EP1247275B1 - Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode - Google Patents

Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode Download PDF

Info

Publication number
EP1247275B1
EP1247275B1 EP01900416A EP01900416A EP1247275B1 EP 1247275 B1 EP1247275 B1 EP 1247275B1 EP 01900416 A EP01900416 A EP 01900416A EP 01900416 A EP01900416 A EP 01900416A EP 1247275 B1 EP1247275 B1 EP 1247275B1
Authority
EP
European Patent Office
Prior art keywords
coding
signal
decoded signal
coding block
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01900416A
Other languages
German (de)
English (en)
Other versions
EP1247275A1 (fr
Inventor
Jürgen HERRE
Karlheinz Brandenburg
Thomas Sporer
Michael Schug
Wolfgang Schildbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority claimed from PCT/EP2001/000241 external-priority patent/WO2001052240A1/fr
Publication of EP1247275A1 publication Critical patent/EP1247275A1/fr
Application granted granted Critical
Publication of EP1247275B1 publication Critical patent/EP1247275B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders

Definitions

  • the present invention relates generally to Analysis of coded and decoded in some way Signals and especially on analyzing a decoded signal using an encoding algorithm has been processed on a spectral Representation of the original signal builds up.
  • FIG. 7 is a Block diagram of an MPEG audio coding method shows.
  • an audio encoder typically includes an audio input 70 on which a stream of discrete-time samples which, for example, PCM samples are fed in which are, for example, 16-bit wide.
  • an analysis filter bank 71 becomes the stream of discrete-time audio samples in coding blocks or frames of samples divided, using an appropriate window function windowed and then into a spectral representation for example by a filter bank or by a Fourier transformation or a variant of the Fourier transform, such as B. a modified discrete cosine transform (MDCT).
  • MDCT modified discrete cosine transform
  • the discrete-time audio signal at input 70 is also shown in a psychoacoustic model 72 fed in for data reduction to achieve such that the masking threshold is known of the audio signal depending on the frequency is calculated to in a block 73 which is with quantization and coding, quantization of the spectral coefficients perform which of the masking threshold depends.
  • the quantization of the spectral coefficients carried out so roughly that the hereby introduced Quantization noise still below the psychoacoustic Masking threshold caused by the psychoacoustic Model 72 is calculated so that the quantization noise is ideally inaudible.
  • This procedure causes that typically a certain number of spectral coefficients, those at the output of the analysis filter bank 71 are still not equal to 0, set to 0 after quantization because the psychoacoustic model found 72 that they are masked by neighboring spectral coefficients and are therefore inaudible.
  • an output 75 of the encoder which is also a bit stream output is then referred to, that is according to that shown in Fig. 7 Coding algorithm pre-coded signal block by block.
  • the coded signal is output 75 of the encoder shown in FIG. 7 into a bit stream input 80 fed to a decoder shown in FIG. 8, which is initially in a block 81, which acts as a bitstream demultiplexer is a bit stream demultiplexing operation performs the spectral data from the page information to separate.
  • a block 81 which acts as a bitstream demultiplexer is a bit stream demultiplexing operation performs the spectral data from the page information to separate.
  • Block 81 there are again Codewords before which the individual spectral coefficients represent.
  • the code words are decoded to quantized spectral values to obtain.
  • These quantized spectral values will be then in a block 82 which is labeled "inverse quantization" is processed by the data in block 73 (FIG. 7) Recalculate introduced quantization.
  • Blocks 82 are then again dequantized spectral coefficients which is now using a synthesis filter bank 83, which works inversely to the analysis filter bank 71 (FIG. 7), in the time range will be transferred to an audio output 84 to receive the decoded signal.
  • Fig. 7 8 shows the encoder concept described using the example of an audio signal accordingly also on image or video signals is applied, instead of the temporal audio signal a video signal is present, the spectral representation here is not a sound spectrum, but a spatial spectrum. Otherwise, there is also a video signal compression Analysis filter bank, a psycho-optical model, one through it controlled quantization and redundancy coding instead, where also the whole coding / decoding concept block by block expires.
  • the decoded signal (using the example of FIG. 8 the decoded Audio signal at audio output 84) is typically again a stream of discrete-time samples that have an encoding block grid is based on that in the decoded signal however, is generally not visible unless special Precautions are taken.
  • Both the identification mark and the MOLE determination signal give information about which coding block grid the decoded signal to which the identification mark or assigned the MOLE determination signal is underlying.
  • these signals must be explicit be brought in what is described above Brings flexibility disadvantages with it.
