EP1238339B1 - Schnittstelle für eine speichereinheit - Google Patents

Schnittstelle für eine speichereinheit Download PDF

Info

Publication number
EP1238339B1
EP1238339B1 EP00983934A EP00983934A EP1238339B1 EP 1238339 B1 EP1238339 B1 EP 1238339B1 EP 00983934 A EP00983934 A EP 00983934A EP 00983934 A EP00983934 A EP 00983934A EP 1238339 B1 EP1238339 B1 EP 1238339B1
Authority
EP
European Patent Office
Prior art keywords
data
output
input
address
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00983934A
Other languages
English (en)
French (fr)
Other versions
EP1238339A1 (de
Inventor
Klaus Oberlaender
Sabeen Randhawa
Yannick Martelloni
Manfred Henftling
Rami Zemach
Zohar Peleg
Christian Wiedholz
Gigy Baror
Doron Shoham
Oded Trainin
Niv Margalit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1238339A1 publication Critical patent/EP1238339A1/de
Application granted granted Critical
Publication of EP1238339B1 publication Critical patent/EP1238339B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0215Addressing or allocation; Relocation with look ahead addressing means

Definitions

  • the present invention relates to an interface for a memory unit in particular to a microprocessor having a memory unit and an interface for coupling the memory unit with the central processing unit.
  • One of the main factors, which determine the speed of a microprocessor, is defined by the interface between the central processing unit and the memory. Therefore, modern microprocessors have a fast cache or static random access memory (SRAM) on-chip to minimize access delays due to external memory access.
  • SRAM static random access memory
  • These cache or SRAM memories have a very low access time and are capable of retrieving or writing data within up to only one processor cycle. If a memory unit, such as a cache memory, is capable of writing and reading data within one single processor cycle, the system would have the fastest possible access to data stored in this memory.
  • microprocessors or microcontrollers have a pipelined structure. In other words, each complete processing of an instruction is split up in several stages, such as fetching an instruction, decoding it, executing it, and writing back the result. These pipeline stages are executed sequentially and usually each pipeline stage is filled with a part of a different instruction. By execution of a plurality of instructions this provides the ability for a microprocessor in average to execute an instruction in one cycle. The more pipeline stages a processor has the more these stages will be diversified.
  • EP 0 526 030 A is directed to a SRAM interface unit with read and write circuitry for a memory which permits the presentation of data laid in a write cycle without loss of that data.
  • data which is input is stored in a data memory, wherein at the same time the associated address for that data is loaded into a fast temporary address memory.
  • a first multiplexer couples a main memory unit with either the output of the address memory or with an address signal.
  • a second multiplexer selects either the data output of the main memory unit or the output of the data memory.
  • a comparator compares an address signal with the signal stored in the address memory and controls the second multiplexor.
  • DE 41 14 053 A describes a cache interface unit comprising a cache memory having a number of address buffers and data buffers coupled to respective inputs of the cache memory. It teaches a streamlined writing operation of data signals from a first address buffer to a second address buffer and, finally, to the cache memory. In case of a reading operation, no data is to be stored in a respective data register.
  • a data handling unit such as a central processing unit of a microprocessor or a microcontroller
  • a synchronous SRAM demands address and data simultaneously to perform with the highest possible operation speed.
  • an interface circuit for coupling a data handling unit with a memory unit having control inputs, an address signal input, a data signal input, and a data signal output.
  • the interface circuit comprises an address buffer having an input and an output, whereby the input receives an address signal from the data handling unit, a first multiplexer which couples the memory unit with either the output of the address buffer or with the address signal, a data buffer having an input and an output, the input receiving a data signal from the data handling unit and the output being coupled with the memory data input, a second multiplexer for selecting either the memory data signal output or the data buffer output, and a comparator for comparing the address signal with the signal from the address buffer output, generating a control signal which controls the second multiplexer.
  • the interface circuit can be implemented within a microprocessor or within a memory device. Most advantageously it is implemented in a microcontroller having a microprocessor and memory integrated on a single chip.
  • a further embodiment is an interface circuit for coupling a data handling unit with a memory unit having control inputs, an address signal input, a data signal input, and a data signal output.
