EP1247050B1 - Periodic refrigerating machine - Google Patents

Periodic refrigerating machine Download PDF

Info

Publication number
EP1247050B1
EP1247050B1 EP01915128A EP01915128A EP1247050B1 EP 1247050 B1 EP1247050 B1 EP 1247050B1 EP 01915128 A EP01915128 A EP 01915128A EP 01915128 A EP01915128 A EP 01915128A EP 1247050 B1 EP1247050 B1 EP 1247050B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
pulse tube
refrigerating machine
heat
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01915128A
Other languages
German (de)
French (fr)
Other versions
EP1247050A1 (en
Inventor
Albert Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1247050A1 publication Critical patent/EP1247050A1/en
Application granted granted Critical
Publication of EP1247050B1 publication Critical patent/EP1247050B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1403Pulse-tube cycles with heat input into acoustic driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Definitions

  • the invention relates to a periodically operating chiller.
  • Chillers of this type are in differently modified operating modes been realized. With one-step arrangements can the temperature typically from room temperature to about 25K can be lowered [I, II], with two-stage devices even to below 4 K [III].
  • the work gained is for driving a pulse tube cooler available.
  • a regenerator is attached to this.
  • This heat exchanger is therefore referred to as a heater.
  • the pulse tube of the power transmitter is installed and is completed with a heat exchanger that gives off heat.
  • the last heat exchanger of the power amplifier the first of the pulse tube cooler, if you will.
  • the heat exchanger which forms the useful cold zone.
  • the pulse tube amplifier can be electrically heated on the one hand (Claim 6), on the other hand, similar to a Stirling engine, can also use other heat sources such as solar heating or Combustion [5] can be used (claim 7). In this case the cooler is operated with even lower primary energy requirements become.
  • the temperature occurring in the stationary case along the Pulse tube cooler is shown below.
  • the pulse tube cooler can be operated in different ways. Appropriate Operating schemes are in combination in Figures 2a to 2d represented with the thermal amplifier.
  • the respective Art according to Figures 2a and 2b are based on the availability of a suitable piston compressor for driving the amplifier. According to the well-known Stirling process, the expansion Recovered work. According to the principle of the two Figures 2c and 2d is the gas flow supplied to the amplifier stamped with periodically switched valves. This becomes one High pressure tank, HD, (pressure reservoir) removed and into one Low pressure tank, LP, (low pressure reservoir) relaxed, similar to operating a Gifford-McMahon (GM) cooler.
  • HD High pressure tank
  • LP Low pressure tank
  • GM Gifford-McMahon
  • This GM mode of operation has a poorer efficiency than the Stirling mode of operation, but has the advantage that it is less expensive Compressors can be used.
  • Figure 1 is the combination of the thermal Power amplifier with the pulse tube cooler shown schematically.
  • thermal power amplifier also called a compressor or pulse tube compressor
  • the power amplifier and the pulse tube cooler can be treated with the same methods.
  • a known calculation method [IV] provides good agreement with experiments in pulse tube coolers.
  • a cooler is considered as a typical case, which requires a working current ("pV power") of 1000 W at the regenerator input.
  • pV power working current
  • valve-controlled operation the pulsations are no longer harmonious.
  • the "pV power" is provided by a compressor with approx. 6000 W electrical drive power. It works with a compression ratio of approximately 1.9 at 18 bar medium pressure.
  • the calculation method results in a cooling capacity of approx. 110 W at 50 K cooling temperature and 300 K ambient temperature.
  • Harmonic i.e. sinusoidal pulsations of pressure and volume flow are assumed in the calculation.
  • the relationships between pressure p and volume flow U shown in the pointer / phase diagram according to FIG. 3a result at different positions, such as the regenerator inlet, RE, pulse tube inlet, PTE, and pulse tube outlet, PTA.
  • the volume flow U PT, E in the pulse tube on the side facing the compressor leads the pressure p PT present in the pulse tube by approximately 30 °, whereas the gas flow U PT, A on the opposite side lags the pressure by approximately 45 °. Similar operating conditions should arise on a pulse tube amplifier if it is designed for optimal energy conversion.
  • the volume flow U R, A present at the heated end of this regeneration generator is distinguished by a greater length due to the thermal expansion of the gas and by a slight rotation due to the empty volume in the regenerator.
  • the difference between U R, A and U PT1, E the gas flow present at the hot end of the pulse tube comes about when the heater unit flows through.
  • the pointers p R, E , P PT1 and p PT2 indicate the pressures at the room temperature end of the regenerator belonging to the amplifier, in the pulse tube of the amplifier unit and in the pulse tube of the cooler unit.
  • Pulse tube cooler in GM mode with 6000 W electrical Drive power of the compressor has a cooling capacity of 110 W. 50 K can be achieved.
  • the compressor output is 1000 K medium temperature in the area of the heating reduced by 50%, but in addition one Heating power of 1700 W at 1000 K can be fed. So reduced the total electric drive power of 6000 W to 4700 W, 3000 W on the compressor and 1700 W on the heating.
  • the pipe connection between the outlet of the regenerator and the entrance to the pulse tube is heated by the gas flame.
  • the pulse tube cooler connects the output of the recooler.
  • the practical design of a cooler with the aforementioned performance data is shown by way of example in FIG. 4.
  • the left module in the figure represents the compressor with high and low pressure buffer tanks, HD and LP, and the alternately operated valves, solenoid or rotary valves.
  • the middle group represents the single-stage pulse tube cooler to be operated, and the right module shows to scale the adapted power or pulse tube amplifier.
  • Its regenerator is constructed similarly to that of the cooler, with only the pore size being adapted to the higher temperature range.
  • a ceramic body wrapped with heating wire in a largely conventional design can be used as direct heating.
  • the pulse tube is optimized in terms of length and diameter so that a temperature a little above ambient temperature (approx.
  • the regenerator consists of stacked 100 mesh SS, 62 mm Diameter, 2 mm thick. This is followed by the heat exchanger in the form of a heater that needs 1700 W and generates 1000 K. It has an inner diameter of 55.2 mm and is 140 mm long. The white space is 50%.
  • the pulse tube with the above dimensions closes itself. It has a wall thickness of 2 mm and is made of high-temperature steel 1.4961.
  • a flow straightener is located at the pulse tube exit from a 200 mesh SS, about 15 mm thick.
  • the stoker is covered with a first radiation shield. Another one encased this, about a third of the regenerator and about one Third of the pulse tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Amplifiers (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The machine has a thermal power amplifier based on the pulsed pipe process and a pulsed pipe cooler connected in series. The thermal power amplifier consists of a compressor, first and third heat exchangers delivering heat to the surroundings, a regenerator, a second heat exchanger taking heat into the amplifier and a pulsed pipe. The pulsed pipe cooler consists of a regenerator, two heat exchangers, a pulsed pipe and an expander.

