EP1247963A2 - Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine - Google Patents

Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine Download PDF

Info

Publication number
EP1247963A2
EP1247963A2 EP02090054A EP02090054A EP1247963A2 EP 1247963 A2 EP1247963 A2 EP 1247963A2 EP 02090054 A EP02090054 A EP 02090054A EP 02090054 A EP02090054 A EP 02090054A EP 1247963 A2 EP1247963 A2 EP 1247963A2
Authority
EP
European Patent Office
Prior art keywords
catalytic converter
storage
internal combustion
combustion engine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02090054A
Other languages
English (en)
French (fr)
Other versions
EP1247963B1 (de
EP1247963A3 (de
Inventor
Hermann Dr. Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1247963A2 publication Critical patent/EP1247963A2/de
Publication of EP1247963A3 publication Critical patent/EP1247963A3/de
Application granted granted Critical
Publication of EP1247963B1 publication Critical patent/EP1247963B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control

Definitions

  • the invention relates to a method for controlling an operating mode lean-burn internal combustion engine with the features of the preamble of Claim 1.
  • NO x storage catalysts which, in addition to a 3-way catalytic component, have a NO x storage component for the absorption of NO x in the lean exhaust gas.
  • NO x regeneration lean and rich exhaust gas are alternately applied to the NO x storage catalytic converters in discontinuous operation, with the NO x stored in lean operation being released and reduced in the rich intervals.
  • these rich operating intervals which are necessary due to a finite NO x storage capacity of a storage catalytic converter, lead to a partial compensation of the consumption advantage achieved in lean operation.
  • a NO x storage and convertibility of the storage catalytic converter depends on various operating parameters and also changes with aging of the catalytic converter. In particular, there is sufficient storage capacity only in a certain temperature range of the NO x storage catalytic converter. It is therefore known, for example from DE 199 32 290 A1 and DE 199 29 292 A1, to make approval for lean operation of the internal combustion engine dependent on the catalytic converter temperature of the NO x storage catalytic converter and to specify a lower and upper temperature threshold for the permissible lean operating range in order to specify NO Avoid X breakthroughs.
  • DE 198 50 786 A1 also discloses a method according to which these upper and lower temperature thresholds are adapted to the NO x storage capacity of the catalytic converter, which is monitored on the basis of a duration of a previous lean interval or NO x regeneration interval.
  • the catalytic converter temperature alone is not a sufficient criterion for the NO x storage and convertibility of the catalytic converter and thus for the approval of the lean operating mode. Rather, the NO X storage behavior of the catalyst depends on other influencing variables. For example, an aged storage catalytic converter with an average catalytic converter temperature of 350 ° C in operating points with low raw NO x emissions can still have sufficient NO x storage and conversion capacity, whereas with high NO x raw emissions the storage capacity can decrease to such an extent that it is caused by it high regeneration frequency completely consumes the consumption advantage gained through lean operation. In such a case, the adjustment of the temperature thresholds does not show the desired success.
  • the object of the present invention is to provide a method for controlling an operating mode of a lean-running internal combustion engine, which overcomes the deficiencies of the prior art and allows a lean operating mode of the internal combustion engine to be adjusted more precisely to a current operating point and to a state of the NO x storage catalytic converter.
  • the lean operating mode is made dependent on a raw NO x emission of the internal combustion engine, since this decisively influences a NO x storage rate of the storage catalytic converter.
  • Raw emissions of further exhaust gas components in particular of unburned hydrocarbons HC and / or carbon dioxide CO 2 and / or carbon monoxide CO, can also be taken into account. In high concentrations, these hinder the incorporation of NO x into the catalyst. Accordingly, an upper threshold value can be specified for the raw emission of each of these components or a sum of the components, the lean operating mode of which is blocked when exceeded.
  • Raw emission is understood to mean a concentration and / or a mass flow of the respective exhaust gas component upstream of a first catalytic converter connected downstream of the internal combustion engine.
  • the raw emission of NO x or the further exhaust gas components can either be measured by means of gas sensors arranged in the exhaust tract or preferably modeled as a function of a current operating point of the internal combustion engine, in particular a current engine speed and / or engine load. If the internal combustion engine is currently in a stoichiometric or rich operating mode with ⁇ 1 1, a lean operating mode is assumed for the modeling.
  • Such modeling of raw emissions for example on the basis of stored characteristic maps, is sufficiently known and is not explained in more detail here.
  • a local temperature of a coating of the catalytic converter and / or a catalytic converter support and / or a temperature distribution over the entire catalytic converter length can be considered.
  • the catalytic converter temperature can be determined from an exhaust gas temperature measured upstream and / or downstream of the storage catalytic converter and / or measured by means of a temperature measuring point arranged in the catalytic converter itself.
  • At least one threshold value is varied when the NO x storage and / or conversion capacity of the catalytic converter falls below a predetermined limit value, that is to say behind a threshold value for a fresh NO x - Storage catalytic converter derived performance or matched to an already irreversibly partially damaged catalytic converter performance performance remains.
  • a predetermined limit value that is to say behind a threshold value for a fresh NO x - Storage catalytic converter derived performance or matched to an already irreversibly partially damaged catalytic converter performance remains.
  • the lean operation can vary over a downstream of the NO X storage catalytic converter, for example by means of a NOx sensor measured NO x content controlled in the exhaust gas and terminated when a temporary or accumulated on the lean operating phase NO x content exhaustion of the storage capacity of the catalyst displays.
  • the duration of a lean operating phase controlled in this way can be used as a measure of an embedded NO x mass and thus of the storage and conversion capacity of the catalytic converter.
  • the measured, in particular the accumulated, NO x content or its course can be used to assess the ability to store and / or convert NO x .
  • a duration of at least one previous NO X regeneration phase can also be used as a criterion for the storage and / or convertibility of the catalyst if the regeneration is controlled depending on an oxygen content measured downstream of the catalyst, for example by means of a lambda probe.