  • the object of the present invention is a Device and method for determining an encoding block raster, that underlies a decoded signal is to create a decoded signal that does not has an explicit reference to a coding block grid.
  • This object is achieved by a device for determining a Coding block grid according to claim 1 or by a method for determining an encoding block grid solved according to claim 11.
  • the present invention is based on the finding that that the coding block grid, which by a block oriented Encoder is set virtually randomly decisive influence on the spectral representation of the signal Has. Even minimal deviations or coding block grid offsets cause the spectral representation of the decoded signal a completely different appearance has actually from a spectral representation of the decoded signal would be expected if the same the same coding block grid is used, which is the basis of the decoded signal.
  • data-reducing Encoding algorithms using a psychoacoustic model or a psychooptical one Working model is known from the start that due to quantization using a psycho-optical or psychoacoustic masking threshold a certain Number of spectral coefficients is 0.
  • This characteristic of the spectrum can be used as a criterion to find out if there is a coding block grid offset is present.
  • For a spectrum with grid offset is the fluctuation of z.
  • B. logarithmic amplitude of the spectral coefficient is slower or less abrupt than for a spectrum without grid offset, in which a fast or strongly abrupt fluctuation in the amplitude of the spectral coefficients is noticeable.
  • a short-term spectrum of the decoded Signal using a coding block division is generated which of the coding block grid division corresponds to the basis of the decoded signal a certain appearance, for example with regard to the Separation of the spectral lines, based on the number of Spectral lines that are equal to 0 or that are very small, Etc.
  • the invention is therefore used to determine a coding block grid picked out a section of the decoded signal, whereupon the selected section into a spectral representation of the same is implemented. Subsequently becomes the spectral representation of the selected section with respect to at least one predetermined criterion examined to give an evaluation result for the section to obtain.
  • This concept is different Sections performed, always a different coding block grid is taken as a basis, so that different Evaluation results for different coding block grid divisions and thus coding block raster offsets result.
  • the one Evaluation result has that with the other evaluation results is extreme, then among the evaluation results, by evaluating the spectral representations of the differently selected sections are determined and output.
  • This is the coding block grid division, the basis of a decoded signal lies, without using an explicitly in the decoded signal contained auxiliary signal can be clearly reconstructed.
  • This concept basically allows each one to be decoded Signal the coding block raster underlying the same to determine and thus provides considerable flexibility in that all decoded signals are processed can be, and not just decoded signals already an identification mark or a MOLE identification signal to have. This allows almost any decoding Signals are analyzed for distortion free Perform tandem coding for more information regarding the basis of the decoded signal To get encoder algorithm, or to prove at all, with which encoder the decoded signal originally has been encoded.
  • the coding block grid determined according to the invention can preferably on which the decoded signal is based, in the decoded signal itself to be entered in order any decoded signals for existing codec stages adjust which on the identification mark or build up the MOLE determination signal.
  • the concept according to the invention allows indexing almost all coding parameters, especially starting from knowledge of the coding block grid and using corresponding iteration algorithms practically all Encoder functionalities to a certain extent "recalculated” can be.
  • the prerequisite for this is the provision of the coding block grid itself, since the coding block grid all subsequent parameters of a coding algorithm influenced on the spectral representation of a signal to be encoded. The determination of the Coding block grid is thus, so to speak, the "entrance gate", completely by a decoded signal to analyze which coding / decoding concept is the same underlying.
  • Fig. 1 shows a block diagram of an inventive Device for determining a coding block raster, the is based on a decoded signal.
  • the decoded Signal is at an input 10 in the invention Device is fed in and reaches a device 11 for picking out a section from the decoded Signal.
  • the one picked out by the device 11 Section is in a device 12 in a spectral Representation of the same implemented.
  • the spectral representation the selected section is then in a Device 13 with respect to a predetermined criterion rated to an evaluation result for the singled out Get section.
  • the evaluation result is then into a device 14 for browsing and output a plurality of evaluation results are input to an output 15 of the device according to the invention decoded signal at input 10 of the invention Output device-based coding block grid.
  • the device shown in Fig. 1 operates iteratively, such that the device 11 for picking out depending on a section control signal 16 one Can pick out section of the decoded signal that differs from a previously selected section.