Description

Die Erfindung betrifft eine periodisch arbeitende Kältemaschine.The invention relates to a periodically operating chiller.

Es ist bekannt, daß ein Kälteerzeugungsprozeß, der nach dem Prinzip einer Stirlingmaschine funktioniert, so aufgebaut werden kann, daß im kalten Teil einer solchen Maschine keine zu bewegenden mechanischen Komponenten vorhanden sind. Der Kühler einer solchen besteht aus einem bei Umgebungstemperatur periodisch bewegten Kompressorkolben, einem thermisch isolierten Regenerator, einem ebenfalls thermisch isolierten Pulsrohr, das an beiden Enden mit Wärmeübertragern versehen ist und einem ebenfalls bei Umgebungstemperatur betriebenen Expansionskolben. Beide Kolben werden so bewegt, daß im Pulsrohr folgender Kreisprozeß durchlaufen wird:

  • Kompression des Gases;
  • Verschiebung des Gases in Richtung Expander;
  • Expansion des Gases;
  • Verschiebung des Gases in Richtung Kompressor:
    Eine solche Kältemaschine ist aus Dokument US-A-5 269 147 schon bekannt.
  • It is known that a refrigeration process, which works on the principle of a Stirling engine, can be constructed so that there are no mechanical components to be moved in the cold part of such an engine. The cooler of this type consists of a compressor piston which is moved periodically at ambient temperature, a thermally insulated regenerator, a likewise thermally insulated pulse tube which is provided with heat exchangers at both ends and an expansion piston which is also operated at ambient temperature. Both pistons are moved in such a way that the following cycle is run in the pulse tube:
  • Compression of the gas;
  • Displacement of the gas in the direction of the expander;
  • Expansion of the gas;
  • Shifting the gas towards the compressor:
    Such a refrigerator is already known from document US-A-5 269 147.
  • Die genauere Analyse zeigt daß mit dem Kompressor verhältnismäßig viel Arbeit zugeführt wird. Ein geringer Anteil davon wird am Expander zurückgewonnen. Die Differenz wird in Wärme umgesetzt, die im wesentlich im Bereich des Kompressors abgeleitet werden muß (siehe auch Figur 6).The closer analysis shows that with the compressor is relatively a lot of work is done. A small proportion of it will recovered on the expander. The difference is converted into heat which is essentially derived in the area of the compressor must be (see also Figure 6).

    Derartige Kältemaschinen sind in unterschiedlich abgewandelten Betriebsweisen realisiert worden. Mit einstufigen Anordnungen kann die Temperatur typischerweise von Raumtemperatur auf etwa 25 K abgesenkt werden [I, II], mit zweistufigen Einrichtungen sogar bis unterhalb von 4 K [III].Chillers of this type are in differently modified operating modes been realized. With one-step arrangements can the temperature typically from room temperature to about 25K can be lowered [I, II], with two-stage devices even to below 4 K [III].

    Folgende Überlegung führte zu der Erfindung:The following consideration led to the invention:

    Wenn an dem Wärmeübertrager zwischen dem Regenerator und dem Pulsrohr soviel Wärme zugeführt wird, daß dort keine Abkühlung sondern eine Erwärmung über die Raumtemperatur hinaus erfolgt, wird die am Expander abzuführende Arbeitsleistung größer als die dem System mechanisch zugeführte Kompressionsleistung. Ein Teil der beim Wärmeübetrager zwischen Regenerator und Pulsrohr zuund der beim Wärmeübertrager am Ende des Pulsrohrs abgeführten Wärme wird in Arbeit umgewandelt und führt somit zu einer Verstärkung der mechanischen Leistung.If at the heat exchanger between the regenerator and the So much heat is supplied to the pulse tube that there is no cooling but heating takes place above room temperature, the work to be performed on the expander is greater than that compression power mechanically supplied to the system. A part the one at the heat exchanger between the regenerator and the pulse tube that of the heat exchanger at the end of the pulse tube Heat is converted into work and thus leads to reinforcement mechanical performance.

    Die damit gewonnenen Arbeit ist zum Antrieb eines Pulsrohrkühlers nutzbar.The work gained is for driving a pulse tube cooler available.

    In Anspruch 1 ist der Aufbau einer solchen, aus einem thermischen Leistungsverstärker und einem an seinen Ausgang angeschlossenen, also in Reihe geschalteten Pulsrohrkühler in seinen Merkmalen gekennzeichnet.In claim 1 is the construction of such a thermal Power amplifier and one connected to its output, So pulse tube cooler connected in series in his Characteristics marked.

    Der thermische Leistungsverstärker aus einer Kompressoreinrichtung an die ein erster Wärmeübertrager angebaut ist, der an die Umgebung Wärme abgibt. An diesen ist ein Regenerator angebaut. Am andern Ende sitzt ein weiterer Wärmeübertrager, über den Wärme in den Leistungsverstärker eingeleitet wird. Dieser Wärmeübertrager wird daher als Heizer bezeichnet. An den Heizer ist in Folge das Pulsrohr des Leistungsübertragers angebaut und wird mit einem Wärmeübertrager, der Wärme abgibt abgeschlossen. An diesen letzten Wärmeübertrager ist der Pulsrohrkühler angebaut, dabei ist der letzte Wärmeübertrager des Leistungsverstärkers der erste des Pulsrohrkühlers, wenn man so will. Zwischen dem Regenerator und Pulsrohr des Pulsrohrkühlers liegt der Wärmeübetrager, der die Nutzkältezone bildet. Schließlich schließt das Pulsrohr mit einem letzten Wärmeübertrager und der daran ankoppelnden Expandereinrichtung ab.The thermal power amplifier from a compressor device to which a first heat exchanger is attached, to the Environment gives off heat. A regenerator is attached to this. At the other end there is another heat exchanger over which Heat is introduced into the power amplifier. This heat exchanger is therefore referred to as a heater. To the heater as a result, the pulse tube of the power transmitter is installed and is completed with a heat exchanger that gives off heat. On the pulse tube cooler is attached to this last heat exchanger, the last heat exchanger of the power amplifier the first of the pulse tube cooler, if you will. Between the The regenerator and pulse tube of the pulse tube cooler is the heat exchanger, which forms the useful cold zone. Finally, that closes Pulse tube with a last heat exchanger and the one to be coupled to it Expander device from.

