EP1247963B1 - Method for controlling of an operating mode of a lean burn internal combustion engine - Google Patents
Method for controlling of an operating mode of a lean burn internal combustion engine Download PDFInfo
- Publication number
- EP1247963B1 EP1247963B1 EP20020090054 EP02090054A EP1247963B1 EP 1247963 B1 EP1247963 B1 EP 1247963B1 EP 20020090054 EP20020090054 EP 20020090054 EP 02090054 A EP02090054 A EP 02090054A EP 1247963 B1 EP1247963 B1 EP 1247963B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalytic converter
- storage
- lean
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3076—Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
- F02D41/1462—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0802—Temperature of the exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0811—NOx storage efficiency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
Definitions
- the invention relates to a method for controlling an operating mode of a lean-running internal combustion engine having the features of the preamble of claim 1.
- a lean operating mode that is, with an air-fuel mixture with excess air ( ⁇ > 1).
- a so-called stratified charge mode in which the injected fuel concentrates substantially in the region of a spark plug of a cylinder, particularly lean air-fuel mixtures and thus particularly high fuel consumption advantages can be represented.
- a certain problem of the lean operating mode is known to be nitrogen oxides NO x of the exhaust gas, which can not be completely converted to environmentally neutral nitrogen N 2 due to the oxygen excess in the lean exhaust gas on conventional oxidation or 3-way catalysts.
- NO x storage catalysts which, in addition to a 3-way catalytic component, have an NO x storage component for absorbing NO x in the lean exhaust gas.
- NO x regeneration NO x storage catalysts are alternately applied in discontinuous operation with lean and rich exhaust gas, wherein in the rich intervals the stored in lean mode NO x is released and reduced.
- a NO x storage and conversion capability of the storage catalyst depends on various operating parameters and also changes with aging of the catalyst, as disclosed in WO 01 06105 A.
- sufficient storage capacity is available only in a certain temperature range of the NO x storage catalytic converter. Therefore, for example, from DE 199 32 290 A1 and DE 199 29 292 A1 discloses an approval of a lean operation of the internal combustion engine of the catalyst temperature of the NO x storage catalytic converter to set a lower and upper temperature threshold for the allowable lean operating range to prevent NO x breakthroughs.
- DE 198 50 786 A1 further discloses a method according to which this upper and lower temperature threshold is adapted to the NO x storage capacity of the catalyst, which is monitored on the basis of a duration of a previous lean interval or NO x regeneration interval.
- the catalyst temperature alone is not a sufficient criterion for the NO x storage and conversion capability of the catalyst and thus for the approval of the lean operation mode. Rather, the NO x storage behavior of the catalyst depends on other factors. For example, an aged storage catalyst at an average catalyst temperature of 350 ° C at operating points with low NO x -Rohemissionen still a sufficient NO x storage and having conversion capacity, whereas at high NO x -Rohemissionen the storage capacity so far decrease that This causes high regeneration frequency completely consumes the consumption advantage gained by the lean operation. In such a case, the adaptation of the temperature thresholds does not show the desired success.
- the object of the present invention is to provide a method for controlling an operating mode of a lean-running internal combustion engine, which overcomes the described deficiencies of the prior art and allows more accurate tuning of a lean operating mode of the internal combustion engine to a current operating point and to a state of the NO x storage catalytic converter.
- the lean operating mode is made dependent on a raw NO x emission of the internal combustion engine, since this decisively influences a NO x storage rate of the storage catalytic converter. Furthermore, raw emissions of further exhaust gas components, in particular of unburned hydrocarbons HC and / or carbon dioxide CO 2 and / or carbon monoxide CO, can be taken into account. These hinder the storage of NO x in the catalyst in high concentrations. Accordingly, for the raw emission of each of these components or a sum of the components, an upper threshold value can be set, above which the lean operating mode is blocked.
- raw emission means a concentration and / or a mass flow of the respective exhaust gas component upstream of a first catalytic converter connected downstream of the internal combustion engine.
- the raw emission of NO x or the further exhaust gas components can either be measured by means of gas sensors arranged correspondingly in the exhaust gas tract or preferably in dependence on a current operating point of the internal combustion engine, in particular a current engine speed and / or engine load.
- a current operating point of the internal combustion engine in particular a current engine speed and / or engine load.
- a lean operating mode is assumed for the modeling.
- Such a modeling of raw emissions, for example on the basis of stored maps, is well known and will not be explained in detail here.
- the temperature of the NO x storage catalyst a local temperature of a coating of the catalyst and / or of a catalyst support and / or a temperature distribution over the entire catalyst length can be considered.
- the catalyst temperature can be determined from an exhaust gas temperature measured upstream and / or downstream of the storage catalytic converter and / or measured by means of a temperature measuring point arranged in the catalytic converter itself.
- the catalyst temperature in dependence of an operating point of the Calculate internal combustion engine using appropriate maps with good accuracy.
- the variation is at least a threshold value when the NO x storage and / or conversion capacity of the catalyst drops below a predetermined limit value, that is behind a, for a fresh NO x Storage catalyst derived or tuned to an already irreversibly partially damaged catalyst performance expectancy remains.
- a predetermined limit value that is behind a
- various strategies are available. Specifically, the lean operation can vary over a downstream of the NO x storage catalytic converter, for example by means of a NOx sensor measured NO x content in the exhaust gas controlled and terminated when a temporary or accumulated on the lean operating phase NO x content exhaustion of the storage capacity of the catalyst displays.
- a duration of a thus controlled lean operating phase can be used as a measure of an incorporated NO x mass and thus for the storage and conversion capability of the catalyst.
- the measured, in particular the cumulated NO x content or its course can be used to assess the NO x storage and / or conversion ability.
- the duration of the regeneration phase and the measured oxygen content or its course serve as a criterion.
- the NO x storage and / or conversion capability of the storage catalytic converter can be determined on the basis of fuel consumption and / or based on a frequency of the NO x regeneration. Regardless of the choice of rating, the behavior of the NO x storage catalyst is always compared to that of a fresh, undamaged catalyst or, if irreversible damage has already been identified, to best expected behavior.
- threshold value of an operating parameter of the internal combustion engine and / or of the exhaust gas tract is always varied, in the region of which the operating state was during the preceding lean phase or at least predominantly, with corresponding limits for the area being specified. If the possibly averaged operating state was within the limit of several threshold values in the observation period, then preferably all affected threshold values are varied.
- the operating state was not in any range of a threshold value, advantageously at least one threshold value can be varied.
- the internal combustion engine preferably has a direct fuel injection and is capable of charging in the lean operating mode.
- a fuel injected into a cylinder at the time of ignition is substantially concentrated in the region of a spark plug, while practically pure air prevails in the remaining combustion chamber of the cylinder.
- particularly lean air-fuel ratios and thus a particularly low fuel consumption can be realized in the stratified charge mode.
- the formation of the stratified charge cloud and its transport to the spark plug can be supported in a known manner by wall-guiding measures, for example by a trough-shaped design of a piston crown.
- air-conducting measures are known and expedient, which can be realized approximately in the form of a arranged in a suction pipe of the cylinder charge motion flap and cause special air currents in the combustion chamber.
- the lean burn internal combustion engine 10 shown in Figure 1 has in this example four cylinders 12, each having an unillustrated direct fuel injection system.
- the internal combustion engine 10 is further operable by a wall and air-guided mixture treatment process in a stratified charge mode.
- An exhaust gas produced by the internal combustion engine 10 is aftertreated in an exhaust tract, designated overall by 14.
- the exhaust gas tract 14 consists essentially of a catalyst system installed in an exhaust gas duct 16, with a small volume and close to the engine arranged precatalyst 18, for example, a 3-way or oxidation catalyst, and a typically arranged at an underbody position NO x storage catalyst 20.
- the NO x - Storage catalytic converter 20 comprises, in addition to a 3-way catalytic converter component, a NO x absorber for storing nitrogen oxides NO x which are not completely convertible in the lean operating mode.
- a lambda probe 22 arranged downstream of the internal combustion engine 10 measures an oxygen content of the exhaust gas and thus enables a regulation of an air-fuel ratio to be supplied to the cylinders 12.
