EP1241272A1 - Einrichtung zum Granulieren von Schmelzen - Google Patents

Einrichtung zum Granulieren von Schmelzen Download PDF

Info

Publication number
EP1241272A1
EP1241272A1 EP02450049A EP02450049A EP1241272A1 EP 1241272 A1 EP1241272 A1 EP 1241272A1 EP 02450049 A EP02450049 A EP 02450049A EP 02450049 A EP02450049 A EP 02450049A EP 1241272 A1 EP1241272 A1 EP 1241272A1
Authority
EP
European Patent Office
Prior art keywords
steam
nozzles
line
channel
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02450049A
Other languages
English (en)
French (fr)
Inventor
Alfred Dipl. Ing. Edlinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tribovent Verfahrensentwicklung GmbH
Original Assignee
Tribovent Verfahrensentwicklung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tribovent Verfahrensentwicklung GmbH filed Critical Tribovent Verfahrensentwicklung GmbH
Publication of EP1241272A1 publication Critical patent/EP1241272A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag

Definitions

  • the invention relates to a device for granulating of melts, especially liquid slags using from steam, with a melting unit or tundish which the liquid melt is discharged into a granulating room becomes.
  • AT 407 247 has already proposed a melt ejecting from a melt tundish with fluid under pressure, where in particular pressurized gas, steam or pressurized water in Pressed in the direction of the slag outlet from the tundish has been.
  • the slag tundish outlet requires such Training special measures to prevent the Outlet opening freezes and it was therefore proposed to height-adjustable weir pipe in the area of the slag outlet into the tundish to reduce the amount flowing out to be able to regulate, the propellant gas jet coaxial to Axis of the outlet opening was introduced and the tundish outlet opens directly into the refrigerator.
  • the atomizer head as a nozzle, in which coaxial the jet of a propellant gas lance opens, as a rule superheated steam can be used to overgrow the To prevent opening.
  • training Atomizer head as an outlet nozzle from a slag tundish are further training courses, for example AT 406 954 B. remove, where the liquid slag in a below Expansion chamber under suction is sucked in and with a propellant jet is transported into the cooling zone.
  • AT 405 511 describes a process for granulating and comminuting described by molten material, in which liquid slag in free fall with pressurized water jets is applied, whereupon the solidified and granulated Slag together with the steam formed via a pneumatic Delivery line and a distributor is guided.
  • the material distributed in this way can be used immediately in a Jet mill to be further crushed.
  • the basic processes when granulating and crushing molten liquid Material by applying steam is also in EP 683 824 B1 already described, a mixing chamber being provided here is in which water, water vapor and / or air-water mixtures be injected, whereupon the evaporated water together ejected with the solidified material via a diffuser becomes.
  • the atomizer head is of such a design designed as a mixing chamber with a subsequent diffuser, in this case, too, molten slag a corresponding storage vessel or a tundish can be.
  • AT 407 152 B uses solid material in a melting cyclone melted, being on the flameproof closable Melting cyclone is directly connected to a cold room, which is subsequently under less pressure than the melting cyclone must be kept to prevent the material from leaking out to enable the melting cyclone into the cold room.
  • the required heat of fusion in Melting cyclone must be applied during combustion generates a large amount of gas from fuels in the melting cyclone, which consequently requires a correspondingly complex cleaning requires.
  • a regulation of such a method is only possible to the extent that the corresponding Heat of fusion is provided, so in particular a reduction in the amount of gas produced and an adjustment to the desired cooling conditions within the scope of such Melting cyclones cannot be achieved.
  • the invention now aims to provide a simple device for granulating melts of the type mentioned at the beginning create, in which the elaborate gas cleaning in use of high amounts of propellant gas as well as training constructively elaborate spray heads is avoided and with a simple Design an efficient granulation of melts succeeds.
  • the invention Training essentially in that the melting unit or the tundish is a slag flow control device in the form of a height-adjustable weir has that at the melt outlet a gutter made of refractory material connects that Channel is arranged in a closed housing and in its bottom has openings for receiving steam nozzles, and that to the housing at least one line for the Discharge of steam and a lock for the discharge of Granulate is connected.