    In den Unteransprüchen 2 bis 5 sind verschiedene Betriebsvarianten entsprechend der bekannten Betriebsvarianten von Pulsrohrkühlern aufgeführt [I bis III]:

  • Zunächst die beiden Varianten mit bewegten Bauteilen:
  • Anspruch 2 der Stirling-Prozess mit Kolbenexpander,
  • Anspruch 3 der Stirling-Prozeß mit passivem Expander, und dann die beiden Varianten, die keine bewegten Bauteile haben:
  • Anspruch 4 die Gifford-McMahon-Betriebsweise mit einem Hoch- und
  • Niederdruckreservoir, die beide über mit je einem Ventil versehenen Zuleitungen am Regenerator ankoppeln, und mit passivem Expander wie in Anspruch 3 und schließlich
  • Anspruch 5 die Gifford-McMahon-Betriebsweise mit einer Kompressionseinrichtung, wie in Anspruch4 beschrieben, und je einer mit einem steuerbaren Ventil versehen Zuleitung vom Hoch- und Niederdruckreservoir, dem ventilgesteuertem Expander, zum Pulsrohr.
  • In subclaims 2 to 5, different operating variants are listed according to the known operating variants of pulse tube coolers [I to III]:
  • First the two variants with moving components:
  • Claim 2 the Stirling process with piston expander,
  • Claim 3 the Stirling process with a passive expander, and then the two variants that have no moving parts:
  • Claim 4 the Gifford-McMahon mode with a high and
  • Low-pressure reservoir, both of which couple to the regenerator via supply lines each provided with a valve, and with a passive expander as in claim 3 and finally
  • Claim 5 the Gifford-McMahon mode of operation with a compression device, as described in claim 4, and each with a controllable valve supply line from the high and low pressure reservoir, the valve-controlled expander, to the pulse tube.
  • Der Pulsrohrverstärker kann einerseits elektrisch beheizt werden (Anspruch 6), andrerseits, ähnlich wie bei einem Stirling-Motor, können auch andere Wärmequellen wie solare Erwärmung oder Verbrennung [5] genutzt werden (Anspruch 7). In diesem Fall kann der Kühler mit noch geringerem Bedarf an Primärenergie betrieben werden.The pulse tube amplifier can be electrically heated on the one hand (Claim 6), on the other hand, similar to a Stirling engine, can also use other heat sources such as solar heating or Combustion [5] can be used (claim 7). In this case the cooler is operated with even lower primary energy requirements become.

    Mit der Erfindung werden u.a. folgende Vorteile erzielt:

  • besserer Wirkungsgrad, d.h. weniger Primärenergie bei gleicher Kälteleistung;
  • kostengünstige Fertigung des Kühlers - im Vergleich zu einem mechanischen Kompressor ist der Pulsrohrverstärker eine sehr einfach zu fertigende Baugruppe, der Zusatzaufwand wiegt die Kosteneinsparung aufgrund eines kleineren Kompressors auf;
  • geringere Betriebskosten;
  • geringe Wartungskosten - der Pulsrohrverstärker selbst ist wartungsfrei, die für den Pulsrohrkühler in jedem Fall erforderlichen Zusatzkomponenten wie Kompressor und Ventile, die regelmäßige Wartung bzw. Austausch erfordern, genügen in kleinerer Bauweise und sind dadurch billiger.
  • The following advantages are achieved with the invention:
  • better efficiency, ie less primary energy with the same cooling capacity;
  • Cost-effective production of the cooler - compared to a mechanical compressor, the pulse tube amplifier is a very easy to manufacture assembly, the additional effort outweighs the cost savings due to a smaller compressor;
  • lower operating costs;
  • Low maintenance costs - the pulse tube amplifier itself is maintenance-free, the additional components required for the pulse tube cooler such as compressors and valves, which require regular maintenance or replacement, are sufficient in a smaller design and are therefore cheaper.
  • Die Erfindung wird im folgenden anhand der Zeichnung näher beschrieben. Die Zeichnung besteht aus mehreren Figuren. Es zeigt:

  • Figur 1 den schematischen Aufbau der Kältemaschine als Reihenschaltung aus einem thermischen Verstärker mit einem Pulsrohrkühler und die Darstellung des Temperaturverlaufs entlang derselben,
  • Figur 2a die Realisierung als Stirling-Typ mit Doppelkolben,
  • Figur 2b die Realisierung als Stirling-Typ mit Einfachkolben und Doppeleinlaß-Phasenschieber,
  • Figur 2c Gifford-McMahon-Typ mit Doppeleinlaß-Phasenschieber,
  • Figur 2d Gifford-McMahon-Typ mit aktivem Phasenschieber,
  • Figur 3a das Phasendiagramm der Oszillationen von Druck und Volumenstrom am optimierten Pulsrohrkühler,
  • Figur 3b das Phasendiagramm der Oszillationen von Druck und Volumenstrom an der Kältemaschiene, der Reihenschaltung von Pulsrohrverstärker und Pulsrohrkühler,
  • Figur 4 den Aufbau der Kältemaschine mit ventilbetriebenem thermischen Verstärker,
  • Figur 5 den Heizer als Brennkammer-Heizung,
  • Figur 6 Funktionsprinzip des Pulsrohrkühlers und der Temperaturverlauf entlang ihm.
  • The invention is described below with reference to the drawing. The drawing consists of several figures. It shows:
  • FIG. 1 shows the schematic structure of the refrigeration machine as a series circuit comprising a thermal amplifier with a pulse tube cooler and the representation of the temperature profile along the same,
  • 2a shows the realization as a Stirling type with a double piston,
  • FIG. 2b the realization as a Stirling type with a single piston and a double inlet phase shifter,
  • FIG. 2c Gifford-McMahon type with double inlet phase shifter,
  • FIG. 2d Gifford-McMahon type with active phase shifter,
  • FIG. 3a shows the phase diagram of the oscillations of pressure and volume flow on the optimized pulse tube cooler,
  • FIG. 3b shows the phase diagram of the oscillations of pressure and volume flow on the refrigeration machine, the series connection of pulse tube amplifier and pulse tube cooler,
  • FIG. 4 shows the structure of the refrigeration machine with a valve-operated thermal amplifier,
  • FIG. 5 the heater as a combustion chamber heater,
  • Figure 6 Principle of operation of the pulse tube cooler and the temperature curve along it.
  • Zunächst wird anhand der Figur 6 an das Funktionsprinzip des Pulsrohrkühlers in seinen vier Phasen einer Periode kurz erinnert:First, the principle of operation of the Pulse tube cooler briefly recalls in its four phases of a period:

    Der Kompressor und Expander werden so betrieben, daß im Pulsrohr folgender Kreisprozeß durchlaufen wird:

    • Kompression des Gases.
    • Verschiebung des Gases in Richtung Expander um eine Länge Δl, die kleiner als die Gesamtlänge des Pulsrohrs ist. Hierbei wird dem durch den Wärmeübertrager WÜ3 am Ende des dem Regenerator zugewandten Ende des Pulsrohrs strömenden Gas Wärme entzogen.
    • Expansion des Gases.
    The compressor and expander are operated in such a way that the following cycle is run through in the pulse tube:
    • Compression of the gas.
    • Displacement of the gas in the direction of the expander by a length Δl that is less than the total length of the pulse tube. This removes heat from the gas flowing through the heat exchanger WÜ3 at the end of the end of the pulse tube facing the regenerator.
    • Expansion of the gas.