  • the measured oxygen content or its course can serve as a criterion.
  • the NO x storage and / or conversion capability of the storage catalytic converter can be determined on the basis of fuel consumption and / or on the basis of a frequency of NO x regeneration.
  • the behavior of the NO x storage catalytic converter is always compared with that of a fresh, undamaged catalytic converter or - if irreversible damage has already been found - with a behavior that can be expected at best.
  • That threshold value of an operating parameter is preferably always the Internal combustion engine and / or the exhaust tract varies, in the area of which Operating state was during the previous lean phase or at least prevailing, with appropriate limits to be specified for the area. lag the possibly averaged operating status in the observation period in the limit range several threshold values, all the threshold values concerned are preferably varied.
  • At least one threshold value can advantageously be varied.
  • it is provided to lower an upper threshold value for a raw emission permissible in the lean operating mode if, during the previous lean operating phase, the mean raw NO x emission of the internal combustion engine was in the range of this upper threshold value and the NO x storage and / or conversion capacity was within the specified range Falls below the limit.
  • this threshold can be raised if there is sufficient storage and conversion capacity.
  • the internal combustion engine preferably has direct fuel injection and is capable of stratified loading in lean operating mode.
  • particularly lean air-fuel ratios can be achieved in stratified charge mode and thus realize a particularly low fuel consumption.
  • the Training of the stratified charge cloud and its transport to the spark plug can be done in a known manner Way through wall-guiding measures, for example by a trough-shaped Design of a piston crown are supported.
  • air leading Measures known and useful such as in the form of a suction pipe of the Cylinder-arranged charge movement flap can be realized and special Cause air currents in the combustion chamber.
  • the lean-running internal combustion engine 10 shown in FIG. 1 has four cylinders 12, each of which has a direct fuel injection system (not shown).
  • the internal combustion engine 10 can also be operated in a stratified charge mode by means of a wall and air-guided mixture preparation method.
  • An exhaust gas generated by the internal combustion engine 10 is aftertreated in an exhaust tract designated overall by 14.
  • the exhaust section 14 consists essentially of a installed in an exhaust passage 16 catalyst system with a small volume and close-coupled pre-catalyst 18, for example a 3-way or oxidizing catalyst, and a typically arranged on an underbody position NO X storing catalyst 20, the NO X -
  • storage catalytic converter 20 includes a NO x absorber for storing nitrogen oxides NO x which are not fully convertible in the lean operating mode.
  • a lambda probe 22 arranged downstream of the internal combustion engine 10 measures an oxygen content of the exhaust gas and thus enables regulation of an air-fuel ratio to be supplied to the cylinders 12.
  • a further gas sensor 24, which is preferably a NO x sensor, is installed downstream of the storage catalytic converter 20.
  • the NO x sensor 24 detects, for example, a NO x breakthrough during a lean operation and thus regulates a discontinuous lean / fat loading of the storage catalytic converter 20 for the purpose of its NO x regeneration.
  • a temperature measuring point 26 measures an exhaust gas temperature upstream of the NO x storage catalytic converter 20 and permits conclusions to be drawn about the temperature of the storage catalytic converter 20.
  • the catalytic converter temperature can also be modeled in a manner known per se using selected operating parameters of the internal combustion engine 10. All sensor signals and operating parameters of the internal combustion engine 10 and the exhaust tract 14 are transmitted to an engine control 28. Here, the signals and data are evaluated and the internal combustion engine 10 is controlled using stored algorithms and maps.
  • the ability of the NO x storage catalytic converter 20 to store nitrogen oxides is not sufficient at every operating point to ensure NO x emission in accordance with permissible limit values.
  • the NO x storage catalytic converter 20 has sufficient NO x storage and conversion capability only in a certain temperature window, which is why an upper and a lower threshold value are usually specified for a catalytic converter temperature that is permissible in the lean operating mode. If the catalyst temperature lies outside the range limited by the threshold values, the lean operation is blocked and the internal combustion engine 10 is operated in a stoichiometric or rich operation.
  • additional threshold values for at least one further operating parameter of the internal combustion engine 10 or the exhaust tract 14 are specified, in particular for a maximum permissible NO x raw emission of the internal combustion engine 10. Furthermore, all specified threshold values can preferably be adapted if the NO x storage and / or conversion capacity of the storage catalytic converter 20 is below a requested value.
  • FIG. 2 shows the dependency of an admissibility range for the lean operating mode on a catalytic converter temperature TSK of the NO x storage catalytic converter 20 and on a raw NO x emission NORE of the internal combustion engine 10.
  • the area permitted for the lean mode with ⁇ > 1 is shown in white and the area hatched in which the internal combustion engine 10 must be operated with a rich or stoichiometric mixture with ⁇ institution 1.
  • the lean operating range is limited by a lower temperature threshold TSKMN and an upper temperature threshold TSKMX for the catalyst temperature TSK.
  • the lean operation is blocked when the NO X raw emission NORE is above a maximum threshold value NOREMX.
  • a specification of further threshold values is conceivable. For example, an upper threshold value for a raw emission of exhaust gas components such as HC, CO 2 and CO could be provided in a third dimension, not shown, which hinder the incorporation of NO x into the catalytic converter.
  • All predefined threshold values are designed to be variable and can be varied within predefinable limits depending on a current NO x storage and / or conversion capacity of the storage catalytic converter 20.
  • that threshold value is preferably changed, in the border area of which an operating point was in the period under consideration of a previous lean operating phase. For example, as shown in point 100, if the possibly averaged raw NO x emission of the previous lean operating phase was close to the upper threshold value NOREMX, this threshold value NOREMX is reduced if there is insufficient NO x storage capacity or conversion capacity, for example based on a length of the lean operating phase or a NO x emission measured downstream of the storage catalytic converter 20 is detected.
  • the point NOREMX can be raised under point 100 under certain conditions to be explained, if there is sufficient NO X storage capacity.
