EP1246000A1 - Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur - Google Patents

Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur Download PDF

Info

Publication number
EP1246000A1
EP1246000A1 EP01000092A EP01000092A EP1246000A1 EP 1246000 A1 EP1246000 A1 EP 1246000A1 EP 01000092 A EP01000092 A EP 01000092A EP 01000092 A EP01000092 A EP 01000092A EP 1246000 A1 EP1246000 A1 EP 1246000A1
Authority
EP
European Patent Office
Prior art keywords
nuclei
spectrally sensitizing
spectrally
amount
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01000092A
Other languages
German (de)
English (en)
Inventor
Kathy c/o AGFA-GEVAERT Elst
Paul c/o AGFA-GEVAERT Callant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Agfa Gevaert AG
Original Assignee
Agfa Gevaert NV
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV, Agfa Gevaert AG filed Critical Agfa Gevaert NV
Priority to EP01000092A priority Critical patent/EP1246000A1/fr
Priority to US10/090,243 priority patent/US6686142B2/en
Publication of EP1246000A1 publication Critical patent/EP1246000A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes
    • G03C5/17X-ray, infrared, or ultraviolet ray processes using screens to intensify X-ray images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • G03C1/14Methine and polymethine dyes with an odd number of CH groups
    • G03C1/18Methine and polymethine dyes with an odd number of CH groups with three CH groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/28Sensitivity-increasing substances together with supersensitising substances
    • G03C1/29Sensitivity-increasing substances together with supersensitising substances the supersensitising mixture being solely composed of dyes ; Combination of dyes, even if the supersensitising effect is not explicitly disclosed
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03511Bromide content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03541Cubic grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/0357Monodisperse emulsion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03594Size of the grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/01100 crystal face
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes

