qu'entre l'étape i) et l'étape a), est prévue en outre une étape ii) de dépoussiérage consistant à capter les particules solides résultant de la neutralisation des gaz acides ainsi que les particules solides contenues dans le gaz issu de la thermolyse.
6. Procédé selon les revendications 1 à 3, caractérisé en ce qu'il comprend en outre, entre l'étape b) et l'étape c), une étape iii) consistant à laver le gaz traité appauvri en hydrocarbure condensable et en gaz acide avec de l'eau sous pression et présentant un gradient de température par rapport au gaz traité pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et du C02 dissous et obtenir un gaz traité appauvri en outre en C02.
7. Procédé selon la revendication 1, caractérisé en ce que la phase liquide formée essentiellement d'hydrocarbure condensable est apte à être recirculée à contre-courant du gaz à traité, ou à être récupérée pour être utilisée en tant que combustible de la thermolyse ou à être utilisée en tant que carburant d'une machine thermique fonctionnant aux hydrocarbures condensables.
8. Procédé selon la revendication 1, caractérisé en ce que la fraction liquide contenant essentiellement de l'eau et des gaz acides solubles est évacuée dans une réserve refroidie par un echangeur d'eau afin de recirculer l'eau à contre courant du gaz à traité et de neutraliser les gaz acides dissous.
9. Procédé selon la revendication 1, caractérisé en ce que l'étape c) de stockage comprend en outre une étape d) de purge de l'eau accumulée au cours du stockage.
10. Procédé selon la revendication 4, caractérisé en ce que la fraction liquide contenant essentiellement de l'eau et du C0 dissous est évacuée dans une réserve refroidie par un echangeur d'eau afin de recirculer l'eau à contre courant du gaz à traité et de séparer le C02.
11. Dispositif de traitement de gaz issu de thermolyse de déchets industriels et/ou ménagers et/ou de biomasse, et 1 D contenant au moins un hydrocarbure condensable, caractérisé en ce qu'il comprend au moins une colonne à garnissage (31) pour mettre en contact direct le gaz provenant de la thermolyse, avec un flux d'huiles envoyé à contre-courant du gaz à traité et présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'au moins une phase liquide formée essentiellement d'hydrocarbure condensable et obtenir un gaz traité appauvri en hydrocarbure condensable, en vue d'une valorisation énergétique dudit gaz épuré.
12. Dispositif selon la revendication 11, caractérisé en ce qu'il comprend en outre un dispositif laveur (51, 55) pour mettre en contact direct le gaz traité appauvri en hydrocar- bure condensable avec de l'eau sous pression et présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et des gaz acides solubles et obtenir un gaz traité appauvri en gaz acide.
13. Dispositif selon la revendication 11, caractérisé en ce qu'il comprend en outre des moyens de stockage (95) pour stocker le gaz traité ainsi obtenu en vue d'une utilisation en tant que comburant dans des machines thermiques fonction- nant au gaz.
14. Dispositif selon la revendication 11, caractérisé en ce qu'il comprend en outre une trémie d'injection (15) propre à injecter dans le gaz issu de la thermolyse un réactif ou un mélange de réactifs afin de neutraliser les gaz acides.
15. Dispositif selon la revendication 14, caractérisé en ce qu'il comprend une vis sans âme (25) placée sur le parcours des gaz issus de la thermolyse après neutralisation des acides et des moyens de commande propres à déplacer sur commande la vis afin de capter les particules solides.
16. Dispositif selon la revendication 11, caractérisé en ce qu'il comprend en outre un dispositif laveur (69) propre à laver le gaz traité appauvri en hydrocarbure condensable et en gaz acide avec de l'eau sous pression et présentant un gradient de température par rapport au gaz à traiter pour provoquer la condensation d'une fraction liquide contenant essentiellement de l'eau et du C02 dissous et obtenir un gaz traité appauvri en outre en C02.
17. Dispositif selon la revendication 13, caractérisé en ce que les moyens de stockage comprennent un dispositif de purge (91) de l'eau accumulée au cours du stockage.
18. Dispositif selon la revendication 16, caractérisé en ce qu'il comprend une réserve (39) propre à recevoir la fraction liquide contenant essentiellement de l'eau et des gaz acides solubles, ladite réserve (39) étant refroidie par un echangeur d'eau (41) afin de recirculer l'eau à contre courant du gaz à traité et étant équipée de moyens séparateurs pour séparer les gaz acides solubles.
19. Dispositif selon la revendication 16, caractérisé en ce qu'il comprend une réserve (75) propre à recevoir la fraction liquide contenant essentiellement de l'eau et du C02 dissous, ladite réserve étant refroidie par un echangeur d'eau afin de recirculer l'eau à contre courant du gaz à traité et étant équipée de moyens séparateurs pour séparer le C02.
EP01907653A 2000-01-21 2001-01-19 Procede et installation d'epuration de gaz issus de thermolyse de dechets Withdrawn EP1248671A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0000788 2000-01-21
FR0000788A FR2804043B1 (fr) 2000-01-21 2000-01-21 Procede et installation d'epuration de gaz issus de thermolyse de dechets
PCT/FR2001/000190 WO2001052972A1 (fr) 2000-01-21 2001-01-19 Procede et installation d'epuration de gaz issus de thermolyse de dechets