  • the operating point was within the limit range of the upper temperature threshold TSKMX (point 102) in the interval under consideration, this temperature threshold is lowered if the storage capacity is insufficient and if necessary increased if the storage capacity is sufficient.
  • the operating point is in the vicinity of several threshold values, all of the threshold values concerned can also be adapted. If, as shown in point 104, the operating point is not in the limit range of a threshold value, several, but at least one threshold value can be varied if the NO x storage and / or NO x conversion capability is insufficient.
  • the threshold value TSKMN is increased if the NO x storage and NO x conversion capability is insufficient. In this case, however, provision is preferably made for the position of the threshold value TSKMN to also be dependent on an aging condition (irreversible damage) determined using a diagnostic method, since the threshold value TSKMN corresponding to a light-off temperature of the catalytic converter mainly depends on the aging condition.
  • FIG. 3 shows a flowchart of the method according to the invention according to operating point 100 of FIG. 2.
  • the process flow can be divided into two main sections, namely checking the NO x storage and NO x conversion capability of the storage catalytic converter 20 and determining the threshold values of the lean operating range on the one hand (steps S1 to S5) and approval or blocking of lean operation at a current operating point on the other hand (S6 to S11).
  • initialization takes place in S1, in which, among other things, the threshold values for the lean operating range and a limit value for NO x storage and NO x conversion capability of the NO x storage catalytic converter 20 are specified. These specifications are based on empirical values of an undamaged and fully regenerated storage catalytic converter.
  • a first query in S2 the storage and conversion capability of the storage catalytic converter 20 is checked.
  • this check is made 20 measured with reference to a downstream in the preceding lean phase by means of the NOx sensor 24 of the NO X storage catalytic converter and NO x emissions aufintegr thinking NOHK. If this NO X emission NOHK is above a limit value NOHKGW specified in S1, the upper threshold value NOREMX for the NO X raw emission of the internal combustion engine 10 is lowered by the increment ⁇ NORE in S3. It is assumed here that the threshold value NOREMX was set too high and that the NO x storage catalytic converter 20 did not have sufficient storage capacity due to the high raw NO x emission (see point 100 in FIG. 2).
  • the method goes to query S4, where it is checked whether the NO x raw emission NORE of the previous lean phase is very close to the upper emission threshold was NOREMX. If this query is answered in the affirmative, the NO X emission threshold NOREMX is increased in S5 by the increment ⁇ NORE. The loop in steps S4 and S5 ensures that the permissible lean range is not unnecessarily restricted. If the query in S4 is negated, there is no variation of the NOREMX emission threshold, but rather it is retained.
  • a current NO X raw emission NOREF is determined by measuring the NO X concentration upstream of the catalyst system 18, 20 or by calculation based on current operating parameters of the internal combustion engine 10. If the internal combustion engine 10 is currently in a stoichiometric or lean operating mode, a lean operating mode is assumed for this calculation. The calculation can be carried out, for example, on the basis of stored characteristic diagrams which contain information about the expected NO x raw emission as a function of a current engine speed and / or engine load and / or other operationally relevant variables. To avoid dynamic effects, the NO X raw emission NOREF determined in this way can be averaged over a minimum time.
  • a query S7 checks whether the raw emission NOREF determined in S6 is below the emission threshold value NOREMX defined in S2 to S5. If this is the case, the current catalytic converter temperature TSK of the NO x storage catalytic converter 20 is determined in S8 by measurement or modeling. S9 then queries whether this current catalyst temperature TSK is in the permissible temperature range, that is to say is greater than the lower temperature threshold TSKMN and less than the upper temperature threshold TSKMX. If this query is also answered in the affirmative, the current operating point of the internal combustion engine 10 and of the exhaust system 14 is in the range permissible for the lean operating mode. As a result, the lean operating mode is permitted in S10.
  • At least one operating parameter lies outside the permissible range, so that the lean operating range is blocked in S11 and the internal combustion engine 10 is charged with a stoichiometric or rich air / fuel mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine (10) mit einem Abgastrakt (14), der mindestens einen NOx-Speicherkatalysator (20) und einem diesem nachgeschalteten Gassensor (24) umfasst. Hierzu ist vorgesehen, dass ein Magerbetriebsmodus der Verbrennungskraftmaschine (10) mit λ > 1 in Abhängigkeit von vorgebbaren Schwellenwerten für eine Temperatur (TSK) des NOx-Speicherkatalysators (20) und für mindestens einen weiteren Betriebsparameter der Verbrennungskraftmaschine (10) und/oder des Abgastraktes (14) zugelassen wird und mindestens ein Schwellenwert in Abhängigkeit einer aktuellen NOx-Speicherund/oder NOx-Konvertierungsfähigkeit des NOx-Speicherkatalysators (20) variiert wird. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine mit den Merkmalen des Oberbegriffes des Anspruchs 1.
Zur Senkung eines Kraftstoffverbrauchs werden heutige Verbrennungskraftmaschinen über möglichst weite Betriebsbereiche in einem mageren Betriebsmodus betrieben, das heißt mit einem Luft-Kraftstoff-Gemisch mit Luftüberschuss (λ > 1). Im Falle von Verbrennungskraftmaschinen, die über eine Kraftstoffdirekteinspritzung verfügen, können durch Realisierung eines so genannten Schichtladebetriebes, bei dem der eingespritzte Kraftstoff sich im Wesentlichen im Bereich einer Zündkerze eines Zylinders konzentriert, besonders magere Luft-Kraftstoff-Gemische und damit besonders hohe Verbrauchsvorteile dargestellt werden. Ein gewisses Problem des mageren Betriebsmodus stellen bekanntlich Stickoxide NOX des Abgases dar, die sich aufgrund des Sauerstoffüberschusses im mageren Abgas an herkömmlichen Oxidations- oder 3-Wege-Katalysatoren nicht vollständig zu umweltneutralem Stickstoff N2 umsetzen lassen. Zur Überwindung dieses Problems ist bekannt, NOX-Speicherkatalysatoren einzusetzen, die neben einer 3-Wege-katalytischen Komponente eine NOX-Speicherkomponente zur Absorption von NOX im mageren Abgas aufweisen. Zum Zwecke einer NOX-Regeneration werden NOX-Speicherkatalysatoren im diskontinuierlichen Betrieb alternierend mit magerem und fettem Abgas beaufschlagt, wobei in den fetten Intervallen das im Magerbetrieb eingelagerte NOX freigesetzt und reduziert wird. Diese aufgrund einer endlichen NOX-Speicherkapazität eines Speicherkatalysators erforderlichen fetten Betriebsintervalle führen allerdings zu einer teilweisen Kompensation des im Magerbetrieb erzielten Verbrauchsvorteils.
