EP1248175A2 - Parallel voltage regulator - Google Patents

Parallel voltage regulator Download PDF

Info

Publication number
EP1248175A2
EP1248175A2 EP02007177A EP02007177A EP1248175A2 EP 1248175 A2 EP1248175 A2 EP 1248175A2 EP 02007177 A EP02007177 A EP 02007177A EP 02007177 A EP02007177 A EP 02007177A EP 1248175 A2 EP1248175 A2 EP 1248175A2
Authority
EP
European Patent Office
Prior art keywords
current mirror
current
source
voltage
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02007177A
Other languages
German (de)
French (fr)
Other versions
EP1248175A3 (en
Inventor
Gebhard Melcher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1248175A2 publication Critical patent/EP1248175A2/en
Publication of EP1248175A3 publication Critical patent/EP1248175A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/265Current mirrors using bipolar transistors only

Definitions

  • the invention relates to a parallel voltage regulator with a controllable load element that connects to the output terminals of the Parallel voltage regulator is connected, a reference voltage source to set the target output voltage and a with the controllable load element and the reference voltage source connected control device.
  • Parallel voltage regulators are usually used in the cases used, in which a longitudinal voltage drop, as in a Series voltage regulator occurs, is not desirable. Though the drop in longitudinal voltage at full modulation is the usual transistors used is relatively small, however the residual voltage drop always in certain applications still too big.
  • a controllable one becomes parallel to the load Load element arranged by the level of the output voltage by influencing the voltage drop at the internal resistance the source can be regulated.
  • the bigger the current due to the parallel load element the larger the Voltage drop across the internal resistance and the smaller consequently the voltage at the output terminals.
  • the controllable load element formed by a MOSFET by an operational amplifier is controlled.
  • the output voltage at a parallel regulator is equal to the input voltage led to an input of the operational amplifier while the other input is supplied with a reference voltage is. If the output voltage deviates from the reference voltage becomes the controllable load element, i.e. the MOSFET, readjusted until the voltage returns to the reference voltage equivalent.
  • Parallel controllers are often used, for example, for contactless ones Chip cards are used, the load consisting essentially of one Microcontroller exists.
  • the power source is through a Coil formed in which a generated by a read / write device Magnetic field induces a voltage, the height the transmitted power depends largely on how the contactless chip card is far from the read / write device is removed.
  • a series regulator unsuitable for contactless chip cards because of the voltage drop the range is already shortened at the control transistor.
  • very high voltages are induced when the contactless chip card in close proximity to the read / write device located. In this case, when using a Parallel voltage converter a relatively large current added via the controllable load element, the the resulting losses do not have a negative impact since enough power for the microcontroller in this case anyway is available.
  • the object of the present invention is therefore one Specify parallel voltage regulator, which is also for very rapid load changes is suitable and a low quiescent current requirement having.
  • the voltage regulator simple and therefore space-saving to set up.
  • This task is carried out by a parallel voltage regulator solved type mentioned, characterized in that is that the control device has a first current mirror and has a second current mirror, the reference voltage source lies in the control branch of the first current mirror, the controlled branch of the first current mirror on the one hand the output voltage and on the other hand with the control branch of the second current mirror is connected and the controllable load element through the controlled branch of the second current mirror is formed.
  • the inventive design of the parallel voltage regulator the controller is very fast, compared to one Operational amplifier is disadvantageous that the current amplification factor is relatively small. Hence the accuracy the regulated output voltage is relatively low, however, this is of no importance in the application described is because the allowable tolerances of the power supply of a microcontroller are relatively large. For that you can large load fluctuations that within a very short time of can climb a few milliamps into the ampere range, due to the great speed of the control loop in one sufficient accuracy can be adjusted.
  • Another advantage of the inventive design of the Parallel voltage regulator lies in the great inherent stability.
  • the control function has the is based on the fact that it is not a purely ohmic Load acts, but also capacities or parasitic capacities there is only one other pole. Because of the low-resistance node between the first and second current mirror this pole is very high frequency. instabilities could therefore only occur at very high frequencies are outside the range normally to be expected.
  • the invention resides in the freedom from loss of voltage according to the parallel regulator principle in connection with a low quiescent current, high maximum load current and high Rule bandwidth is possible.
  • a parallel voltage regulator according to the prior art is shown in FIG.
  • a M0SFET T1 forms a controllable load element.
  • the M0SFET T1 is controlled by an operational amplifier OP1.
  • the output voltage V OUT is present at its first input 1.
  • the other input 2 is supplied with a reference voltage V REF . If the output voltage deviates from the desired value specified by V REF , the MOSFET T1 is activated by the operational amplifier OP1 in such a way that the current I1 through the MOSFET T1 increases (with increasing V OUT ).
  • the total current I tot that is absorbed by the circuit now increases in accordance with the increase in I1.
  • an additional voltage drops across an internal resistance Ri of an external voltage source 3, by which the output voltage V OUT decreases.
  • the current I1 is regulated down by the MOSFET T1, so that the initial state is restored.
  • a parallel voltage regulator according to the invention is now shown in FIG.
  • a controllable load element MN2 which is likewise designed as a MOSFET, is in turn located parallel to a load ZL.
  • the total current I tot at the input of the voltage regulator 4 is composed essentially of the output current I L and the current I1 through the controllable load element MN2.
  • a first current mirror 5 is formed by two p-channel FETs. Its control transistor MP1 is connected to an external reference voltage source V REF .
  • the controlled transistor MP2 of the first current mirror 5 is connected on the source side to the output terminal located at V OUT and on the drain side to a second current mirror 6.
  • the second current mirror 6 is formed by two n-channel FETs MN1 and MN2, where MN2 is the controllable load element. While the current through the control transistor MP1 of the first current mirror 5 is determined by a first current source I B1 , a second current source I B2 , which is connected between a reference potential and the drain connection of the controlled transistor MP2 of the first current mirror 5, serves to transistors in keep active area. Without this measure, the bandwidth of the circuit would be considerably reduced, since the charges that are required to control the current would always have to be built up first.
  • the current I1 is calculated from the change in the gate-source voltage U GS .
  • the current through transistor MP2 is g m x ⁇ U GS , where g m is the transconductance of transistor MP2.
  • the current I1 is now calculated at this value multiplied by the reflection factor k2 of the second current mirror 6.
  • FIG. 2 shows only one possibility of realizing the invention Parallel voltage regulator.
  • transistor types can also be used, for example Bipolar transistors, such an arrangement in the figure 3 is shown.
  • Bipolar transistors have the advantage over field-effect transistors that the collector current I C is dependent on the base current I B in an exponential function.
  • the corresponding characteristic curve for MOSFETs is quadratic. This results in advantages in the control behavior for the bipolar transistor. With the technology used today, however, only FETs are usually available, which is why FETs are used for cost reasons, despite functional disadvantages. Bipolar transistors are only used in a few special cases. Except for the fact that pnp transistors are used instead of p-channel FETs and npn transistors are used instead of n-channel FETs, the circuit of FIG. 3 corresponds to the circuit arrangement of FIG. 2.
  • Figure 4 now shows the characteristic of the output voltage the input current. It should be noted that the Current is plotted logarithmically on the X axis. about four decades is a relatively good tension stability to observe, the deviation from the nominal voltage within the tolerance range of a microcontroller in Application mentioned at the beginning for contactless chip cards lies.
  • FIG. 5 shows the quotient of the output voltage V out and the input current I 0 plotted against the input current I 0 . This corresponds to the resistance of the controllable load element MN2 in parallel with the load Z L. With increasing current, the resistance decreases linearly over a large range, whereby the linearity is also maintained over four decades according to the output voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