- the NO x sensor 24 detects, for example, a NO x breakthrough during a lean operation and thus controls a discontinuous lean / rich loading of the storage catalyst 20 for the purpose of its NO x regeneration.
- a temperature measuring point 26 measures upstream of the NO x storage catalytic converter 20 an exhaust gas temperature and allows conclusions about the temperature of the storage catalyst 20.
- the catalyst temperature can also be modeled in a conventional manner based on selected operating parameters of the internal combustion engine 10. All sensor signals and operating parameters of the internal combustion engine 10 and the exhaust gas tract 14 are transmitted to a motor controller 28. Here an evaluation of the signals and data and a control of the internal combustion engine 10 based on stored algorithms and maps.
- the ability of the NO x storage catalyst 20 to store nitrogen oxides is not sufficient at each operating point to ensure NO x emissions consistent with allowable limits.
- the NO x storage catalyst 20 has sufficient NO x storage and conversion ability only in a certain temperature window, and therefore usually upper and lower thresholds for one in the Lean operating mode allowable catalyst temperature can be specified. If the catalyst temperature is outside the range limited by the threshold values, the lean operation is inhibited and the internal combustion engine 10 is operated in a stoichiometric or rich operation.
- additional threshold values are specified for at least one further operating parameter of the internal combustion engine 10 or the exhaust gas tract 14, in particular for a maximum permissible NO x raw emission of the internal combustion engine 10. Further, all predefined threshold values can preferably be adapted if the NO x storage and / or conversion capability of the storage catalyst 20 is below a requested value.
- FIG. 2 shows the dependence of a permissible range for the lean operating mode on a catalyst temperature TSK of the NO x storage catalytic converter 20 and on a NO x raw emission NORE of the internal combustion engine 10.
- the range permitted for lean operation with ⁇ > 1 is shown in white and the range, in which the internal combustion engine 10 must be operated with a rich or stoichiometric mixture with ⁇ ⁇ 1, shown hatched.
- the lean operating range is limited by a lower temperature threshold TSKMN and an upper temperature threshold TSKMX for the catalyst temperature TSK.
- the lean operation is disabled when the NO x raw emission NORE is above a maximum threshold value NOREMX.
- NOREMX maximum threshold value
- All predetermined threshold values are designed to be variable and can be varied within predefinable limits as a function of a current NO x storage and / or conversion capability of the storage catalytic converter 20.
- that threshold value is changed, in the border region of which an operating point was in the considered period of a preceding lean operating phase. For example, as shown in point 100, if the possibly averaged NO x raw emission of the previous lean operation phase was close to the upper threshold NOREMX, this threshold NOREMX is lowered if insufficient NO x storage ability or conversion capability, for example, based on a lean operation phase length or a measured downstream of the storage catalyst 20 NO x emission is detected.
- the catalyst temperature TSK and the NO x -Rohemission NORE have the greatest impact on the storage capacity, preferably takes an adjustment of these thresholds.
- an increase of the threshold value TSKMN takes place when the NO x storage capacity and NO x conversion capability are inadequate.
- it is preferably provided to predetermine the position of the threshold value TSKMN also as a function of an aging state (irreversible damage) determined by means of a diagnostic method, since the threshold value TSKMN corresponding to a light-off temperature of the catalyst mainly depends on the state of aging.
- FIG. 3 shows a flowchart of the method according to the invention in accordance with the operating point 100 of FIG. 2.
- the method sequence can be divided into two main sections, namely checking of the NO x storage and NO x conversion capability of the storage catalytic converter 20 and determination of the threshold values of the lean operating range on the one hand (steps S1 to S5) and permission or inhibition of lean operation at a current operating point on the other hand (S6 to S11).
- S1 to S5 the threshold values for the lean operating range and a limit value for NO x storage and NO x conversion capability of the NO x storage catalyst 20 are specified. These specifications are based on empirical values of an undamaged and completely regenerated storage catalytic converter.
- a check of the storage and conversion capability of the storage catalytic converter 20 is performed.
- this check is made 20 measured with reference to a downstream in the preceding lean phase by means of the NOx sensor 24 of the NO x storage catalyst and aufintegr faced NO x emission NOHK. If this NO x emission NOHK is above a limit value NOHKGW specified in S1, the upper threshold value NOREMX for the NO x raw emission of the internal combustion engine 10 is lowered in S3 by the increment ⁇ NORE. It is assumed here that the threshold value NOREMX was set too high and the NO x storage catalytic converter 20 due to the high NO x raw emission (see point 100 in FIG 2) did not have sufficient storage capacity.
- the method proceeds to the query S4, where it is checked whether the NO x raw emission NORE of the previous lean phase is very close to the upper emission threshold NOREMX. If this inquiry is affirmed, the NO x -Emissionsschwelle NOREMX is increased in S5 by the increment ⁇ NORE. The loop of steps S4 and S5 ensures that the allowable lean area is not unnecessarily restricted. If the query is denied in S4, there is no variation of the emission threshold NOREMX, this is rather maintained.
- a current NO x raw emission NOREF is determined by measuring the NO x concentration upstream of the catalyst system 18, 20 or by calculation based on current operating parameters of the internal combustion engine 10. If the internal combustion engine 10 is currently in a stoichiometric or lean mode of operation, a lean mode of operation is assumed for this calculation. The calculation can be carried out, for example, on the basis of stored characteristic maps which contain information about the expected NO x raw emission as a function of a current engine speed and / or engine load and / or other operationally relevant variables. To avoid dynamic effects, an averaging of the NO x raw emissions NOREF determined in this way can take place over a minimum time.
- a query S7 it is checked whether the raw emission NOREF determined in S6 lies below the emission threshold value NOREMX defined in S2 to S5. If this is the case, the current catalyst temperature TSK of the NO x storage catalytic converter 20 is determined by measurement or modeling in S8. It is then queried in S9 whether this current catalyst temperature TSK is within the permissible temperature range, ie greater than the lower temperature threshold TSKMN and smaller than the upper temperature threshold TSKMX. If this query is also affirmative, the current operating point of the internal combustion engine 10 and of the exhaust system 14 is in the range permissible for the lean operating mode. Consequently, the lean operation mode is permitted in S10. If one of the queries S7 and S9 is denied, at least one operating parameter is outside the permissible range, so that in S11 the lean operating range is blocked and the internal combustion engine 10 is charged with a stoichiometric or rich air-fuel mixture.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine mit den Merkmalen des Oberbegriffes des Anspruchs 1.The invention relates to a method for controlling an operating mode of a lean-running internal combustion engine having the features of the preamble of
Zur Senkung eines Kraftstoffverbrauchs werden heutige Verbrennungskraftmaschinen über möglichst weite Betriebsbereiche in einem mageren Betriebsmodus betrieben, das heißt mit einem Luft-Kraftstoff-Gemisch mit Luftüberschuss (λ > 1). Im Falle von Verbrennungskraftmaschinen, die über eine Kraftstoffdirekteinspritzung verfügen, können durch Realisierung eines so genannten Schichtladebetriebes, bei dem der eingespritzte Kraftstoff sich im Wesentlichen im Bereich einer Zündkerze eines Zylinders konzentriert, besonders magere Luft-Kraftstoff-Gemische und damit besonders hohe Verbrauchsvorteile dargestellt werden. Ein gewisses Problem des mageren Betriebsmodus stellen bekanntlich Stickoxide NOx des Abgases dar, die sich aufgrund des Sauerstoffüberschusses im mageren Abgas an herkömmlichen Oxidations- oder 3-Wege-Katalysatoren nicht vollständig zu umweltneutralem Stickstoff N2 umsetzen lassen. Zur Überwindung dieses Problems ist bekannt, NOx-Speicherkatalysatoren einzusetzen, die neben einer 3-Wege-katalytischen Komponente eine NOx-Speicherkomponente zur Absorption von NOx im mageren Abgas aufweisen. Zum Zwecke einer NOx-Regeneration werden NOx-Speicherkatalysatoren im diskontinuierlichen Betrieb alternierend mit magerem und fettem Abgas beaufschlagt, wobei in den fetten Intervallen das im Magerbetrieb eingelagerte NOx freigesetzt und reduziert wird. Diese aufgrund einer endlichen NOx-Speicherkapazität eines Speicherkatalysators erforderlichen fetten Betriebsintervalle führen allerdings zu einer teilweisen Kompensation des im Magerbetrieb erzielten Verbrauchsvorteils.To reduce fuel consumption today's internal combustion engines are operated over the widest possible operating ranges in a lean operating mode, that is, with an air-fuel mixture with excess air (λ> 1). In the case of internal combustion engines having a direct fuel injection, by implementing a so-called stratified charge mode in which the injected fuel concentrates substantially in the region of a spark plug of a cylinder, particularly lean air-fuel mixtures and thus particularly high fuel consumption advantages can be represented. A certain problem of the lean operating mode is known to be nitrogen oxides NO x of the exhaust gas, which can not be completely converted to environmentally neutral nitrogen N 2 due to the oxygen excess in the lean exhaust gas on conventional oxidation or 3-way catalysts. To overcome this problem, it is known to use NO x storage catalysts which, in addition to a 3-way catalytic component, have an NO x storage component for absorbing NO x in the lean exhaust gas. For the purpose of a NO x regeneration NO x storage catalysts are alternately applied in discontinuous operation with lean and rich exhaust gas, wherein in the rich intervals the stored in lean mode NO x is released and reduced. However, these required due to a finite NO x storage capacity of a storage catalyst rich operating intervals lead to a partial compensation of the consumption advantage achieved in lean operation.