Eine NOX-Speicher- und Konvertierungsfähigkeit des Speicherkatalysators hängt von verschiedenen Betriebsparametern ab und verändert sich zudem mit einer Alterung des Katalysators. Insbesondere liegt nur in einem gewissen Temperaturbereich des NOX-Speicherkatalysators eine ausreichende Speicherfähigkeit vor. Daher ist beispielsweise aus der DE 199 32 290 A1 und der DE 199 29 292 A1 bekannt, eine Zulassung eines Magerbetriebs der Verbrennungskraftmaschine von der Katalysatortemperatur des NOX-Speicherkatalysators abhängig zu machen und eine untere und obere Temperaturschwelle für den zulässigen Magerbetriebsbereich vorzugeben, um NOX-Durchbrüche zu vermeiden. Die DE 198 50 786 A1 offenbart ferner ein Verfahren, wonach diese obere und untere Temperaturschwelle an die NOX-Speicherfähigkeit des Katalysators adaptiert wird, welche anhand einer Dauer eines vorausgegangenen Magerintervalls oder NOX-Regenerationsintervalls überwacht wird.
Es hat sich jedoch erwiesen, dass die Katalysatortemperatur allein kein ausreichendes Kriterium für die NOX-Speicher- und Konvertierungsfähigkeit des Katalysators und somit für die Zulassung des Magerbetriebsmodus darstellt. Vielmehr hängt das NOX-Einspeicherverhalten des Katalysators von weiteren Einflussgrößen ab. So kann beispielsweise ein gealterter Speicherkatalysator bei einer mittleren Katalysatortemperatur von 350 °C in Betriebspunkten mit niedrigen NOX-Rohemissionen noch eine ausreichende NOX-Speicherund -Konvertierungsfähigkeit aufweisen, dagegen bei hohen NOX-Rohemissionen die Speicherfähigkeit so weit abnehmen, dass eine hierdurch verursachte hohe Regenerationshäufigkeit den durch den Magerbetrieb gewonnenen Verbrauchsvorteil vollständig aufzehrt. In einem solchen Falle zeigt die Anpassung der Temperaturschwellen nicht den gewünschten Erfolg.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine bereitzustellen, welches die geschilderten Mängel des Standes der Technik überkommt und durch genauere Abstimmung eines Magerbetriebsmodus der Verbrennungskraftmaschine auf einen aktuellen Betriebspunkt sowie auf einen Zustand des NOX-Speicherkatalysators erlaubt.
Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Dadurch, dass
  • ein Magerbetriebsmodus der Verbrennungskraftmaschine mit λ > 1 in Abhängigkeit von vorgebbaren Schwellenwerten für eine Temperatur des NOX-Speicherkatalysators und für mindestens einen weiteren Betriebsparameter der Verbrennungskraftmaschine und/oder des Abgastraktes zugelassen wird und
  • mindestens ein Schwellenwert in Abhängigkeit einer aktuellen NOX-Speicherund/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators variiert wird,
erfolgt eine Zulassung des Magerbetriebsmodus unter sehr genauer Berücksichtigung des aktuellen Betriebspunktes sowie eine ständige Aktualisierung der Zulassungsbedingungen an eine tatsächliche NOX-Speicher- und/oder -Konvertierungsfähigkeit des NOX-Speicherkatalysators. Im Ergebnis kann somit eine NOX-Endemission deutlich reduziert werden und gleichzeitig der Magerbetriebsmodus über weite Betriebsbereiche eines durch die Verbrennungskraftmaschine angetriebenen Fahrzeuges eingesetzt werden, wodurch optimale Kraftstoffverbrauchswerte erzielt werden können.
Es ist besonders bevorzugt vorgesehen, dass der Magerbetriebsmodus von einer NOX-Rohemission der Verbrennungskraftmaschine abhängig gemacht wird, da diese entscheidend eine NOX-Speicherrate des Speicherkatalysators beeinflusst. Ferner können Rohemissionen weiterer Abgaskomponenten, insbesondere von unverbrannten Kohlenwasserstoffen HC und/oder Kohlendioxid CO2 und/oder Kohlenmonoxid CO, berücksichtigt werden. Diese behindern in hohen Konzentrationen die Einlagerung von NOX in den Katalysator. Entsprechend kann für die Rohemission jeder dieser Komponenten oder einer Summe der Komponenten ein oberer Schwellenwert vorgegeben werden, bei dessen Überschreitung der Magerbetriebsmodus gesperrt wird. Dabei wird unter Rohemission eine Konzentration und/oder ein Massenstrom der jeweiligen Abgaskomponente stromauf eines ersten, der Verbrennungskraftmaschine nachgeschalteten Katalysators verstanden. Im Einzelfall kann eine Vorgabe einzelner Schwellenwerte für die Konzentration und den Massenstrom zweckmäßig sein. Die Rohemission von NOX oder der weiteren Abgaskomponenten kann entweder mittels entsprechend im Abgastrakt angeordneten Gassensoren gemessen oder vorzugsweise in Abhängigkeit eines aktuellen Betriebspunktes der Verbrennungskraftmaschine, insbesondere einer aktuellen Motordrehzahl und/oder Motorlast, modelliert werden. Dabei wird, falls die Verbrennungskraftmaschine sich aktuell in einem stöchiometrischen oder fetten Betriebsmodus mit λ ≤ 1 befindet, für die Modellierung ein Magerbetriebsmodus angenommen. Eine derartige Modellierung von Rohemissionen, beispielsweise anhand von gespeicherten Kennfeldern, ist hinreichend bekannt und wird hier nicht näher erläutert.
Bezüglich der Temperatur des NOX-Speicherkatalysators kann eine lokale Temperatur einer Beschichtung des Katalysators und/oder eines Katalysatorträgers und/oder eine Temperaturverteilung über die gesamte Katalysatorlänge betrachtet werden. Dabei kann die Katalysatortemperatur aus einer stromauf und/oder stromab des Speicherkatalysators gemessenen Abgastemperatur ermittelt und/oder mittels einer im Katalysator selbst angeordneten Temperaturmessstelle gemessen werden. Es ist jedoch ebenso bekannt und zweckmäßig, die Katalysatortemperatur in Abhängigkeit eines Betriebspunktes der Verbrennungskraftmaschine unter Verwendung entsprechender Kennfelder mit guter Genauigkeit zu berechnen.
Um eine Anpassung der Schwellenwerte für den zulässigen Magerbetriebsbereich an tatsächliche Erfordernisse vorzunehmen, erfolgt die Variation mindestens eines Schwellenwertes, wenn die NOX-Speicher- und/oder -Konvertierungsfähigkeit des Katalysators einen vorgegebenen Grenzwert unterschreitet, das heißt hinter einer, für einen frischen NOX-Speicherkatalysator abgeleiteten oder auf einen bereits irreversibel teilgeschädigten Katalysator abgestimmten Leistungserwartung zurückbleibt. Zur Beurteilung der NOX-Speicher- und/oder -Konvertierungsfähigkeit bieten sich verschiedene Strategien an. Insbesondere kann der Magerbetrieb über einen stromab des NOX-Speicherkatalysators beispielsweise mittels eines NOX-Sensors gemessenen NOX-Gehalt im Abgas gesteuert und beendet werden, wenn ein temporärer oder ein über die Magerbetriebsphase kumulierter NOX-Gehalt eine Erschöpfung der Speicherkapazität des Katalysators anzeigt. In diesem Fall kann eine Dauer einer so gesteuerten Magerbetriebsphase als Maß für eine eingelagerte NOX-Masse und somit für die Speicher- und -Konvertierungsfähigkeit des Katalysators herangezogen werden. Ebenso kann der gemessene, insbesondere der kumulierte NOX-Gehalt oder dessen Verlauf zur Beurteilung der NOX-Speicher- und/oder - Konvertierungsfähigkeit herangezogen werden. Alternativ kann auch eine Dauer mindestens einer vorausgegangenen NOX-Regenerationsphase als Kriterium für die Speicher- und/oder - Konvertierungsfähigkeit des Katalysators eingesetzt werden, wenn die Regeneration abhängig von einem stromab des Katalysators beispielsweise mittels einer Lambdasonde gemessenen Sauerstoffgehalt gesteuert wird. Auch hier kann statt der Dauer der Regenerationsphase auch der gemessene Sauerstoffgehalt beziehungsweise dessen Verlauf als Kriterium dienen. Ferner kann die NOX-Speicher- und/oder -Konvertierungsfähigkeit des Speicherkatalysators anhand eines Kraftstoffverbrauchs und/oder anhand einer Häufigkeit der NOX-Regeneration bestimmt werden. Unabhängig von der Wahl der Beurteilungsgröße wird das Verhalten des NOX-Speicherkatalysators stets mit dem eines frischen ungeschädigten Katalysators oder - falls bereits irreversible Schädigungen festgestellt wurden - mit einem bestenfalls zu erwartenden Verhalten verglichen.