Definitions

  • the present invention relates to a light-sensitive silver halide photographic emulsion, a material comprising said emulsion and a screen-film combination of a radiographic intensifying phosphor screen and said material.
  • Cubic silver halide grains are grains which have since quite a long time been known as applicable in quite a lot of silver halide light-sensitive photographic materials, but since the early eighties many attempts have been made in order to replace them by silver halide tabular grains and to make those tabular grains suitable for use in silver halide photographic materials for quite a lot of diverse applications.
  • Heterodispersity of grain morphology further leads to, e.g., uncontrolled chemical and spectral sensitization, lower contrast and lower covering power, thereby losing typical advantages of the said grains as referred to hereinbefore.
  • Combinations of intensifying screens provided with luminescent phosphors in contact with light-sensitive silver halide photographic materials are conventionally used for medical diagnosis.
  • the luminescent phosphors in the screen panel or panels are converting X-rays into visible radiation, thereby exposing the film material in contact with the said panel (for single-side coated materials as e.g. in mammography) or panels (for duplitized materials as e.g. in chest imaging).
  • the compressed breast is irradiated with soft X-rays emitted from an X-ray generating device and the modulated X-rays are detected with a radiographic X-ray conversion screen, also called intensifying screen, fluorescent screen or phosphor screen.
  • the X-ray conversion screen comprises a luminescent phosphor which converts the absorbed X-rays into visible light and the emitted visible light exposes a silver halide film that is brought into contact with said X-ray conversion screen.
  • film processing comprising the steps of developing, fixing, rinsing and drying, a mammogram is obtained which can be read on a light box.
  • mammography films are preferred which comprise silver halide crystals that can be processed rapidly and consistently in a dry-to-dry processing cycle of 90 seconds or less and therefore, most mammography films today comprise good developable cubic silver halide crystals.
  • most mammography films today comprise good developable cubic silver halide crystals.
  • cubic crystals show a stable speed and contrast upon varying processing parameters, but said cubic grain emulsions however are characterized by a very high contrast, resulting in a poor skin line perceptibility.
  • tabular grains are mainly concerned with high sensitive silver bromide or silver bromoiodide emulsions.
  • tabular grain emulsions having a high aspect ratio are known to provide several advantages over more conventional spherical grains as e.g. a high covering power, a high (spectral) sensitivity and a lower coating weight, which saves costs in manufacturing.
  • Said lower coating weight is especially preferred if rapid processing applications, preferably accompanied by low replenishing amounts of developer and fixer, are required, which nowadays is an ever more returning demand.
  • the present invention is especially useful in mammographic applications, wherein, for reasons of good image definition light-sensitive layers are present on only one side of the film support.
  • Image formation therein proceeds with a system consisting of only one intensifying screen, wherein a high speed, a high contrast (preferably a high "toe contrast") and low residual dye stain are desired.
  • Specific measures taken therefore have e.g. been described in US-A 5,290,655; in EP-A's 0 264 788 and 0 577 027 and in Research Disclosure No. 33487 (1992), p.
  • sensitivity to darkroom illumination causing fog and having an influence on sensitometric and image quality characteristics, may form a problem with respect to diagnosis.
  • a chemically and spectrally-sensitized silver halide photographic emulsion composed of essentially (100) cubic silver brom(oiod)ide grains or crystals with an average edge length of from 0.2 ⁇ m up to 1.5 ⁇ m (preferably having a high degree of monodispersity), wherein said grains have been spectrally sensitized in the wavelength range from 540 nm to 555 nm by the step of adding at least three (a main, a second and a third trimethine) spectrally sensitizing dyes:
  • a light-sensitive silver halide photographic film material (particularly suitable for use in mammography) has further been disclosed, said material comprising a support and on one side thereof, at least one light-sensitive emulsion layer having been coated in at least one light-sensitive emulsion layer with the chemically and spectrally sensitized emulsion as disclosed.
  • radiographic screen/film combination comprising a light-sensitive silver halide photographic film material as disclosed, in contact with one supported or self-supporting X-ray intensifying screen, characterized in that said supported or self-supporting X-ray intensifying screen essentially consists of luminescent phosphor particles emitting green light in the wavelength range as set forth.
  • the film material is thus characterized by the presence, at one side of a transparent support, of at least one light-sensitive silver halide emulsion layer, wherein the silver halide emulsion essentially has cubic silver halide emulsion grains or crystals, spectrally sensitized in order to optimally detect the light emitted from the X-ray conversion screen, by the method as disclosed herein.
  • the said grains have been spectrally sensitized in the wavelength range from 540 nm to 555 nm by the step of adding at least three (a main, a second and a third trimethine) dyes:
  • said second spectrally sensitizing dye is an asymmetrical trimethine dye comprising a benzoxazole nucleus and a benzimidazole nucleus, and wherein, apart from the presence on at least one N-atom of a water-soluble group, other substitutions provide an asymmetric structure.
  • the said second spectrally sensitizing dye is an asymmetric trimethine dye comprising a benzoxazole nucleus and a benzimidazole nucleus, wherein, apart from the presence on at least one N-atom of a water-soluble group, other substitutions provide an asymmetric structure.
  • said second spectrally sensitizing dye is a dye selected from the group consisting of the dyes I-VIII, having the formulae
  • the said third spectrally sensitizing dye is present in an amount of not more than 5 mole % of all spectral sensitizers, more preferably in an amount of not more than 3 mole % of all spectrally sensitizing dyes and most preferably in an amount of not more than 1 mole % of all spectrally sensitizing dyes or, in other words, in clearly lower amounts than both other spectrally sensitizing trimethine dyes, whereas the second dye should be present in an amount of less than 10 mole %, more preferably less than 5 mole % and still more preferably in an amount of about 3 mole %.
  • said "hydrophobic substituent" (present as substituent on the nuclei of the second spectral sensitizer) is selected from the group consisting of substituted or unsubstituted phenyl and -(CH 2 ) x -CF 3 , wherein x is 0 or an integer having a value of from 1 to 4. It is required to add the spectral sensitizers used in the present invention in a consecutive order as they have been numbered, in order to attain all advantages as mentioned.
  • Emulsion grains or crystals of the emulsion according to the present invention essentially have (100) cubic silver halide grains or crystals, more preferably having a silver brom(oiod)ide composition with an average edge length of from 0.2 ⁇ m up to 1.5 ⁇ m.
  • the term "essentially cubic" is indicative for the presence, in an amount of at least 90 %, more preferably at least 95 % and even more preferably at least 99 % by number of crystals having a ⁇ 100 ⁇ crystal habit and thus (100) crystal faces, wherein edges may be sharp or rounded-off (e.g.