    Die gesamte Gassäule kühlt sich ab, am linken Ende unter die Temperatur des dort befindlichen Wärmeübertragers.

    • Verschiebung des Gases zum Kompressor hin.
    The entire gas column cools down, at the left end below the temperature of the heat exchanger located there.
    • Displacement of the gas towards the compressor.

    Dabei kommt es zu einer Abkühlung am linken Wärmeübertrager WÜ1 oder es muß dort Wärme zugeführt werden, wenn dieser Wärmeübertrager WÜ1 bei konstanter Temperatur betrieben wird.This causes the left heat exchanger WÜ1 to cool down or heat must be supplied there if this heat exchanger WÜ1 is operated at constant temperature.

    Die sich im stationären Fall einstellende Temperatur entlang des Pulsrohrkühlers ist darunter dargestellt.The temperature occurring in the stationary case along the Pulse tube cooler is shown below.

    Der Pulsrohrkühler kann unterschiedliche betrieben werden. Entsprechende Betriebsschemen sind in den Figuren 2a bis 2d in Kombination mit dem thermischen Verstärker dargestellt. Die jeweilige Art nach Figur 2a und 2b basieren auf der Verfügbarkeit eines geeigneten Kolbenkompressors zum Antrieb des Verstärkers. Entsprechend dem bekannten Stirling-Prozeß wird bei der Expansion Arbeit zurückgewonnen. Gemäß dem Prinzip nach den beiden Figuren 2c und 2d wird der dem Verstärker zugeführte Gasstrom mit periodisch geschalteten Ventilen aufgeprägt. Dieses wird einem Hochdruckbehälter, HD, (Druckreservoir) entnommen und in einen Niederdruckbehälter, ND, (Niederdruckreservoir) entspannt, ähnlich wie beim Betrieb eines Gifford-McMahon(GM)-Kühlers. Diese GM-Betriebsweise hat zwar einen schlechteren Wirkungsgrad als die Stirling-Betriebsweise, hat aber den Vorteil, daß preisgünstigere Kompressoren eingesetzt werden können. Analoges gilt auch für dem Pulsrohrverstärker sowie für die Reihenschaltung beider Einheiten. In Figur 1 ist die Kombination des thermischen Leistungsverstärkers mit dem Pulsrohrkühler schematisch dargestellt.The pulse tube cooler can be operated in different ways. Appropriate Operating schemes are in combination in Figures 2a to 2d represented with the thermal amplifier. The respective Art according to Figures 2a and 2b are based on the availability of a suitable piston compressor for driving the amplifier. According to the well-known Stirling process, the expansion Recovered work. According to the principle of the two Figures 2c and 2d is the gas flow supplied to the amplifier stamped with periodically switched valves. This becomes one High pressure tank, HD, (pressure reservoir) removed and into one Low pressure tank, LP, (low pressure reservoir) relaxed, similar to operating a Gifford-McMahon (GM) cooler. This GM mode of operation has a poorer efficiency than the Stirling mode of operation, but has the advantage that it is less expensive Compressors can be used. The same applies also for the pulse tube amplifier as well as for the series connection of both units. In Figure 1 is the combination of the thermal Power amplifier with the pulse tube cooler shown schematically.

    Im weiteren wird eine beispielhafte Auslegung für die aus der Reihenschaltung des thermischen Leistungsverstärkers und des mit ihm betriebenen Pulsrohrkühlers bestehenden, periodisch arbeitenden Kältemaschine beschrieben.Furthermore, an exemplary interpretation for the from the Series connection of the thermal power amplifier and with pulse tube cooler operated by him, existing periodically working Chiller described.

    Da der thermische Leistungsverstärker, auch Kompressor oder Pulsrohrkompressor genannt, wie ein Pulsrohrkühler funktioniert, können beide Systeme, der Leistungsverstärker und der Pulsrohrkühler, mit gleichen Methoden behandelt werden. Ein bekanntes Berechnungsverfahren [IV] liefert bei Pulsrohrkühlern gute Übereinstimmung mit Experimenten. Als typischer Fall wird hier ein Kühler betrachtet, der am Regeneratoreingang einen Arbeitsstrom ("pV-Leistung") von 1000 W benötigt. Bei 2 Hz Pulsationsfrequenz ist hierzu ein harmonisch pulsierender Gasstrom mit einem Scheitelwerten von Us = 4,8 l/s des Volumenstroms und ps = 5,7 bar des Drucks mit einer Phasendifferenz von 45° erforderlich. Bei ventilgesteuerter Betriebsweise sind die Pulsationen nicht mehr harmonisch. Es zeigte sich aber, daß auch dann mit diesem Berechnungsmodell eine Auslegung mit guter Näherung vorgenommen werden kann. Bei der GM-Betriebsweise wird die "pV-Leistung" von einem Kompressor mit ca. 6000 W elektrischer Antriebsleistung erbracht. Er arbeitet bei einem Kompressionsverhältnis von etwa 1,9 bei 18 bar Mitteldruck. Für einen optimal angepaßten Pulsrohrkühler ergibt das Rechenverfahren eine Kühlleistung von ca. 110 W bei 50 K Kühltemperatur und 300 K Umgebungstemperatur.Since the thermal power amplifier, also called a compressor or pulse tube compressor, works like a pulse tube cooler, both systems, the power amplifier and the pulse tube cooler, can be treated with the same methods. A known calculation method [IV] provides good agreement with experiments in pulse tube coolers. A cooler is considered as a typical case, which requires a working current ("pV power") of 1000 W at the regenerator input. At a pulsation frequency of 2 Hz, a harmonically pulsating gas flow with a peak value of U s = 4.8 l / s of the volume flow and p s = 5.7 bar of the pressure with a phase difference of 45 ° is required. With valve-controlled operation, the pulsations are no longer harmonious. However, it was found that even with this calculation model, a design with a good approximation can be made. In the GM mode of operation, the "pV power" is provided by a compressor with approx. 6000 W electrical drive power. It works with a compression ratio of approximately 1.9 at 18 bar medium pressure. For an optimally adapted pulse tube cooler, the calculation method results in a cooling capacity of approx. 110 W at 50 K cooling temperature and 300 K ambient temperature.