  • the interface comprises a first address buffer having an input and an output, whereby the input receives an address signal from the data handling unit.
  • a second address buffer has an input and an output, whereby the input is coupled with the output of the first address buffer.
  • a first multiplexer has inputs and an output and couples either the content of the first or second address buffer to its output.
  • a second multiplexer which couples the memory unit with either the output of the first multiplexer or with the address signal is further provided.
  • a data buffer has an input and an output, whereby the input receives a data signal from the data handling unit and the output is coupled with the memory data input.
  • a third multiplexer for selecting either the memory data signal output or the data buffer output is provided.
  • the interface comprises a comparator for comparing the content of the first and second address buffer, generating a control signal which controls
  • a method of writing data to an integrated memory unit within a microprocessor having a pipeline structure in which a data signal to be written into said memory is delayed with respect to an address signal comprises the steps of:
  • FIG. 1 shows a block diagram of an arrangement according to a preferred embodiment of the present invention.
  • a static random access memory module (SRAM) 1 provides a data input D in and a data output D out , a clock input Clk a write enable input WE, a combined read/write input RD/WR, and a plurality of address inputs Addr.
  • a control logic unit 2 receives an RD/WR' and a WE' or equivalent control signals, for example from a microprocessor, and generates the RD/WR and WE signals for the SRAM 1. Furthermore, control unit 2 generates a control signal for a multiplexer 3 and multiplexer 8.
  • Multiplexer 3 receives a plurality of address signals Addr', e.g., from said microprocessor, at its first inputs and a plurality of address signals from an address buffer 4 which is controlled by control logic 2.
  • the address buffer 4 has input lines which are coupled with the address signals Addr'.
  • a comparator 5 is provided which compares the output signals of said address buffer with the address signals Addr'. Comparator 5 generates a control signal, which controls a second multiplexer 7.
  • Multiplexer 7 receives a data signal D out from the SRAM 1 at its first input and a data signal from the output of a data buffer 6. The output of multiplexer 7 provides a data output signal D out '.
  • Data buffer 6 receives a data input signal D in ', for example, from said microprocessor, and comprises an output which is coupled with a first input of a multiplexer 8 whose output is coupled with the data input D in of the SRAM 1. The second input of multiplexer 8 is coupled with the data input signal D in '. Address buffer 4 and data buffer 6 are controlled by control logic 2. Data buffer 6 can include the multiplexer 8 to switch between the D in ' signal and the output of data buffer 6.
  • Fig. 2A-2D shows the standard timing characteristics of a synchronous SRAM within a pipelined microprocessor.
  • the basic write timing is depicted.
  • the RD/WR signal is asserted and at the same time the address signals are provided.
  • the data signals proper and the respective write enable bit signals are not available yet. These signals will be provided with the rising edge (b) of the next clock cycle.
  • FIG. 2B the basic read timing within a pipelined processor is depicted.
  • a read cycle takes only a single clock cycle because the only delay, which occurs, is the access time delay of the SRAM.
  • a read cycle followed by a write cycle is depicted. As a read cycle takes only a single clock cycle, a write cycle can follow immediately.
  • Fig. 2D shows a write cycle immediately followed by a read cycle. In this event a collision occurs. Due to the delay of the data to be written the D in and D out signals are colliding. Therefore, a wait state for a read cycle following a write cycle has to be inserted.
  • the present invention provides a delayed write cycle.
  • address buffer 4 and data buffer 6 are provided. Whenever a write cycle starts the address buffer 4 stores the provided addresses Addr' and data buffer 6 will store the data signals D in ' in the following cycle. The control signals can be buffered or generated in the control logic 2. The writing to the SRAM will be deferred until the next write cycle starts. In other words, only if a write cycle follows this "initial" write cycle the data of this "initial" write cycle which are buffered in data buffer 6 will be written to SRAM 1 under the address buffered in address buffer 4 using multiplexer 3. As long as read cycle follow this "initial” write cycle, the write cycle proper to SRAM 1 will be deferred.