  • wet steam can be applied immediately the melt flowing in the channel is directed, with a vapor screen between the refractory material the gutter and the melt are formed can, which can protect the refractory lining.
  • the registered wet steam is the invention Established so that they are in one closed housing is housed, so that the formed superheated steam discharged, cleaned and cleaned accordingly if necessary, fine granules discharged can be separated.
  • Setup is made so that the bottom the gutter is provided with an insulation layer and that the nozzles are arranged in the area of the insulation layer are.
  • Such an insulation layer serves the further Protection of the nozzles and reduces thermal losses, so that superheated steam is discharged from the closed housing can be.
  • the training taken so that in the line for Discharge of steam from the closed housing Hot cyclone for separating fine granules is arranged.
  • the training is advantageous met that the closed housing at least one across has partition running to the gutter, the lower edge forming a gap between in the direction of Melt flow flows adjacent nozzles, and that to each so formed chamber of the housing a line for withdrawing Steam and a hot cyclone are connected.
  • FIG. 1 shows a cross section through an inventive Setup schematically partly in section
  • FIG. 2 shows an enlarged illustration of mixing nozzles for the gutter shown in Fig. 1 partially in section.
  • Fig. 1 the melt or slag tapping is one Melting unit or a tundish designated 1.
  • a height-adjustable weir 2 is provided, over which the layer thickness of the following Channel 3 passing melt can be regulated accordingly can.
  • the channel 3 has openings 4 for the reception of Steam nozzles, which are shown in detail in FIG. 2 are.
  • a closed housing 5 is located above the channel, which by means of essentially vertical partition walls 6 into individual Chambers 7, 8 and 9 is divided.
  • the vertical partitions 6 ends hiebei at a distance above the channel 3, so that a free cross-section for the passage of the melt or of the solidifying material remains, these walls above from areas of the gutter where there are no openings 4 are arranged for the steam nozzles.
  • the chambers 7, 8 and 9 become steam with different Temperature level deducted via steam lines 10, respectively a hot cyclone to each such steam line 10 11 connects in which fine granules from the withdrawn Steam can be separated and in each case via rotary valves 12 can be carried out.
  • the resulting granulate 13 in the last chamber 9 is about a rotary valve 14 discharged.
  • from the third Chamber 9 superheated steam with temperatures between 300 ° and 600 ° C deducted.
  • the mixing nozzles connected to the openings 4 are shown in more detail in Fig. 2.
  • the gutter 3 made of refractory material is provided on its underside with an insulation layer 15, so that the mixing nozzles are only slightly thermally stressed become.
  • a pressurized water connection 17 opens at the mixing nozzles 16 and a connection 18 for the supply of saturated steam.
  • saturated steam is usually in the pressure range between 1 and 5 bar and Pressurized water used in the pressure range between 2 and 30 bar.
  • the saturated steam is fed through the outer annular space of the mixing nozzle 16 supplied, in which swirl body 19 are installed, for intensive mixing of the steam with the pressurized water to achieve.
  • the granules discharged via the rotary valve 14 have in usually diameter between 0.5 and 1.5 mm, whereby the Fine granules withdrawn via the steam lines 10 are essential has a smaller maximum diameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Bei einer Einrichtung zum Granulieren von Schmelzen, insbesondere flüssigen Schlacken unter Verwendung von Dampf, mit einem Schmelzaggregat oder Tundish (1), aus welchem die flüssige Schmelze in einen Granulierraum ausgetragen wird, weist das Schmelzaggregat bzw. der Tundish (1) eine Schlackenabflußregeleinrichtung in Form eines höhenverstellbaren Wehres (2) auf. An den Schmelzeaustritt schließt eine Rinne (3) aus feuerfestem Material an, wobei die Rinne (3) in einem geschlossenen Gehäuse (5) angeordnet ist und in ihrem Boden Öffnungen (4) für die Aufnahme von Dampfdüsen (16) aufweist und an das Gehäuse (5) wenigstens eine Leitung (15) für den Austrag von Dampf und eine Schleuse (14) für den Austrag von Granulat (13) angeschlossen ist. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Einrichtung zum Granulieren von Schmelzen, insbesondere flüssigen Schlacken unter Verwendung von Dampf, mit einem Schmelzaggregat oder Tundish, aus welchem die flüssige Schmelze in einen Granulierraum ausgetragen wird.