  • the inventive device for determining a coding block grid is thus arranged to one A plurality of sections of the decoded signal, which at different output samples start to pick out implement and determine a plurality of Get evaluation results. From this majority of The device 14 then determines the evaluation results selected section, which meets the criterion, which the Assessment is based, best corresponds, or the depending on the criterion least corresponds to it give an indication of the coding block grid.
  • the decoded signal generally consists of a sequence 30 of discrete-time samples, for example that of FIG. 8 has shown the decoder generated at its audio output 84.
  • the sequence 30 consists of discrete-time Samples of the decoded signal from samples 31a, 31b, 31c, 31d, ....
  • Fig. 3 is also outlined in bold Coding block 32 drawn from samples, which defines the coding block grid division that the decoded signal 30 is originally based.
  • Fig. 3 represents the case where no overlap is used, while Fig. 9, which will be discussed below, a Window sequence representing a 50% overlap used.
  • the coding block grid is in the sense of the present Description defined such that a coding block Includes samples taken from an analysis window the stream of] time samples become.
  • the number of samples in a coding block thus corresponds to the number of samples that the Windows are used, or in other words, the Window length. Since there is no overlap of the temporal in FIG Window is present, ends before that in FIG. 3 by way of example shown coding block 32 a previous coding block and begins at the end of coding block 32 subsequent coding block.
  • FIG. 9 shows a window sequence in which there is an overlap of 50% is used. Such a window sequence can occur with MPEG-2 AAC.
  • a window sequence can occur with MPEG-2 AAC.
  • the abscissa of Fig. 9 is the number of a discrete sample in a stream plotted from samples.
  • the relative size of the window is plotted; H. the Factor with which a sample value is weighted when windowed.
  • the window sequence in Fig. 9 includes a "long" window 90, a so-called start window 92, a sequence of eight "short” Windows 94, a stop window 96 and another long one Window 98.
  • an encoder can be used to strong to be able to encode transient time signals better, from one long windows to a sequence of eight short windows switch.
  • the window sequence in Fig. 9 is therefore for this suitable for transient time signals between sample no. 2560 and sample no. 3584 to process.
  • a long one Window 2048 samples while a short window 256 Samples.
  • the eight short windows 94 include as many samples as a long window 90 or 98.
  • the start window 92 and the stop window 96 chosen such that after a transition from the window with long windows to a window with short ones Windows and after an opposite transition again back to windows with long windows the coding block grid of n ⁇ (1024 samples) is maintained.
  • the Coding block grid is here through a long window defined, d. H. by the number of samples that includes a long window.
  • the device according to the invention for determining a coding block raster thus only needs a single coding block of the decoded signal because the coding block grid is usually fixed in a signal and, even if short windows are used, not themselves generally changes.
  • Fig. 3 there are also three possible controls of the device 11 (Fig. 1) drawn for picking out, namely a first alternative 33 with an offset of one Left sample, i.e. H. an offset of -1, one second alternative 34 with an offset of 0 and a third Alternative 35 with one sample offset to the right, d. H. with an offset of +1.
  • Fig. 2 is discussed, which is a Flow diagram of the method according to the invention provides.
  • First is a first via the control line 16 (Fig. 1) Relocation of the pickup 11 notified, d. H. a first offset is set (step 20).
  • this section determined by the first offset which at an output sample of the decoded Signal begins through the device 12 in its spectral range Presentation implemented, d. H. it will be a spectral analysis this section with this offset (Step 21).
  • Step 21 This is followed by the spectral representation at the output the device 12 (FIG. 1) in the device 13 (FIG. 1) rated, d. H. it will be an assessment of the spectrum to obtain an evaluation result (step 22).
  • step 23 it is determined in a step 23 whether all the desired ones Offsets have already been run through, d. H. if the search area has been run through. If not, i. H. the decision in step 23 returns a "no", see above in a step 24 via the control line 16 of the device 11 communicated a new offset for picking out, thus the iteration loop again with this new offset can be run through.
  • d. H. delivers the decision in step 23 "Yes", so the different evaluation results are searched, and the evaluation result is determined that regarding the other evaluation results depending on the criterion is either maximum or minimum, then an identification the basis of the decoded signal Coding block grid based on the section that had the cheapest evaluation result in a step 25 issue.
  • FIGS. 4 to 6 around the evaluation performed by the device 13 or to explain step 22 of FIG. 2 in more detail.
  • the coefficient number along the abscissa applied. 4 to 6 thus show graphical Representation of spectra if the coefficient number with multiplied the bandwidth of a spectral coefficient becomes.