  • comparator 5 compares the address signals Addr' of any read cycle with the buffered address in address buffer 4. If these signals are equal then multiplexer 7 is controlled to output the buffered data from data buffer 6 to the output lines D out '.
  • Fig. 3A shows a series of read and write cycles with an embodiment according to Fig. 1.
  • Fig. 3A shows the RD/WR', ADDR', D in ', D out ' signals as well as the RD/WR, ADDR, WE, D in , and D out signals.
  • a read cycle is executed within cycle t1.
  • t2 a write cycle takes place and the associated address b is buffered in address buffer 4.
  • cycle t3 another write cycle occurs. Therefore, multiplexer 3 is switched to its second input using the buffered address signals from address buffer 4.
  • Data (b) is written to SRAM 1 under the buffered address b and address c is buffered in address buffer 4.
  • Fig. 3B shows another example of combinations of read and write cycles with an embodiment according to Fig.1.
  • a first write cycle occurs in which address a is buffered in address buffer 4.
  • a second write cycle follows in t2. Therefore, the data (a) which is now provided will be written into SRAM 1 under the buffered address a.
  • multiplexer 3 is switched to the address buffer 4.
  • address b from the second write cycle is buffered in address buffer 4.
  • t3 a read cycle occurs.
  • Multiplexer 3 is switched back to the address input Addr'.
  • Data (b) which will be provided now is buffered in data buffer 6 and in parallel SRAM 1 is read out using the provided addresses at Addr', in this case address a.
  • Multiplexer 7 is switched to couple the D out output of SRAM 1 with the output D out '.
  • a read cycle attempts to access the previously written address b.
  • Comparator 5 compares the address signal Addr' with the buffered address in address buffer 4. As these addresses are identical, comparator 5 controls multiplexer 7 to connect the output of data buffer 6 with the output D out '. In this special case SRAM 1 is not involved. The data is immediately accessible through data buffer 6. The comparator must be able to compare the incoming address Addr' with the buffered address in address buffer 4 and hold the result during the cycle. Holding means such as a buffer or register or any other appropriate means can do this.
  • the delay between the providing of the address signal and the data signal in case of a write cycle may vary. As described above, this delay may be a single cycle. It is of course possible that this delay is enlarged due to the structure of the pipeline. In this case the above-described store forwarding mechanism has to be adapted. For example, if the delay is two cycles, two address buffer and the respective logic is necessary to buffer these signals before the actual data is written to the SRAM. This is indicated by dotted additional address buffers in Fig. 1. The number of address buffers is as deep as the delay between address and data signals is. The required logic to control these buffers increases respectively.
  • Fig. 4 shows a further preferred embodiment according to the present invention.
  • a memory build in self-test (MBIST) function is combined with the above-described store forwarding mechanism.
  • a SRAM 410 comprises address input Addr, write enable input WE, data input D in , and Data output D out .
  • the address input proper Addr' is coupled with the first input of a multiplexer 400, with the input of an address buffer 402, and with the first input of a comparator 403.
  • the output of address buffer 402 is coupled with the second input of comparator 403 and the first input of a multiplexer 401.
  • the output of multiplexer 401 is coupled with the second input of multiplexer 400 whose output is connected to the address input Addr of SRAM 410.
  • Multiplexer 400 is controlled by control and MBIST control signals and multiplexer 401 is controlled by a respective MBIST control signal.
  • the second input of multiplexer 401 is connected to test address lines MBIST ADDR.
  • the write enable signal WE' is coupled with a valid bit register 406 and the first input of a multiplexer 411.
  • the valid register is as wide as the data register and reflects the WE signal for each bit. This has the advantage of being able to decide the actual size of the data word, which is written into the SRAM, for example, 8, 16, or 32 bits. Also, single bit manipulation is possible in a convenient way by validating the respective bits of the valid register 406. In this embodiment each bit of a word in the SRAM has its own WE line.
  • the second input of multiplexer 411 is coupled with the output of multiplexer 412.
  • Multiplexer 412 receives at its first input the MBIST WE signal and at its second input the output signal from the valid bit register 406.
  • Multiplexers 411 is controlled by a combined control and MBIST control signal and multiplexer 412 is controlled by a respective MBIST control signal.