The device has a controlled load element connected to output terminals, a reference voltage source and a regulator connected to the controlled load element and reference voltage source. The regulator has 2 current mirrors. The reference source lies in the control arm of the first current mirror, whose controlled arm is connected to the output voltage and to the control branch of the second current mirror, whose controlled arm forms the controlled load. The device has a controlled load element connected to its output terminals, a reference voltage source for determining the desired output voltage and a regulator connected to the controlled load element and reference voltage source. The regulator has two current mirrors (5,6). The reference source (VREF) lies in the control arm of the first current mirror, whose controlled arm is connected to the output voltage and to the control branch of the second current mirror, whose controlled arm forms the controlled load (MN2).

Description

Die Erfindung betrifft einen Parallelspannungsregler mit einem steuerbaren Lastelement, das mit den Ausgangsklemmen des Parallelspannungsreglers verbunden ist, einer Referenzspannungsquelle zur Festlegung der Sollausgangsspannung und einer mit dem steuerbaren Lastelement und der Referenzspannungsquelle verbundenen Regelvorrichtung.The invention relates to a parallel voltage regulator with a controllable load element that connects to the output terminals of the Parallel voltage regulator is connected, a reference voltage source to set the target output voltage and a with the controllable load element and the reference voltage source connected control device.

Parallelspannungsregler werden üblicherweise in den Fällen verwendet, in denen ein Längsspannungsabfall, wie er bei einem Serienspannungsregler auftritt, nicht erwünscht ist. Zwar ist der Längsspannungsabfall bei Vollaussteuerung der üblicherweise verwendeten Transistoren relativ gering, jedoch ist der Restspannungsabfall in bestimmten Anmwendungsfällen immer noch zu groß.Parallel voltage regulators are usually used in the cases used, in which a longitudinal voltage drop, as in a Series voltage regulator occurs, is not desirable. Though the drop in longitudinal voltage at full modulation is the usual transistors used is relatively small, however the residual voltage drop always in certain applications still too big.