  • FIG. 6 is a spectral representation of a selected section shown, which one Has a grid offset of plus one sample, d. H. which one corresponds to the third alternative 35 of FIG. 3. It is can clearly be seen that, in contrast to FIG. 5, the spectrum 6 is heavily smeared again.
  • any property can be used as a criterion of the spectrum shown in FIG. 5 are used, which differs from a property of that shown in Figs Spectra differs. Most visible is that in the spectrum shown in Fig. 5, there is no raster offset is based on a large number of spectral lines smaller than z. B. 30 dB, i.e. H. about 70 dB below the significant spectral coefficients. Different expressed a large number of spectral lines is the same 0 or less than 30 dB. A criterion can therefore be a simply counting the spectral lines equal to 0 is used in order to evaluate the results different from 0 To use spectral lines of a selected section.
  • a decision threshold can also be used as a predetermined criterion used to be used as the evaluation result either the spectral values with an amount above the threshold or an amount below the threshold issue.
  • a predetermined criteria can be used to determine the correct coding block grid also on the evaluation the rapid or abrupt fluctuation of the z.
  • a decision threshold can be used to determine a "fluctuation rate" of the spectrum with an amount above the threshold or an amount below the threshold issue.
  • Such parameters are for example the filter bank type (e.g. DFT, DCT, MDCT), the Coding block length and the window shape.
  • the filter bank type e.g. DFT, DCT, MDCT
  • the Coding block length e.g. the filter bank type
  • the Determination of a single coding block 32 (FIG. 3) in order the entire coding block raster that the decoded Signal is to be determined generally.
  • the inventive Methods are modified so that the length of a Section which the device 11 for picking out is to be communicated, is also varied in order to achieve that in FIG shown iterative methods for different coding block lengths to repeat.
  • short windows facilities 12 and 13 will also be informed. This means that from some of the grid points found entire grid can be extrapolated or, as it is Example of the short coding blocks has been shown, even in its possible fine structures broken down become.
  • M / S stereo coding when generating the decoded signal (J.D. Johnston, A.J. Ferreira: "Sum Difference Stereo Transform Coding ", IEEE ICASSP 1992, p. 569 - 571), also called center / side coding or as Sum / difference coding is used the iterative determination of the Coding block raster not on the decoded signal executed itself, but on the sum or difference of Spectral values. A significant one is then shown, for example Number of vanishing (sum and difference) Spectral coefficients, M / S coding is concluded, and any subsequent bills will then be included the sum and difference spectral coefficients.
  • the predetermined criterion can be modified here that individual criteria of the sum signal and the difference signal weighted together in a suitable manner, so that the predetermined criterion on both the sum signal as well as based on the difference signal.
  • J. Herre, J.D. Johnston: "Enhancing the Performance of Perceptual Audio Coders by Using Temporal Noise Shaping (TNS) has been used, the coding block grid based on the "low frequency" spectral coefficients which are usually not one TNS coding. Usually spectral coefficients not subjected to TNS coding below 1 kHz. However, this value can of course vary from Vary from case to case.
  • the inventive concept for determining a coding block grid described using an audio coding concept
  • this Concept is also applicable to video encoders.
  • the invention Concept generally applies to all coding algorithms applicable to all signals if these coding algorithms have the property that they are on a build up spectral representation of the signal to be encoded. Whenever this is the case, different coding block divisions can be used for the decoded signal one generated spectral representation of the selected section then the spectral representation with regard to to evaluate a predetermined criterion.
  • the device according to the invention not necessarily to determine an encoding block grid must work in series so that an evaluation result after another is generated, d. H. that about the Control lines 16 (Fig. 1) the device 11 for picking out is controlled to gradually one for example to pick out 1 shifted section.
  • the invention Device also completely or partially parallel be implemented so that, for example, 1024 evaluation results can be generated in one processing step. Also mixed serial / parallel options are possible so that For example, there are eight parallel branches, which then exist correspondingly often work in series to cover an entire search area to be able to cover.
  • the coding block grid by any definition can be identified, and not just by the initial sample of a coding block.
  • each sample can be one Coding blocks of samples are used to to define the coding block grid.
  • the coding block grid also deviates from the number of samples per window are defined such that two grid points of the coding block grid around the z. B. twice the number of samples of a window from each other are spaced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Claims (11)