  • the output of valid bit buffer 406 is also connected per bit to the first input of an AND gate 405 whose second input is coupled with the output of comparator 403.
  • the data input D in ' is coupled with the input of a data buffer 407 and the first input of a multiplexer 409 whose second input is coupled with the output of multiplexer 408.
  • the first input of multiplexer 408 is coupled with the output of data buffer 407.
  • the second input of multiplexer 408 receives a MBIST D in signal.
  • Multiplexer 408 is controlled by a respective MBIST control signal and multiplexer 412 is again controlled by a combined control and MBIST control signal.
  • a control unit (not shown) generates all control and MBIST control signals.
  • the output of multiplexer 409 is coupled with the data input D in of SRAM 410.
  • the data output D out of SRAM 410 is coupled with the first input of a multiplexer 404 whose second input is coupled with the output of data buffer 407.
  • the output of AND gate 405 controls multiplexer 404 per bit whose output is coupled with the data output D out '.
  • This embodiment has a similar functionality whenever the respective MBIST control signals are set to the normal operation mode, namely the read/write mode. In this mode multiplexer 401 is switched to the address buffer 402, multiplexer 412 to the valid bit register, and multiplexer 408 to the data buffer 407.
  • Valid bit buffer 406 is provided to indicate whether data buffer 407 contains valid data as described above.
  • the bits in this buffer are set for the respective bits in data buffer 407 whenever those bits of data buffer 407 are written and address buffer 402 contains the appropriate address.
  • multiplexer 404 switches between the output of data buffer 407 and the data output D out of SRAM 410.
  • multiplexer 401 is switched to the MBIST ADDR input.
  • Multiplexer 400 is then switched to the output of multiplexer 401 and the MBIST unit (not shown) can provide different test addresses to SRAM 410 through the MBIST ADDR input.
  • the write enable signal will be switched to the MBIST WE signal through multiplexer 411 and 412.
  • SRAM 410 Data can be provided to SRAM 410 in this mode by means of multiplexer 409 and multiplexer 408.
  • multiplexer 409 and multiplexer 408 are used which switch between the respective signals. This might slow down the access time to the SRAM because additional setup time is necessary.
  • the additional multiplexers needed for the MBIST functionality according to the present invention, in which the MBIST functionality is fully integrated in the SRAM interface, are placed in a timing uncritical path.
  • Fig. 5 shows another embodiment according to the present invention.
  • Address lines Addr' from the microprocessor side are coupled with a first input of a multiplexer 500 and with the input of a buffer or register 504.
  • the output of multiplexer 500 carries the address signal Addr for the memory unit.
  • the output of register 504 is coupled with the input of register 503 and the first input of multiplexer 502 whose output is coupled with the second input of multiplexer 500.
  • Multiplexer 500 is controlled by a control signal 501.
  • the output of register 503 is coupled with the second input of multiplexer 502.
  • the output of registers 503 and 504 are coupled with respective inputs of a comparator 505 whose output signal is coupled with the first input of an AND gate 521 per bit.
  • the output signal of AND gate 521 controls a multiplexer 520.
  • Data input lines Din' from the microprocessor are coupled with a first input of a multiplexer 510 and the input of register 512.
  • the output of register 512 is coupled with the second input of multiplexer 510 whose output carries the input data signal for the memory unit.
  • the first input of multiplexer 520 is coupled with the output of register 512.
  • the second input of multiplexer 520 is coupled with the output data lines D out of the memory unit and its output carries the output data signals for the microprocessor.
  • the write enable signal WE' from the microprocessor is coupled with the first input of a multiplexer 531 and the input of a register 530.
  • the output of register 530 is coupled with the second input of multiplexer 531 whose output carries the write enable signal WE for the memory unit. Furthermore, the output of register 530 is coupled with the second input of AND gate 521 per bit. Multiplexers 502, 510, and 531 are controlled by control signal 511.