  • silver solubilizing growth accelerators such as ammonia or methionine, a thioether compound, thiazolidine-2-thione, tetra-substituted thiourea, potassium or ammonium rhodanide and an amine compound may be present during grain precipitation in order to adjust the average grain size) and wherein it is even not excluded that cubo-octaeders are present, provided that (111) crystal faces therein represent not more than 10 %, more preferably not more than 5 % and even more preferably not more than 1 % of the total projective area of all crystal faces present, and wherein (100) faces are clearly representing the majority of the crystal faces present in the emulsions.
  • silver solubilizing growth accelerators such as ammonia or methionine, a thioether compound, thiazolidine-2-thione, tetra-substituted thiourea, potassium or ammonium rhodanide and an amine compound may
  • the class of so-called cubic grains embraces (a) perfectly cubic crystals, or (b) cubic crystals with rounded corners, or (c) cubic crystals with small (111) faces at the corners (also known as tetradecahedrical grains), the total area of these (111) faces however being small compared to the total area of the (100) faces. Presence of cubo-octahedral shapes which are not excluded depends on the pAg values applied during the precipitation.
  • the emulsion of the present invention accordingly has cubic grains having a high degree of monodispersity in that a variation coefficient on said average edge length is less than 0.20. More preferably said variation coefficient of the emulsion grains according to this invention has a low value of between 0.10 and 0.20, said variation coefficient being defined as the ratio between the standard deviation of the grain size and the average grain size. This is particularly desired as a high contrast is envisaged for the mammographic image after processing of the material according to the present invention.
  • the silver halide grains are obtained by conventional precipitation techniques which are well known in the art and consist of the addition of aqueous solutions of silver and halide salts, e.g.
  • the grain size of the cubic grain emulsions can be determined using conventional techniques, e.g. as described by Trivelli and Smith, The Photographic Journal, vol. 69, 1939, p.330-338, Loveland “ASTM symposium on light microscopy” 1953, p.94-122 and Mees and James “The Theory of the photographic process” (1977), Chapter II.
  • Precipitation of silver halide crystals suitable for use in emulsion layers according to the present invention is performed in the presence of a protective, hydrophilic colloid, which should be chosedn with care: e.g. conventional lime-treated or acid treated gelatin can be used, but also oxidized gelatin (generally known as gelatin having less than 30 p.p.m. of methionine) or a synthetic peptizer.
  • a protective, hydrophilic colloid which should be chosedn with care: e.g. conventional lime-treated or acid treated gelatin can be used, but also oxidized gelatin (generally known as gelatin having less than 30 p.p.m. of methionine) or a synthetic peptizer.
  • the preparation of such modified gelatin types has been described in e.g. "The Science and Technology of Gelatin", edited by A.G. Ward and A. Courts, Academic Press 1977, page 295 and next pages.
  • the gelatin may also be an enzyme-treated gelatin as described
  • Cubic silver halide grains may also be precipitated in absence of gelatin, e.g. by making use of colloidal silica as a protective colloid in the presence of an onium compound, as described in EP-A's 0 677 773 and 0 649 051; or in the alternative by making use of cationic oxidized starch as has been disclosed e.g. in EP-A 0 758 759.
  • the emulsion is made free from excess of soluble inorganic salts by a conventional washing technique e.g. flocculation by ammonium sulphate or polystyrene sulphonate, followed by one or more washing and redispersion steps.
  • Conventional washing techniques can be found in Research Disclosure, Item 38957, Section III. Emulsion washing.
  • Another well-known washing technique is ultrafiltration as described e.g. in EP-A 0 794 455.
  • extra gelatin or another binder material can be added to the emulsion in order to obtain a gelatin to silver ratio wherein the emulsion remains colloidally stable during said further actions.
  • chemical sensitization can be carried out by effecting the ripening in the presence of small amounts of compounds containing sulphur,selenium or tellurium e.g. thiosulphate, thiocyanate, thiourea, selenosulphate, selenocyanate, selenoureas, tellurosulphate, tellurocyanate, sulphites, mercapto compounds, and rhodamines.
  • compounds containing sulphur,selenium or tellurium e.g. thiosulphate, thiocyanate, thiourea, selenosulphate, selenocyanate, selenoureas, tellurosulphate, tellurocyanate, sulphites, mercapto compounds, and rhodamines.
  • these compounds or combinations thereof are applied in combination with a noble metal salt, preferably a gold complex salt, but also salts of platinum, palladium and iridium as described in US-A 2,448,060 and GB-A 618,061 may be used.
  • a noble metal salt preferably a gold complex salt
  • salts of platinum, palladium and iridium as described in US-A 2,448,060 and GB-A 618,061 may be used.
  • Description of chemical sensitization techniques can be found in Research Disclosure, Item 38957, Chapter IV. Additions of sulphur and/or selenium and/or tellurium and gold may be carried out consecutively or simultaneously. In the latter case the addition of goldthiosulphate, goldselenosulphate or goldtellurosulphate compounds may be recommended. So it has e.g.
  • small amounts of dopants in form of complexing agents of Rh, Ru, Os, Pt or Ir can be added if not yet performed in the course of grain precipitation in order to get grain occlusions other than silver and halide as disclosed in Research Disclosure, Item 38957, Section I; or in more general terms of transition metal hexacoordination complexes as dopants for increasing imaging speed by providing or as so-called SET's (shallow electron trapping agents as described in Research Disclosure, Vol. 367, Nov. 1994, Item 36736.
  • reductors may be added as chemical sensitizers as e.g.
  • tin compounds as described in GB-A 789,823, amines, hydrazine derivatives, formamidine-sulphinic acids, and silane compounds.
  • the chemical sensitization can also proceed in the presence of phenidone and/or its derivatives, a dihydroxybenzene as hydroquinone, resorcinol, catechol and/or a derivative(s) thereof, one or more stabilizer(s) or antifoggant(s), one or more spectral sensitizer(s) or combinations of said ingredients.
  • Pretreatment with small amounts of oxidizing agents before adding the already mentioned chemical sensitizers may be useful in order to optimize the attainable fog to sensitivity relationship.
  • these compounds or combinations thereof are applied in combination with a noble metal salt, preferably a gold complex salt, but also salts of platinum, palladium and iridium as described in US-A 2,448,060 and 5,759,760 and in GB-A 618,061 may be used.
  • Amounts of gold, used in the chemical ripening of emulsions in order to get the most preferred contrast in the toe portion of the sensitometric curve have been disclosed e.g. in EP-A's 0 610 609 and 0 712 036. Additions of sulphur and/or selenium and/or tellurium and gold may be carried out consecutively or simultaneously.
  • goldthiosulphate goldselenosulphate or goldtellurosulphate compounds
  • goldtellurosulphate compounds small amounts of compounds (complexing agents) of Rh, Ru, Os or Ir can be added.
  • reductors may be added as chemical sensitizers as e.g. tin compounds as described in GB-A 789,823, amines, hydrazine derivatives, formamidine-sulphinic acids, and silane compounds.