Eine NOx-Speicher- und Konvertierungsfähigkeit des Speicherkatalysators hängt von verschiedenen Betriebsparametern ab und verändert sich zudem mit einer Alterung des Katalysators , wie in der WO 01 06105 A offenbart wird. Insbesondere liegt nur in einem gewissen Temperaturbereich des NOx-Speicherkatalysators eine ausreichende Speicherfähigkeit vor. Daher ist beispielsweise aus der DE 199 32 290 A1 und der DE 199 29 292 A1 bekannt, eine Zulassung eines Magerbetriebs der Verbrennungskraftmaschine von der Katalysatortemperatur des NOx-Speicherkatalysators abhängig zu machen und eine untere und obere Temperaturschwelle für den zulässigen Magerbetriebsbereich vorzugeben, um NOx-Durchbrüche zu vermeiden. Die DE 198 50 786 A1 offenbart ferner ein Verfahren, wonach diese obere und untere Temperaturschwelle an die NOx-Speicherfähigkeit des Katalysators adaptiert wird, welche anhand einer Dauer eines vorausgegangenen Magerintervalls oder NOx-Regenerationsintervalls überwacht wird.A NO x storage and conversion capability of the storage catalyst depends on various operating parameters and also changes with aging of the catalyst, as disclosed in WO 01 06105 A. In particular, sufficient storage capacity is available only in a certain temperature range of the NO x storage catalytic converter. Therefore, for example, from DE 199 32 290 A1 and DE 199 29 292 A1 discloses an approval of a lean operation of the internal combustion engine of the catalyst temperature of the NO x storage catalytic converter to set a lower and upper temperature threshold for the allowable lean operating range to prevent NO x breakthroughs. DE 198 50 786 A1 further discloses a method according to which this upper and lower temperature threshold is adapted to the NO x storage capacity of the catalyst, which is monitored on the basis of a duration of a previous lean interval or NO x regeneration interval.
Es hat sich jedoch erwiesen, dass die Katalysatortemperatur allein kein ausreichendes Kriterium für die NOx-Speicher- und Konvertierungsfähigkeit des Katalysators und somit für die Zulassung des Magerbetriebsmodus darstellt. Vielmehr hängt das NOx-Einspeicher-verhalten des Katalysators von weiteren Einflussgrößen ab. So kann beispielsweise ein gealterter Speicherkatalysator bei einer mittleren Katalysatortemperatur von 350 °C in Betriebspunkten mit niedrigen NOx-Rohemissionen noch eine ausreichende NOx-Speicher-und -Konvertierungsfähigkeit aufweisen, dagegen bei hohen NOx-Rohemissionen die Speicherfähigkeit so weit abnehmen, dass eine hierdurch verursachte hohe Regenerationshäufigkeit den durch den Magerbetrieb gewonnenen Verbrauchsvorteil vollständig aufzehrt. In einem solchen Falle zeigt die Anpassung der Temperaturschwellen nicht den gewünschten Erfolg.However, it has been found that the catalyst temperature alone is not a sufficient criterion for the NO x storage and conversion capability of the catalyst and thus for the approval of the lean operation mode. Rather, the NO x storage behavior of the catalyst depends on other factors. For example, an aged storage catalyst at an average catalyst temperature of 350 ° C at operating points with low NO x -Rohemissionen still a sufficient NO x storage and having conversion capacity, whereas at high NO x -Rohemissionen the storage capacity so far decrease that This causes high regeneration frequency completely consumes the consumption advantage gained by the lean operation. In such a case, the adaptation of the temperature thresholds does not show the desired success.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine bereitzustellen, welches die geschilderten Mängel des Standes der Technik überkommt und durch genauere Abstimmung eines Magerbetriebsmodus der Verbrennungskraftmaschine auf einen aktuellen Betriebspunkt sowie auf einen Zustand des NOx-Speicherkatalysators erlaubt.The object of the present invention is to provide a method for controlling an operating mode of a lean-running internal combustion engine, which overcomes the described deficiencies of the prior art and allows more accurate tuning of a lean operating mode of the internal combustion engine to a current operating point and to a state of the NO x storage catalytic converter.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Dadurch, dass
- ein Magerbetriebsmodus der Verbrennungskraftmaschine mit λ > 1 in Abhängigkeit von vorgebbaren Schwellenwerten für eine Temperatur des NOx-Speicherkatalysators und für mindestens einen weiteren Betriebsparameter der Verbrennungskraftmaschine und/oder des Abgastraktes zugelassen wird und
- mindestens ein Schwellenwert in Abhängigkeit einer aktuellen NOx-Speicher-und/oder NOx-Konvertierungsfähigkeit des NOx-Speicherkatalysators variiert wird, erfolgt eine Zulassung des Magerbetriebsmodus unter sehr genauer Berücksichtigung des aktuellen Betriebspunktes sowie eine ständige Aktualisierung der Zulassungsbedingungen an eine tatsächliche NOx-Speicher- und/oder -Konvertierungsfähigkeit des NOx-Speicherkatalysators. Im Ergebnis kann somit eine NOx-Endemission deutlich reduziert werden und gleichzeitig der Magerbetriebsmodus über weite Betriebsbereiche eines durch die Verbrennungskraftmaschine angetriebenen Fahrzeuges eingesetzt werden, wodurch optimale Kraftstoffverbrauchswerte erzielt werden können.
- a lean operating mode of the internal combustion engine with λ> 1 is permitted as a function of predefinable threshold values for a temperature of the NO x storage catalytic converter and for at least one further operating parameter of the internal combustion engine and / or the exhaust gas tract, and
- at least one threshold value is varied as a function of a current NO x storage and / or NO x conversion capability of the NO x storage catalytic converter, an approval of the lean operation mode takes place under very close consideration of the current operating point as well as a constant updating of the admission conditions to an actual NO x storage and / or conversion capability of the NO x storage catalytic converter. As a result, thus, a NO x emissions can be significantly reduced and at the same time the lean operation mode can be used over wide operating ranges of a vehicle driven by the internal combustion engine, whereby optimum fuel consumption values can be achieved.