  1. Procédé pour déterminer une matrice de blocs de codage sur laquelle est basé un signal décodé, le signal décodé étant généré par codage et décodage selon un algorithme de codage avec une étape de génération de blocs de codage, une étape de conversion et une étape de réduction de données à partir d'un signal original, l'étape de génération de blocs de codage de l'algorithme de codage consistant à subdiviser le signal original selon la matrice de blocs de codage en blocs de codage avec un nombre déterminé de valeurs de signal discret dans le temps, l'étape de conversion consistant à générer, à partir d'un bloc de codage, une représentation spectrale de celui-ci et l'étape de réduction de données consistant à éliminer des informations de la représentation spectrale du signal original, aux caractéristiques suivantes :
    un dispositif (11) destiné à prélever un segment du signal décodé qui commence à une valeur de balayage de départ du signal décodé ;
    un dispositif (12) destiné à effectuer l'étape de conversion sur le segment du signal décodé, pour fournir une représentation spectrale du segment ;
    un dispositif (13) destiné à évaluer la représentation spectrale du segment en ce qui concerne un critère prédéterminé, pour obtenir un résultat d'évaluation pour le segment ;
    le dispositif pour déterminer une matrice de blocs de codage étant, par ailleurs, disposé de manière à prélever, à convertir et à évaluer une pluralité de segments du signal décodé commençant à différentes valeurs de balayage de départ, pour obtenir une pluralité de résultats d'évaluation ; et
    un dispositif (14) destiné à examiner les résultats d'évaluation et à sortir une identification pour la matrice de blocs de codage sur laquelle se base le signal décodé, sur base du segment ayant un résultat d'évaluation extrême par rapport à d'autres résultats d'évaluation.
  2. Dispositif selon la revendication 1, dans lequel le dispositif d'évaluation (13) est disposé de manière à utiliser, comme critère prédéterminé, le nombre de coefficients spectraux de la représentation spectrale inférieurs à une valeur de seuil prédéterminée.
  3. Dispositif selon la revendication 1, dans lequel le dispositif d'évaluation (13) est disposé de manière à utiliser, comme critère prédéterminé, une mesure d'oscillation d'amplitudes, de préférence logarithmées, de coefficients spectraux de la représentation spectrale.
  4. Dispositif selon l'une des revendications précédentes, dans lequel le dispositif d'évaluation (13) est disposé de manière à n'examiner en ce qui concerne le critère qu'un segment de la représentation spectrale de la fréquence la plus petite à une fréquence limite.
  5. Dispositif selon l'une des revendications précédentes, dans lequel l'algorithme de codage est l'un parmi une pluralité d'algorithmes de codage différents et dans lequel le dispositif destiné à réaliser l'étape de conversion présente, par ailleurs, les caractéristiques suivantes :
    un dispositif de mémoire destiné à mémoriser, pour chaque algorithme de codage, un jeu de paramètres de codage qui lui est propre, le jeu de paramètres de codage étant choisi de manière à définir au moins l'étape de conversion de l'algorithme de codage correspondant ; et
    un dispositif destiné à appeler du dispositif de mémoire un autre jeu de paramètres de codage, pour fournir des résultats d'évaluation pour un autre algorithme de codage.
  6. Dispositif selon la revendication 5, dans lequel le jeu de paramètres de codage pour un algorithme de codage définit une banque de filtres à la base de ce dernier ainsi qu'une fenêtre utilisée par ce dernier pour la formation de blocs de codage.