Es wird vorzugsweise immer derjenige Schwellenwert eines Betriebsparameters der Verbrennungskraftmaschine und/oder des Abgastraktes variiert, in dessen Bereich sich der Betriebzustand während der vorausgegangenen Magerphase befand oder zumindest vorwiegend befand, wobei für den Bereich entsprechende Grenzen vorzugeben sind. Lag der gegebenenfalls gemittelte Betriebszustand im Betrachtungszeitraum im Grenzbereich mehrerer Schwellenwerte, so werden vorzugsweise alle betroffenen Schwellenwerte variiert.
Lag hingegen der Betriebszustand in keinem Bereich eines Schwellenwertes, kann vorteilhaft zumindest ein Schwellenwert variiert werden. Es ist insbesondere vorgesehen, einen oberen Schwellenwert für eine im Magerbetriebsmodus zulässige Rohemission abzusenken, wenn während der vorausgegangenen Magerbetriebsphase die mittlere NOX-Rohemission der Verbrennungskraftmaschine sich im Bereich dieses oberen Schwellenwertes befand und die NOX-Speicher- und/oder -Konvertierungsfähigkeit den vorgegebenen Grenzwert unterschreitet. Umgekehrt kann bei ausreichender Speicher- und Konvertierungsfähigkeit dieser Schwellenwert angehoben werden. In analoger Weise wird für die anderen betrachteten Schwellenwerte vorgegangen. Zudem kann es insbesondere im Falle eines unteren Schwellenwertes für eine im Magerbetriebsmodus zulässige Katalysatortemperatur sinnvoll sein, eine gemessene oder berechnete irreversible Schädigung des NOX-Speicherkatalysators statt oder zusätzlich zum aktuell gemessenen Katalysatorverhalten zu berücksichtigen.
Die Verbrennungskraftmaschine verfügt vorzugsweise über eine Kraftstoffdirekteinspritzung und ist im Magerbetriebsmodus schichtladefähig. Dabei liegt im Schichtladebetrieb ein in einen Zylinder eingespritzter Kraftstoff zum Zündzeitpunkt im Wesentlichen im Bereich einer Zündkerze konzentriert vor, während im übrigen Brennraum des Zylinders praktisch reine Luft vorherrscht. Auf diese Weise lassen sich im Schichtladebetrieb besonders magere Luft-Kraftstoff-Verhältnisse und somit ein besonders niedriger Kraftstoffverbrauch realisieren. Die Ausbildung der Schichtladungswolke sowie ihr Transport zur Zündkerze kann in bekannter Weise durch wandführende Maßnahmen, beispielsweise durch eine muldenförmige Ausgestaltung eines Kolbenbodens, unterstützt werden. Ferner sind luftführende Maßnahmen bekannt und zweckdienlich, die etwa in Form einer in einem Saugrohr des Zylinders angeordneten Ladungsbewegungsklappe realisiert werden können und spezielle Luftströmungen im Brennraum bewirken.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1
eine Blockdarstellung einer Verbrennungskraftmaschine mit zugeordneter Abgasanlage;
Figur 2
einen in Abhängigkeit von einer Katalysatortemperatur und einer NOX-Rohemission zulässigen Bereich für einen Magerbetriebsmodus und
Figur 3
ein Fließschema einer bevorzugten Ausführung des Verfahrens.
Die in Figur 1 dargestellte magerlauffähige Verbrennungskraftmaschine 10 weist in diesem Beispiel vier Zylinder 12 auf, die jeweils über ein nicht dargestelltes Kraftstoff-Direkteinspitzungssystem verfügen. Die Verbrennungskraftmaschine 10 ist ferner mittels eines wand- und luftgeführten Gemischaufbereitungsverfahrens in einem Schichtlademodus betreibbar. Ein von der Verbrennungskraftmaschine 10 erzeugtes Abgas wird in einem insgesamt mit 14 bezeichneten Abgastrakt nachbehandelt. Der Abgastrakt 14 besteht im Wesentlichen aus einem in einem Abgaskanal 16 installierten Katalysatorsystem, mit einem kleinvolumigen und motornah angeordneten Vorkatalysator 18, beispielsweise einem 3-Wege- oder Oxidationskatalysator, sowie einem typischerweise an einer Unterbodenposition angeordneten NOX-Speicherkatalysator 20. Der NOX-Speicherkatalysator 20 umfasst neben einer 3-Wege-Katalysatorkomponente einen NOX-Absorber zur Einspeicherung von im Magerbetriebsmodus nicht vollständig konvertierbaren Stickoxiden NOX. Eine stromab der Verbrennungskraftmaschine 10 angeordnete Lambdasonde 22 misst einen Sauerstoffgehalt des Abgases und ermöglicht somit eine Regelung eines den Zylindern 12 zuzuführenden Luft-Kraftstoff-Verhältnisses. Stromab des Speicherkatalysators 20 ist ein weiterer Gassensor 24 installiert, der vorzugsweise ein NOX-Sensor ist. Der NOX-Sensor 24 erkennt beispielsweise einen NOX-Durchbruch während eines Magerbetriebs und regelt somit eine diskontinuierliche Mager/Fett-Beaufschlagung des Speicherkatalysators 20 zum Zwecke seiner NOX-Regeneration. Eine Temperaturmessstelle 26 misst stromauf des NOX-Speicherkatalysators 20 eine Abgastemperatur und erlaubt Rückschlüsse auf die Temperatur des Speicherkatalysators 20. Alternativ kann die Katalysatortemperatur auch in an sich bekannter Weise anhand ausgewählter Betriebsparameter der Verbrennungskraftmaschine 10 modelliert werden. Alle Sensorsignale sowie Betriebsparameter der Verbrennungskraftmaschine 10 und des Abgastraktes 14 werden an eine Motorsteuerung 28 übermittelt. Hier erfolgt eine Auswertung der Signale und Daten und eine Steuerung der Verbrennungskraftmaschine 10 anhand gespeicherter Algorithmen und Kennfelder.
Die Fähigkeit des NOX-Speicherkatalysators 20, Stickoxide zu speichern, ist nicht in jedem Betriebspunkt ausreichend, um eine NOX-Emission in Einklang mit zulässigen Grenzwerten zu gewährleisten. Insbesondere weist der NOX-Speicherkatalysator 20 nur in einem bestimmten Temperaturfenster eine ausreichende NOX-Speicher- und -Konvertierungsfähigkeit auf, weshalb üblicherweise ein oberer und ein unterer Schwellenwert für eine im Magerbetriebsmodus zulässige Katalysatortemperatur vorgegeben werden. Liegt die Katalysatortemperatur außerhalb des durch die Schwellenwerte begrenzten Bereiches, wird der Magerbetrieb gesperrt und die Verbrennungskraftmaschine 10 in einem stöchiometrischen oder fetten Betrieb gefahren. Erfindungsgemäß werden neben der Katalysatortemperatur zusätzliche Schwellenwerte für mindestens einen weiteren Betriebsparameter der Verbrennungskraftmaschine 10 oder des Abgastraktes 14 vorgegeben, insbesondere für eine maximal zulässige NOX-Rohemission der Verbrennungskraftmaschine 10. Ferner können vorzugsweise alle vorgegebenen Schwellenwerte adaptiert werden, wenn die NOX-Speicher- und/oder -Konvertierungsfähigkeit des Speicherkatalysators 20 unterhalb eines angeforderten Wertes liegt.
Figur 2 zeigt die Abhängigkeit eines Zulässigkeitsbereiches für den Magerbetriebsmodus von einer Katalysatortemperatur TSK des NOX-Speicherkatalysators 20 sowie von einer NOX-Rohemission NORE der Verbrennungskraftmaschine 10. Dabei ist der für den Magerbetrieb mit λ > 1 zugelassene Bereich weiß dargestellt und der Bereich, in dem die Verbrennungskraftmaschine 10 mit einem fetten oder stöchiometrischen Gemisch mit λ ≤ 1 betrieben werden muss, schraffiert dargestellt. Der Magerbetriebsbereich wird begrenzt durch einen unteren Temperaturschwellenwert TSKMN und einen oberen Temperaturschwellenwert TSKMX für die Katalysatortemperatur TSK. Auf der anderen Seite wird der Magerbetrieb gesperrt, wenn die NOX-Rohemission NORE oberhalb eines maximalen Schwellenwertes NOREMX liegt. Eine Vorgabe weiterer Schwellenwerte ist denkbar. Beispielsweise könnte in einer dritten, nicht dargestellten Dimension ein oberer Schwellenwert für eine Rohemission von Abgasbestandteilen wie HC, CO2 und CO vorgesehen sein, die die Einlagerung von NOX in den Katalysator behindern.