Es ist besonders bevorzugt vorgesehen, dass der Magerbetriebsmodus von einer NOx-Rohemission der Verbrennungskraftmaschine abhängig gemacht wird, da diese entscheidend eine NOx-Speicherrate des Speicherkatalysators beeinflusst. Ferner können Rohemissionen weiterer Abgaskomponenten, insbesondere von unverbrannten Kohlenwasserstoffen HC und/oder Kohlendioxid CO2 und/oder Kohlenmonoxid CO, berücksichtigt werden. Diese behindern in hohen Konzentrationen die Einlagerung von NOx in den Katalysator. Entsprechend kann für die Rohemission jeder dieser Komponenten oder einer Summe der Komponenten ein oberer Schwellenwert vorgegeben werden, bei dessen Überschreitung der Magerbetriebsmodus gesperrt wird. Dabei wird unter Rohemission eine Konzentration und/oder ein Massenstrom der jeweiligen Abgaskomponente stromauf eines ersten, der Verbrennungskraftmaschine nachgeschalteten Katalysators verstanden. Im Einzelfall kann eine Vorgabe einzelner Schwellenwerte für die Konzentration und den Massenstrom zweckmäßig sein. Die Rohemission von NOx oder der weiteren Abgaskomponenten kann entweder mittels entsprechend im Abgastrakt angeordneten Gassensoren gemessen oder vorzugsweise in Abhängigkeit eines aktuellen Betriebspunktes der Verbrennungskraftmaschine, insbesondere einer aktuellen Motordrehzahl und/oder Motorlast, modelliert werden. Dabei wird, falls die Verbrennungskraftmaschine sich aktuell in einem stöchiometrischen oder fetten Betriebsmodus mit λ ≤ 1 befindet, für die Modellierung ein Magerbetriebsmodus angenommen. Eine derartige Modellierung von Rohemissionen, beispielsweise anhand von gespeicherten Kennfeldern, ist hinreichend bekannt und wird hier nicht näher erläutert.It is particularly preferably provided that the lean operating mode is made dependent on a raw NO x emission of the internal combustion engine, since this decisively influences a NO x storage rate of the storage catalytic converter. Furthermore, raw emissions of further exhaust gas components, in particular of unburned hydrocarbons HC and / or carbon dioxide CO 2 and / or carbon monoxide CO, can be taken into account. These hinder the storage of NO x in the catalyst in high concentrations. Accordingly, for the raw emission of each of these components or a sum of the components, an upper threshold value can be set, above which the lean operating mode is blocked. In this context, raw emission means a concentration and / or a mass flow of the respective exhaust gas component upstream of a first catalytic converter connected downstream of the internal combustion engine. In individual cases, a specification of individual threshold values for the concentration and the mass flow may be expedient. The raw emission of NO x or the further exhaust gas components can either be measured by means of gas sensors arranged correspondingly in the exhaust gas tract or preferably in dependence on a current operating point of the internal combustion engine, in particular a current engine speed and / or engine load. In this case, if the internal combustion engine is currently in a stoichiometric or rich operating mode with λ ≤ 1, a lean operating mode is assumed for the modeling. Such a modeling of raw emissions, for example on the basis of stored maps, is well known and will not be explained in detail here.
Bezüglich der Temperatur des NOx-Speicherkatalysators kann eine lokale Temperatur einer Beschichtung des Katalysators und/oder eines Katalysatorträgers und/oder eine Temperaturverteilung über die gesamte Katalysatorlänge betrachtet werden. Dabei kann die Katalysatortemperatur aus einer stromauf und/oder stromab des Speicherkatalysators gemessenen Abgastemperatur ermittelt und/oder mittels einer im Katalysator selbst angeordneten Temperaturmessstelle gemessen werden. Es ist jedoch ebenso bekannt und zweckmäßig, die Katalysatortemperatur in Abhängigkeit eines Betriebspunktes der Verbrennungskraftmaschine unter Verwendung entsprechender Kennfelder mit guter Genauigkeit zu berechnen.With regard to the temperature of the NO x storage catalyst, a local temperature of a coating of the catalyst and / or of a catalyst support and / or a temperature distribution over the entire catalyst length can be considered. In this case, the catalyst temperature can be determined from an exhaust gas temperature measured upstream and / or downstream of the storage catalytic converter and / or measured by means of a temperature measuring point arranged in the catalytic converter itself. However, it is also known and appropriate, the catalyst temperature in dependence of an operating point of the Calculate internal combustion engine using appropriate maps with good accuracy.
Um eine Anpassung der Schwellenwerte für den zulässigen Magerbetriebsbereich an tatsächliche Erfordernisse vorzunehmen, erfolgt die Variation mindestens eines Schwellenwertes, wenn die NOx-Speicher- und/oder -Konvertierungsfähigkeit des Katalysators einen vorgegebenen Grenzwert unterschreitet, das heißt hinter einer, für einen frischen NOx-Speicherkatalysator abgeleiteten oder auf einen bereits irreversibel teilgeschädigten Katalysator abgestimmten Leistungserwartung zurückbleibt. Zur Beurteilung der NOx-Speicher- und/oder -Konvertierungsfähigkeit bieten sich verschiedene Strategien an. Insbesondere kann der Magerbetrieb über einen stromab des NOx-Speicherkatalysators beispielsweise mittels eines NOx-Sensors gemessenen NOx-Gehalt im Abgas gesteuert und beendet werden, wenn ein temporärer oder ein über die Magerbetriebsphase kumulierter NOx-Gehalt eine Erschöpfung der Speicherkapazität des Katalysators anzeigt. In diesem Fall kann eine Dauer einer so gesteuerten Magerbetriebsphase als Maß für eine eingelagerte NOx-Masse und somit für die Speicher- und -Konvertierungsfähigkeit des Katalysators herangezogen werden. Ebenso kann der gemessene, insbesondere der kumulierte NOx-Gehalt oder dessen Verlauf zur Beurteilung der NOx-Speicher- und/oder - Konvertierungsfähigkeit herangezogen werden. Alternativ kann auch eine Dauer mindestens einer vorausgegangenen NOx-Regenerationsphase als Kriterium für die Speicher- und/oder - Konvertierungsfähigkeit des Katalysators eingesetzt werden, wenn die Regeneration abhängig von einem stromab des Katalysators beispielsweise mittels einer Lambdasonde gemessenen Sauerstoffgehalt gesteuert wird. Auch hier kann statt der Dauer der Regenerationsphase auch der gemessene Sauerstoffgehalt beziehungsweise dessen Verlauf als Kriterium dienen. Ferner kann die NOx-Speicher- und/oder -Konvertierungsfähigkeit des Speicherkatalysators anhand eines Kraftstoffverbrauchs und/oder anhand einer Häufigkeit der NOx-Regeneration bestimmt werden. Unabhängig von der Wahl der Beurteilungsgröße wird das Verhalten des NOx-Speicherkatalysators stets mit dem eines frischen ungeschädigten Katalysators oder - falls bereits irreversible Schädigungen festgestellt wurden - mit einem bestenfalls zu erwartenden Verhalten verglichen.To make an adaptation of the threshold values for the permissible lean operating range to actual requirements, the variation is at least a threshold value when the NO x storage and / or conversion capacity of the catalyst drops below a predetermined limit value, that is behind a, for a fresh NO x Storage catalyst derived or tuned to an already irreversibly partially damaged catalyst performance expectancy remains. To assess the NO x storage and / or conversion capacity, various strategies are available. Specifically, the lean operation can vary over a downstream of the NO x storage catalytic converter, for example by means of a NOx sensor measured NO x content in the exhaust gas controlled and terminated when a temporary or accumulated on the lean operating phase NO x content exhaustion of the storage capacity of the catalyst displays. In this case, a duration of a thus controlled lean operating phase can be used as a measure of an incorporated NO x mass and thus for the storage and conversion capability of the catalyst. Likewise, the measured, in particular the cumulated NO x content or its course can be used to assess the NO x storage and / or conversion ability. Alternatively, it is also possible to use a duration of at least one preceding NO x regeneration phase as a criterion for the storage and / or conversion capability of the catalytic converter if the regeneration is controlled as a function of an oxygen content measured downstream of the catalytic converter, for example by means of a lambda probe. Again, instead of the duration of the regeneration phase and the measured oxygen content or its course serve as a criterion. Furthermore, the NO x storage and / or conversion capability of the storage catalytic converter can be determined on the basis of fuel consumption and / or based on a frequency of the NO x regeneration. Regardless of the choice of rating, the behavior of the NO x storage catalyst is always compared to that of a fresh, undamaged catalyst or, if irreversible damage has already been identified, to best expected behavior.