Bei Parallelreglern wird parallel zur Last ein steuerbares Lastelement angeordnet, durch das die Höhe der Ausgangsspannung durch Beeinflussung des Spannungsabfalls am Innenwiderstand der Quelle geregelt werden kann. Je größer der Strom durch das parallele Lastelement ist, desto größer ist der Spannungsabfall am Innenwiderstand und desto kleiner demzufolge die Spannung an den Ausgangsklemmen. In einer günstigen und vielfach angewandten Schaltung ist das steuerbare Lastelement durch einen MOSFET gebildet, der durch einen Operationsverstärker angesteuert wird. Die Ausgangsspannung, die bei einem Parallelregler gleich der Eingangsspannung ist, wird auf einen Eingang des Operationsverstärkers geführt, während der andere Eingang mit einer Referenzspannung beaufschlagt ist. Bei einer Abweichung der Ausgangsspannung von der Referenzspannung wird das steuerbare Lastelement, also der MOSFET, solange nachgeregelt, bis die Spannung wieder der Referenzspannung entspricht. With parallel controllers, a controllable one becomes parallel to the load Load element arranged by the level of the output voltage by influencing the voltage drop at the internal resistance the source can be regulated. The bigger the current due to the parallel load element, the larger the Voltage drop across the internal resistance and the smaller consequently the voltage at the output terminals. In a cheap and widely used circuit is the controllable load element formed by a MOSFET by an operational amplifier is controlled. The output voltage at a parallel regulator is equal to the input voltage led to an input of the operational amplifier while the other input is supplied with a reference voltage is. If the output voltage deviates from the reference voltage becomes the controllable load element, i.e. the MOSFET, readjusted until the voltage returns to the reference voltage equivalent.

Parallelregler werden beispielsweise häufig bei kontaktlosen Chipkarten eingesetzt, wobei die Last im wesentlichen aus einem Mikrocontroller besteht. Die Stromquelle wird durch eine Spule gebildet, in der ein von einem Schreib-/Lesegerät erzeugtes Magnetfeld eine Spannung induziert, wobei die Höhe der übertragenen Leistung in starkem Maße davon abhängt, wie weit die kontaktlose Chipkarte von dem Schreib-/Lesegerät entfernt ist. Einerseits besteht das Bestreben, eine möglichst große Reichweite zu erzielen, daher ist ein Serienregler bei kontaktlosen Chipkarten ungeeignet, da der Spannungsabfall am Regeltransistor bereits die Reichweite verkürzt. Andererseits werden sehr hohe Spannungen induziert, wenn sich die kontaktlose Chipkarte in großer Nähe zu dem Schreib/Lesegerät befindet. In diesem Fall wird bei Verwendung eines Parallelspannungswandlers ein verhältnismäßig großer Strom über das steuerbare Lastelement aufgenommen, wobei sich die dadurch entstehenden Verluste nicht nachteilig auswirken, da in diesem Betriebsfall ohnehin genügend Leistung für den Mikrocontroller vorhanden ist.Parallel controllers are often used, for example, for contactless ones Chip cards are used, the load consisting essentially of one Microcontroller exists. The power source is through a Coil formed in which a generated by a read / write device Magnetic field induces a voltage, the height the transmitted power depends largely on how the contactless chip card is far from the read / write device is removed. On the one hand there is an effort to make one possible To achieve a long range, is therefore a series regulator unsuitable for contactless chip cards because of the voltage drop the range is already shortened at the control transistor. On the other hand, very high voltages are induced when the contactless chip card in close proximity to the read / write device located. In this case, when using a Parallel voltage converter a relatively large current added via the controllable load element, the the resulting losses do not have a negative impact since enough power for the microcontroller in this case anyway is available.

Bekannte Parallelspannungsregler weisen jedoch den Nachteil auf, daß die Regelung über den Operationsverstärker verhältnismäßig langsam ist. Bei schnellen Laständerungen ist der Regelkreis nicht in der Lage, diese Schwankungen auszuregeln. Zur Erhöhung der Schnelligkeit des Operationsverstärkers besteht die Möglichkeit, dessen Ruhestrom auf einem großen Wert festzulegen. Dieser hohe Ruhestrom verschlechtert allerdings wiederum die Reichweite der kontaktlosen Chipkarte, so daß keine Verbesserung gegenüber einem Serienspannungsregler erzielt wird.Known parallel voltage regulators have the disadvantage, however on that the regulation of the operational amplifier is proportional is slow. With rapid load changes, the Control loop unable to correct these fluctuations. To increase the speed of the operational amplifier the possibility of its quiescent current at a great value set. However, this high quiescent current worsens again the range of the contactless chip card, so that achieved no improvement over a series voltage regulator becomes.

Die Aufgabe der vorliegenden Erfindung liegt also darin, einen Parallelspannungsregler anzugeben, der auch für sehr schnelle Laständerungen geeignet ist und einen geringen Ruhestrombedarf aufweist. Darüber hinaus soll der Spannungsregler einfach und somit platzsparend im Aufbau sein. The object of the present invention is therefore one Specify parallel voltage regulator, which is also for very rapid load changes is suitable and a low quiescent current requirement having. In addition, the voltage regulator simple and therefore space-saving to set up.

Diese Aufgabe wird durch einen Parallelspannungsregler der eingangs genannten Art gelöst, der dadurch gekennzeichnet ist, daß die Regelvorrichtung einen ersten Stromspiegel und einen zweiten Stromspiegel aufweist, wobei die Referenzspannungsquelle im Steuerzweig des ersten Stromspiegels liegt, der gesteuerte Zweig des ersten Stromspiegels einerseits mit der Ausgangsspannung und andererseits mit dem Steuerzweig des zweiten Stromspiegels verbunden ist und das steuerbare Lastelement durch den gesteuerten Zweig des zweiten Stromspiegels gebildet ist.This task is carried out by a parallel voltage regulator solved type mentioned, characterized in that is that the control device has a first current mirror and has a second current mirror, the reference voltage source lies in the control branch of the first current mirror, the controlled branch of the first current mirror on the one hand the output voltage and on the other hand with the control branch of the second current mirror is connected and the controllable load element through the controlled branch of the second current mirror is formed.