  7. Dispositif selon l'une des revendications précédentes, dans lequel le signal décodé est un signal stéréo, le dispositif présentant, par ailleurs, la caractéristique suivante :
    un dispositif de traitement stéréo du signal décodé, pour fournir au moins un signal stéréo traité.
  8. Dispositif selon la revendication 7, dans lequel le dispositif de traitement stéréo effectue un traitement centre/côté, de sorte que le dispositif de conversion (12) agisse au moins soit sur un signal de centre, soit sur un signal de côté.
  9. Dispositif selon l'une des revendications précédentes, présentant, par ailleurs, la caractéristique suivante :
    un dispositif d'écriture couplé au dispositif (14) d'examen et d'édition, pour pourvoir le signal décodé d'un marquage comportant au moins des informations de matrice de blocs de codage.
  10. Dispositif selon l'une des revendications précédentes, disposé de manière à traiter, comme signal décodé, un signal audio ou un signal vidéo, l'étape de réduction de données comprenant, dans le cas du signal audio, une quantification en fonction d'un modèle psycho-acoustique et, dans le cas d'un signal vidéo, une quantification en fonction d'un modèle psycho-optique.
  11. Procédé pour déterminer une matrice de blocs de codage sur laquelle est basé un signal décodé, le signal décodé étant généré par codage et décodage selon un algorithme de codage avec une étape de génération de blocs de codage, une étape de conversion et une étape de réduction de données à partir d'un signal original, l'étape de génération de blocs de codage de l'algorithme de codage consistant à subdiviser le signal original selon la matrice de blocs de codage en blocs de codage avec un nombre déterminé de valeurs de signal discret dans le temps, l'étape de conversion consistant à générer, à partir d'un bloc de codage, une représentation spectrale de celui-ci et l'étape de réduction de données consistant à éliminer des informations de la représentation spectrale du signal original, aux étapes suivantes consistant à :
    prélever (11) un segment du signal décodé qui commence à une valeur de balayage de départ du signal décodé ;
    effectuer (12) l'étape de conversion sur le segment du signal décodé, pour fournir une représentation spectrale du segment ;
    évaluer (13) la représentation spectrale du segment en ce qui concerne un critère prédéterminé, pour obtenir un résultat d'évaluation pour le segment ;
    les étapes de prélèvement (11), de réalisation (12) et d'évaluation (13) étant effectuées une pluralité de fois, pour prélever, convertir et évaluer une pluralité de segments du signal décodé commençant à différentes valeurs de balayage de départ, pour obtenir une pluralité de résultats d'évaluation ; et
    examiner (14) les résultats d'évaluation et sortir une identification pour la matrice de blocs de codage sur laquelle se base le signal décodé, sur base du segment ayant un résultat d'évaluation extrême par rapport à d'autres résultats d'évaluation.
EP01900416A 2000-01-12 2001-01-10 Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode Expired - Lifetime EP1247275B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10000934A DE10000934C1 (de) 2000-01-12 2000-01-12 Vorrichtung und Verfahren zum Bestimmen eines Codierungs-Blockrasters eines decodierten Signals
DE10000934 2000-01-12
PCT/EP2001/000241 WO2001052240A1 (fr) 2000-01-12 2001-01-10 Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode

Publications (2)

Publication Number Publication Date
EP1247275A1 EP1247275A1 (fr) 2002-10-09
EP1247275B1 true EP1247275B1 (fr) 2003-06-25

Family

ID=7627256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01900416A Expired - Lifetime EP1247275B1 (fr) 2000-01-12 2001-01-10 Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode

Country Status (4)

Country Link
US (1) US6750789B2 (fr)
EP (1) EP1247275B1 (fr)
AT (1) ATE243877T1 (fr)
DE (2) DE10000934C1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100462611B1 (ko) * 2002-06-27 2004-12-20 삼성전자주식회사 하모닉 성분을 이용한 오디오 코딩방법 및 장치
DE102004036154B3 (de) * 2004-07-26 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur robusten Klassifizierung von Audiosignalen sowie Verfahren zu Einrichtung und Betrieb einer Audiosignal-Datenbank sowie Computer-Programm
FR2911228A1 (fr) * 2007-01-05 2008-07-11 France Telecom Codage par transformee, utilisant des fenetres de ponderation et a faible retard.
US8891775B2 (en) 2011-05-09 2014-11-18 Dolby International Ab Method and encoder for processing a digital stereo audio signal
US9117440B2 (en) 2011-05-19 2015-08-25 Dolby International Ab Method, apparatus, and medium for detecting frequency extension coding in the coding history of an audio signal
BR112015019543B1 (pt) 2013-02-20 2022-01-11 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Aparelho para codificar um sinal de áudio, descodificador para descodificar um sinal de áudio, método para codificar e método para descodificar um sinal de áudio
CN111210832B (zh) * 2018-11-22 2024-06-04 广州广晟数码技术有限公司 基于频谱包络模板的带宽扩展音频编解码方法及装置
US11368209B2 (en) 2019-05-30 2022-06-21 Qualcomm Incorporated Methods and apparatus for frequency translating repeaters

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3171840B2 (ja) * 1988-05-26 2001-06-04 トムソン コンシューマー エレクトロニクス セイルズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オーデイオ信号の伝送方法及びデコーディング装置
DE3902948A1 (de) * 1989-02-01 1990-08-09 Telefunken Fernseh & Rundfunk Verfahren zur uebertragung eines signals
DE4405659C1 (de) * 1994-02-22 1995-04-06 Fraunhofer Ges Forschung Verfahren zum kaskadierten Codieren und Decodieren von Audiodaten
DE19647399C1 (de) * 1996-11-15 1998-07-02 Fraunhofer Ges Forschung Gehörangepaßte Qualitätsbeurteilung von Audiotestsignalen
DE19730130C2 (de) * 1997-07-14 2002-02-28 Fraunhofer Ges Forschung Verfahren zum Codieren eines Audiosignals
GB2327577B (en) * 1997-07-18 2002-09-11 British Broadcasting Corp Re-encoding decoded signals
US6175590B1 (en) * 1997-08-08 2001-01-16 Qualcomm Inc. Method and apparatus for determining the rate of received data in a variable rate communication system
US6496795B1 (en) * 1999-05-05 2002-12-17 Microsoft Corporation Modulated complex lapped transform for integrated signal enhancement and coding