  • the chemical sensitization can also proceed in the presence of phenidone and/or its derivatives, a dihydroxybenzene as hydroquinone, resorcinol, catechol and/or a derivative(s) thereof, one or more stabilizer(s) or antifoggant(s), and one or more spectral sensitizer(s) applied as claimed, or combinations of said ingredients.
  • a light-sensitive silver halide photographic film material comprising a support and on one side thereof, at least one light-sensitive emulsion layer having been coated in at least one light-sensitive emulsion layer with the chemically and spectrally sensitized emulsion as disclosed hereinbefore and as claimed.
  • the material is coated with a (green) spectrally-sensitized light(radiation)-sensitive emulsion layer, or, in the alternative, more than one emulsion layer having cubic emulsion grains coated in only one layer unit, being the front layer unit of the mammographic material, which is mounted in a screen/film system, in intimate contact with the (light-emitting intensifying) screen, wherein the radiation-sensitive silver brom(oiod)ide grains are containing more than 50 mole % of silver bromide and less than 4 mole % of silver iodide, based on total molar silver amounts.
  • the said radiation-sensitive silver halide grains are silver bromoiodide grains, containing at most 1 mole % of silver iodide, based on silver and even pure silver bromide emulsions are not excluded.
  • Silver iodide present in lower amounts than silver bromide can be distributed in a homogeneously (continuously) or heterogeneously (for so-called "core-shell emulsions" having a core wherein iodide concentrations are lower or higher than in the shell or shells adjacent thereto).
  • pure silver bromide cubes may still be "doped" with silver iodide by application of the so-called “conversion"-technique, wherein silver iodide is formed by conversion at the grain surface after addition of organic or inorganic compounds relasing iodide ions, such as potassium iodide or the iodide releasing compounds described in EP-A's 0 563 701, 0 563 708 and 0 651 284.
  • silver iodide is added in form of ultrafine silver iodide grains of about 0.050 ⁇ m or even smaller (also called “micrate emulsions") after stopping precipitation in the precipitation method or after having ended precipitation, so that silver iodide is located at dedicated sites in the cubic grains.
  • the silver halide grains present in a mammography film are spectrally sensitized in order to optimally detect the light emitted from the X-ray conversion screen, by the method disclosed hereinbefore in the statement of the present invention in order to get a preferred mammography film, further characterized by a spectral sensitivity ranging from 5 to 130 ⁇ J/m 2 measured at the emission maximum of the X-ray conversion screen, said spectral sensitivity being defined herein as the amount of exposure to light of a given wavelength required to obtain an optical density Dmin + 1.0 after processing.
  • the front layer unit wherein the chemically and spectrally sensitized cubic grain emulsions are coated have a silver halide amount, expressed as equivalent amount of silver nitrate, of less than 9.0 g/m2 and more preferably in the range from 6.5 to 8.5 g/m2.
  • the radiation-sensitive cubic silver halide emulsion grains therein have an average grain size in the range of from 0.45 ⁇ m up to 0.80 ⁇ m.
  • Coating amounts of hardenable hydrophilic colloid, composing the front layer unit are, in a preferred embodiment, limited to less than 6.0 g/m2, and coating amounts of non-hardenable hydrophilic colloid are limited to less than 60 weight % thereof; in order to provide the desired sensitometric and drying properties within the short running time (within 120 seconds, and more preferably less than 90 seconds) of the processing cycle, wherein subsequent processing steps are a developing step, a fixing step, a rinsing step and a drying step, with, inbetween those steps, one or more rinsing steps. In those rapid processing applications it may be advantageous to divide the total amount of silver, normally coated in the front layer unit, between the said front layer unit and the backing layer unit.
  • the said back layer unit is coated with radiation-sensitive cubic silver halide grains accounting for less than 1/3 (but not less than 1/5) of the total radiation-sensitive silver halide present in the film, wherein said cubic grains having an average grain size of from 0.25 ⁇ m up to less than 0.55 ⁇ m.
  • the hydrophilic backing layer unit coated on the back major face of the support further contains hardenable hydrophilic colloid limited to less than 3.0 g/m2, (more preferably in the range from 2.0 to 2.5 g/m2) and non-hardenabe hydrophilic colloid limited to less than 10 weight% thereof.
  • a total amount of silver halide coated in the material (sum of coating amounts at both sides for both - front and back - layer units), expressed as silver nitrate again, should be in the range from 6.0 up to 9.0 g/m2.
  • the image-forming portion in the material according to the present invention is, as a consequence of its composition, as disclosed hereinbefore, further comprised of a hydrophilic front layer unit coated on the front major face of the support capable of absorbing up to at least 60 %, and more preferably even more than 70 %, of the exposing radiation.
  • the radiographic material is coated with a hydrophilic front layer unit coated on the front major face of the support (to be contacted with the sole intensifying screen when exposed to "soft" X-rays, generated from a device with a tube voltage of 20 kV to 40 kV, as is typical for mammographic applications) wherein the front layer unit is capable of reaching a maximum density of more than 3.00, and even more preferably more than 3.5, after processing and wherein sensitivity (speed), measured at a density of 1.00 above fog, is higher for the front layer unit than for the back layer unit in an amount of from 0.30 up to 1.00 log (Exposure) and in a more preferred embodiment the back layer unit has a
  • the cubic grains in the back layer unit exhibiting a speed that ranges from 0.3 log E to 1.0 log E slower than in the front layer unit, provide facilitating visualization of anatomical features in the region of the skin-line.
  • Said “E” stands for "Exposure” and speed (sensitivity) is measured at a density of 1.0 above fog for the front as well as for the back layer unit.
  • hardenable hydrophilic colloid in the whole back layer unit should be limited to less than 3.0 g/m2, and should, more preferably, be situated in the range from 2.0 to 2.5 g/m2, whereas in the whole front layer unit it should be limited to less than 4.0 g/m2, more preferably be situated in the range from 3.5 to 3.9 g/m2.
  • the non-hardenabe hydrophilic colloid In the back layer unit the non-hardenabe hydrophilic colloid, the presence of which is preferably limited to the light-sensitive emulsion layer thereof, should further be limited to less than 10 wt %, but more than 5 wt %, versus the total amount of hardenable hydrophilic colloid present in the whole back layer unit.
  • the non-hardenabe hydrophilic colloid in the front layer unit should be present in the light-sensitive emulsion layer thereof in an amount of more than 50 wt % and even up to 60 wt %, versus the amount of hardenable hydrophilic colloid present in the light-sensitive layer, which means that in the whole front layer unit the said non-hardenable hydrophilic colloid should be present in an amount of about 30 wt% (preferably in the range from 25 up to 35 wt%).
  • whole back layer unit it is understood that, besides the subbed support a “density providing layer” should be present, situated farther from the said support, and adjacent to the emulsion layer, and that "density providing layer” should further be covered by an outermost protective antistress layer as a topcoat layer.