Durch die erfindungsgemäße Ausgestaltung des Parallelspannungsreglers ist der Regler sehr schnell, wobei gegenüber einem Operationsverstärker nachteilig ist, daß der Stromverstärkungsfaktor verhältnismäßig gering ist. Daher ist die Genauigkeit der geregelten Ausgangsspannung verhältnismäßig gering, was jedoch im beschriebenen Anwendungsfall ohne Bedeutung ist, da die zulässigen Toleranzen der Spannungsversorgung eines Mikrocontrollers relativ groß sind. Dafür können große Lastschwankungen, die innerhalb von kürzester Zeit von wenige Milliampère bis in den Ampèrebereich steigen können, aufgrund der großen Schnelligkeit des Regelkreises in einer ausreichenden Genauigkeit ausregelbar.The inventive design of the parallel voltage regulator the controller is very fast, compared to one Operational amplifier is disadvantageous that the current amplification factor is relatively small. Hence the accuracy the regulated output voltage is relatively low, however, this is of no importance in the application described is because the allowable tolerances of the power supply of a microcontroller are relatively large. For that you can large load fluctuations that within a very short time of can climb a few milliamps into the ampere range, due to the great speed of the control loop in one sufficient accuracy can be adjusted.

Ein weiterer Vorteil der erfindungsgemäßen Gestaltung des Parallelspannungsreglers liegt in der großen inhärenten Stabilität. Die Regelfunktion besitzt neben einem Lastpol, der dadurch begründet ist, daß es sich nicht um eine rein ohmsche Last handelt, sondern auch Kapazitäten bzw. parasitäre Kapazitäten vorhanden sind, nur einen weiteren Pol. Aufgrund des niederohmigen Knotens zwischen dem ersten und zweiten Stromspiegel ist dieser Pol sehr hochfrequent. Instabilitäten könnten somit nur bei sehr hohen Frequenzen auftreten, die außerhalb des üblicherweise zu erwartenden Bereichs liegen.Another advantage of the inventive design of the Parallel voltage regulator lies in the great inherent stability. In addition to a load pole, the control function has the is based on the fact that it is not a purely ohmic Load acts, but also capacities or parasitic capacities there is only one other pole. Because of the low-resistance node between the first and second current mirror this pole is very high frequency. instabilities could therefore only occur at very high frequencies are outside the range normally to be expected.

Jede der vorteilhaften Eigenschaften ist alleine für sich auch mit anderen Schaltungsvarianten nach dem Stand der Technik erzielbar. Der Vorteil der vorliegenden Schaltung gemäß der Erfindung liegt jedoch darin, daß die Freiheit von Spannungsverlust nach dem Parallelreglerprinzip in Verbindung mit einem niedrigen Ruhestrom, hohem maximalen Laststrom und hoher Regelbandbreite möglich ist.Each of the advantageous properties is on its own also with other circuit variants according to the state of the art achievable. The advantage of the present circuit according to However, the invention resides in the freedom from loss of voltage according to the parallel regulator principle in connection with a low quiescent current, high maximum load current and high Rule bandwidth is possible.

Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels näher erläutert. Es zeigt:

Figur 1
einen Parallelspannungsregler nach dem Stand der Technik,
Figur 2
ein erstes Ausführungsbeispiel des erfindungsgemäßen Parallelspannungsreglers,
Figur 3
ein zweites Ausführungsbeispiel eines erfindungsgemäßen Parallelspannungsreglers,
Figur 4
eine Kennlinie der Ausgangsspannung und
Figur 5
eine Widerstandskennlinie eines steuerbaren Lastelementes.
The invention is explained in more detail below using an exemplary embodiment. It shows:
Figure 1
a parallel voltage regulator according to the prior art,
Figure 2
a first embodiment of the parallel voltage regulator according to the invention,
Figure 3
a second embodiment of a parallel voltage regulator according to the invention,
Figure 4
a characteristic of the output voltage and
Figure 5
a resistance characteristic of a controllable load element.