    Bei der Berechnung werden harmonische, also sinusförmige Pulsationen von Druck und Volumenstrom angenommen. Im optimierten System ergeben sich die in dem Zeiger-/Phasendiagramm gemäß Figur 3a gezeigten Beziehungen zwischen Druck p und Volumenstrom U an verschiedenen Positionen wie dem Regeneratoreintritt, RE, Pulsrohreintritt, PTE, und Pulsrohraustritt, PTA. Der Volumenstrom UPT,E im Pulsrohr auf der dem Kompressor zugewandten Seite eilt dem im Pulsrohr vorliegenden Druck pPT um etwa 30° voraus, wohingegen der Gasstrom UPT,A an der gegenüber liegenden Seite dem Druck um etwa 45° nacheilt. Ähnliche Betriebsbedingungen sollten sich an einem Pulsrohrverstärker einstellen, wenn dieser für optimale Energiewandlung konzipiert wird.Harmonic, i.e. sinusoidal pulsations of pressure and volume flow are assumed in the calculation. In the optimized system, the relationships between pressure p and volume flow U shown in the pointer / phase diagram according to FIG. 3a result at different positions, such as the regenerator inlet, RE, pulse tube inlet, PTE, and pulse tube outlet, PTA. The volume flow U PT, E in the pulse tube on the side facing the compressor leads the pressure p PT present in the pulse tube by approximately 30 °, whereas the gas flow U PT, A on the opposite side lags the pressure by approximately 45 °. Similar operating conditions should arise on a pulse tube amplifier if it is designed for optimal energy conversion.

    Wenn nun aber der Pulsrohrverstärker, 1, und der Pulsrohrkühler, 2, in Reihe geschaltet sind, wie es bei der erfindungsgemäßen Anordnung nach den Figuren 1, 2 und 4 der Fall ist, summieren sich die Phasenverschiebungen, wie in Figur 3b dargestellt. Im Pulsrohr des Pulsrohr- oder Leistungsverstärkers, 1, eilen beide Volumenstromzeiger UPT1,E und UPT1,A dem Druck pPT1 voraus und im Kühler, 2, eilen die Volumenströme UPT2,E und UPT2,A dem Druck pPT2 nach. Ergänzend dazu sind in Figur 3b auch die Zeiger der Druckund Volumenstromoszillation an anderen Positionen dargestellt. So kennzeichnet UR,E den bei Raumtemperatur in den Regenerator des Verstärkers eingespeisten Volumenstrom. Der am beheizten Ende dieses Regegenerators vorliegende Volumenstrom UR,A ist durch eine größere Länge aufgrund der thermischen Ausdehnung des Gases und durch eine geringe Drehung aufgrund des Leervolumens im Regenerator ausgezeichnet. Der Unterschied zwischen UR,A und UPT1,E dem am heißen Ende des Pulsrohrs vorliegenden Gasstrom kommt bei der Durchströmung der Heizereinheit zustande. Entsprechend kennzeichnen die Zeiger pR,E, PPT1 und pPT2 die Drücke am Raumtemperaturende des zum Verstärker gehörenden Regenerators, im Pulsrohr der Verstärkereinheit und im Pulsrohr der Kühlereinheit.If, however, the pulse tube amplifier, 1, and the pulse tube cooler, 2, are connected in series, as is the case with the arrangement according to the invention according to FIGS. 1, 2 and 4, the phase shifts add up, as shown in FIG. 3b. In the pulse tube of the pulse tube or power amplifier, 1, both volume flow indicators U PT1, E and U PT1, A lead the pressure p PT1 and in the cooler, 2, the volume flows U PT2, E and U PT2, A lag the pressure p PT2 , In addition, the pointers of the pressure and volume flow oscillation at other positions are also shown in FIG. 3b. U R, E thus identifies the volume flow fed into the regenerator of the amplifier at room temperature. The volume flow U R, A present at the heated end of this regeneration generator is distinguished by a greater length due to the thermal expansion of the gas and by a slight rotation due to the empty volume in the regenerator. The difference between U R, A and U PT1, E the gas flow present at the hot end of the pulse tube comes about when the heater unit flows through. Correspondingly, the pointers p R, E , P PT1 and p PT2 indicate the pressures at the room temperature end of the regenerator belonging to the amplifier, in the pulse tube of the amplifier unit and in the pulse tube of the cooler unit.

    Beide Komponenten werden nicht in dem jeweils optimalen Zustand betrieben. Hierdurch verschlechtert sich die Effizienz des Pulsrohrkühlers gegenüber der Betriebsweise mit direktem Anschluss am Kompressor. Durch Modifizierung der Abmessungen kann dieser schädliche Effekt aber so weit vermindert werden, daß ein Gewinn erzielt wird.Both components are not in their optimal condition operated. As a result, the efficiency of the pulse tube cooler deteriorates compared to the mode of operation with direct connection on the compressor. By modifying the dimensions, this can harmful effect but reduced to the extent that a profit is achieved.

    Beispielsweise kann mit einem in konventioneller Weise betriebenen Pulsrohrkühler in GM-Betriebsweise mit 6000 W elektrischer Antriebsleistung des Kompressors eine Kühlleistung von 110 W bei 50 K erzielt werden. Bei Einsatz eines Pulsrohrverstärkers mit 1000 K mittlerer Temperatur im Bereich der Heizung wird die Kompressorleistung um 50 % verringert, zusätzlich muß aber eine Heizleistung von 1700 W bei 1000 K eingespeist werden. Damit reduziert sich die gesamte elektrische Antriebsleistung von 6000 W auf 4700 W, 3000 W am Kompressor und 1700 W an der Heizung.For example, one operated in a conventional manner Pulse tube cooler in GM mode with 6000 W electrical Drive power of the compressor has a cooling capacity of 110 W. 50 K can be achieved. When using a pulse tube amplifier with The compressor output is 1000 K medium temperature in the area of the heating reduced by 50%, but in addition one Heating power of 1700 W at 1000 K can be fed. So reduced the total electric drive power of 6000 W to 4700 W, 3000 W on the compressor and 1700 W on the heating.

    Der Effekt wird noch günstiger, wenn Materialien mit höherer Temperaturverträglichkeit eingesetzt werden, oder wenn die Heizleistung nicht elektrisch aufgebracht wird, sondern z.B. über eine Gasbrennerkammer beispielsweise, wie in Fig. 5 an skizziert. Die Rohrverbindung zwischen dem Ausgang des Regenerators und dem Eingang zum Pulsrohr wird über die Gasflamme erhitzt. Am Ausgang des Rückkühlers koppelt der Pulsrohrkühler an. The effect becomes even more favorable when materials with higher Temperature tolerance are used, or if the heating power is not applied electrically, but e.g. about a gas burner chamber, for example, as outlined in FIG. 5. The pipe connection between the outlet of the regenerator and the entrance to the pulse tube is heated by the gas flame. At the The pulse tube cooler connects the output of the recooler.