  • register 504 buffers the address Addr'. If a read cycle occurs in the following cycle the associated data Din' for the write cycle are stored in register 512 and the write enable signal WE' in register 530. Also, the buffered address of the previous write cycle gets forwarded into register 503 and the read cycle address gets stored into register 504. Comparator 505 compares both addresses. As both addresses are stored within registers the comparison proper is less time critical and the address setup time which is most critical does not suffer. If both addresses are identical then multiplexer 520 is controlled by comparator 505 to forward the content of register 512 to the data output D out ' if the corresponding WE bit is set for each bit position to.
  • multiplexer 520 couples data output D out ' with the data output D out of the memory unit and a regular read cycle takes place.
  • multiplexer 500 couples the address lines Addr' with the memory unit address lines Addr.
  • Registers 503, 512, and 530 keep the buffered write cycle addresses, data, and control signal while read cycles are performed until another write cycle occurs. If a second write cycle follows then the content of register 512 is actually written into the memory unit under the address buffered by register 503 using the WE or valid bits of register 530. Therefore, multiplexers 502 and 500 switch to the appropriate inputs.
  • Register 530 buffers the write enable signal.
  • This signal can be used to determine whether a write cycle should actually be performed, for example, indicating a write control signal in case of a cache hit. It also can be used in a similar way as shown in Fig. 4 as an indicator as to whether data or single bits in register 512 are valid and therefore have to be written. WE and valid signal are therefore identical in this embodiment.
  • Fig. 6 shows a flow chart of the different cycles, which can occur.
  • a read cycle starts with step 602 where it is determined whether any data and control signals from a previous write cycle are available or in other words whether the previous cycle was a write cycle. If so, then steps 603-605 copy the content of buffer 504 to 503, the transferred data and control signals are stored in buffers 512 and 530, respectively, and the actual address transmitted with the read cycle is buffered in register 504. Next or if the above steps have been skipped, the content of registers 503 and 504 are compared in step 607. If they are equal then it is checked in step 608 whether registers 512 and 530 contain valid data. If so, then the content of register 512 is forwarded to the output D out ' in step 609. Fig.
  • step 6 only shows the store forward function during a read cycle where the content comes either from the store forwarding buffer or directly from the SRAM. If the interface allows single bits to be altered, then only those bits which are valid will be forwarded from the respective buffer in step 609. In parallel, the SRAM is read and the remaining bits of the respective data word are merged with the buffered bits. If step 607 or 608 result differently, then multiplexer 500 couples the address signals Addr' with the address input of the SRAM and the respective memory cells of the SRAM are read and their content is transferred to the data output D out ' in step 610.
  • step 612 it is first checked in step 612 whether the buffers 512 and 530 contain valid data. If so, then in the following step 613 the content of buffer 512 is written to the SRAM under the address buffered in buffer 503.
  • step 614 it is checked whether data and control signals from a previous write cycle are available. If so, then in step 615 buffer 504 is copied to buffer 503 and the data and control signals are buffered in 512 and 530, respectively. If in step 612 the decision is "no", then in step 617 it is checked whether data and control signals from a previous write cycle are available. If so, then in step 618 those data are directed to the SRAM switching multiplexers 510 and 531 to input "1"....
  • Multiplexer 502 is also switched to input “1" using the output signal of register 504 as the associated address.
  • Multiplexer 500 is switched to input "0".
  • steps 615 to 616 follow.
  • step 619 which follows step 616 the new address from the current write cycle is buffered in register504. If no data and control signals from a previous write cycle are available in step 617 then only step 619 follows.
  • buffer 504 is copied to buffer 503 and the incoming data and control signals are buffered in registers 512 and 530, respectively.
  • step 618 can be followed directly by step 619 thereby skipping steps 615 and 616.
  • data can be read from SRAM within a single cycle. Therefore, if the incoming data in step 618 is written into the SRAM it can be read within the next cycle from the SRAM.
  • steps 615 and 816 are used after step 618, forwarding as described in steps 607-609 can be used.