Alle vorgegebenen Schwellenwerte sind variabel gestaltet und können in vorgebbaren Grenzen in Abhängigkeit einer aktuellen NOX-Speicher- und/oder -Konvertierungsfähigkeit des Speicherkatalysators 20 variiert werden. Dabei wird vorzugsweise derjenige Schwellenwert verändert, in dessen Grenzbereich ein Betriebspunkt im betrachteten Zeitraum einer vorausgegangenen Magerbetriebsphase lag. Lag beispielsweise, wie im Punkt 100 dargestellt, die gegebenenfalls gemittelte NOX-Rohemission der vorausgegangenen Magerbetriebsphase nahe an dem oberen Schwellenwert NOREMX, so wird dieser Schwellenwert NOREMX abgesenkt, wenn eine unzureichende NOX-Speicherfähigkeit oder -Konvertierungsfähigkeit, beispielsweise anhand einer Länge der Magerbetriebsphase oder einer stromab des Speicherkatalysators 20 gemessenen NOX-Emission, erkannt wird. Auf der anderen Seite kann im Punkt 100 unter bestimmten, noch zu erläuternden Voraussetzungen eine Anhebung des Schwellenwertes NOREMX erfolgen, wenn eine ausreichende NOX Speicherfähigkeit vorliegt. Lag der Betriebspunkt im betrachteten Intervall dagegen im Grenzbereich des oberen Temperaturschwellenwertes TSKMX (Punkt 102), so erfolgt eine Absenkung dieser Temperaturschwelle bei unzureichender Speicherfähigkeit und gegebenenfalls einer Anhebung bei ausreichender Speicherfähigkeit. Befindet sich der Betriebspunkt in der Nähe mehrerer Schwellenwerte, so können auch alle betroffenen Schwellenwerte adaptiert werden. Befindet sich der Betriebspunkt, wie in Punkt 104 dargestellt, in keinem Grenzbereich eines Schwellenwertes, so können bei unzureichender NOX-Speicher- und/oder NOX-Konvertierungsfähigkeit mehrere, mindestens aber ein Schwellenwert variiert werden. Da die Katalysatortemperatur TSK und die NOX-Rohemission NORE den größten Einfluss auf die Speicherfähigkeit haben, erfolgt vorzugsweise eine Anpassung dieser Schwellenwerte. Im Falle eines Betriebspunktes nahe der unteren Temperaturgrenze TSKMN (Punkt 106) erfolgt bei unzureichender NOX-Speicher- und NOX-Konvertierungsfähigkeit eine Anhebung des Schwellenwertes TSKMN. In diesem Fall ist jedoch bevorzugt vorgesehen, die Lage des Schwellenwertes TSKMN auch in Abhängigkeit eines mittels eines Diagnoseverfahrens ermittelten Alterungszustandes (irreversible Schädigungen) vorzugeben, da der einer Anspringtemperatur des Katalysators entsprechende Schwellenwert TSKMN vorwiegend vom Alterungszustand abhängt.
Figur 3 zeigt ein Ablaufdiagramm des erfindungsgemäßen Verfahrens gemäß dem Betriebspunkt 100 der Figur 2. Der Verfahrensablauf lässt sich in zwei Hauptabschnitte gliedern, nämlich Überprüfung der NOX-Speicher- und NOX-Konvertierungsfähigkeit des Speicherkatalysators 20 und Festlegung der Schwellenwerte des Magerbetriebsbereiches einerseits (Schritte S1 bis S5) und Zulassung oder Sperrung des Magerbetriebs in einem aktuellen Betriebspunkt andererseits (S6 bis S11). Zunächst erfolgt in S1 eine Initialisierung, bei der unter anderem die Schwellenwerte für den Magerbetriebsbereich und ein Grenzwert für NOX-Speicher- und NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators 20 vorgegeben werden. Diese Vorgaben erfolgen anhand von Erfahrungswerten eines ungeschädigten und vollständig regenerierten Speicherkatalysators. In einer ersten Abfrage in S2 wird eine Überprüfung der Speicher- und Konvertierungsfähigkeit des Speicherkatalysators 20 vorgenommen. In diesem Beispiel erfolgt diese Überprüfung anhand einer in der vorausgegangenen Magerphase mittels des NOX-Sensors 24 stromab des NOX-Speicherkatalysators 20 gemessenen und aufintegrierten NOX-Emission NOHK. Liegt diese NOX-Emission NOHK oberhalb eines in S1 vorgegebenen Grenzwertes NOHKGW, wird in S3 der obere Schwellenwert NOREMX für die NOX-Rohemission der Verbrennungskraftmaschine 10 um das Inkrement ΔNORE abgesenkt. Es wird hier nämlich davon ausgegangen, dass der Schwellenwert NOREMX zu hoch angesetzt war und der NOX-Speicherkatalysator 20 aufgrund der hohen NOX-Rohemission (vgl. Punkt 100 in Figur 2) keine ausreichende Speicherfähigkeit aufwies. Wird hingegen die Abfrage in S2 verneint und somit eine ausreichende NOX-Speicher- und NOX-Konvertierungsfähigkeit festgestellt, geht das Verfahren zu der Abfrage S4 über, wo überprüft wird, ob die NOX-Rohemission NORE der vorausgegangenen Magerphase sehr dicht an der oberen Emissionsschwelle NOREMX lag. Wird diese Abfrage bejaht, wird die NOX-Emissionsschwelle NOREMX in S5 um das Inkrement ΔNORE erhöht. Durch die Schleife der Schritte S4 und S5 wird gewährleistet, dass der zulässige Magerbereich nicht unnötig eingeschränkt wird. Bei Verneinung der Abfrage in S4 erfolgt keine Variation der Emissionsschwelle NOREMX, diese wird vielmehr beibehalten.
In S6 wird eine aktuelle NOX-Rohemission NOREF durch Messung der NOX-Konzentration stromauf des Katalysatorsystems 18, 20 oder durch Berechnung anhand aktueller Betriebsparameter der Verbrennungskraftmaschine 10 ermittelt. Befindet sich die Verbrennungskraftmaschine 10 aktuell in einem stöchiometrischen oder mageren Betriebsmodus, wird für diese Berechnung ein magerer Betriebsmodus angenommen. Die Berechnung kann zum Beispiel anhand von abgespeicherten Kennfeldern erfolgen, welche eine Information über die zu erwartende NOX-Rohemission in Abhängigkeit einer aktuellen Motordrehzahl und/oder Motorlast und/oder anderer betriebsrelevanter Größen enthalten. Zur Vermeidung dynamischer Effekte kann eine Mittelung der so ermittelten NOX-Rohemission NOREF über eine Mindestzeit erfolgen. In einer Abfrage S7 wird überprüft, ob die in S6 ermittelte Rohemission NOREF unterhalb des in S2 bis S5 festgelegten Emissionsschwellenwertes NOREMX liegt. Ist dies der Fall, wird in S8 die aktuelle Katalysatortemperatur TSK des NOX-Speicherkatalysators 20 durch Messung oder Modellierung ermittelt. Anschließend wird in S9 abgefragt, ob diese aktuelle Katalysatortemperatur TSK im zulässigen Temperaturbereich liegt, das heißt größer ist als die untere Temperaturschwelle TSKMN und kleiner als die obere Temperaturschwelle TSKMX. Wird auch diese Abfrage bejaht, befindet sich der aktuelle Betriebspunkt der Verbrennungskraftmaschine 10 sowie der Abgasanlage 14 in dem für den Magerbetriebsmodus zulässigen Bereich. Folglich wird der Magerbetriebsmodus in S10 zugelassen. Bei Verneinung einer der Abfragen S7 und S9 liegt mindestens ein Betriebsparameter außerhalb des zulässigen Bereiches, so dass in S11 der Magerbetriebsbereich gesperrt wird und die Verbrennungskraftmaschine 10 mit einem stöchiometrischen oder fetten Luft-Kraftstoff-Gemisch beaufschlagt wird.
BEZUGSZEICHENLISTE
10
Verbrennungskraftmaschine
12
Zylinder
14
Abgastrakt
16
Abgaskanal
18
Vorkatalysator
20
NOX-Speicherkatalysator
22
Lambdasonde
24
Gassensor / NOX-Sensor
26
Temperaturmessstelle
28
Motorsteuerung
λ
Luft-Kraftstoff-Verhältnis Lambda
NOHK
NOX-Emission hinter NOX-Speicherkatalysator
NOHKGW
Grenzwert für die NOX-Emission
NORE
NOX-Rohemission
NOREF
aktuelle (gemessene oder modellierte) NOX-Rohemission
NOREMX
oberer Schwellenwert für die NOX-Rohemission
ΔNORE
Inkrement des Schwellenwertes für die NOX-Rohemission
TSK
Katalysatortemperatur des NOX-Speicherkatalysators
TSKMN
unterer Schwellenwert für die Katalysatortemperatur
TSKMX
oberer Schwellenwert für die Katalysatortemperatur