    Die praktischen Ausführung eines Kühlers mit den zuvor genannten Leistungsdaten ist beispielhaft in Figur 4 gezeigt. Die linke Baugruppe in der Figur stellt den Kompressor mit Hoch- und Niederdruck-Pufferbehältern, HD und ND, und den alternierend betriebenen Ventilen, Magnet- oder Drehventile, dar. Die mittlere Gruppe stellt den zu betreibenden einstufigen Pulsrohrkühler dar, und die rechte Baugruppe zeigt maßstäblich den daran angepassten Leistungs- oder Pulsrohrverstärker. Dessen Regenerator ist ähnlich aufgebaut wie der des Kühlers, wobei nur die Porenweite an den höheren Temperaturbereich angepasst ist. Als direkte Heizung kann ein mit Heizdraht bewickelter Keramikkörper in weitgehend konventioneller Ausführung verwendet werden. Das Pulsrohr ist in Bezug auf Länge und Durchmesser so optimiert, daß sich am unteren Ende eine Temperatur wenig über Umgebungstemperatur (ca. 300 K+ΔT) einstellt, und daß die Phasenbeziehung zwischen Druck und Gasströmung an die Erfordernisse der Reihenschaltung angepasst ist. In dem nachgeschalteten, wassergekühlten Wärmeübertrager wird die zuvor bei hoher Temperatur zugeführte Wärme auf Umgebungstemperatur rückgekühlt. Eine ähnliche Rückkühlung erfolgt in dem Kompressor. Daher kann der zwischen Pulsrohrverstärker und Pulsrohrkühler eingebaute Wärmeübertrager ähnlich aufgebaut sein wie der in dem Kompressor integrierte, ein Plattenübertrager. Die lineare Ausrichtung des Pulsrohr-Leistungsverstärkers in Figur 4 beruht auf praktischen Erwägungen. Pulsrohr-Verstärker und -Kühler sind in gleichem Maßstab dargestellt. Die wesentlichen Abmessungen und Betriebsparameter sind in der Tabelle 1 zusammengestellt. Parameter eines Pulsrohrverstärkers ◆ Frequenz (Hz) ◆ 2 ◆ Druck (bar) ◆ Min ◆ 12,4 ◆ Max ◆ 23,6 ◆ Mittl. Massenstrom (g/s) ◆ 5 ◆ Regenerator ◆ Länge (mm) 140 ◆ Durchmesser (mm) ◆ 60 ◆ Heizung ◆ Länge (mm) ◆ 140 ◆ Durchmesser (mm) ◆ 60 ◆ Pulsrohr ◆ Länge (mm) ◆ 600 ◆ Durchmesser (mm) ◆ 60 The practical design of a cooler with the aforementioned performance data is shown by way of example in FIG. 4. The left module in the figure represents the compressor with high and low pressure buffer tanks, HD and LP, and the alternately operated valves, solenoid or rotary valves. The middle group represents the single-stage pulse tube cooler to be operated, and the right module shows to scale the adapted power or pulse tube amplifier. Its regenerator is constructed similarly to that of the cooler, with only the pore size being adapted to the higher temperature range. A ceramic body wrapped with heating wire in a largely conventional design can be used as direct heating. The pulse tube is optimized in terms of length and diameter so that a temperature a little above ambient temperature (approx. 300 K + ΔT) occurs at the lower end, and that the phase relationship between pressure and gas flow is adapted to the requirements of the series connection. In the downstream, water-cooled heat exchanger, the heat previously supplied at high temperature is recooled to ambient temperature. A similar recooling takes place in the compressor. Therefore, the heat exchanger installed between the pulse tube amplifier and the pulse tube cooler can be constructed similarly to the plate exchanger integrated in the compressor. The linear alignment of the pulse tube power amplifier in Figure 4 is based on practical considerations. Pulse tube amplifiers and coolers are shown on the same scale. The main dimensions and operating parameters are summarized in Table 1. Parameters of a pulse tube amplifier ◆ frequency (Hz) ◆ 2 ◆ pressure (bar) ◆ min ◆ 12.4 ◆ Max ◆ 23.6 ◆ Mean Mass flow (g / s) ◆ 5 ◆ regenerator ◆ length (mm) 140 ◆ diameter (mm) ◆ 60 ◆ heating ◆ length (mm) ◆ 140 ◆ diameter (mm) ◆ 60 ◆ pulse tube ◆ length (mm) ◆ 600 ◆ diameter (mm) ◆ 60

    Der Regenerator besteht aus gestapelten 100 mesh SS, 62 mm Durchmesser, 2 mm stark. Daran schließt sich der Wärmetauscher in Form des Heizers an, der 1700 W braucht und 1000 K erzeugt. Er hat 55,2 mm Innendurchmesser und ist 140 mm lang. Der Leerraum beträgt 50 %. Das Pulsrohr mit den obigen Maßen schließt sich an. Es hat eine Wandstärke von 2 mm und besteht aus Hochtemp.-Stahl 1.4961. Am Pulsrohrausgang befindet sich ein Strömungsglätter aus einem 200 mesh SS, etwa 15 mm dick. Der Heizer ist mit einem ersten Strahlungsschild ummantelt. Ein weiteres ummantelt dieses, etwa ein Drittel des Regenerators und etwa ein Drittel des Pulsrohrs.The regenerator consists of stacked 100 mesh SS, 62 mm Diameter, 2 mm thick. This is followed by the heat exchanger in the form of a heater that needs 1700 W and generates 1000 K. It has an inner diameter of 55.2 mm and is 140 mm long. The white space is 50%. The pulse tube with the above dimensions closes itself. It has a wall thickness of 2 mm and is made of high-temperature steel 1.4961. A flow straightener is located at the pulse tube exit from a 200 mesh SS, about 15 mm thick. The stoker is covered with a first radiation shield. Another one encased this, about a third of the regenerator and about one Third of the pulse tube.

    Wenn andere Heizenergien für den Heizer eingesetzt werden sollen, muß die Wärme von einer außerhalb des Gasraums angebrachten Brennerkammer oder einem Kollektorraum für Solarheizung an das Arbeitsgas übertragen werden. Das Problem stellt sich in gleicher Weise bei Stirling-Motoren. Die hierfür erarbeiteten Lösungen, bei denen zur Zeit Arbeitstemperaturen bis zu etwa 1000 K realisiert werden, können mit geringen Modifikationen übernommen werden. In Analogie dazu kann der Pulsrohrverstärker gemäß der schematische Darstellung der Figur 5 mit einem Gas- oder Ölbrenner betrieben werden. Die hier gewählte U-förmige Anordnung von Regenerator und Pulsrohr erwies sich als vorteilhaft. Das wärmere Gas des Regenerators als auch des Pulsrohrs sind oben, Wärme durch Naturkonvektion kann nicht abfließen. If other heating energies are to be used for the heater, the heat must be from outside the gas compartment Burner chamber or a collector room for solar heating to the Working gas are transferred. The problem is the same Way with Stirling engines. The solutions developed for this, at which working temperatures are currently up to about 1000 K. can be implemented with minor modifications become. In analogy to this, the pulse tube amplifier according to the schematic representation of Figure 5 with a gas or oil burner operate. The U-shaped arrangement of Regenerator and pulse tube proved to be advantageous. The warmer Gas from the regenerator and the pulse tube are at the top, Natural convection heat cannot flow away.