In der Figur 1 ist ein Parallelspannungsregler nach dem Stand der Technik dargestellt. Ein M0SFET T1 bildet ein steuerbares Lastelement. Der M0SFET T1 wird durch einen Operationsverstärker OP1 angesteuert. An dessen erstem Eingang 1 liegt die Ausgangsspannung VOUT an. Der andere Eingang 2 ist mit einer Referenzspannung VREF beaufschlagt. Bei einer Abweichung der Ausgangsspannung von dem durch VREF vorgegebenen Sollwert wird der MOSFET T1 durch den Operationsverstärker OP1 so angesteuert, daß der Strom I1 durch den MOSFET T1 zunimmt (bei steigendem VOUT). Der Gesamtstrom Iges, der von der Schaltung aufgenommen wird, steigt nun entsprechend dem Anstieg von I1 an. Dadurch fällt an einem Innenwiderstand Ri einer externen Spannungsquelle 3 eine zusätzliche Spannung ab, um die sich die Ausgangsspannung VOUT verringert. Bei nun wieder sinkender Ausgangsspannung VOUT wird der Strom I1 durch den MOSFET T1 heruntergeregelt, so daß der Ausgangszustand wieder hergestellt ist.A parallel voltage regulator according to the prior art is shown in FIG. A M0SFET T1 forms a controllable load element. The M0SFET T1 is controlled by an operational amplifier OP1. The output voltage V OUT is present at its first input 1. The other input 2 is supplied with a reference voltage V REF . If the output voltage deviates from the desired value specified by V REF , the MOSFET T1 is activated by the operational amplifier OP1 in such a way that the current I1 through the MOSFET T1 increases (with increasing V OUT ). The total current I tot that is absorbed by the circuit now increases in accordance with the increase in I1. As a result, an additional voltage drops across an internal resistance Ri of an external voltage source 3, by which the output voltage V OUT decreases. When the output voltage V OUT drops again , the current I1 is regulated down by the MOSFET T1, so that the initial state is restored.

In der Figur 2 ist nun ein erfindungsgemäßer Parallelspannungsregler dargestellt. Parallel zu einer Last ZL befindet sich wiederum ein steuerbares Lastelement MN2, das ebenfalls als MOSFET ausgebildet ist. Der Gesamtstrom Iges am Eingang des Spannungsreglers 4 setzt sich im wesentlichen aus dem Ausgangsstrom IL und dem Strom I1 durch das steuerbare Lastelement MN2 zusammen. Durch zwei p-Kanal-FETs ist ein erster Stromspiegel 5 gebildet. Dessen Steuertransistor MP1 ist mit einer externen Referenzspannungsquelle VREF verbunden. Der gesteuerte Transistor MP2 des ersten Stromspiegels 5 ist sourceseitig mit der auf VOUT liegenden Ausgangsklemme und drainseitig mit einem zweiten Stromspiegel 6 verbunden. Der zweite Stromspiegel 6 ist durch zwei n-Kanal-FETs MN1 und MN2 gebildet, wobei MN2 das steuerbare Lastelement ist. Während durch eine erste Stromquelle IB1 der Strom durch den Steuertransistor MP1 des ersten Stromspiegels 5 bestimmt wird, dient eine zweite Stromquelle IB2, die zwischen ein Bezugspotential und den Drainanschluß des gesteuerten Transistors MP2 des ersten Stromspiegels 5 geschaltet ist, dazu, die Transistoren im aktiven Bereich zu halten. Ohne diese Maßnahme würde sich die Bandbreite der Schaltung erheblich verringern, da immer zuerst die Ladungen wieder aufgebaut werden müßten, die zur Steuerung des Stromes erforderlich sind.A parallel voltage regulator according to the invention is now shown in FIG. A controllable load element MN2, which is likewise designed as a MOSFET, is in turn located parallel to a load ZL. The total current I tot at the input of the voltage regulator 4 is composed essentially of the output current I L and the current I1 through the controllable load element MN2. A first current mirror 5 is formed by two p-channel FETs. Its control transistor MP1 is connected to an external reference voltage source V REF . The controlled transistor MP2 of the first current mirror 5 is connected on the source side to the output terminal located at V OUT and on the drain side to a second current mirror 6. The second current mirror 6 is formed by two n-channel FETs MN1 and MN2, where MN2 is the controllable load element. While the current through the control transistor MP1 of the first current mirror 5 is determined by a first current source I B1 , a second current source I B2 , which is connected between a reference potential and the drain connection of the controlled transistor MP2 of the first current mirror 5, serves to transistors in keep active area. Without this measure, the bandwidth of the circuit would be considerably reduced, since the charges that are required to control the current would always have to be built up first.

Die Funktionsweise der Schaltung wird im folgenden unter der Annahme erläutert, daß die Ausgangsspannung VOUT ansteigt. Durch das Ansteigen der Spannung VOUT vergrößert sich die Gate-Source-Spannung des Transistors MP2, da die Gatespannung konstant bleibt. Dies hat eine Erhöhung des Stromflusses durch den Transistor MP2 zur Folge. Entsprechend steigt auch der Strom durch den Transistor MN1 an, wobei dieser Wert daraufhin in den Transistor MN2, also das Lastelement, gespiegelt wird. Durch eine Erhöhung der Ausgangsspannung VQUT steigt somit der Strom I1 durch das steuerbare Lastelement an, der daraus folgende Anstieg des Gesamtstromes Iges erhöht den Spannungsfall am Innenwiderstand der Quelle 3, die in der Figur 2 als Stromquelle I0 mit parallel geschaltetem Leitwert Gi dargestellt ist. Dies ist gleichbedeutend mit einem Abfall der Ausgangsspannung VOUT, bis der Ausgangszustand wieder hergestellt ist.The operation of the circuit is explained below on the assumption that the output voltage V OUT increases. As the voltage V OUT rises, the gate-source voltage of the transistor MP2 increases since the gate voltage remains constant. This results in an increase in the current flow through the transistor MP2. The current through transistor MN1 also increases accordingly, this value then being reflected in transistor MN2, that is to say the load element. By increasing the output voltage V QUT , the current I1 through the controllable load element increases, the consequent increase in the total current I tot increases the voltage drop across the internal resistance of the source 3, which in FIG. 2 as the current source I 0 with the conductance G i connected in parallel is shown. This is equivalent to a drop in the output voltage V OUT until the output state is restored.