In der AT 407 247 wurde bereits vorgeschlagen, eine Schmelze aus einem Schmelzentundish mit Fluid unter Druck auszustoßen, wobei hier insbesondere Druckgas, Dampf oder Druckwasser in Richtung des Schlackenaustritts aus dem Tundish eingepreßt wurde. Der Schlackentundishauslauf erfordert bei derartigen Ausbildungen besondere Maßnahmen um zu verhindern, daß die Auslauföffnung zufriert und es wurde daher vorgeschlagen, ein höhenverstellbares Wehrrohr im Bereich des Schlackenauslaufes in den Tundish abzusenken, um die jeweils ausströmende Menge regulieren zu können, wobei der Treibgasstrahl koaxial zur Achse der Auslauföffnung eingebracht wurde und der Tundishauslauf unmittelbar in den Kühlraum mündet. Bei einer derartigen Ausbildung des Zerstäuberkopfes als Düse, in welche koaxial der Strahl einer Treibgaslanze mündet, muß in der Regel ein hoch überhitzter Dampf eingesetzt werden, um ein Zuwachsen der Öffnung zu verhindern. Neben einer derartigen Ausbildung des Zerstäuberkopfes als Austrittsdüse aus einem Schlackentundish sind weitere Ausbildungen beispielsweise der AT 406 954 B zu entnehmen, wobei hier die flüssige Schlacke in eine unter Unterdruck stehende Expansionskammer eingesaugt wird und mit einem Treibstrahl in die Kühlzone transportiert wird.
In der AT 405 511 ist ein Verfahren zum Granulieren und Zerkleinern von schmelzflüssigem Material beschrieben, bei welchem flüssige Schlacke im freien Fall mit Druckwasserstrahlen beaufschlagt wird, worauf die erstarrte und granulierte Schlacke gemeinsam mit dem gebildeten Dampf über eine pneumatische Förderleitung und einen Verteiler geführt wird. Das auf diese Weise verteilte Material kann unmittelbar in einer Strahlmühle weiter zerkleinert werden. Die prinzipiellen Abläufe beim Granulieren und Zerkleinern von schmelzflüssigem Material durch Beaufschlagen mit Dampf sind auch in der EP 683 824 B1 bereits beschrieben, wobei hier eine Mischkammer vorgesehen ist, in welche Wasser, Wasserdampf und/oder Luft-Wassergemische eingedüst werden, worauf das verdampfte Wasser gemeinsam mit dem erstarrten Material über einen Diffusor ausgestoßen wird. Der Zerstäuberkopf ist bei einer derartigen Ausbildung als Mischkammer mit anschließendem Diffusor ausgebildet, wobei auch in diesem Fall schmelzflüssige Schlacke aus einem entsprechenden Vorratsgefäß oder einem Tundish zugeführt werden kann.
In der AT 407 152 B wird festes Material in einem Schmelzzyklon erschmolzen, wobei an den druckfest verschließbaren Schmelzzyklon unmittelbar ein Kühlraum angeschlossen ist, welcher in der Folge unter geringerem Druck als der Schmelzzyklon gehalten werden muß, um den Austritt des Materials aus dem Schmelzzyklon in den Kühlraum zu ermöglichen. Da bei einem derartigen Verfahren die erforderliche Schmelzwärme im Schmelzzyklon aufgebracht werden muß, wird bei der Verbrennung von Brennstoffen im Schmelzzyklon eine hohe Gasmenge erzeugt, welche in der Folge eine entsprechend aufwendige Reinigung erfordert. Eine Regelung eines derartigen Verfahrens ist nur in dem Umfang möglich, in dem voraussetzungsgemäß die entsprechende Schmelzwärme bereitgestellt wird, sodaß insbesondere eine Reduktion der produzierten Gasmenge und eine Einstellung an die gewünschten Kühlbedingungen im Rahmen eines derartigen Schmelzzyklones nicht erzielt werden kann.
All diesen bekannten Ausbildungen gemeinsam ist der Umstand, daß für den Ausstoß der Schlacken hohe Mengen an Treibgasen, insbesondere Dampf eingesetzt werden, wobei Dampf in aller Regel stark überhitzt und Treibgase entsprechend hochvorgewärmt eingesetzt werden müssen. Neben der hohen zu erwärmenden Gasmenge besteht im Anschluß an die Zerstäubung ein relativ hoher Aufwand in der erforderlichen Reinigung der eingesetzten und gebildeten Gase, sodaß der apparative Aufwand für die Gaserzeugung und die Gasreinigung relativ hoch ist.
Klassische Granulierverfahren sehen vor, daß Schmelzen bzw. Schlacken einfach in Kühlflüssigkeiten eingeleitet werden, wobei naturgemäß bei Verwendung von Wasser als Kühlflüssigkeit die Schlacken nur geringe Eisenanteile enthalten dürfen, um einen stabilen Betrieb zu gewährleisten. Bei der Trockengranulation gelangt die Schlacke auf Kühlbänder oder Kühlplatten, wofür in der Regel relativ großbauende Einrichtungen erforderlich sind.