Publications (1)

Publication Number Publication Date
EP1248671A1 true EP1248671A1 (fr) 2002-10-16

Family

ID=8846173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01907653A Withdrawn EP1248671A1 (fr) 2000-01-21 2001-01-19 Procede et installation d'epuration de gaz issus de thermolyse de dechets

Country Status (4)

Country Link
EP (1) EP1248671A1 (fr)
AU (1) AU2001235567A1 (fr)
FR (1) FR2804043B1 (fr)
WO (1) WO2001052972A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1018803C2 (nl) 2001-08-22 2003-02-25 Stichting Energie Werkwijze en stelsel voor het vergassen van een biomassa.
FR2833189B1 (fr) * 2001-12-07 2004-01-23 Inst Francais Du Petrole Procede et installation de traitement de gaz issus de la decomposition par effet thermique d'une charge solide
GB2448331A (en) * 2007-04-11 2008-10-15 Nicholas Paul Robinson Fuel store featuring removal of CO2

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894942A (en) * 1971-03-23 1975-07-15 Gen Am Transport Volatile gasoline vapor recovery system
CH665781A5 (de) * 1985-03-06 1988-06-15 Sulzer Ag Verfahren und vorrichtung zum reinigen von gasen.
CH676675A5 (fr) * 1988-10-12 1991-02-28 Escher Wyss Gmbh
FI80616B (fi) * 1988-10-31 1990-03-30 Tampella Oy Ab Foerfarande foer avlaegsning av svaveldioxid fraon heta roekgaser.
US5018457A (en) * 1989-06-16 1991-05-28 Crown Andersen, Inc. Waste treatment system
US5238665A (en) * 1991-06-10 1993-08-24 Beco Engineering Company Method for minimizing environmental release of toxic compounds in the incineration of wastes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0152972A1 *

Also Published As

Publication number Publication date
WO2001052972A1 (fr) 2001-07-26
AU2001235567A1 (en) 2001-07-31
FR2804043A1 (fr) 2001-07-27
FR2804043B1 (fr) 2002-08-02

Similar Documents

Publication Publication Date Title
US7591983B2 (en) Heavy oil treating method and heavy oil treating system
JP4540628B2 (ja) 廃棄物ガス化装置
EP0522919B1 (fr) Procédé et installation de thermolyse de déchets industriels et/ou ménagers
CH653320A5 (fr) Procede d'oxydation de matieres organiques.
EP2964694B1 (fr) Procédé de traitement de matières carbonées par vapothermolyse
CN102159527A (zh) 用于将固体转化为燃料的系统以及方法
FR2468072A1 (fr) Procede combine de combustion et de purification des dechets gazeux produits
WO2010076463A1 (fr) Procede de capture du dioxyde de carbone par cryo-condensation
FR2899596A1 (fr) Procede de production d'energie electrique a partir de biomasse
EP1248671A1 (fr) Procede et installation d'epuration de gaz issus de thermolyse de dechets
EP3055386B1 (fr) Procede et systeme de purification d'un gaz de synthese brut issu d'une pyrolyse et/ou gazeification d'une charge de matiere carbonee par destruction de goudrons contenus dans le gaz
FR2822721A1 (fr) Procede et installation de reduction des oxydes d'azote presents dans les fumees de combustion d'un gaz issu d'un processus de thermolyse
FR2859216A1 (fr) Procede et installation de production a haut rendement d'un gaz de synthese depollue a partir d'une charge riche en matiere organique
EP3610196B1 (fr) Procédé et installation de production d'électricité à partir d'une charge de combustible solide de récupération
FR2664022A1 (fr) Procede et dispositif pour generer de la chaleur comportant une desulfuration des effluents avec des particules d'absorbant de fine granulometrie en lit transporte.
WO2020198890A1 (fr) Procédé de transformation par pyrolyse de déchets mélangés en matières plastiques et en caoutchoucs et dispositif pour la mise en oeuvre du procédé
FR2818281A1 (fr) Procede et reacteur pour la gazeification de la biomasse et des dechets biologiques
FR2916760A1 (fr) Module, systeme et procede de traitement de biomasse a lit fixe horizontal
Hai et al. Carbonyl sulfide presence in syngas stream produced from biomass gasification processes: Measurement and calculation
FR3131922A1 (fr) Procede de gazeification de la biomasse
FR2957528A1 (fr) Procede et installation d'epuration de fumees contenant des polluants acides
OA19002A (en) Dispositif et procédé de transformation des déchets plastiques, organiques et huiles usées en hydrocarbures par craquage sans catalyseur des gaz de pyrolyse, et de production de gaz combustible et d'eau distillée par lavage des fumées toxiques pendant le fonctionnement du réacteur.
EP2365862A2 (fr) Dispositif et procede pour le traitement et la compression des gaz
BE514182A (fr)
UA20734U (en) Process for preparation of alternate types of fuel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030904

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040115