Bei einem Aufbau der Schaltung mit MOSFETs gemäß der Figur 2 berechnet sich der Strom I1 aus der Änderung der Gate-Source-Spannung UGS. Der Strom durch den Transistor MP2 beträgt gm x ΔUGS, wobei gm die Transkonduktanz des Transistors MP2 ist. Der Strom I1 berechnet sich nun zu diesem Wert multipliziert mit dem Spiegelungsfaktor k2 des zweiten Stromspiegels 6.When the circuit is constructed with MOSFETs according to FIG. 2, the current I1 is calculated from the change in the gate-source voltage U GS . The current through transistor MP2 is g m x ΔU GS , where g m is the transconductance of transistor MP2. The current I1 is now calculated at this value multiplied by the reflection factor k2 of the second current mirror 6.

Die Figur 2 zeigt nur eine Realisierungmöglichkeit des erfindungsgemäßen Parallelspannungsreglers. Selbstverständlich sind auch andere Transistortypen einsetzbar, beispielsweise Bipolartransistoren, wobei eine solche Anordnung in der Figur 3 dargestellt ist.FIG. 2 shows only one possibility of realizing the invention Parallel voltage regulator. Of course other transistor types can also be used, for example Bipolar transistors, such an arrangement in the figure 3 is shown.

Bipolartransistoren weisen gegenüber Feldeffekttransistoren den Vorteil auf, daß der Kollektorstrom IC in einer exponentiellen Funktion von dem Basisstrom IB abhängig ist. Die entsprechende Kennlinie bei MOSFETs ist dagegen quadratisch. Dadurch ergeben sich für den Bipolartranistor Vorteile im Regelverhalten. Bei der heute verwendeten Technologie sind jedoch in der Regel nur FETs verfügbar, weshalb trotz funktioneller Nachteile aus Kostengründen auf FETs zurückgegriffen wird. Nur in wenigen Sonderfällen werden trotzdem Bipolartransistoren eingesetzt. Die Schaltung der Figur 3 entspricht bis auf die Tatsache, daß statt p-Kanal-FETs pnp-Transistoren verwendet werden und statt n-Kanal-FETs npn-Transistoren zum Einsatz kommen, der Schaltungsanordnung von Figur 2. Bipolar transistors have the advantage over field-effect transistors that the collector current I C is dependent on the base current I B in an exponential function. The corresponding characteristic curve for MOSFETs, however, is quadratic. This results in advantages in the control behavior for the bipolar transistor. With the technology used today, however, only FETs are usually available, which is why FETs are used for cost reasons, despite functional disadvantages. Bipolar transistors are only used in a few special cases. Except for the fact that pnp transistors are used instead of p-channel FETs and npn transistors are used instead of n-channel FETs, the circuit of FIG. 3 corresponds to the circuit arrangement of FIG. 2.

Die Figur 4 zeigt nun die Kennlinie der Ausgangsspannung gegenüber dem Eingangsstrom. Zu beachten ist dabei, daß der Strom auf der X-Achse logarithmisch aufgetragen ist. Über vier Dekaden ist eine verhältnismäßig gute Spannungsstabilität zu beobachten, wobei die Abweichung von der Nennspannung innerhalb des Toleranzbereiches eines Mikrocontrollers im eingangs genannten Anwendungsfall bei kontaktlosen Chipkarten liegt.Figure 4 now shows the characteristic of the output voltage the input current. It should be noted that the Current is plotted logarithmically on the X axis. about four decades is a relatively good tension stability to observe, the deviation from the nominal voltage within the tolerance range of a microcontroller in Application mentioned at the beginning for contactless chip cards lies.

Die Figur 5 zeigt den Quotienten aus der Ausgangsspannung Vout und dem Eingangsstrom I0 aufgetragen über dem Eingangsstrom I0. Dies entspricht quasi dem Widerstand des steuerbaren Lastelementes MN2 in Paralleschaltung mit der Last ZL. Bei steigendem Strom sinkt der Widerstand ein einem großen Bereich linear, wobei die Linearität ebenfalls gemäß der Ausgangsspannung über vier Dekaden erhalten bleibt. FIG. 5 shows the quotient of the output voltage V out and the input current I 0 plotted against the input current I 0 . This corresponds to the resistance of the controllable load element MN2 in parallel with the load Z L. With increasing current, the resistance decreases linearly over a large range, whereby the linearity is also maintained over four decades according to the output voltage.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
erster Eingang des Operationsverstärkersfirst input of the operational amplifier
22
zweiter Eingang des Operationsverstärkerssecond input of the operational amplifier
33
Quellesource
44
ParallelspannungsreglerParallel voltage regulator
55
erster Stromspiegelfirst current mirror
66
zweiter Stromspiegelsecond current mirror
MP1MP1
Steuertransistor des ersten StromspiegelsControl transistor of the first current mirror
MP2MP2
gesteuerter Transistor des ersten Stromspiegelscontrolled transistor of the first current mirror
MN1MN1
Steuertransistor des zweiten StromspiegelsControl transistor of the second current mirror
MN2MN2
gesteuerter Transistor des zweiten Stromspiegelscontrolled transistor of the second current mirror
ZL Z L
Lastload
VREF V REF
ReferenzspannungsquelleReference voltage source
IB1 I B1
erste Stromquellefirst power source
IB2 I B2
zweite Stromquellesecond power source