    Literaturliterature

  • I. S. Wild: Untersuchung ein- und mehrstufiger Pulsrohrkühler, Fortschritt-Berichte VDI, Reihe 19, Nr. 105, VDI-Verlag Düsseldorf 1997, ISBN 3-18-310519-5IS Wild: Investigation of single and multi-stage pulse tube coolers , progress reports VDI, row 19, No. 105, VDI-Verlag Düsseldorf 1997, ISBN 3-18-310519-5
  • II. J.Blaurock, R.Hackenberger, P.Seidel, and M. Thürk. Compact Four-Valve Pulse Tube Refrigerator in Coaxial Configuration. Proc. 8th Int. Cryocooler Conf, Vail (USA) 1994, p. ...II. J.Blaurock, R.Hackenberger, P.Seidel, and M. Thürk. Compact Four-Valve Pulse Tube Refrigerator in Coaxial Configuration. Proc. 8 th int. Cryocooler Conf, Vail (USA) 1994, p. ...
  • III. Wang, G. Thummes, and C. Heiden: Experimental Study of Staging Method for Two-Stage Pulse Tube Refrigerators for Liquid Helium Temperatures, Cryogenics Vol. 37 (1997), p. 159-164III. Wang, G. Thummes, and C. Heiden: Experimental Study of Staging Method for Two-Stage Pulse Tube Refrigerators for Liquid Helium Temperatures , Cryogenics Vol. 37 (1997), p. 159-164
  • IV. Hofmann and S. Wild: Analysis of o two-stage pulse tube cooler by modeling with thermoacoustic theory. Proc. 10th Int. Cryocooler Conf., May 26-28, 1998, Monterey, Ca. (USA)IV. Hofmann and S. Wild: Analysis of o two-stage pulse tube cooler by modeling with thermoacoustic theory . Proc. 10 th Int. Cryocooler Conf., May 26-28, 1998, Monterey, Ca. (UNITED STATES)
  • V. H. Carlson: 10 kW Hermetic Stirling Engine for Stationary Application, 6th International Stirling Engine Conference, Eindhoven (NL), May 26-28, 1993 (Paper ISEC-93086)VH Carlson: 10 kW Hermetic Stirling Engine for Stationary Application, 6 th International Stirling Engine Conference, Eindhoven (NL), May 26-28, 1993 (Paper ISEC-93086)
  • Claims (7)

    1. A periodically operating refrigerating machine, comprising:
      a thermal power amplifier based on the pulse tube process and
      a pulse tube cooler, which is connected in series to a heat exchanger of said thermal power amplifier operating as a cooler, wherein the thermal power amplifier comprises:
      a compressor device (K),
      a first heat exchanger (WÜ1), which releases heat to the environment, a regenerator (R1),
      a second heat exchanger (WÜ2), which introduces heat into the power amplifier, the heater,
      a pulse tube (PR1),
      a third heat exchanger (WÜ3), which releases heat to the environment, to which the pulse tube cooler is connected,
      said pulse tube cooler consisting of
      a regenerator (R2),
      a heat exchanger (WÜ4),
      a pulse tube (PR2),
      a heat exchanger (WÜ5) and
      an expander (E).
    2. A periodically operating refrigerating machine according to claim 1, characterised in that the refrigerating machine is the Stirling-type machine, which, in the form of a compressor device (K), has a compressor piston and, in the form of an expander device (E), has an expander piston - double piston construction.
    3. A periodically operating refrigerating machine according to claim 1, characterised in that the refrigerating machine is a Stirling type machine, which, in the form of a compressor device (K), has a compressor piston - single-piston construction - and, in the form of an expander, has a double inlet phase shifter in the form of a pipe connection with a variable cross-section from the heat exchanger (WÜ3) to the heat exchanger (WÜ5) and a pipe connection with a variable cross-section from the heat exchanger (WÜ5) to an expansion container.
    4. A periodically operating refrigerating machine according to claim 1, characterised in that the refrigerating machine is the Gifford-McMahon type machine, the GM type machine, which, in the form of a compressor device (K), has respectively a valve-controlled supply line from a high pressure reservoir (HD) and a low pressure reservoir (ND) - double valve arrangement - and, in the form of an expander, has a double inlet phase shifter in the form of a pipe connection with a variable cross-section from the heat exchanger (WÜ3) to the heat exchanger (WÜ5) and a pipe connection with a variable cross-section from the heat exchanger (WÜ5) to an expansion container.
    5. A periodically operating refrigerating machine according to claim 1, characterised in that the refrigerating machine is the Gifford-McMahon type machine, a GM type machine, which, in the form of a compressor device (K), has respectively a valve-controlled supply line from a high pressure reservoir (HD) and a low pressure reservoir (ND) and, in the form of an expander, also has respectively a valve-controlled supply line to the high pressure reservoir (HD) and a low pressure reservoir (ND) - four valve arrangement.
    6. A periodically operating refrigerating machine according to one of claims 1 to 5, characterised in that the heat source for the heater is installed directly in the heat exchanger (WÜ2), the heater.
    7. A periodically operating refrigerating machine according to one of claims 1 to 5, characterised in that the heat source for the heater is disposed externally of that of the power amplifier and is connected to the heat exchanger (WÜ2), the heater, so as to conduct heat well.
    EP01915128A 2000-01-15 2001-01-08 Periodic refrigerating machine Expired - Lifetime EP1247050B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10001460A DE10001460A1 (en) 2000-01-15 2000-01-15 Pulse tube power amplifier and method for operating the same
    DE10001460 2000-01-15
    PCT/EP2001/000124 WO2001051862A1 (en) 2000-01-15 2001-01-08 Periodic refrigerating machine

    Publications (2)

    Publication Number Publication Date
    EP1247050A1 EP1247050A1 (en) 2002-10-09
    EP1247050B1 true EP1247050B1 (en) 2004-10-20

    Family

    ID=7627597

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01915128A Expired - Lifetime EP1247050B1 (en) 2000-01-15 2001-01-08 Periodic refrigerating machine

    Country Status (6)

    Country Link
    US (1) US6622491B2 (en)
    EP (1) EP1247050B1 (en)
    JP (1) JP3857587B2 (en)
    AT (1) ATE280369T1 (en)
    DE (3) DE10001460A1 (en)
    WO (1) WO2001051862A1 (en)