  • Fig. 7 shows a table displaying the different contents of the buffers/registers and the status of the multiplexers during different cycles. It is assumed that all registers /buffers are empty before the first cycle W1. W1 is a write cycle during which the address "1" is written into register 503. It is assumed that the next cycle is a write cycle W2. During this cycle the data and control signals from the previous write cycle W1 arrive and are stored in registers 512, and 530, respectively. In parallel they are written into the SRAM. Therefore, multiplexer 500 is switched to input 0 and multiplexers 502, 510, and 531 to input 1. The next cycle is assumed to be a read cycle R3.
  • multiplexer 500 is switched to 0 and multiplexers 502, 510, and 531 are switched to input 0, respectively.
  • the newly submitted address "4" is stored in register 503.
  • the now incoming data and control signals are stored into registers 512 and 530.
  • the content of register 504 is copied into register 503 and the newly arrived address for the read cycle is stored in register 504.
  • Comparator 505 compares the content of both registers 503, and 504 and as they are identical switches multiplexer 520 to input 1. Therefore, the content of register 512 is forwarded to output D out ' for those bits which are set valid. If necessary these forwarded bits are combined with the respective bits from the SRAM which were set invalid for buffer 512.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Static Random-Access Memory (AREA)
  • Memory System Of A Hierarchy Structure (AREA)

Claims (14)

  1. Schnittstellenschaltung zum Koppeln einer Datenbearbeitungseinheit mit einer Speichereinheit mit Steuereingängen, einem Adressensignaleingang, einem Datensignaleingang und einem Datensignalausgang, umfassend:
    einen Adressenpuffer (4; 402) mit einem Eingang und einem Ausgang, wobei der Eingang ein Adressensignal von der Datenbearbeitungseinheit empfängt,
    einen ersten Multiplexer (3; 400), der die Speichereinheit (1, 410) entweder mit dem Ausgang des Adressenpuffers (4, 402) oder mit dem Adressensignal koppelt,
    einen Datenpuffer (6; 407) mit einem Eingang und einem Ausgang, wobei der Eingang ein Datensignal von der Datenbearbeitungseinheit empfängt und der Ausgang mit dem Speicherdateneingang gekoppelt ist,
    einen zweiten Multiplexer (7; 404) zum Auswählen entweder des Speicherdatensignalausgangs oder des Datenpufferausgangs,
    einen Komparator (5; 403) zum Vergleichen des Adressensignals mit dem Signal aus dem Adressenpufferausgang, der ein Steuersignal erzeugt, das den zweiten Multiplexer (7, 404) steuert,
       gekennzeichnet durch
    eine Steuerlogik (2) zum Steuern des Adressenpuffers (4; 402), des Datenpuffers (6; 407) und des ersten Multiplexers (3; 400) dergestalt, daß das Schreiben des Datensignals in die Speichereinheit (1; 410), das in einem Schreibzyklus bereitgestellt wird, im Fall eines folgenden Lesezyklus zurückgestellt wird, wobei das Datensignal in dem Datenpuffer gepuffert wird, bis ein nächster Schreibzyklus beginnt.
  2. Schnittstelle nach Anspruch 1, wobei die Speichereinheit (1; 410) ein statischer Speicher ist.
  3. Schnittstelle nach Anspruch 1 oder 2, wobei ein weiterer Multiplexer (8; 409) mit zwei Eingängen und einem Ausgang vorgesehen ist, wobei der Ausgang mit dem Dateneingang des Speichers (1; 410) gekoppelt ist, der erste Eingang mit dem Ausgang des Datenpuffers (6; 407) gekoppelt ist und der zweite Eingang das Datensignal aus der Datenbearbeitungseinheit empfängt.
  4. Schnittstelle nach einem der vorhergehenden Ansprüche, wobei ein weiterer Multiplexer (401) mit zwei Eingängen und einem Ausgang vorgesehen ist, wobei der Ausgang mit dem ersten Multiplexer (400) gekoppelt ist, wobei der erste Eingang mit dem Ausgang des Adressenpuffers (402) gekoppelt ist und der zweite Eingang eine Prüfadresse empfängt.
  5. Schnittstelle nach Anspruch 4, wobei ein weiterer Multiplexer (408) mit zwei Eingängen und einem Ausgang vorgesehen ist, wobei der Ausgang mit dem Datensignaleingang des Speichers gekoppelt ist, wobei der erste Eingang das Ausgangssignals des Datenpuffers (407) empfängt und der zweite Eingang ein Prüfdatensignal empfängt.