  • whole front layer unit is indicative for, besides the subbed support, for a light-sensitive emulsion layer adjacent to the said subbed support, wherein said emulsion layer is further covered by an outermost protective antistress layer as a topcoat layer, and wherein this protective layer should be hardened to an extent in order to avoid scratches due to contact made with the intensifying screen during exposure.
  • subbing layers coated directly on the thus provide subbed support are coated (preferably during stretching the polyester in order to get the support of the desired thickness) in order to improve the adhesion of the adjacent radiation-sensitive emulsion layer of the front layer unit and the non-radiation sensitive dye containing layer of the back layer unit to the support (in a common layer arrangement of a "classic” mammographic film material) or, in the alternative, the "slower" adjacent radiation-sensitive emulsion layer of the back layer unit as mentioned hereinbefore.
  • a "classic" mammographic film material an undercoat layer between the emulsion and subbing layer(s) and a protective layer on top of the emulsion layer(s) is present.
  • Additional non light-sensitive intermediate layers are optional.
  • spectrally sensitizing dyes as applied to the cubic grains in order to provide light-sensitive layers in the mammographic material according to the present invention that can, after having been exposed in a film/screen system according to the present invention, be processed in a rapid processing cycle without leaving dye stain, leading to misinterpretated diagnosis.
  • a single-side coated light-sensitive silver halide photographic film material comprising, on one side of a subbed support, one or more light-sensitive silver halide emulsion layer(s) overcoated with an outermost protective layer; said emulsion layer(s) having silver halide grains dispersed in binder, wherein said silver halide is coated in a total amount, expressed as an equivalent amount of silver nitrate of more than 5 g per m 2 , a latex polymer present in an amount of less than 30 % by weight versus said binder, and, at the other side of said support, a backing layer, covered with a protective outermost layer, characterized in that at least said backing layer is provided in at least one layer thereof, besides a cross-linked or cross-linkable first binder, with an organic component as a second binder, wherein said organic component is free from cross-linking upon reaction with a hardener and wherein said organic component is a polymer selected from the group consisting
  • a first cross-linkable binder called hardenable hydrophilic colloid in the present invention and present in amounts in the front layer unit and in the back layer unit as disclosed hereinbefore, besides a second binder, called herein "non-hardenable hydrophilic colloid", being a polymer selected from the group consisting of dextran having an average molecular weight from 1000 up to 100000, polyacrylamide having an average molecular weight from 1000 up to 100000, polyvinyl-pyrrolidone, polyvinyl alcohol and gelatin of the type which is free from cross-linking upon reaction with a hardener, more preferably a polymer selected from the group consisting of dextran having a molecular weight of not more than 20000 and polyacrylamide having a molecular weight not more than 20000.
  • Amounts at both sides of the support will differ from those disclosed in the cited EP-Application in case wherein light-sensitive layers are present at both sides of the support as an equilibrium in order to prevent the processed material from curling has to be sought, moreover as presence of coating amounts of silver at both sides causes further complications: apart from differing amounts of coated silver halide, differing total amounts of hydrophilic polymer at both sides of the support are present in that the topcoat layer of the front layer unit is coated from an amount of gelatin of about 1.0 up to 1.2 g/m2, corresponding with a coating amount twice as high as coated in the topcoat layer of the back layer unit, and wherein, even when the "density providing layer" in the back layer unit contains about 0.5 g/m2 of gelatin amounts of gelatin in the back layer unit are not exceeding 60 wt% of the total amount of gelatin coated in the whole front layer unit.
  • amounts of hardener should be added to the respective layer units at both sides in order to get a perfect balance for the material when leaving the processor as a dried film material bearing the image to be examined.
  • amounts of water absorption before processing should be different at the front layer unit side versus at the back layer unit side due to the required differences in hardening degrees, but should become about equal after processing: as dextran is a non-hardenable polymer binder, present in higher amounts in the emulsion layer(s) of the front layer unit - more than 0.5 g/m2, more preferably more than 1.0 g/m2 and even more preferably more than 1.5 g/m2) in an amount of about 10 times the amount in the layers of the back layer unit, the highest amounts will leave the photographic material from the front layer unit during processing, and more particularly during the rinsing step, the better for dextran having a lower molecular weight (M.W.
  • gelatin is used as a preferred polymer binder material, which can be forehardened with appropriate hardening agents such as those of the epoxide type, those of the ethylenimine type, those of the vinylsulfone type, e.g. 1,3-vinylsulphonyl-2-propanol or di-(vinylsulphonyl)-methane, vinylsulphonyl-ether compounds, vinylsul-phonyl compounds having soluble groups, chromium salts like e.g. chromium acetate and chromium alum, aldehydes as e.g.
  • Topcoat layers present as outermost layers at both sides of the material according to the present invention have a protective function and are coated from hydrophilic colloid in an amount of from about 1.1 g/m2 and 0.5 g/m2 in the front and in the back layer unit respectively.
  • a density providing layer is present in the back layer unit of the single-side coated material.
  • this density providing layer is situated farther from the support than the emulsion layer(s), it represents a layer containing a dye in an amount in order to provide a density of about 0.40 before, and less than 0.10 after processing, due to decolorization of said dye in an alkaline developer.
  • the dye exhibits a half peak absorption bandwidth over the spectral region of peak emission by the intensifying screen.
  • dyes suitable for use in the density providing layer have been described in EP-A's 0 489 973, 0 586 748, 0 587 229, 0 587 230, 0 656 401, 0 786 497 and 0 781 816, as well in the US-A's corresponding therewith.
  • Particularly preferred is the dye according to the formula(IX) hereinafter, the preparation method of which has been described in US-A 5,344,749.
  • Still another technique to obtain ultra fine dye dispersions consists in acidifying a slightly alkaline coating composition "in situ" just before coating it onto the supporting layer. Further useful information about dyes having decolorizing characteristics in alkaline processing solutions can be found in Research Disclosure, Item 38957, Chapter VIII. Presence of such dye(s) in adapted amounts is not only recommended to adjust the sensitivity of the different emulsion layers and eventually the required contrast, but also in order to reduce scattering of exposure radiation and thus to enhance sharpness.
  • the radiographic material according to the present invention has a spectral sensitivity maximum by the adsorption of spectral sensitizers disclosed hereinbefore, absorbing light from the phosphors prompt emitting light in the wavelength range from 540 to 555 nm after having been irradiated with X-rays, said maximum corresponding with an exposure amount from 5 to 80 microJoules per m2 required in order to obtain an optical density of Dmin+1.0 after processing.