Es wird vorzugsweise immer derjenige Schwellenwert eines Betriebsparameters der Verbrennungskraftmaschine und/oder des Abgastraktes variiert, in dessen Bereich sich der Betriebzustand während der vorausgegangenen Magerphase befand oder zumindest vorwiegend befand, wobei für den Bereich entsprechende Grenzen vorzugeben sind. Lag der gegebenenfalls gemittelte Betriebszustand im Betrachtungszeitraum im Grenzbereich mehrerer Schwellenwerte, so werden vorzugsweise alle betroffenen Schwellenwerte variiert.Preferably, that threshold value of an operating parameter of the internal combustion engine and / or of the exhaust gas tract is always varied, in the region of which the operating state was during the preceding lean phase or at least predominantly, with corresponding limits for the area being specified. If the possibly averaged operating state was within the limit of several threshold values in the observation period, then preferably all affected threshold values are varied.
Lag hingegen der Betriebszustand in keinem Bereich eines Schwellenwertes, kann vorteilhaft zumindest ein Schwellenwert variiert werden. Es ist insbesondere vorgesehen, einen oberen Schwellenwert für eine im Magerbetriebsmodus zulässige Rohemission abzusenken, wenn während der vorausgegangenen Magerbetriebsphase die mittlere NOx-Rohemission der Verbrennungskraftmaschine sich im Bereich dieses oberen Schwellenwertes befand und die NOx-Speicher- und/oder -Konvertierungsfähigkeit den vorgegebenen Grenzwert unterschreitet. Umgekehrt kann bei ausreichender Speicher- und Konvertierungsfähigkeit dieser Schwellenwert angehoben werden. In analoger Weise wird für die anderen betrachteten Schwellenwerte vorgegangen. Zudem kann es insbesondere im Falle eines unteren Schwellenwertes für eine im Magerbetriebsmodus zulässige Katalysatortemperatur sinnvoll sein, eine gemessene oder berechnete irreversible Schädigung des NOx-Speicherkatalysators statt oder zusätzlich zum aktuell gemessenen Katalysatorverhalten zu berücksichtigen.If, on the other hand, the operating state was not in any range of a threshold value, advantageously at least one threshold value can be varied. In particular, it is envisaged to lower an upper threshold value for a raw emission allowable in the lean operating mode if, during the preceding lean operating phase, the average internal combustion NO x emissions of the internal combustion engine were in the range of this upper threshold value and the NO x storage and / or conversion capability was predetermined Limit value falls below. Conversely, with sufficient storage and conversion capability, this threshold can be increased. The procedure is analogous for the other thresholds considered. In addition, in particular in the case of a lower threshold value for a catalyst temperature permissible in the lean operating mode, it may be useful to take into account a measured or calculated irreversible damage to the NO x storage catalyst instead of or in addition to the currently measured catalyst behavior.
Die Verbrennungskraftmaschine verfügt vorzugsweise über eine Kraftstoffdirekteinspritzung und ist im Magerbetriebsmodus schichtladefähig. Dabei liegt im Schichtladebetrieb ein in einen Zylinder eingespritzter Kraftstoff zum Zündzeitpunkt im Wesentlichen im Bereich einer Zündkerze konzentriert vor, während im übrigen Brennraum des Zylinders praktisch reine Luft vorherrscht. Auf diese Weise lassen sich im Schichtladebetrieb besonders magere Luft-Kraftstoff-Verhältnisse und somit ein besonders niedriger Kraftstoffverbrauch realisieren. Die Ausbildung der Schichtladungswolke sowie ihr Transport zur Zündkerze kann in bekannter Weise durch wandführende Maßnahmen, beispielsweise durch eine muldenförmige Ausgestaltung eines Kolbenbodens, unterstützt werden. Ferner sind luftführende Maßnahmen bekannt und zweckdienlich, die etwa in Form einer in einem Saugrohr des Zylinders angeordneten Ladungsbewegungsklappe realisiert werden können und spezielle Luftströmungen im Brennraum bewirken.The internal combustion engine preferably has a direct fuel injection and is capable of charging in the lean operating mode. In the stratified charge mode, a fuel injected into a cylinder at the time of ignition is substantially concentrated in the region of a spark plug, while practically pure air prevails in the remaining combustion chamber of the cylinder. In this way, particularly lean air-fuel ratios and thus a particularly low fuel consumption can be realized in the stratified charge mode. The formation of the stratified charge cloud and its transport to the spark plug can be supported in a known manner by wall-guiding measures, for example by a trough-shaped design of a piston crown. Furthermore, air-conducting measures are known and expedient, which can be realized approximately in the form of a arranged in a suction pipe of the cylinder charge motion flap and cause special air currents in the combustion chamber.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further advantageous embodiments of the invention will become apparent from the remaining features mentioned in the dependent claims.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1- eine Blockdarstellung einer Verbrennungskraftmaschine mit zugeordneter Abgasanlage;
- Figur 2
- einen in Abhängigkeit von einer Katalysatortemperatur und einer NOx-Rohemission zulässigen Bereich für einen Magerbetriebsmodus und
- Figur 3
- ein Fließschema einer bevorzugten Ausführung des Verfahrens.
- FIG. 1
- a block diagram of an internal combustion engine with associated exhaust system;
- FIG. 2
- a range permissible for a lean operation mode depending on a catalyst temperature and a NO x raw emission, and
- FIG. 3
- a flow chart of a preferred embodiment of the method.
Die in Figur 1 dargestellte magerlauffähige Verbrennungskraftmaschine 10 weist in diesem Beispiel vier Zylinder 12 auf, die jeweils über ein nicht dargestelltes Kraftstoff-Direkteinspitzungssystem verfügen. Die Verbrennungskraftmaschine 10 ist ferner mittels eines wand- und luftgeführten Gemischaufbereitungsverfahrens in einem Schichtlademodus betreibbar. Ein von der Verbrennungskraftmaschine 10 erzeugtes Abgas wird in einem insgesamt mit 14 bezeichneten Abgastrakt nachbehandelt. Der Abgastrakt 14 besteht im Wesentlichen aus einem in einem Abgaskanal 16 installierten Katalysatorsystem, mit einem kleinvolumigen und motornah angeordneten Vorkatalysator 18, beispielsweise einem 3-Wege- oder Oxidationskatalysator, sowie einem typischerweise an einer Unterbodenposition angeordneten NOx-Speicherkatalysator 20. Der NOx-Speicherkatalysator 20 umfasst neben einer 3-Wege-Katalysatorkomponente einen NOx-Absorber zur Einspeicherung von im Magerbetriebsmodus nicht vollständig konvertierbaren Stickoxiden NOx. Eine stromab der Verbrennungskraftmaschine 10 angeordnete Lambdasonde 22 misst einen Sauerstoffgehalt des Abgases und ermöglicht somit eine Regelung eines den Zylindern 12 zuzuführenden Luft-Kraftstoff-Verhältnisses. Stromab des Speicherkatalysators 20 ist ein weiterer Gassensor 24 installiert, der vorzugsweise ein NOx-Sensor ist. Der NOx-Sensor 24 erkennt beispielsweise einen NOx-Durchbruch während eines Magerbetriebs und regelt somit eine diskontinuierliche Mager/Fett-Beaufschlagung des Speicherkatalysators 20 zum Zwecke seiner NOx-Regeneration. Eine Temperaturmessstelle 26 misst stromauf des NOx-Speicherkatalysators 20 eine Abgastemperatur und erlaubt Rückschlüsse auf die Temperatur des Speicherkatalysators 20. Alternativ kann die Katalysatortemperatur auch in an sich bekannter Weise anhand ausgewählter Betriebsparameter der Verbrennungskraftmaschine 10 modelliert werden. Alle Sensorsignale sowie Betriebsparameter der Verbrennungskraftmaschine 10 und des Abgastraktes 14 werden an eine Motorsteuerung 28 übermittelt. Hier erfolgt eine Auswertung der Signale und Daten und eine Steuerung der Verbrennungskraftmaschine 10 anhand gespeicherter Algorithmen und Kennfelder.The lean burn