Die Erfindung zielt nun darauf ab, eine einfache Einrichtung zum Granulieren von Schmelzen der eingangs genannten Art zu schaffen, bei welcher die aufwendige Gasreinigung bei Verwendung von hohen Treibgasmengen sowie die Ausbildung konstruktiv aufwendiger Sprühköpfe vermieden wird und mit einer einfachen Konstruktion eine effiziente Granulation von Schmelzen gelingt. Zur Lösung dieser Aufgabe besteht die erfindungsgemäße Ausbildung im wesentlichen darin, daß das Schmelzaggregat bzw. der Tundish eine Schlackenabflußregeleinrichtung in Form eines höhenverstellbaren Wehres aufweist, daß an den Schmelzeaustritt eine Rinne aus feuerfestem Material anschließt, daß die Rinne in einem geschlossenen Gehäuse angeordnet ist und in ihrem Boden Öffnungen für die Aufnahme von Dampfdüsen aufweist, und daß an das Gehäuse wenigstens eine Leitung für den Austrag von Dampf und eine Schleuse für den Austrag von Granulat angeschlossen ist. Dadurch, daß konventionelle Bauteile, wie beispielsweise ein höhenverstellbares Wehr zur Regelung der in der Zeiteinheit durchtretenden Schmelze verwendet wird, kann auf konventionelle und erprobte Bauteile zurückgegriffen werden. Auch die nachfolgend an dem Schmelzenaustritt vorgesehene Rinne erfordert keine aufwendigen und komplexen Bauteile, wobei lediglich Bodenöffnungen vorgesehen sein müssen, an welche die für die Zwecke der Granulierung erforderlichen Dampfdüsen angeschlossen werden können. Da die Dampfdüsen nicht unmittelbar in Kontakt mit der Schmelze sind, können sie in entsprechendem Abstand und ggf. unter Zwischenschaltung entsprechender Isolierungen angeordnet werden, sodaß auch hier der Verschleiß wesentlich verringert wird, wobei gleichzeitig die Möglichkeit geschaffen wird, die Dampfdüsen, wie es einer bevorzugten Weiterbildung der erfindungsgemäßen Einrichtung entspricht, als Mischdüsen auszubilden, an welche eine Leitung für Dampf und eine Leitung für Druckwasser angeschlossen sind. Auf diese Weise kann Naßdampf unmittelbar auf die in der Rinne entlangströmende Schmelze gerichtet werden, wobei gleichzeitig ein Dampfschirm zwischen dem Feuerfestmaterial der Rinne und der Schmelze ausgebildet werden kann, wodurch die Feuerfestauskleidung geschont werden kann. Mit Rücksicht auf den eingetragenen Naßdampf ist die erfindungsgemäße Einrichtung so ausgebildet, daß sie in einem geschlossenen Gehäuse untergebracht ist, sodaß der gebildete überhitzte Dampf entsprechend ausgetragen, gereinigt und von ggf. mitausgetragenem feinen Granulat getrennt werden kann. Bedingt durch die Verwendung eines höhenverstellbaren Wehres und mit einer entsprechenden Anzahl von Mischdüsen lassen sich die für die Granulierung gewünschten Parameter in einfacher Weise und ohne komplizierten regeltechnischen Aufwand an die Bedürfnisse anpassen, sodaß insgesamt gegenüber einer Trockengranulation wesentlich kürzerbauende Einrichtung bewerkstelligt werden können, welche gleichzeitig aufgrund der Verwendung von Naßdampf unmittelbar bei der Granulation bereits wesentlich geringere Teilchengrößen ergeben. Bei Dampfgranulation wird nämlich gleichzeitig ein hohes Maß an Zerkleinerung erzielt, sodaß relativ feinkörniges Granulat ausgetragen werden kann. Das Eindüsen von Sattdampf in die relativ dünne Schmelzschicht führt gleichzeitig zur Ausbildung einer Schaumschlacke, welche nach dem Erstarren in feine Teilchen zerfällt und einen intensiven Wärmeübergang ermöglicht.
Gemäß einer bevorzugten Weiterbildung der erfindungsgemäßen Einrichtung ist die Ausbildung so getroffen, daß die Unterseite der Rinne mit einer Isolationsschicht versehen ist und daß die Düsen im Bereich der Isolationsschicht angeordnet sind. Eine derartige Isolationsschicht dient dem weiteren Schutz der Düsen und verringert thermische Verluste, sodaß hoch überhitzter Dampf aus dem geschlossenen Gehäuse ausgetragen werden kann.
Zur Abscheidung von Feingranulat aus der Dampfleitung ist mit Vorteil die Ausbildung so getroffen, daß in der Leitung zum Austragen von Dampf aus dem geschlossenen Gehäuse ein Heißzyklon zum Abscheiden von Feingranulat angeordnet ist. Mit Rücksicht auf die relativ rasche Abkühlung der Schmelze in Längsrichtung der Rinne, ist es energetisch vorteilhaft, Dampf bei unterschiedlichen Temperaturniveaus gesondert abzuführen, um auf diese Weise eine maximale Effizienz bei der Rekuperation der latenten Wärme bzw. beim Abarbeiten der Dampfenergie zu erzielen. Zu diesem Zweck ist mit Vorteil die Ausbildung so getroffen, daß das geschlossene Gehäuse wenigstens eine quer zur Rinne verlaufende Trennwand aufweist, deren Unterkante unter Ausbildung eines Spaltes zwischen in Richtung des Schmelzflusses benachbarten Düsen mündet, und daß an jede so gebildete Kammer des Gehäuses eine Leitung zum Abziehen von Dampf und jeweils ein Heißzyklon angeschlossen sind. Mit einer derartigen Einrichtung gelingt es beispielsweise in unmittelbarer Nachbarschaft des höhenverstellbaren Wehres Heißdampf mit Temperaturen zwischen 800° und 1100° C abzuziehen und aus einem nachgeschalteten Abschnitt Heißdampf bei Temperaturen von 600° bis 800° C abzuziehen, wohingegen die Dampftemperatur am Ende des Erstarrungs- und Granuliervorganges in der Regel zwischen 300° und 600° C liegt.