Claims (3)

Parallelspannungsregler mit
einem steuerbaren Lastelement (MN1), das mit den Ausgangsklemmen des Parallelspannungsreglers verbunden ist, einer Referenzspannungsquelle (VREF) zur Festlegung der Sollausgangsspannung und einer mit dem steuerbaren Lastelement (MN1) und der Referenzspannungsquelle (VREF) verbundenen Regelvorrichtung,
dadurch gekennzeichnet, daß die Regelvorrichtung einen ersten Stromspiegel (5) und einen zweiten Stromspiegel (6) aufweist, wobei die Referenzspannungsquelle (VREF) im Steuerzweig des ersten Stromspiegels (5) liegt, der gesteuerte Zweig des ersten Stromspiegels (5) einerseits mit der Ausgangsspannung (VOUT) und andererseits mit dem Steuerzweig des zweiten Stromspiegels (6) verbunden ist und das steuerbare Lastelement (MN2) durch den gesteuerten Zweig des zweiten Stromspiegels (6) gebildet ist.
Parallel voltage regulator with
a controllable load element (MN1) which is connected to the output terminals of the parallel voltage regulator, a reference voltage source (V REF ) for determining the target output voltage and a control device connected to the controllable load element (MN1) and the reference voltage source (V REF ),
characterized in that the control device has a first current mirror (5) and a second current mirror (6), wherein the reference voltage source (V REF ) is in the control branch of the first current mirror (5), the controlled branch of the first current mirror (5) is connected on the one hand to the output voltage (V OUT ) and on the other hand to the control branch of the second current mirror (6) and the controllable load element (MN2) is formed by the controlled branch of the second current mirror (6).
Parallelspannungsregler nach Anspruch 1,
dadurch gekennzeichnet, daß
der erste Stromspiegel (5) mit zwei p-Kanal-FETs und der zweite Stromspiegel (6) mit zwei n-Kanal-FESTs aufgebaut ist, wobei bei dem Steuertransistor (MP1) des ersten Stromspiegels (5) der Sourceanschluß mit der Referenzspannungsquelle (VREF) und der Drainanschluß mit dem Gate-Anschluß und einer ersten Stromquelle (I1) verbunden ist, bei dem gesteuerten Transistor (MP2) des ersten Stromspiegels der Source-Anschluß mit der Ausgangsspannung (VOUT) und der Drainanschluß mit dem Drainschluß des Steuertransistors (MN1) des zweiten Stromspiegels verbunden ist, bei dem Steuertransistor (MN1) des zweiten Stromspiegels (6) der Drain-Anschluß zusätzlich mit dem Gate-Anschluß verbunden ist und bei dem Steuertransistor (MN1) des zweiten Stromspiegels der Source-Anschluß mit einem Bezugspotential verbunden ist.
Parallel voltage regulator according to claim 1,
characterized in that
the first current mirror (5) with two p-channel FETs and the second current mirror (6) with two n-channel FESTs is built, whereby in the control transistor (MP1) of the first current mirror (5) the source connection is connected to the reference voltage source (V REF ) and the drain connection is connected to the gate connection and a first current source (I1), in the case of the controlled transistor (MP2) of the first current mirror, the source connection is connected to the output voltage (V OUT ) and the drain connection is connected to the drain connection of the control transistor (MN1) of the second current mirror, in the control transistor (MN1) of the second current mirror (6) the drain connection is additionally connected to the gate connection and in the control transistor (MN1) of the second current mirror, the source connection is connected to a reference potential.
Parallelspannungsregler nach Anspruch 2,
dadurch gekennzeichnet, daß
mit dem Drain-Anschluß des gesteuerten Transistors (MP2) des ersten Stromspiegels (5) zusätzlich eine zweite Stromquelle (IB2) verbunden ist.
Parallel voltage regulator according to claim 2,
characterized in that
a second current source (I B2 ) is additionally connected to the drain connection of the controlled transistor (MP2) of the first current mirror (5).
EP02007177A 2001-03-30 2002-03-28 Parallel voltage regulator Withdrawn EP1248175A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001115813 DE10115813B4 (en) 2001-03-30 2001-03-30 Parallel voltage regulator
DE10115813 2001-03-30

Publications (2)

Publication Number Publication Date
EP1248175A2 true EP1248175A2 (en) 2002-10-09
EP1248175A3 EP1248175A3 (en) 2004-07-07