Die Fähigkeit des NOx-Speicherkatalysators 20, Stickoxide zu speichern, ist nicht in jedem Betriebspunkt ausreichend, um eine NOx-Emission in Einklang mit zulässigen Grenzwerten zu gewährleisten. Insbesondere weist der NOx-Speicherkatalysator 20 nur in einem bestimmten Temperaturfenster eine ausreichende NOx-Speicher- und -Konvertierungsfähigkeit auf, weshalb üblicherweise ein oberer und ein unterer Schwellenwert für eine im Magerbetriebsmodus zulässige Katalysatortemperatur vorgegeben werden. Liegt die Katalysatortemperatur außerhalb des durch die Schwellenwerte begrenzten Bereiches, wird der Magerbetrieb gesperrt und die Verbrennungskraftmaschine 10 in einem stöchiometrischen oder fetten Betrieb gefahren. Erfindungsgemäß werden neben der Katalysatortemperatur zusätzliche Schwellenwerte für mindestens einen weiteren Betriebsparameter der Verbrennungskraftmaschine 10 oder des Abgastraktes 14 vorgegeben, insbesondere für eine maximal zulässige NOx-Rohemission der Verbrennungskraftmaschine 10. Ferner können vorzugsweise alle vorgegebenen Schwellenwerte adaptiert werden, wenn die NOx-Speicher- und/oder -Konvertierungsfähigkeit des Speicherkatalysators 20 unterhalb eines angeforderten Wertes liegt.The ability of the NO x storage catalyst 20 to store nitrogen oxides is not sufficient at each operating point to ensure NO x emissions consistent with allowable limits. In particular, the NO x storage catalyst 20 has sufficient NO x storage and conversion ability only in a certain temperature window, and therefore usually upper and lower thresholds for one in the Lean operating mode allowable catalyst temperature can be specified. If the catalyst temperature is outside the range limited by the threshold values, the lean operation is inhibited and the
Figur 2 zeigt die Abhängigkeit eines Zulässigkeitsbereiches für den Magerbetriebsmodus von einer Katalysatortemperatur TSK des NOx-Speicherkatalysators 20 sowie von einer NOx-Rohemission NORE der Verbrennungskraftmaschine 10. Dabei ist der für den Magerbetrieb mit λ > 1 zugelassene Bereich weiß dargestellt und der Bereich, in dem die Verbrennungskraftmaschine 10 mit einem fetten oder stöchiometrischen Gemisch mit λ ≤ 1 betrieben werden muss, schraffiert dargestellt. Der Magerbetriebsbereich wird begrenzt durch einen unteren Temperaturschwellenwert TSKMN und einen oberen Temperaturschwellenwert TSKMX für die Katalysatortemperatur TSK. Auf der anderen Seite wird der Magerbetrieb gesperrt, wenn die NOx-Rohemission NORE oberhalb eines maximalen Schwellenwertes NOREMX liegt. Eine Vorgabe weiterer Schwellenwerte ist denkbar. Beispielsweise könnte in einer dritten, nicht dargestellten Dimension ein oberer Schwellenwert für eine Rohemission von Abgasbestandteilen wie HC, CO2 und CO vorgesehen sein, die die Einlagerung von NOx in den Katalysator behindern.FIG. 2 shows the dependence of a permissible range for the lean operating mode on a catalyst temperature TSK of the NO x storage
Alle vorgegebenen Schwellenwerte sind variabel gestaltet und können in vorgebbaren Grenzen in Abhängigkeit einer aktuellen NOx-Speicher- und/oder -Konvertierungsfähigkeit des Speicherkatalysators 20 variiert werden. Dabei wird vorzugsweise derjenige Schwellenwert verändert, in dessen Grenzbereich ein Betriebspunkt im betrachteten Zeitraum einer vorausgegangenen Magerbetriebsphase lag. Lag beispielsweise, wie im Punkt 100 dargestellt, die gegebenenfalls gemittelte NOx-Rohemission der vorausgegangenen Magerbetriebsphase nahe an dem oberen Schwellenwert NOREMX, so wird dieser Schwellenwert NOREMX abgesenkt, wenn eine unzureichende NOx-Speicherfähigkeit oder -Konvertierungsfähigkeit, beispielsweise anhand einer Länge der Magerbetriebsphase oder einer stromab des Speicherkatalysators 20 gemessenen NOx-Emission, erkannt wird. Auf der anderen Seite kann im Punkt 100 unter bestimmten, noch zu erläuternden Voraussetzungen eine Anhebung des Schwellenwertes NOREMX erfolgen, wenn eine ausreichende NOx-Speicherfähigkeit vorliegt. Lag der Betriebspunkt im betrachteten Intervall dagegen im Grenzbereich des oberen Temperaturschwellenwertes TSKMX (Punkt 102), so erfolgt eine Absenkung dieser Temperaturschwelle bei unzureichender Speicherfähigkeit und gegebenenfalls einer Anhebung bei ausreichender Speicherfähigkeit. Befindet sich der Betriebspunkt in der Nähe mehrerer Schwellenwerte, so können auch alle betroffenen Schwellenwerte adaptiert werden. Befindet sich der Betriebspunkt, wie in Punkt 104 dargestellt, in keinem Grenzbereich eines Schwellenwertes, so können bei unzureichender NOx-Speicher- und/oder NOx-Konvertierungsfähigkeit mehrere, mindestens aber ein Schwellenwert variiert werden. Da die Katalysatortemperatur TSK und die NOx-Rohemission NORE den größten Einfluss auf die Speicherfähigkeit haben, erfolgt vorzugsweise eine Anpassung dieser Schwellenwerte. Im Falle eines Betriebspunktes nahe der unteren Temperaturgrenze TSKMN (Punkt 106) erfolgt bei unzureichender NOx-Speicher- und NOx-Konvertierungsfähigkeit eine Anhebung des Schwellenwertes TSKMN. In diesem Fall ist jedoch bevorzugt vorgesehen, die Lage des Schwellenwertes TSKMN auch in Abhängigkeit eines mittels eines Diagnoseverfahrens ermittelten Alterungszustandes (irreversible Schädigungen) vorzugeben, da der einer Anspringtemperatur des Katalysators entsprechende Schwellenwert TSKMN vorwiegend vom Alterungszustand abhängt.All predetermined threshold values are designed to be variable and can be varied within predefinable limits as a function of a current NO x storage and / or conversion capability of the storage
Figur 3 zeigt ein Ablaufdiagramm des erfindungsgemäßen Verfahrens gemäß dem Betriebspunkt 100 der Figur 2. Der Verfahrensablauf lässt sich in zwei Hauptabschnitte gliedern, nämlich Überprüfung der NOx-Speicher- und NOx-Konvertierungsfähigkeit des Speicherkatalysators 20 und Festlegung der Schwellenwerte des Magerbetriebsbereiches einerseits (Schritte S1 bis S5) und Zulassung oder Sperrung des Magerbetriebs in einem aktuellen Betriebspunkt andererseits (S6 bis S11). Zunächst erfolgt in S1 eine Initialisierung, bei der unter anderem die Schwellenwerte für den Magerbetriebsbereich und ein Grenzwert für NOx-Speicher- und NOx-Konvertierungsfähigkeit des NOx-Speicherkatalysators 20 vorgegeben werden. Diese Vorgaben erfolgen anhand von Erfahrungswerten eines ungeschädigten und vollständig regenerierten Speicherkatalysators. In einer ersten Abfrage in S2 wird eine Überprüfung der Speicher- und Konvertierungsfähigkeit des Speicherkatalysators 20 vorgenommen. In diesem Beispiel erfolgt diese Überprüfung anhand einer in der vorausgegangenen Magerphase mittels des NOx-Sensors 24 stromab des NOx-Speicherkatalysators 20 gemessenen und aufintegrierten NOx-Emission NOHK. Liegt diese NOx-Emission NOHK oberhalb eines in S1 vorgegebenen Grenzwertes NOHKGW, wird in S3 der obere Schwellenwert NOREMX für die NOx-Rohemission der Verbrennungskraftmaschine 10 um das Inkrement ΔNORE abgesenkt. Es wird hier nämlich davon ausgegangen, dass der Schwellenwert NOREMX zu hoch angesetzt war und der NOx-Speicherkatalysator 20 aufgrund der hohen NOx-Rohemission (vgl. Punkt 100 in Figur 2) keine ausreichende Speicherfähigkeit aufwies. Wird hingegen die Abfrage in S2 verneint und somit eine ausreichende NOx-Speicher- und NOx-Konvertierungsfähigkeit festgestellt, geht das Verfahren zu der Abfrage S4 über, wo überprüft wird, ob die NOx-Rohemission NORE der vorausgegangenen Magerphase sehr dicht an der oberen Emissionsschwelle NOREMX lag. Wird diese Abfrage bejaht, wird die NOx-Emissionsschwelle NOREMX in S5 um das Inkrement ΔNORE erhöht. Durch die Schleife der Schritte S4 und S5 wird gewährleistet, dass der zulässige Magerbereich nicht unnötig eingeschränkt wird. Bei Verneinung der Abfrage in S4 erfolgt keine Variation der Emissionsschwelle NOREMX, diese wird vielmehr beibehalten.3 shows a flowchart of the method according to the invention in accordance with the