Also Published As

Publication number Publication date
DE10000934C1 (de) 2001-09-27
WO2001052240A8 (fr) 2001-08-16
DE50100332D1 (de) 2003-07-31
US20030107503A1 (en) 2003-06-12
ATE243877T1 (de) 2003-07-15
WO2001052240A2 (fr) 2001-07-19
US6750789B2 (en) 2004-06-15
EP1247275A1 (fr) 2002-10-09

Similar Documents

Publication Publication Date Title
DE19811039B4 (de) Verfahren und Vorrichtungen zum Codieren und Decodieren von Audiosignalen
DE60014363T2 (de) Verringerung der von der quantisierung verursachten datenblock-diskontinuitäten in einem audio-kodierer
DE10109648C2 (de) Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
DE60225381T2 (de) Verfahren zur Kodierung von Sprach- und Musiksignalen
DE60308567T2 (de) Dekodierungsgerät, Kodierungsgerät, Dekodierungsverfahren und Kodierungsverfahren
EP1697930B1 (fr) Dispositif et procede pour traiter un signal multicanal
DE602004005197T2 (de) Vorrichtung und verfahren zum kodieren eines audiosignals und vorrichtung und verfahren zum dekodieren eines kodierten audiosignals
DE102007017254B4 (de) Vorrichtung zum Kodieren und Dekodieren
EP1697931B1 (fr) Dispositif et procede pour determiner une valeur estimee
WO1999004506A1 (fr) Procede de codage d'un signal audio
DE4320990A1 (de) Verfahren zur Redundanzreduktion
EP1397799B1 (fr) Procede et dispositif de traitement de valeurs d'echantillonnage audio discretes dans le temps
DE60017825T2 (de) Verfahren und Vorrichtung zur Kodierung und Dekodierung von Audiosignalen und Aufzeichnungsträger mit Programmen dafür
DE60303346T2 (de) Encodier- und/oder Decodierverfahren für digitale Audiosignale, basierend auf Zeit-Frequenzkorrelation und Vorrichtung hierzu
DE602004007550T2 (de) Verbesserte frequenzbereichs-fehlerverbergung
EP1247275B1 (fr) Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode
DE102007029381A1 (de) Digitalsignal-Verarbeitungsvorrichtung, Digitalsignal-Verarbeitungsverfahren, Digitalsignal-Verarbeitungsprogramm, Digitalsignal-Wiedergabevorrichtung und Digitalsignal-Wiedergabeverfahren
EP1277346B1 (fr) Dispositif et procédé pour l'analyse de la représentation spectrale d'un signal temporel décodé
DE60116809T2 (de) Vorrichtung zum Transkodieren eines Audiodatenstroms
DE19639000B4 (de) Toncodier- und Tondecodiervorrichtung
EP0905918A2 (fr) Procédé et dispositif de codage de signaux audio
DE112008003153T5 (de) Frequenzband-Bestimmungsverfahren zum Formen von Quantisierungsrauschen und dieses Verfahren verwendendes Verfahren zum Formen von transientem Rauschen
DE10065363B4 (de) Vorrichtung und Verfahren zum Decodieren eines codierten Datensignals
WO2001052240A1 (fr) Dispositif et procede permettant de determiner la matrice de blocs de codage d'un signal decode
DE102006053976A1 (de) Verfahren zur Umschaltung von Fenster und zur Entscheidung des Bandstatus der Mittel/Seitenkodierung für fortgeschrittene Audiokodierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50100332

Country of ref document: DE

Date of ref document: 20030731

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040326

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200127

Year of fee payment: 20

Ref country code: DE

Payment date: 20200123

Year of fee payment: 20

Ref country code: AT

Payment date: 20200121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200127

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50100332

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 243877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210109