  6. Schnittstelle nach Anspruch 5, wobei die Speichereinheit (410) einen Schreibfreigabeeingang umfaßt und wobei die Schnittstelle einen Schreibfreigabepuffer (406) mit einem Eingang und einem Ausgang umfaßt, wobei der Eingang mit einem Schreibfreigabesignal aus der Datenbearbeitungseinheit gekoppelt ist, einen Schreibfreigabemultiplexer (412) mit zwei Eingängen und einem Ausgang, wobei der erste Eingang mit dem Schreibfreigabesignal und der zweite Eingang mit dem Ausgang des Schreibfreigabepuffers (406) gekoppelt ist, wobei der Ausgang des Multiplexers mit dem Schreibfreigabeeingang der Speichereinheit (410) gekoppelt ist, umfaßt.
  7. Schnittstelle nach Anspruch 5 oder 6, wobei ein weiterer Multiplexer (412) vorgesehen ist, um zwischen dem Schreibfreigabepufferausgang und einem Schreibfreigabeprüfsignal auszuwählen.
  8. Schnittstelle nach einem der vorhergehenden Ansprüche, wobei eine Vielzahl von Adressenpuffern (4) vorgesehen ist.
  9. Mikroprozessor mit einer gemäß einem der vorherigen Ansprüche integrierten Schnittstelle.
  10. Verfahren zum Schreiben von Daten in eine integrierte Speichereinheit in einem Mikroprozessor mit einer Pipeline-Struktur, bei dem ein in den Speicher zu schreibendes Datensignal in bezug auf ein Adressensignal verzögert wird, wobei das Verfahren die folgenden Schritte umfaßt:
    Puffern des Adressensignals in einem Adressenpuffer (4; 402),
    im Fall eines folgenden Schreibsignals, Speichern des Datensignals unter dem gepufferten Adressensignal und Puffern des folgenden Adressensignals in dem Adressenpuffer (4; 402),
       dadurch gekennzeichnet, daß
       im Fall eines folgenden Lesesignals das Datensignal in einem Datenpuffer (6; 407) gepuffert wird, wobei das Schreiben des Datensignals in die Speichereinheit zurückgestellt wird, bis ein nächster Schreibzyklus beginnt.
  11. Verfahren nach Anspruch 10 mit dem folgenden zusätzlichen Schritt: Setzen eines Gültig-Bit, wenn sowohl die Adresse als auch die Daten gepuffert wurden, und Schreiben der gepufferten Adresse und Daten nur dann, wenn das Gültig-Bit gesetzt wurde.
  12. Verfahren nach Anspruch 11, wobei für jedes Bit aus den gepufferten Daten, das in die Speichereinheit geschrieben werden soll, ein Gültig-Bit gesetzt wird.
  13. Verfahren nach Anspruch 10, 11 oder 12, wobei im Fall einer Vielzahl nachfolgender Schreibzyklen eine Vielzahl von Schreibadressen und die jeweiligen Daten in einer Vielzahl von Adressen und Datenpuffern gepuffert werden.