    Families Citing this family (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    KR100454271B1 (en) * 2002-08-16 2004-10-26 엘지전선 주식회사 Heat-Driving Acoustic Orifice Pulse Tube Cryocooling Device
    JP4035069B2 (en) * 2003-02-27 2008-01-16 財団法人名古屋産業科学研究所 Piping equipment equipped with a sound amplifying / attenuator using thermoacoustic effect
    US20050103615A1 (en) * 2003-10-14 2005-05-19 Ritchey Jonathan G. Atmospheric water collection device
    WO2005106352A2 (en) * 2004-03-10 2005-11-10 Praxair Technology, Inc. Low frequency pulse tube with oil-free drive
    JP2008286507A (en) * 2007-05-21 2008-11-27 Sumitomo Heavy Ind Ltd Pulse tube refrigerator
    DE102008050653B4 (en) * 2008-09-30 2013-09-12 Institut für Luft- und Kältetechnik gGmbH Heat engine according to the pulse tube principle
    DE102008050655B4 (en) * 2008-09-30 2011-02-10 Fox-Service Gmbh Exhaust system for motor vehicles with integrated heat engine
    US8950193B2 (en) 2011-01-24 2015-02-10 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Secondary pulse tubes and regenerators for coupling to room temperature phase shifters in multistage pulse tube cryocoolers
    CN103017401B (en) * 2012-12-12 2015-06-03 浙江大学 Acoustic power amplifying device capable of adopting cold energy
    JP6286837B2 (en) * 2013-03-05 2018-03-07 いすゞ自動車株式会社 Thermoacoustic refrigeration equipment
    DE102013005304A1 (en) 2013-03-22 2014-09-25 Technische Universität Ilmenau Device and method for generating a cooling capacity
    US11041458B2 (en) * 2017-06-15 2021-06-22 Etalim Inc. Thermoacoustic transducer apparatus including a working volume and reservoir volume in fluid communication through a conduit
    US11193191B2 (en) * 2017-11-28 2021-12-07 University Of Maryland, College Park Thermal shock synthesis of multielement nanoparticles
    CN109990496B (en) * 2017-12-29 2021-10-08 同济大学 Tandem pulse tube refrigerator
    JP6913039B2 (en) * 2018-01-25 2021-08-04 住友重機械工業株式会社 Pulse tube refrigerator

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4858441A (en) * 1987-03-02 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Heat-driven acoustic cooling engine having no moving parts
    JP2706828B2 (en) * 1989-11-01 1998-01-28 株式会社日立製作所 refrigerator
    JPH03194364A (en) * 1989-12-25 1991-08-26 Sanyo Electric Co Ltd Cryostatic freezer
    JP2902159B2 (en) * 1991-06-26 1999-06-07 アイシン精機株式会社 Pulse tube refrigerator
    CN1098192A (en) * 1993-05-16 1995-02-01 朱绍伟 Rotary vascular refrigerator
    JPH0719635A (en) * 1993-06-29 1995-01-20 Naoji Isshiki Pulse tube refrigerator
    JP3624542B2 (en) * 1996-04-30 2005-03-02 アイシン精機株式会社 Pulse tube refrigerator
    US5791149A (en) * 1996-08-15 1998-08-11 Dean; William G. Orifice pulse tube refrigerator with pulse tube flow separator
    JPH10132404A (en) * 1996-10-24 1998-05-22 Suzuki Shiyoukan:Kk Pulse pipe freezer
    US5722243A (en) * 1996-11-13 1998-03-03 Reeves; James H. Pulsed heat engine for cooling devices
    JP2880142B2 (en) * 1997-02-18 1999-04-05 住友重機械工業株式会社 Pulse tube refrigerator and method of operating the same
    JP4147697B2 (en) * 1999-09-20 2008-09-10 アイシン精機株式会社 Pulse tube refrigerator
    US6374617B1 (en) * 2001-01-19 2002-04-23 Praxair Technology, Inc. Cryogenic pulse tube system

    Also Published As

    Publication number Publication date
    EP1247050A1 (en) 2002-10-09
    US20030019218A1 (en) 2003-01-30
    ATE280369T1 (en) 2004-11-15
    JP2003523495A (en) 2003-08-05
    DE10061922A1 (en) 2001-08-02
    DE10001460A1 (en) 2001-08-02
    DE10061922C2 (en) 2003-10-30
    JP3857587B2 (en) 2006-12-13
    US6622491B2 (en) 2003-09-23
    DE50104203D1 (en) 2004-11-25
    WO2001051862A1 (en) 2001-07-19

    Similar Documents

    Publication Publication Date Title
    EP1247050B1 (en) Periodic refrigerating machine
    DE4234678C2 (en) Reversible vibrating tube heat engine
    DE112005003132B4 (en) Kroygener cooler with reduced input power
    Xu et al. A pulse tube refrigerator below 2 K
    KR102505889B1 (en) A device in a heat cycle for converting heat into electrical energy
    CN103353184A (en) Linear type double-acting refrigeration system
    WO1997022839A1 (en) Low-temperature refrigerator with cold head and a process for optimising said cold head for a desired temperature range
    EP0890063A1 (en) Multistage low-temperature refrigeration machine
    JP2005106297A (en) Cryogenic freezing machine
    Zhu et al. 4 K pulse tube refrigerator and excess cooling power
    EP3559564B1 (en) Method and apparatus for generating process cold and process steam
    Wakeland et al. Thermoacoustics with idealized heat exchangers and no stack
    CN103411359B (en) A kind of adjustable double acting row ripple thermoacoustic system
    EP2312239A2 (en) Compound pulse tube cooler
    DE102009022933B4 (en) Pulse tube cold head
    DE19841686A1 (en) Compressor cooling machine has expansion machine in form of gear wheel motor with housing, at least two gear wheels with shaft bearings and coolant carrier chambers
    EP2710263A1 (en) Compressor device and cooling device fitted therewith and cooler unit fitted therewith
    Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
    DE10220391A1 (en) Heat pump or refrigerator has compressor for liquefying thermal medium expanded into an evaporator via choke element in form of expansion turbine driven by expanding thermal medium
    DE102004033027B4 (en) Invention relating to cryogenic cooling devices
    CN217303237U (en) Efficient precooling and liquefying system of clearance type refrigerating machine
    DE19948808A1 (en) Regenerative thermal power compressor, with flow connection from input container via inlet no-return valve to cold cavity and from there via outlet no-return valve to output container
    Kaiser et al. Thermodynamic analysis of an ideal four-valve pulse tube refrigerator
    CN113803905A (en) Efficient precooling and liquefying system of clearance type refrigerating machine
    AT396834B (en) Refrigerating machine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020426

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041020

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041020

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041020

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041020

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041020

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20041020

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20041020

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50104203

    Country of ref document: DE

    Date of ref document: 20041125

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050108

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050108

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050120

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050120

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050120

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050131

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050131

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

    Effective date: 20050131

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed

    Effective date: 20050721

    EN Fr: translation not filed
    BERE Be: lapsed

    Owner name: FORSCHUNGSZENTRUM *KARLSRUHE G.M.B.H.

    Effective date: 20050131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050320

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20100121

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20100326

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20110108

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110108

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50104203

    Country of ref document: DE

    Effective date: 20110802

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110802