  • Suitable supersensitizers are e.g. heterocyclic mercapto compounds containing at least one electronegative substituent as described e.g. in US-A 3,457,078, nitrogen-containing heterocyclic ring-substituted aminostilbene compounds as described e.g. in US-A's 2,933,390 and 3,635,721, aromatic organic acid/for-maldehyde condensation products as described e.g. in US-A 3,743,510 as well as cadmium salts, although nowadays to be avoided, due to ecological considerations, and azaindene compounds.
  • heterocyclic mercapto compounds containing at least one electronegative substituent as described e.g. in US-A 3,457,078, nitrogen-containing heterocyclic ring-substituted aminostilbene compounds as described e.g. in US-A's 2,933,390 and 3,635,721, aromatic organic acid/for-maldehyde condensation products as described e.g. in US-A 3,743,
  • the silver halide emulsions suitable for use in hydrophilic layers of the film material according to the present invention may also comprise compounds preventing the formation of a high minimum density or stabilizing the photographic properties during the production or storage of photographic materials or during the photographic treatment thereof.
  • Many known compounds may be added as fog-inhibiting agent or stabilizer to the silver halide emulsion. Suitable examples are i.a.
  • heterocyclic nitrogen-containing compounds such as benzothiazolium salts, nitroimidazoles, nitrobenzimidazoles, chlorobenzimidazoles, bromobenzimidazoles, mercaptothiazoles, mercaptobenzothiazoles, mercaptobenzimidazoles, mercaptothiadiazoles, aminotriazoles, benzotriazoles (preferably 5-methyl-benzotriazole), nitrobenzotriazoles, mercaptotetrazoles, in particular 1-phenyl-5-mercapto-tetrazole, mercaptopyrimidines, mercaptotriazines, benzothiazoline-2-thione, oxazoline-thione, triazaindenes, tetrazaindenes and pentazaindenes, especially those described by Birr in Z.
  • benzothiazolium salts such as benzothiazolium salts, nitroimidazoles, nitrobenzimidazoles, chlor
  • fog-inhibiting agents or stabilizers may be added to the silver halide emulsion prior to, during, or after the ripening thereof and mixtures of two or more of these compounds can be used.
  • the photographic material according to the present invention may further comprise various kinds of surface-active agents in the light-sensitive emulsion layer(s) or in at least one other hydrophilic colloid layer.
  • Suitable surface-active agents include non-ionic agents such as saponins, alkylene oxides, e.g., polyethylene glycol, polyethylene glycol/polypropylene glycol condensation products, polyethylene glycol alkyl ethers or polyethylene glycol alkylaryl ethers, polyethylene glycol esters, polyethylene glycol sorbitan esters, polyalkylene glycol alkylamines or alkylamides, siliconepolyethylene oxide adducts, glycidol derivatives, fatty acid esters of polyhydric alcohols and alkyl esters of saccharides, anionic agents comprising an acid group such as a carboxyl, sulpho, phospho, sulphuric or phosphoric ester group; ampholytic agents such as aminoacids, aminoalkyl sulphonic
  • Such surface-active agents can be used for various purposes, e.g. as coating aids, as compounds preventing electric charges, as compounds improving film transport in automatic film handling equipment, as compounds facilitating dispersive emulsification, as compounds preventing or reducing adhesion, and as compounds improving photographic properties such as higher contrast, sensitisation and development acceleration.
  • development acceleration may be useful, which can be accomplished with the aid of various compounds, preferably polyoxyalkylene derivatives having a molecular weight of at least 400 such as those described in e.g. US-A's 3,038,805; 4,038,075 and 4,292,400.
  • Especially preferred developing accelerators are recurrent thioether groups containing polyoxyethylenes as described in DE 2,360,878, EP-A's 0,634,688 and 0,674,215, which are incorporated herein by reference. The same or different or a mixture of different developing accelerators may be added to at least one of the hydrophilic layers at the emulsion side.
  • hydrophilic colloid binder preferably gelatin
  • the hydrophilic colloid binder preferably gelatin
  • the hydrophilic colloid binder preferably gelatin
  • the light-sensitive silver halide emulsion layer or of an hydrophilic colloid layer in water-permeable relationship therewith by suitable amounts of dextran or dextran derivatives to improve the covering power of the silver image formed and to provide a higher resistance to abrasion in wet condition.
  • the photographic material of the present invention may further comprise various other additives such as compounds improving the dimensional stability of the photographic material, UV-absorbers, spacing agents, lubricants, plasticizers, antistatic agents, etc. as those described in Research Disclosure, Item 38957, Chapter IX, particularly referring to coating physical property modifying addenda, as coating aids (A), plasticizers and lubricants (B), antistatic agents (C), and matting agents (D).
  • Suitable additives for improving the dimensional stability are i.a. dispersions of a water-soluble or hardly soluble synthetic polymer e.g.
  • Suitable UV-absorbers are e.g. aryl-substituted benzotriazole compounds as described in US-A 3,533,794, 4-thiazolidone compounds as described in US-A's 3,314,794 and 3,352,681, benzophenone compounds as described in JP-A 2784/71, cinnamic ester compounds as described in US-A's 3,705,805 and 3,707,375, butadiene compounds as described in US-A 4,045,229, and benzoxazole compounds as described in US-P 3,700,455.
  • the average particle size of spacing agents is comprised between 0.2 and 10 ⁇ m.
  • Spacing agents can be soluble or insoluble in alkali. Alkali-insoluble spacing agents usually remain permanently in the photographic material, whereas alkali-soluble spacing agents usually are removed in an alkaline processing bath.
  • Suitable spacing agents can be made i.a. of polymethyl methacrylate, of copolymers of acrylic acid and methyl methacrylate, and of hydroxypropylmethyl cellulose hexahydrophthalate. Other suitable spacing agents have been described in US-A 4,614,708.
  • acetamide or polyols such as trimethylolpropane, pentanediol, butanediol, ethylene glycol and glycerine.
  • a polymer latex is preferably incorporated into the hydrophilic colloid layer for the purpose of improving the anti-pressure properties, e.g. a homopolymer of acrylic acid alkyl ester or a copolymer thereof with acrylic acid, a copolymer of styrene and butadiene, and a homopolymer or copolymer consisting of monomers having an active methylene group.
  • the photographic material may comprise an antistatic layer to avoid static discharges during coating, processing and other handling of the material.
  • antistatic layer may be an outermost coating like the protective layer or an afterlayer or a stratum of one or more antistatic agents or a coating applied directly to the film support or other support and overcoated with a barrier or gelatin layer.
  • Antistatic compounds suitable for use in such layers are e.g. vanadium pentoxide soles, tin oxide soles or conductive polymers such as polyethylene oxides or a polymer latex;, polythiopene (and more particularly PEDT) and the like.
  • Non-neutral silver image colours obtained after processing, due to the colour of the silver thus formed, can be corrected by increasing the optical density in the red region of the visible spectrum by adding suitable dyes to the support or any coated layer.
  • This non-image wise colour correction method has been disclosed in references as e.g. JP-A's 03-100645, 01-029838, 01-312536, 03-103846, 03-094249, 03-255435, 61-285445; issued EP-A 0 271 309 and US-A 4,861,702.