In S6 wird eine aktuelle NOx-Rohemission NOREF durch Messung der NOx-Konzentration stromauf des Katalysatorsystems 18, 20 oder durch Berechnung anhand aktueller Betriebsparameter der Verbrennungskraftmaschine 10 ermittelt. Befindet sich die Verbrennungskraftmaschine 10 aktuell in einem stöchiometrischen oder mageren Betriebsmodus, wird für diese Berechnung ein magerer Betriebsmodus angenommen. Die Berechnung kann zum Beispiel anhand von abgespeicherten Kennfeldern erfolgen, welche eine Information über die zu erwartende NOx-Rohemission in Abhängigkeit einer aktuellen Motordrehzahl und/oder Motorlast und/oder anderer betriebsrelevanter Größen enthalten. Zur Vermeidung dynamischer Effekte kann eine Mittelung der so ermittelten NOx-Rohemission NOREF über eine Mindestzeit erfolgen. In einer Abfrage S7 wird überprüft, ob die in S6 ermittelte Rohemission NOREF unterhalb des in S2 bis S5 festgelegten Emissionsschwellenwertes NOREMX liegt. Ist dies der Fall, wird in S8 die aktuelle Katalysatortemperatur TSK des NOx-Speicherkatalysators 20 durch Messung oder Modellierung ermittelt. Anschließend wird in S9 abgefragt, ob diese aktuelle Katalysatortemperatur TSK im zulässigen Temperaturbereich liegt, das heißt größer ist als die untere Temperaturschwelle TSKMN und kleiner als die obere Temperaturschwelle TSKMX. Wird auch diese Abfrage bejaht, befindet sich der aktuelle Betriebspunkt der Verbrennungskraftmaschine 10 sowie der Abgasanlage 14 in dem für den Magerbetriebsmodus zulässigen Bereich. Folglich wird der Magerbetriebsmodus in S10 zugelassen. Bei Verneinung einer der Abfragen S7 und S9 liegt mindestens ein Betriebsparameter außerhalb des zulässigen Bereiches, so dass in S11 der Magerbetriebsbereich gesperrt wird und die Verbrennungskraftmaschine 10 mit einem stöchiometrischen oder fetten Luft-Kraftstoff-Gemisch beaufschlagt wird.In S6, a current NO x raw emission NOREF is determined by measuring the NO x concentration upstream of the
- 1010
- VerbrennungskraftmaschineInternal combustion engine
- 1212
- Zylindercylinder
- 1414
- Abgastraktexhaust tract
- 1616
- Abgaskanalexhaust duct
- 1818
- Vorkatalysatorprecatalyzer
- 2020
- NOx-SpeicherkatalysatorNO x storage catalyst
- 2222
- Lambdasondelambda probe
- 2424
- Gassensor / NOx-SensorGas sensor / NO x sensor
- 2626
- TemperaturmessstelleTemperature measuring point
- 2828
- Motorsteuerungmotor control
- λλ
- Luft-Kraftstoff-Verhältnis LambdaAir-fuel ratio lambda
- NOHKNOHK
- NOx-Emission hinter NOx-SpeicherkatalysatorNO x emission behind NO x storage catalyst
- NOHKGWNOHKGW
- Grenzwert für die NOx-EmissionLimit value for NO x emissions
- NORENORE
- NOx-RohemissionNO x crude emission
- NOREFNOREF
- aktuelle (gemessene oder modellierte) NOx-Rohemissioncurrent (measured or modeled) NO x raw emission
- NOREMXNOREMX
- oberer Schwellenwert für die NOx-Rohemissionupper threshold for NO x raw emissions
- ΔNOREΔNORE
- Inkrement des Schwellenwertes für die NOx-RohemissionIncrement of the NO x raw emission threshold
- TSKTSK
- Katalysatortemperatur des NOx-SpeicherkatalysatorsCatalyst temperature of the NO x storage catalyst
- TSKMNTSKMN
- unterer Schwellenwert für die Katalysatortemperaturlower threshold for the catalyst temperature
- TSKMXTSKMX
- oberer Schwellenwert für die Katalysatortemperaturupper threshold for the catalyst temperature
Claims (18)
- Method for controlling an operating mode of an internal combustion engine (10) which is capable of running in a lean-burn mode and has an exhaust section (14), which comprises at least one NOx storage catalytic converter (20) and a gas sensor (24) connected downstream of it, in which method- a lean-burn operating mode of the internal combustion engine (10) with λ > 1 is permitted above a lower threshold value (TSKMN) and below an upper threshold value (TSKMX) for a temperature (TSK) of the NOx storage catalytic converter (20) and as a function of at least one further threshold value for at least one further operating parameter of the internal combustion engine (10) and/or of the exhaust section (14), and- at least one of the threshold values is varied as a function of a current NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20).
- Method according to Claim 1, characterized in that the at least one further operating parameter comprises an untreated NOx emission (NORE) from the internal combustion engine (10) and/or an untreated emission of a further exhaust-gas component.
- Method according to Claim 2, characterized in that the further exhaust-gas component comprises unburnt hydrocarbons (HC) and/or carbon dioxide (CO2) and/or carbon monoxide (CO).
- Method according to Claim 2 or 3, characterized in that the untreated NOx emission (NORE) and/or the untreated emission of the further exhaust-gas component is measured or is modelled as a function of an operating point of the internal combustion engine (10) assuming the lean-burn operating mode.
- Method according to one of Claims 2 to 4, characterized in that the untreated emission comprises a concentration and/or a mass flow of NOx or of the other exhaust-gas component upstream of a first catalytic converter (18) connected downstream of the internal combustion engine (10).
- Method according to one of the preceding claims, characterized in that the temperature (TSK) of the NOx storage catalytic converter (20) comprises a local temperature of a catalyst coating and/or of a catalyst support and/or a temperature distribution.
- Method according to Claim 6, characterized in that the temperature (TSK) is measured by means of a temperature-measuring position (26) arranged upstream of and/or downstream of and/or in the NOx storage catalytic converter (20) and/or is calculated as a function of an operating point of the internal combustion engine (10).
- Method according to one of the preceding claims, characterized in that the at least one threshold value is varied if the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) drops below a predetermined limit value.
- Method according to Claim 8, characterized in that the lean-burn operation is controlled as a function of an NOx content in the exhaust gas measured downstream of the NOx storage catalytic converter (20), and the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) is determined on the basis of a duration of at least one preceding lean-burn operating phase and/or on the basis of the measured NOx content or its profile.
- Method according to Claim 8 or 9, characterized in that an NOx regeneration is controlled as a function of an oxygen content in the exhaust gas measured downstream of the NOx storage catalytic converter (20), and the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) is determined on the basis of a duration of at least one preceding NOx regeneration phase and/or on the basis of the measured oxygen content or its profile.
- Method according to one of Claims 8 to 10, characterized in that the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) is determined on the basis of a fuel consumption and/or on the basis of a frequency of the NOx regeneration.
- Method according to one of preceding claims, characterized in that the threshold value of an operating parameter of the internal combustion engine (10) and/or of the exhaust section (14) which is varied is the one in whose vicinity an operating state was during the preceding lean-burn operating phase.
- Method according to Claim 12, characterized in that an upper threshold value (NOREMX) for an untreated NOx emission (NORE) which is permissible for the lean-burn operating mode is lowered if during the preceding lean-burn operating phase the untreated NOx emission (NORE) from the internal combustion engine (10) was in the vicinity of the upper threshold value (NOREMX) and the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) drops below the predetermined limit value.