Wie bereits eingangs erwähnt, ist es im Hinblick auf die gewünschte Granulation und gleichzeitige weitestgehende Zerkleinerung des Granulates sowie im Hinblick auf den maximalen Schutz der Feuerfestauskleidung vorteilhaft die Ausbildung so zu treffen, daß die Mischdüsen für Sattdampf mit einem Druck von 1 bis 5 bar und Druckwasser mit einem Druck zwischen 2 und 30 bar zur Ausbildung von Naßdampf ausgelegt sind.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert. In dieser zeigen Fig. 1 einen Querschnitt durch eine erfindungsgemäße Einrichtung schematisch teilweise im Schnitt und Fig. 2 eine vergrößerte Darstellung von Mischdüsen für die in Fig. 1 dargestellte Rinne teilweise im Schnitt.
In Fig. 1 ist der Schmelzen- bzw. Schlackenabstich eines Schmelzaggregates bzw. eines Tundish mit 1 bezeichnet. Im Bereich des Abstiches ist ein höhenverstellbares Wehr 2 vorgesehen, über welches die Schichtstärke der auf die nachfolgende Rinne 3 gelangenden Schmelze entsprechend geregelt werden kann. Die Rinne 3 weist Durchbrechungen 4 für die Aufnahme von Dampfdüsen auf, welche in Fig. 2 noch im Detail dargestellt sind.
Oberhalb der Rinne befindet sich ein geschlossenes Gehäuse 5, welches durch im wesentlichen vertikale Trennwände 6 in einzelne Kammern 7, 8 und 9 unterteilt ist. Die vertikalen Trennwände 6 enden hiebei in Abstand oberhalb der Rinne 3, sodaß ein freier Querschnitt für den Durchtritt der Schmelze bzw. des erstarrenden Materials verbleibt, wobei diese Wände oberhalb von Bereichen der Rinne münden, an welchen keine Durchbrechungen 4 für die Dampfdüsen angeordnet sind.
Aus den Kammern 7, 8 bzw. 9 wird Dampf mit unterschiedlichem Temperaturniveau jeweils über Dampfleitungen 10 abgezogen, wobei an jede derartige Dampfleitung 10 jeweils ein Heißzyklon 11 anschließt, in welchem Feingranulat aus dem abgezogenen Dampf abgetrennt werden kann und jeweils über Zellradschleusen 12 ausgetragen werden kann.
Das in der letzten Kammer 9 anfallende Granulat 13 wird über eine Zellradschleuse 14 ausgetragen. Insgesamt ergibt sich somit eine geschlossene Konstruktion, wobei Heißdampf aus den Kammern 7, 8 und 9 mit unterschiedlichem Temperaturniveau abgezogen wird, sodaß sich eine energetisch günstige Stufung der jeweiligen Heißdampftemperatur ergibt. Insbesondere gelingt es aus der kastenartigen Kammer 7 Heißdampf mit Temperaturen zwischen 800° und 1100° C, aus der zweiten Kammer 8 Heißdampf mit Temperaturen von 600° bis 800° C und aus der dritten Kammer 9 Heißdampf mit Temperaturen zwischen 300° und 600° C abzuziehen.
Oberhalb der Durchbrechung 4 der Rinne wird bedingt durch den Sattdampf bzw. Druckwasserdruck die Schmelze jeweils angehoben und durchwirbelt, wodurch eine rasche Granulation bei gleichzeitig effizienter Vorzerkleinerung erzielt wird.
Die an die Durchbrechungen 4 angeschlossenen Mischdüsen sind in Fig. 2 näher dargestellt. Die Rinne 3 aus Feuerfestmaterial ist an ihrer Unterseite mit einer Isolationsschicht 15 versehen, sodaß die Mischdüsen nur gering thermisch belastet werden. An die Mischdüsen 16 mündet ein Druckwasseranschluß 17 und ein Anschluß 18 für die Zufuhr von Sattdampf. Sattdampf wird in der Regel im Druckbereich zwischen 1 und 5 bar und Druckwasser im Druckbereich zwischen 2 und 30 bar eingesetzt. Der Sattdampf wird über den außenliegenden Ringraum der Mischdüse 16 zugeführt, in welchem Drallkörper 19 eingebaut sind, um eine intensive Durchmischung des Dampfes mit dem Druckwasser zu erzielen. Insgesamt wird aus derartigen Mischdüsen 16 über die Durchbrechungen 4 der Rinne 3 Naßdampf ausgestoßen, welcher in unmittelbarer Nachbarschaft der Feuerfestauskleidung der Rinne 3 einen Dampffilm bildet, welcher die Feuerfestauskleidung weitestgehend schützt und die Bewegung der Schmelze auch dann noch begünstigt, wenn diese bereits zumindest teilweise erstarrt ist, sodaß ein kontinuierlicher Abzug von erstarrten Partikeln in den entsprechenden Auffangraum der letzten Kammer 9 gewährleistet ist. Das Material strömt hierbei auf einem Dampfpolster mit geringem Widerstand ab. Der Mantel des Druckwasserrohres besteht bevorzugt aus isolierendem bzw. thermisch schlecht leitendem Material, sodaß eine vorzeitige Sattdampfkondensation verhindert wird.
Das über die Zellradschleuse 14 ausgetragene Granulat weist in der Regel Durchmesser zwischen 0,5 und 1,5 mm auf, wobei das über die Dampfleitungen 10 abgezogene Feingranulat wesentlich geringere maximale Durchmesser aufweist.