Family

ID=7679702

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02007177A Withdrawn EP1248175A3 (en) 2001-03-30 2002-03-28 Parallel voltage regulator

Country Status (2)

Country Link
EP (1) EP1248175A3 (en)
DE (1) DE10115813B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161676A1 (en) * 2013-04-03 2014-10-09 Siemens Aktiengesellschaft Measurement transducer for process instrumentation, and method for monitoring the state of the sensor thereof
EP3113331A1 (en) * 2015-07-03 2017-01-04 STmicroelectronics SA Remotely powered contactless card

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3964182B2 (en) * 2001-11-02 2007-08-22 株式会社ルネサステクノロジ Semiconductor device
DE102005003686A1 (en) * 2005-01-26 2006-08-03 Rohde & Schwarz Gmbh & Co. Kg Current smoothing arrangement for electronic device, has current sink, where difference between maximum value and measuring voltage controls sink such that sum of compensation current supplied by sink and load current is constant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226664A (en) * 1988-11-26 1990-07-04 Motorola Inc Shunt voltage regulator
US5939933A (en) * 1998-02-13 1999-08-17 Adaptec, Inc. Intentionally mismatched mirror process inverse current source
US6078168A (en) * 1996-12-17 2000-06-20 Sgs-Thomson Microelectronics S.A. Parallel voltage regulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494488B2 (en) * 1994-11-25 2004-02-09 株式会社ルネサステクノロジ Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2226664A (en) * 1988-11-26 1990-07-04 Motorola Inc Shunt voltage regulator
US6078168A (en) * 1996-12-17 2000-06-20 Sgs-Thomson Microelectronics S.A. Parallel voltage regulator
US5939933A (en) * 1998-02-13 1999-08-17 Adaptec, Inc. Intentionally mismatched mirror process inverse current source

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014161676A1 (en) * 2013-04-03 2014-10-09 Siemens Aktiengesellschaft Measurement transducer for process instrumentation, and method for monitoring the state of the sensor thereof
CN105190251A (en) * 2013-04-03 2015-12-23 西门子公司 Measurement transducer for process instrumentation, and method for monitoring the state of the sensor thereof
US9435672B2 (en) 2013-04-03 2016-09-06 Siemens Aktiengesellschaft Measurement transducer for process instrumentation, and method for monitoring the state of its sensor
CN105190251B (en) * 2013-04-03 2017-05-10 西门子公司 Measurement transducer for process instrumentation, and method for monitoring the state of the sensor thereof
EP3113331A1 (en) * 2015-07-03 2017-01-04 STmicroelectronics SA Remotely powered contactless card
FR3038467A1 (en) * 2015-07-03 2017-01-06 St Microelectronics Sa CONTACTLESS TELEALIMED CARD
CN106326964A (en) * 2015-07-03 2017-01-11 意法半导体有限公司 Remotely powered contactless card
US10432023B2 (en) 2015-07-03 2019-10-01 Stmicroelectronics Sa Remotely powered contactless card
CN106326964B (en) * 2015-07-03 2020-03-17 意法半导体有限公司 Contactless card for remote power supply
US10978910B2 (en) 2015-07-03 2021-04-13 Stmicroelectronics Sa Remotely powered contactless card

Also Published As

Publication number Publication date
EP1248175A3 (en) 2004-07-07
DE10115813B4 (en) 2004-02-26
DE10115813A1 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
DE69802577T2 (en) Load pole stabilized voltage regulator
DE60225124T2 (en) Control device with low loss voltage, with a large load range and fast inner control loop
DE10249162B4 (en) voltage regulators
DE102005039114B4 (en) Voltage regulator with a low voltage drop
EP0421516B1 (en) Power supply arrangement with voltage regulation and current limiting
EP0557850B1 (en) Circuit arrangement for limiting the load current of a power MOSFET
DE69428884T2 (en) Overload protection circuit for MOS power drivers
EP0369048A1 (en) Circuit arrangement for regulating the load current in a power MOSFET
DE102009029322A1 (en) Arrangement and method for power conversion
DE102004015621A1 (en) Switching power converters
DE102017223082A1 (en) Voltage regulator and method for compensating the effects of output impedance
DE4444623A1 (en) Power MOSFET load current control circuit
EP0973084B1 (en) Integrated circuit with a voltage regulator
DE10115813B4 (en) Parallel voltage regulator
DE2250625B2 (en) Circuit arrangement for keeping a current supplied to a load constant
EP0862271A2 (en) Comparator circuit
DE69508063T2 (en) Constant voltage drop voltage regulator
EP1473824A2 (en) Control unit for driving a transistor controlled fan arrangement
DE10219003B4 (en) Current mirror for an integrated circuit
EP0961403A2 (en) Integrated amplifying circuit comprising temperature compensation
DE69713266T2 (en) OSCILLATOR WITH A STARTING SWITCH
DE102018116669A1 (en) Method for operating a low-drop voltage regulator with a wide range of capacitors
DE3336841C2 (en)
DE3246144C2 (en) Circuit arrangement for keeping the current constant
DE102018217442A1 (en) Voltage regulator with virtual zero quiescent current

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20041207

AKX Designation fees paid

Designated state(s): AT DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100903