- Method according to Claim 12 or 13, characterized in that an upper threshold value (TSKMX) for a catalytic converter temperature (TSK) of the NOx storage catalytic converter (20) which is permissible for the lean-burn operating mode is lowered if during the preceding lean-burn operating phase the catalytic converter temperature (TSK) was in the vicinity of the upper threshold value (TSKMX) and the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) drops below the predetermined limit value.
- Method according to Claim 12 or 13, characterized in that a lower threshold value (TSKMN) for a catalytic converter temperature (TSK) of the NOx storage catalytic converter (20) which is permissible for the lean-burn operating mode is raised if during the preceding lean-burn operating phase the catalytic converter temperature (TSK) was in the vicinity of the lower threshold value (TSKMN) and the NOx storage and/or NOx conversion capacity of the NOx storage catalytic converter (20) drops below the predetermined limit value or a measured or calculated irreversible damage to the NOx storage catalytic converter (20) is established.
- Method according to one of the preceding claims, characterized in that the lean-burn operating mode is permitted if the current catalytic converter temperature (TSK) of the NOx storage catalytic converter (20) is greater than the lower temperature threshold value (TSKMN) and lower than the upper temperature threshold value (TSKMX).
- Method according to one of the preceding claims, characterized in that the lean-burn operating mode is permitted if the current, measured or calculated (assuming lean-burn operation) untreated NOx emission (NORE) from the internal combustion engine (10) drops below the upper threshold value (NOREMX) for the untreated NOx emission.
- Method according to one of the preceding claims, characterized in that the internal combustion engine (10) has direct fuel injection and is capable of stratified-charge operation in the lean-burn operating mode.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2001117434 DE10117434A1 (en) | 2001-04-03 | 2001-04-03 | Method for controlling an operating mode of a lean-burn internal combustion engine |
DE10117434 | 2001-04-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1247963A2 EP1247963A2 (en) | 2002-10-09 |
EP1247963A3 EP1247963A3 (en) | 2003-09-17 |
EP1247963B1 true EP1247963B1 (en) | 2006-04-12 |
Family
ID=7680797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20020090054 Expired - Lifetime EP1247963B1 (en) | 2001-04-03 | 2002-02-13 | Method for controlling of an operating mode of a lean burn internal combustion engine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1247963B1 (en) |
DE (2) | DE10117434A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10152670A1 (en) * | 2001-10-05 | 2003-05-22 | Volkswagen Ag | Method and device for controlling a lean-burn internal combustion engine |
DE10248527A1 (en) * | 2002-10-14 | 2004-07-01 | Volkswagen Ag | Method and device for controlling a lean-burn internal combustion engine |
DE10249609B4 (en) * | 2002-10-18 | 2011-08-11 | Volkswagen AG, 38440 | Method for controlling a NOx storage catalytic converter |
DE10249610B4 (en) * | 2002-10-18 | 2010-10-07 | Volkswagen Ag | Method and device for controlling a NOx storage catalytic converter |
DE10302700B4 (en) * | 2002-12-31 | 2013-01-17 | Volkswagen Ag | Method and device for diagnosing a NOx storage catalytic converter in the exhaust gas tract of an internal combustion engine |
DE10358197A1 (en) * | 2003-12-12 | 2005-07-14 | Robert Bosch Gmbh | Method for optimizing the fuel consumption of an internal combustion engine |
CN114810396B (en) * | 2021-06-04 | 2023-05-26 | 长城汽车股份有限公司 | Engine control device, method for adjusting nitrogen oxide conversion rate and automobile |
CN114183263B (en) * | 2021-10-29 | 2024-03-05 | 东风商用车有限公司 | Engine control method with multiple control modes |
CN114607515B (en) * | 2022-03-17 | 2023-01-06 | 潍柴动力股份有限公司 | Engine oil injection control method, device, equipment and storage medium |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19543219C1 (en) * | 1995-11-20 | 1996-12-05 | Daimler Benz Ag | Diesel engine operating method |
DE59800195D1 (en) * | 1998-01-09 | 2000-08-17 | Ford Global Tech Inc | Process for the regeneration of a nitrogen oxide trap in the exhaust system of an internal combustion engine |
DE19850786A1 (en) * | 1998-08-05 | 2000-02-17 | Volkswagen Ag | Regulation of a NOx storage catalytic converter |
DE19929292A1 (en) | 1999-06-25 | 2000-12-28 | Volkswagen Ag | Control of the operating condition of motor vehicle internal combustion engine dependent upon the catalyst cell temperature uses set detected threshold levels to vary engine control parameters |
DE19932290A1 (en) * | 1999-07-10 | 2001-01-11 | Volkswagen Ag | Method for controlling an operating mode of an internal combustion engine |
DE19933712A1 (en) * | 1999-07-19 | 2001-05-17 | Volkswagen Ag | Method for controlling an operating mode of an internal combustion engine |
-
2001
- 2001-04-03 DE DE2001117434 patent/DE10117434A1/en not_active Withdrawn
-
2002
- 2002-02-13 EP EP20020090054 patent/EP1247963B1/en not_active Expired - Lifetime
- 2002-02-13 DE DE50206351T patent/DE50206351D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1247963A2 (en) | 2002-10-09 |
DE10117434A1 (en) | 2002-10-10 |
DE50206351D1 (en) | 2006-05-24 |
EP1247963A3 (en) | 2003-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1660764B1 (en) | Hybrid vehicle and method for operating a hybrid vehicle | |
EP1161618B1 (en) | Method of desulfating an nox storage catalyst | |
DE60127013T2 (en) | Control to improve the behavior of a vehicle | |
DE19954549A1 (en) | Process for operating an exhaust gas cleaning system with nitrogen oxide adsorber and loading sensor | |
EP1247963B1 (en) | Method for controlling of an operating mode of a lean burn internal combustion engine | |
EP1366278A1 (en) | METHOD FOR catalyst temperature control | |
EP1143131B1 (en) | Multiple exhaust gas system and method to regulate an air/fuel ratio of a multi-cylinder internal combustion engine | |
DE10153901B4 (en) | Method and device for desulfurization of a diesel engine downstream NOx storage catalyst | |
DE10226873B4 (en) | Method for controlling the mode selection of an internal combustion engine | |
DE10148128A1 (en) | Method and device for reducing pollutant emissions from an internal combustion engine | |
WO2001009491A1 (en) | Method for regulating the exhaust gas temperature of a lean combustion engine during the desulphurization of a catalyst | |
EP1370758B1 (en) | Method for controlling the warm-up process of a catalytic converter system | |
EP1241336B1 (en) | Method and device for regulating an external exhaust gas recirculation rate | |
DE102010047415A1 (en) | Method for operating an internal combustion engine and for the execution of the method set up control device | |
DE10154041A1 (en) | Process for reducing the pollutant emission of an I.C. engine exhaust gas comprises using a lower temperature threshold value for a temperature of catalysts and/or the impinged exhaust gas depending on the aging of the catalysts | |
EP1300572B1 (en) | Method and device for controlling a combustion engine capable of lean running | |
DE10202935A1 (en) | Operating process for removal of sulfur deposits from the pre-catalyst in an IC engine exhaust system by periodic inducing of high temperature with alternating lean and rich lambda conditions | |
DE10115968A1 (en) | Process for heating a catalyst | |
WO2004022953A1 (en) | Method for controlling the lean operation of an internal combustion engine, especially an internal combustion engine of a motor vehicle, provided with a nox storage catalyst | |
DE10338181B4 (en) | Method and device for influencing the temperature of a catalyst system | |
EP1387070B1 (en) | Procedure and device for the operating of an exhaust purification intallation for an internal combustion engine | |
EP1435444A2 (en) | Method for operating an internal combustion engine with stabilized emissions and vehicle with stabilized emissions | |
EP1491749B1 (en) | Method for operating an internal combustion engine | |
EP1540151A1 (en) | Method for determining the degree of ageing of an no sb x /sb -storage catalyst of an internal combustion engine, especially in a motor vehicle | |
DE10253613B4 (en) | Method for operating an internal combustion engine of a vehicle, in particular a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040317 |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20040517 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HAHN, HERMANN, DR. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060412 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50206351 Country of ref document: DE Date of ref document: 20060524 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060723 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060727 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070115 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060412 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 50206351 Country of ref document: DE Effective date: 20110716 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50206351 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160229 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160226 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50206351 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170213 |