Claims (6)

  1. Einrichtung zum Granulieren von Schmelzen, insbesondere flüssigen Schlacken unter Verwendung von Dampf, mit einem Schmelzaggregat oder Tundish, aus welchem die flüssige Schmelze in einen Granulierraum ausgetragen wird, dadurch gekennzeichnet, daß das Schmelzaggregat bzw. der Tundish (1) eine Schlackenabflußregeleinrichtung in Form eines höhenverstellbaren Wehres (2) aufweist, daß an den Schmelzeaustritt eine Rinne (3) aus feuerfestem Material anschließt, daß die Rinne (3) in einem geschlossenen Gehäuse (5) angeordnet ist und in ihrem Boden Öffnungen (4) für die Aufnahme von Dampfdüsen (16) aufweist, und daß an das Gehäuse (5) wenigstens eine Leitung (10) für den Austrag von Dampf und eine Schleuse (14) für den Austrag von Granulat (13) angeschlossen ist.
  2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Dampfdüsen als Mischdüsen (16) ausgebildet sind, an welche eine Leitung (18) für Dampf und eine Leitung (17) für Druckwasser angeschlossen sind.
  3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Unterseite der Rinne (3) mit einer Isolationsschicht (15) versehen ist und daß die Düsen (16) im Bereich der Isolationsschicht (15) angeordnet sind.
  4. Einrichtung nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß in der Leitung (10) zum Austragen von Dampf aus dem geschlossenen Gehäuse (5) ein Heißzyklon (11) zum Abscheiden von Feingranulat angeordnet ist.
  5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das geschlossene Gehäuse (5) wenigstens eine quer zur Rinne (3) verlaufende Trennwand (6) aufweist, deren Unterkante unter Ausbildung eines Spaltes zwischen in Richtung des Schmelzflusses benachbarten Düsen(16) mündet, und daß an jede so gebildete Kammer (7, 8, 9) des Gehäuses (5) eine Leitung (10) zum Abziehen von Dampf und jeweils ein Heißzyklon (11) angeschlossen sind.
  6. Einrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß die Mischdüsen (16) für Sattdampf mit einem Druck von 1 bis 5 bar und Druckwasser mit einem Druck zwischen 2 und 30 bar zur Ausbildung von Naßdampf ausgelegt sind.
EP02450049A 2001-03-15 2002-03-06 Einrichtung zum Granulieren von Schmelzen Withdrawn EP1241272A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT4062001 2001-03-15
AT0040601A AT410098B (de) 2001-03-15 2001-03-15 Einrichtung zum granulieren von schmelzen