Claims (18)

  1. Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine (10) mit einem Abgastrakt (14), der mindestens einen NOX-Speicherkatalysator (20) und einem diesem nachgeschalteten Gassensor (24) umfasst, wobei
    ein Magerbetriebsmodus der Verbrennungskraftmaschine (10) mit λ > 1 in Abhängigkeit von vorgebbaren Schwellenwerten für eine Temperatur (TSK) des NOX-Speicherkatalysators (20) und für mindestens einen weiteren Betriebsparameter der Verbrennungskraftmaschine (10) und/oder des Abgastraktes (14) zugelassen wird und
    mindestens ein Schwellenwert in Abhängigkeit einer aktuellen NOX-Speicherund/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) variiert wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine weitere Betriebsparameter eine NOX-Rohemission (NORE) der Verbrennungskraftmaschine (10) und/oder eine Rohemission einer weiteren Abgaskomponente umfasst.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die weitere Abgaskomponente unverbrannte Kohlenwasserstoffe (HC) und/oder Kohlendioxid (CO2) und/oder Kohlenmonoxid (CO) umfasst.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die NOX-Rohemission (NORE) und/oder die Rohemission der weiteren Abgaskomponente gemessen oder in Abhängigkeit eines Betriebspunktes der Verbrennungskraftmaschine (10) unter Annahme des Magerbetriebsmodus modelliert wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Rohemission eine Konzentration und/oder ein Massenstrom von NOX oder der anderen Abgaskomponente stromauf eines ersten, der Verbrennungskraftmaschine (10) nachgeschalteten Katalysators (18) umfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur (TSK) des NOX-Speicherkatalysators (20) eine lokale Temperatur einer Katalysatorbeschichtung und/oder eines Katalysatorträgers und/oder eine Temperaturverteilung umfasst.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Temperatur (TSK) mittels einer stromauf und/oder stromab und/oder im NOX-Speicherkatalysator (20) angeordneten Temperaturmessstelle (26) gemessen und/oder in Abhängigkeit eines Betriebspunktes der Verbrennungskraftmaschine (10) berechnet wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Variation des mindestens einen Schwellenwertes erfolgt, wenn die NOX-Speicherund/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) einen vorgegebenen Grenzwert unterschreitet.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Magerbetrieb abhängig von einem stromab des NOX-Speicherkatalysators (20) gemessenen NOX-Gehalt im Abgas gesteuert wird und die NOX-Speicher- und/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) anhand einer Dauer mindestens einer vorausgegangenen Magerbetriebsphase und/oder anhand des gemessenen NOX-Gehaltes oder dessen Verlauf bestimmt wird.
  10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass eine NOX-Regeneration abhängig von einem stromab des NOX-Speicherkatalysators (20) gemessenen Sauerstoffgehalt im Abgas gesteuert wird und die NOX-Speicher- und/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) anhand einer Dauer mindestens einer vorausgegangenen NOX-Regenerationsphase und/oder anhand des gemessenen Sauerstoffgehaltes oder dessen Verlauf bestimmt wird.
  11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die NOX-Speicher- und/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) anhand eines Kraftstoffverbrauches und/oder anhand einer Häufigkeit der NOX-Regeneration bestimmt wird.
  12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass derjenige Schwellenwert eines Betriebsparameters der Verbrennungskraftmaschine (10) und/oder des Abgastraktes (14) variiert wird, in dessen Bereich sich ein Betriebszustand während der vorausgegangenen Magerbetriebsphase befand.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass ein oberer Schwellenwert (NOREMX) für eine für den Magerbetriebsmodus zulässige NOX-Rohemission (NORE) abgesenkt wird, wenn während der vorausgegangenen Magerbetriebsphase die NOX-Rohemission (NORE) der Verbrennungskraftmaschine (10) sich im Bereich des oberen Schwellenwertes (NOREMX) befand und die NOX-Speicher- und/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) den vorgegebenen Grenzwert unterschreitet.
  14. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass ein oberer Schwellenwert (TSKMX) für eine für den Magerbetriebsmodus zulässige Katalysatortemperatur (TSK) des NOX-Speicherkatalysators (20) abgesenkt wird, wenn während der vorausgegangenen Magerbetriebsphase die Katalysatortemperatur (TSK) sich im Bereich des oberen Schwellenwertes (TSKMX) befand und die NOX-Speicherund/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) den vorgegebenen Grenzwert unterschreitet.
  15. Verfahren nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass ein unterer Schwellenwert (TSKMN) für eine für den Magerbetriebsmodus zulässige Katalysatortemperatur (TSK) des NOX-Speicherkatalysators (20) angehoben wird, wenn während der vorausgegangenen Magerbetriebsphase die Katalysatortemperatur (TSK) sich im Bereich des unteren Schwellenwertes (TSKMN) befand und die NOX-Speicherund/oder NOX-Konvertierungsfähigkeit des NOX-Speicherkatalysators (20) den vorgegebenen Grenzwert unterschreitet oder eine gemessene oder berechnete irreversible Schädigung des NOX-Speicherkatalysators (20) festgestellt wird.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magerbetriebsmodus zugelassen wird, wenn die aktuelle Katalysatortemperatur (TSK) des NOX-Speicherkatalysators (20) größer als der untere Temperaturschwellenwert (TSKMN) und kleiner als der obere Temperaturschwellenwert (TSKMX) ist.
  17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Magerbetriebsmodus zugelassen wird, wenn die aktuelle, gemessene oder unter Annahme eines mageren Betriebs berechnete NOX-Rohemission (NORE) der Verbrennungskraftmaschine (10) den oberen Schwellenwert (NOREMX) für die NOX-Rohemission unterschreitet.
  18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbrennungskraftmaschine (10) über eine Kraftstoffdirekteinspritzung verfügt und im Magerbetriebsmodus schichtladefähig ist.
EP20020090054 2001-04-03 2002-02-13 Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine Expired - Lifetime EP1247963B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10117434 2001-04-03
DE2001117434 DE10117434A1 (de) 2001-04-03 2001-04-03 Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine

Publications (3)

Publication Number Publication Date
EP1247963A2 true EP1247963A2 (de) 2002-10-09
EP1247963A3 EP1247963A3 (de) 2003-09-17
EP1247963B1 EP1247963B1 (de) 2006-04-12

Family

ID=7680797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20020090054 Expired - Lifetime EP1247963B1 (de) 2001-04-03 2002-02-13 Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine

Country Status (2)

Country Link
EP (1) EP1247963B1 (de)
DE (2) DE10117434A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300572A2 (de) * 2001-10-05 2003-04-09 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
EP1411231A2 (de) * 2002-10-14 2004-04-21 Volkswagen Aktiengesellschaft Verfahren sowie Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
FR2863664A1 (fr) * 2003-12-12 2005-06-17 Bosch Gmbh Robert Procede pour optimiser la consommation de carburant d'un moteur a combustion interne
CN114183263A (zh) * 2021-10-29 2022-03-15 东风商用车有限公司 一种多种控制模式的发动机控制方法
CN114607515A (zh) * 2022-03-17 2022-06-10 潍柴动力股份有限公司 发动机喷油控制方法、装置、设备、存储介质及程序产品
CN114810396A (zh) * 2021-06-04 2022-07-29 长城汽车股份有限公司 一种surp控制装置及调节氮氧化物转化率的方法、汽车

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249609B4 (de) * 2002-10-18 2011-08-11 Volkswagen AG, 38440 Verfahren zur Steuerung eines NOx-Speicherkatalysators
DE10249610B4 (de) * 2002-10-18 2010-10-07 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung eines NOx-Speicherkatalysators
DE10302700B4 (de) * 2002-12-31 2013-01-17 Volkswagen Ag Verfahren und Vorrichtung zur Diagnose eines NOx-Speicherkatalysators im Abgastrakt eines Verbrennungsmotors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850786A1 (de) 1998-08-05 2000-02-17 Volkswagen Ag Regelung eines NOx-Speicher-Katalysators
DE19929292A1 (de) 1999-06-25 2000-12-28 Volkswagen Ag Verfahren zur Steuerung eines Arbeitsmodus einer Verbrennungskraftmaschine
DE19932290A1 (de) 1999-07-10 2001-01-11 Volkswagen Ag Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19543219C1 (de) * 1995-11-20 1996-12-05 Daimler Benz Ag Verfahren zum Betreiben eines Dieselmotors
DE59800195D1 (de) * 1998-01-09 2000-08-17 Ford Global Tech Inc Verfahren zur Regeneration einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors
DE19933712A1 (de) * 1999-07-19 2001-05-17 Volkswagen Ag Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19850786A1 (de) 1998-08-05 2000-02-17 Volkswagen Ag Regelung eines NOx-Speicher-Katalysators
DE19929292A1 (de) 1999-06-25 2000-12-28 Volkswagen Ag Verfahren zur Steuerung eines Arbeitsmodus einer Verbrennungskraftmaschine
DE19932290A1 (de) 1999-07-10 2001-01-11 Volkswagen Ag Verfahren zur Regelung eines Arbeitsmodus einer Verbrennungskraftmaschine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300572A2 (de) * 2001-10-05 2003-04-09 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
EP1300572A3 (de) * 2001-10-05 2003-09-17 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
EP1411231A2 (de) * 2002-10-14 2004-04-21 Volkswagen Aktiengesellschaft Verfahren sowie Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
EP1411231A3 (de) * 2002-10-14 2007-03-07 Volkswagen Aktiengesellschaft Verfahren sowie Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
FR2863664A1 (fr) * 2003-12-12 2005-06-17 Bosch Gmbh Robert Procede pour optimiser la consommation de carburant d'un moteur a combustion interne
CN114810396A (zh) * 2021-06-04 2022-07-29 长城汽车股份有限公司 一种surp控制装置及调节氮氧化物转化率的方法、汽车
CN114183263A (zh) * 2021-10-29 2022-03-15 东风商用车有限公司 一种多种控制模式的发动机控制方法
CN114183263B (zh) * 2021-10-29 2024-03-05 东风商用车有限公司 一种多种控制模式的发动机控制方法
CN114607515A (zh) * 2022-03-17 2022-06-10 潍柴动力股份有限公司 发动机喷油控制方法、装置、设备、存储介质及程序产品
CN114607515B (zh) * 2022-03-17 2023-01-06 潍柴动力股份有限公司 发动机喷油控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP1247963B1 (de) 2006-04-12
DE50206351D1 (de) 2006-05-24
EP1247963A3 (de) 2003-09-17
DE10117434A1 (de) 2002-10-10

Similar Documents

Publication Publication Date Title
EP1660764B1 (de) Hybridfahrzeug und verfahren zum betreiben eines hybridfahrzeugs
DE60127013T2 (de) Steuerung zur Verbesserung des Verhaltens eines Fahrzeuges
WO2001034960A2 (de) Verfahren zum überprüfen eines abgaskatalysators einer brennkraftmaschine
EP1366278A1 (de) Verfahren zur temperatursteuerung eines katalysatorsystems
EP1247963B1 (de) Verfahren zur Steuerung eines Betriebsmodus einer magerlauffähigen Verbrennungskraftmaschine
EP1180201A1 (de) Verfahren zur entschwefelung von einem in einem abgaskanal einer verbrennungskraftmaschine angeordneten nox-speicherkatalysator
DE10153901B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
EP2436899B1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
DE10148128A1 (de) Verfahren und Vorrichtung zur Reduzierung einer Schadstoffendemission einer Verbrennungskraftmaschine
EP1183454B1 (de) VERFAHREN ZUR STEUERUNG EINER REGENERATION EINES NOx-SPEICHERKATALYSATORS
DE19935341A1 (de) Verfahren zur Regelung einer Abgastemperatur einer Magerbrennkraftmaschine während einer Entschwefelung eines Katalysators
DE10261618B4 (de) Laufunruheauswertungsverfahren
EP1241336B1 (de) Verfahren und Vorrichtung zur Regelung einer externen Abgasrückführrate
DE10102132B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
EP1391592B1 (de) Verfahren zum Betrieb eines magerlauffähigen Verbrennungsmotors mit einem Abgasreinigungssystem
DE10154041A1 (de) Verfahren und Vorrichtung zur Reduzierung einer Schadstoffendemission
DE10112938A1 (de) Verfahren zur Steuerung eines Warmlaufs eines Katalysatorsystems
DE10202935A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
WO2004022953A1 (de) Verfahren zur steuerung des magerbetriebs einer einen stickoxid-speicherkatalysator aufweisenden brennkraftmaschine, insbesondere eines kraftfahrzeuges
DE10001310A1 (de) Vorrichtung und Verfahren zur Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators
EP1300572B1 (de) Verfahren und Vorrichtung zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
EP1200715B1 (de) Verfahren zur regelung einer regeneration eines in einem abgaskanal einer verbrennungskraftmaschine angeordneten speicherkatalysators
EP1435444A2 (de) Verfahren zum emissionsstabilen Betrieb eines Verbrennungsmotors sowie emissionsstabiles Kraftfahrzeug
DE10051184A1 (de) Verfahren zur Steuerung einer magerlauffähigen Verbrennungskraftmaschine
WO2016074879A1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine mit einem nox-speicherkatalysator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040317

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20040517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAHN, HERMANN, DR.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50206351

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060723

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070115

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50206351

Country of ref document: DE

Effective date: 20110716

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50206351

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160229

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160226

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206351

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170213