  • This method however may result in an excessive base + fog density of the photographic material and therefore, an alternative way consists in an image-wise colour correction by using colour-forming developers, which are blue coloured in their oxidized form.
  • JP-A's 03-153234, 03-154043 and 03-154046 Examples thereof have been summarized in JP-A's 03-153234, 03-154043 and 03-154046.
  • JP-A's 03-156447 and 03-157645 the adsorption of a blue coloured dye as a function of exposure has further been disclosed.
  • a radiographic screen/film combination comprising the light-sensitive silver halide photographic film material as disclosed hereinbefore, in contact with one supported or self-supporting X-ray intensifying screen, characterized in that said supported or self-supporting X-ray intensifying screen essentially consists of luminescent phosphor particles emitting green light in the wavelength range from 540 nm up to 555 nm.
  • an average contrast or gradient in the range from 2.5 up to 3.5, measured over a density above fog in the range of from 0.25 to 2.50, is thus attained, wherein said image-forming portion is comprised of layer units permeable for aqueous processing solutions, said layer units being a hydrophilic front layer unit coated on the front major face of the support wherein the front layer unit is capable of reaching a maximum density of more than 3.00 and a hydrophilic back layer unit coated on the back major face of the support, wherein sensitivity (speed), measured at a density of 1.00 above fog, is higher for the front layer unit than for the back layer unit in an amount of from 0.30 up to 1.00 log (Exposure), thanks to the presence in both, the front layer unit and the back layer unit, of the presence of one or more light-sensitive silver halide emulsion layer(s) coated with emulsion crystals, essentially having a cubic crystal habit.
  • Processing of the exposed material after exposure of the screen/film material of the present invention as claimed preferably includes the steps of developing, fixing and drying, and is performed within 120 seconds or less and more preferably within 90 seconds or less.
  • An important advantage of the dual- or double-side coated radiographic elements for soft tissue imaging is that they are much better suited for rapid processing applications than radiographic elements containing a single emulsion layer unit. This suitability for rapid processing is particularly due to the fact that high amounts of silver are not restricted to presence in only one radiation-sensitive emulsion layer and to the fact that, opposite to duplitized films as for chest imaging in radiology, low cross-over can only be attained the presence of two antihalation layers, interposed between the support and each emulsion layer unit.
  • a radiological method for obtaining a diagnostic image for mammography comprising the steps of mounting a film-screen system by bringing a photographic material as disclosed herein into contact with a radiographic X-ray conversion screen; and processing said photographic material in a total dry-to-dry processing time of from 38 seconds up to less than 120 seconds, and, more preferably, in a dry-to-dry processing time of from 45 up to 90 seconds. Enhancement of the hardening degree of the coated material provides the possibility to use hardener free processing solutions. This opens the way to one-part package chemistry and concentration regeneration, reducing the volume of chemicals and the amount of packaging material, which is highly requested from the point of view of ecology.
  • Sensitometric curves of processed film materials are known to show the plot of optical density (D) as a function of relative logarithmic exposure (logE).
  • D optical density
  • logE relative logarithmic exposure
  • a practical mammogram is normally obtained by subjecting a film-screen system to X-ray exposure.
  • any commercially available X-ray generating device may be used, providing an exposure to soft X-rays with a tube voltage of 20 to 40 kV.
  • a preferred luminescent phosphor coated in the X-ray conversion screen is Gd2O2S:Tb, which emits green light in the wavelength range from 540 tot 555 nm. Said phosphor and its use in intensifying screens have been described extensively in patent literature, e.g.
  • the thickness of the phosphor layer depends on the amount of coated phosphor required in order to obtain the desired screen speed.
  • a preferred intensifying screen used in combination with the film material according to this invention is characterized by a phosphor coating weight of at least 45 mg/cm 2 and a phosphor to binder ratio of at least 97:3 as described in EP-A 0 712 036.
  • the features of the intensifying screen emitting green light are at least as important as the features offered by the silver halide photographic material used in this system.
  • Image quality, i.a., granularity and sharpness are measured at the processed silver halide photographic film that is used in combination with the said intensifying screen. More in detail it is well-known that sharper images are obtained with phosphor particles of smaller mean particle size, but light emission efficiency declines with decreasing particle size.
  • the optimum mean particle size for a given application is a compromise between imaging speed and image sharpness desired.
  • the synergistic effect obtained between image speed and image sharpness are a function of, i.a., the coated amount of phosphor, optionally presence of a coloured dye in the said coated phosphor layer and the reflectance of the support on which the phosphor layer was coated.
  • a preferred phosphor coated in the intensifying screen for use in the film/screen system according to the present invention is Gd2O2S:Tb. Said phosphor and the use in intensifying screens has been described e.g. in US-P's 3,872,309; 4, 130,429; 4,912,333; 4,925,594; 4,994,355; 5,021,327; 5,107,125 and 5,259;016 and in GB 1,489,398.
  • the thickness of the phosphor layer may differ depending on the amount of phoshor used. Usually said thickness is within the range of from 50 to 1000 ⁇ m, preferably from 50 to 500 ⁇ m and more preferably from 150 to 250 ⁇ m.
  • the coated amouns of phosphor(s) vary depending on the desired screen speed as has been described in EP-A 0 592 724. More details about intensifying screens and coating methods thereof, in order to provide an optimized handling and excellent speed and image definition have been described in EP-A's 0 510 753 and 0 510 754 and in PCT-Applications WO 94/530 and WO 94/531.
  • each emulsion was stabilized with 1-p-carboxy-phenyl-5-mercaptotetrazole and after addition of the normal coating additives the solutions were coated simultaneously together with a protective layer containing 1.3 g gelatin per m 2 on one side of a polyethylene terephthalate film support having a thickness of 175 ⁇ m.
  • the resulting photographic material contained on the said one side an amount of silver halide corresponding with an amount of 7 grams of silver, expressed as silver nitrate, per m 2 .
  • a conventional anti-curl and anti-halation layer was applied.
  • the dyes according to the formulae representing the "second spectrally sensitizing dye” may again be symmetric or asymmetric, provided that the conditions as claimed have been fulfilled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
EP01000092A 2001-03-29 2001-03-29 Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur Withdrawn EP1246000A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01000092A EP1246000A1 (fr) 2001-03-29 2001-03-29 Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur
US10/090,243 US6686142B2 (en) 2001-03-29 2002-03-04 Radiation-sensitive emulsion, silver halide photographic film material and radiographic intensifying screen-film combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01000092A EP1246000A1 (fr) 2001-03-29 2001-03-29 Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur

Publications (1)

Publication Number Publication Date
EP1246000A1 true EP1246000A1 (fr) 2002-10-02

Family

ID=8176026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01000092A Withdrawn EP1246000A1 (fr) 2001-03-29 2001-03-29 Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur

Country Status (1)

Country Link
EP (1) EP1246000A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422548A1 (fr) * 2002-11-19 2004-05-26 Eastman Kodak Company Film radiographique à l'halogénure d'argent pour la mammographie ayant moins de taches de colorant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116646A (ja) * 1982-12-14 1984-07-05 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
US4607005A (en) * 1984-08-18 1986-08-19 Fuji Photo Film Co., Ltd. Silver halide photographic emulsions
US5041366A (en) * 1988-11-01 1991-08-20 Konica Corporation Silver halide photographic material
US5296345A (en) * 1991-08-27 1994-03-22 Fuji Photo Film Co., Ltd. Silver halide photographic material
JPH0772577A (ja) * 1993-09-06 1995-03-17 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
EP0712036A1 (fr) * 1994-11-11 1996-05-15 Agfa-Gevaert N.V. Système écran/film photographique à l'halogénure d'argent sensible à la lumière avec qualité d'image améliorée pour des applications de traitement rapide en mammographie
EP0930527A1 (fr) * 1998-01-13 1999-07-21 Agfa-Gevaert N.V. Structure radiographique combinant un film et un écran intensificateur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116646A (ja) * 1982-12-14 1984-07-05 Konishiroku Photo Ind Co Ltd ハロゲン化銀写真感光材料
US4607005A (en) * 1984-08-18 1986-08-19 Fuji Photo Film Co., Ltd. Silver halide photographic emulsions
US5041366A (en) * 1988-11-01 1991-08-20 Konica Corporation Silver halide photographic material
US5296345A (en) * 1991-08-27 1994-03-22 Fuji Photo Film Co., Ltd. Silver halide photographic material
JPH0772577A (ja) * 1993-09-06 1995-03-17 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
EP0712036A1 (fr) * 1994-11-11 1996-05-15 Agfa-Gevaert N.V. Système écran/film photographique à l'halogénure d'argent sensible à la lumière avec qualité d'image améliorée pour des applications de traitement rapide en mammographie
EP0930527A1 (fr) * 1998-01-13 1999-07-21 Agfa-Gevaert N.V. Structure radiographique combinant un film et un écran intensificateur

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198433, Derwent World Patents Index; Class E23, AN 1984-204139, XP002175987 *
DATABASE WPI Section Ch Week 199520, Derwent World Patents Index; Class E23, AN 1995-149870, XP002175986 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1422548A1 (fr) * 2002-11-19 2004-05-26 Eastman Kodak Company Film radiographique à l'halogénure d'argent pour la mammographie ayant moins de taches de colorant
US6794105B2 (en) 2002-11-19 2004-09-21 Eastman Kodak Company Radiographic silver halide film for mammography with reduced dye stain

Similar Documents

Publication Publication Date Title
US6348293B1 (en) Radiographic film material exhibiting increased covering power and “colder” blue-black image tone
EP0933670B1 (fr) Emulsion sensible à la lumière contenant des grains tabulaires riches en bromure d'argent dopés par des complexes de thiocyanate du rhodium
JPH11119370A (ja) 医療診断用放射線写真要素
US5290655A (en) Method for forming an X-ray image
US6200743B1 (en) Radiation-sensitive emulsion, light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination
EP0874275B1 (fr) Produit photographique à l'halogénure d'argent pour la mammographie
US6573019B1 (en) Photographic silver halide photographic material for mammography
US6686142B2 (en) Radiation-sensitive emulsion, silver halide photographic film material and radiographic intensifying screen-film combination
US6277552B1 (en) Shallow electron trap dopants in silver halide tabular grain emulsions for use in medical diagnostic imaging materials
US6342338B1 (en) Silver halide photographic material exhibiting increased covering power and “colder” blue-black image tone
US6346360B1 (en) Radiographic film material exhibiting increased covering power and “colder” blue-black image tone
US6030762A (en) Method of preparing {111} tabular silver chloro(bromo)iodide crystals
EP1045283B1 (fr) Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur
EP1103848B1 (fr) Film photographique à l'halogénure d'argent sensible à la lumière et une structure radiographique combinant le film et un écran intensificateur
US6472137B1 (en) Light-sensitive silver halide photographic film material and radiographic intensifying screen-film combination
EP1246000A1 (fr) Emulsion sensible aux radiation, film photographique à l'halogénure d'argent sensible à la lumiére et structure radiographique combinant un film et un écran intensificateur
EP1246005B1 (fr) Matériau photographique à l'halogénure d'argent pour la mammographie
US6214531B1 (en) Light-sensitive emulsion having tabular grains rich in silver bromide doped with thiocyanate complexes of rhodium
US7129031B2 (en) Radiographic silver halide photographic material having a good developing speed, an excellent image tone and low residual color after processing
EP1103850B1 (fr) Film radiographique avec pouvoir opacifiant amélioré et un ton de l'image noir-bleu
EP1262824B1 (fr) Pellicule photographique ayant un ton de l'image noir bleuâtre "plus froid" et des propriétés de stockage améliorées
US6733947B2 (en) Diagnostic radiographic silver halide photographic film material
EP1103847B1 (fr) Pellicule photographique à l'halogénure d'argent ayant un pouvoir opacifiant accru et un ton de l'image noir bleuâtre "plus froid"
US6030757A (en) Multilayer silver halide photographic material and image-forming method in industrial radiographic non-destructive testing applications
EP0770909A1 (fr) Matériau photographique multicouche à halogénure d'argent et son procédé de préparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030402

AKX Designation fees paid

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060513