Publications (1)

Publication Number Publication Date
EP1241272A1 true EP1241272A1 (de) 2002-09-18

Family

ID=3673673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02450049A Withdrawn EP1241272A1 (de) 2001-03-15 2002-03-06 Einrichtung zum Granulieren von Schmelzen

Country Status (2)

Country Link
EP (1) EP1241272A1 (de)
AT (1) AT410098B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359756A (zh) * 2018-02-26 2018-08-03 西安交通大学 一种用于液态熔渣干式离心粒化及余热回收利用系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR750610A (fr) * 1932-11-12 1933-08-14 Dispositif pour boursoufler une composition en fusion (laitier) à transformer en une pierre ponce artificielle à grande porosité
DE918252C (de) * 1943-01-18 1954-09-23 Foamslag Ltd Verfahren und Vorrichtung zum Herstellen von Schaumschlacke oder schaumartigen Schmelzfluessen
DE1066124B (de) * 1959-09-24 "renoble Isere Rene Marie Berthier (Frankreich) Thermische Behandlung von Hochofenschlacke
GB1127033A (en) * 1966-06-21 1968-09-11 British Iron Steel Research Treatment of blast furnace slag
JPS5349000A (en) * 1976-10-18 1978-05-02 Kawasaki Heavy Ind Ltd Treating method for molten slag
JPS5521546A (en) * 1978-08-02 1980-02-15 Mitsubishi Heavy Ind Ltd Molten slag processing device
JPS57156346A (en) * 1981-03-20 1982-09-27 Nippon Steel Corp Manufacture of blast furnace slag grains
JPS5922645A (ja) * 1982-07-30 1984-02-04 Nippon Steel Corp 溶融スラグの造粒装置
JPS60215704A (ja) * 1984-04-11 1985-10-29 Nippon Jiryoku Senko Kk 製鋼スラグの処理方法
US5667147A (en) * 1993-12-03 1997-09-16 Holderbank Financiere Glarus Ag Process and device for granulating and crushing molten materials and grinding stocks

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1066124B (de) * 1959-09-24 "renoble Isere Rene Marie Berthier (Frankreich) Thermische Behandlung von Hochofenschlacke
FR750610A (fr) * 1932-11-12 1933-08-14 Dispositif pour boursoufler une composition en fusion (laitier) à transformer en une pierre ponce artificielle à grande porosité
DE918252C (de) * 1943-01-18 1954-09-23 Foamslag Ltd Verfahren und Vorrichtung zum Herstellen von Schaumschlacke oder schaumartigen Schmelzfluessen
GB1127033A (en) * 1966-06-21 1968-09-11 British Iron Steel Research Treatment of blast furnace slag
JPS5349000A (en) * 1976-10-18 1978-05-02 Kawasaki Heavy Ind Ltd Treating method for molten slag
JPS5521546A (en) * 1978-08-02 1980-02-15 Mitsubishi Heavy Ind Ltd Molten slag processing device
JPS57156346A (en) * 1981-03-20 1982-09-27 Nippon Steel Corp Manufacture of blast furnace slag grains
JPS5922645A (ja) * 1982-07-30 1984-02-04 Nippon Steel Corp 溶融スラグの造粒装置
JPS60215704A (ja) * 1984-04-11 1985-10-29 Nippon Jiryoku Senko Kk 製鋼スラグの処理方法
US5667147A (en) * 1993-12-03 1997-09-16 Holderbank Financiere Glarus Ag Process and device for granulating and crushing molten materials and grinding stocks

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197824, Derwent World Patents Index; Class M24, AN 1978-42810A, XP002202251 *
DATABASE WPI Section Ch Week 198244, Derwent World Patents Index; Class L02, AN 1982-94082E, XP002202260 *
PATENT ABSTRACTS OF JAPAN vol. 004, no. 050 (C - 007) 16 April 1980 (1980-04-16) *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 106 (C - 223) 18 May 1984 (1984-05-18) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 078 (C - 335) 27 March 1986 (1986-03-27) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359756A (zh) * 2018-02-26 2018-08-03 西安交通大学 一种用于液态熔渣干式离心粒化及余热回收利用系统
CN108359756B (zh) * 2018-02-26 2019-12-24 西安交通大学 一种用于液态熔渣干式离心粒化及余热回收利用系统

Also Published As

Publication number Publication date
AT410098B (de) 2003-01-27
ATA4062001A (de) 2002-06-15

Similar Documents

Publication Publication Date Title
EP0111176A1 (de) Verfahren und Anlage zur direkten Erzeugung von Eisenschwammpartikeln und flüssigem Roheisen aus stückigem Eisenerz
DE2735390C2 (de) Verfahren und Vorrichtung zur Wärmerückgewinnung aus geschmolzener Schlacke
EP0683824B1 (de) Verfarhen zum granulieren und zerkleinern von schmelzflüssigem material und mahlgut sowie einrichtung zur durchführung dieses verfahrens
DE2455496C2 (de) Einrichtung zur Trockenkühlung von Koks
DE2157653C3 (de) Verfahren zur Granulierung einer schmelzflüssigen Mischung von Phosphorofenschlacke und Ferrophosphor
AT410098B (de) Einrichtung zum granulieren von schmelzen
AT410102B (de) Einrichtung zum zerstäuben von schmelzen
AT410097B (de) Einrichtung zum zerstäuben und granulieren von schmelzen
DE3439600A1 (de) Verfahren zur erzeugung von schwefelarmem gas aus feingemahlenen kohlenstoffhaltigen feststoffen
AT407153B (de) Verfahren zum zerkleinern und granulieren von schlacken sowie vorrichtung zur durchführung dieses verfahrens
AT409969B (de) Einrichtung zum zerstäuben und granulieren von schmelzen
DE2905288A1 (de) Verfahren und vorrichtung zum verteilen von fluessigem brennstoff in einer wirbelschicht
DE2046977A1 (de) Verfahren zur Heißgranulation von feinkörnigen Kohlen ohne zusätzliche Bindemittel
AT407525B (de) Verfahren zum zerkleinern von stückgut oder granulat sowie vorrichtung zur durchführung dieses verfahrens
AT411689B (de) Verfahren zum zerstäuben und granulieren von schmelzen sowie vorrichtung zur durchführung dieses verfahrens
AT408220B (de) Verfahren und vorrichtung zum granulieren und zerkleinern von schlackenschmelzen
AT410676B (de) Verfahren und vorrichtung zum granulieren und zerkleinern von flüssigen schmelzen
AT406954B (de) Verfahren zum granulieren und zerkleinern von flüssigen schlacken sowie vorrichtung zur durchführung dieses verfahrens
DE1207350B (de) Verfahren und Vorrichtung zum Abziehen von Schmelzen und zur Herstellung von Granalien oder Fasern
AT410220B (de) Verfahren zum herstellen von mikrofasern und/oder mikropartikeln sowie einrichtung zur durchführung dieses verfahrens
DE4032518C1 (en) Spray head for granulating liq. blast furnace slag - has flat nozzle with slot matching width of slag stream and adjustable in height
EP1400602A2 (de) Verfahren zum Zerstäuben und Granulieren von Schmelzen sowie Vorrichtung zur Durchführung dieses Verfahrens
AT410100B (de) Einrichtung zum granulieren, zerstäuben und zerkleinern von flüssigen schmelzen
DE977718C (de) Verfahren und Vorrichtung zur Herstellung von Leichtgewichtsschlacke
DE1421094A1 (de) Verfahren zum Vergasen pulverisierter Kohle vermittels eines Wirbelflussverfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030319