  14. Schnittstellenschaltung zum Koppeln einer Datenbearbeitungseinheit mit einer Speichereinheit mit Steuereingängen, einem Adressensignaleingang, einem Datensignaleingang und einem Datensignalausgang, umfassend:
    einen ersten Adressenpuffer (504) mit einem Eingang und einem Ausgang, wobei der Eingang ein Adressensignal aus der Datenbearbeitungseinheit empfängt,
    einen Datenpuffer (512) mit einem Eingang und einem Ausgang, wobei der Eingang ein Datensignal aus der Datenbearbeitungseinheit empfängt und der Ausgang mit der Speicherdateneinheit gekoppelt ist,
       gekennzeichnet durch
    einen zweiten Adressenpuffer (503) mit einem Eingang und einem Ausgang, wobei der Eingang mit dem Ausgang des ersten Adressenpuffers (504) gekoppelt ist,
    einen steuerbaren ersten Multiplexer (502) mit Eingängen und einem Ausgang, der den Inhalt entweder des ersten (504) oder des zweiten Adressenpuffers (503) an seinen Ausgang ankoppelt,
    einen steuerbaren zweiten Multiplexer (500), der die Speichereinheit entweder mit dem Ausgang des ersten Multiplexers (502) oder mit dem Adressensignal koppelt,
    einen dritten Multiplexer (520) zum Auswählen entweder des Speicherdatensignalausgangs oder des Datenpufferausgangs,
    einen Komparator (505) zum Vergleichen des Inhalts des ersten und des zweiten Adressenpuffers, der ein Steuersignal erzeugt, das den dritten Multiplexer (520) steuert,
    eine Steuerlogik, die Steuersignale (501, 511) zum Steuern des ersten und des zweiten Multiplexers dergestalt bereitstellt, daß das Schreiben des Datensignals in die Speichereinheit, das in einem Schreibzyklus bereitgestellt wird, im Fall eines folgenden Lesezyklus zurückgestellt wird, wobei das Datensignal in dem Datenpuffer gepuffert wird, bis ein nächster Schreibzyklus beginnt.
EP00983934A 1999-12-13 2000-12-06 Schnittstelle für eine speichereinheit Expired - Lifetime EP1238339B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/460,534 US6507899B1 (en) 1999-12-13 1999-12-13 Interface for a memory unit
US460534 1999-12-13
PCT/US2000/033036 WO2001042926A1 (en) 1999-12-13 2000-12-06 Interface for a memory unit

Publications (2)

Publication Number Publication Date
EP1238339A1 EP1238339A1 (de) 2002-09-11
EP1238339B1 true EP1238339B1 (de) 2004-05-06

Family

ID=23829109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00983934A Expired - Lifetime EP1238339B1 (de) 1999-12-13 2000-12-06 Schnittstelle für eine speichereinheit

Country Status (4)

Country Link
US (1) US6507899B1 (de)
EP (1) EP1238339B1 (de)
DE (1) DE60010511T2 (de)
WO (1) WO2001042926A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578097B1 (en) * 2000-08-30 2003-06-10 Silicon Integrated Systems Corp. Method and apparatus for transmitting registered data onto a PCI bus
US7200024B2 (en) * 2002-08-02 2007-04-03 Micron Technology, Inc. System and method for optically interconnecting memory devices
US7254331B2 (en) * 2002-08-09 2007-08-07 Micron Technology, Inc. System and method for multiple bit optical data transmission in memory systems
US7836252B2 (en) * 2002-08-29 2010-11-16 Micron Technology, Inc. System and method for optimizing interconnections of memory devices in a multichip module
US20050144409A1 (en) * 2002-09-11 2005-06-30 Fujitsu Limited Data processing device and method utilizing latency difference between memory blocks
US7245145B2 (en) * 2003-06-11 2007-07-17 Micron Technology, Inc. Memory module and method having improved signal routing topology
US20050010726A1 (en) * 2003-07-10 2005-01-13 Rai Barinder Singh Low overhead read buffer
US7120743B2 (en) 2003-10-20 2006-10-10 Micron Technology, Inc. Arbitration system and method for memory responses in a hub-based memory system
US7234070B2 (en) * 2003-10-27 2007-06-19 Micron Technology, Inc. System and method for using a learning sequence to establish communications on a high-speed nonsynchronous interface in the absence of clock forwarding
US7181584B2 (en) * 2004-02-05 2007-02-20 Micron Technology, Inc. Dynamic command and/or address mirroring system and method for memory modules
US7366864B2 (en) * 2004-03-08 2008-04-29 Micron Technology, Inc. Memory hub architecture having programmable lane widths
US7120723B2 (en) * 2004-03-25 2006-10-10 Micron Technology, Inc. System and method for memory hub-based expansion bus
US7590797B2 (en) * 2004-04-08 2009-09-15 Micron Technology, Inc. System and method for optimizing interconnections of components in a multichip memory module
US7222213B2 (en) * 2004-05-17 2007-05-22 Micron Technology, Inc. System and method for communicating the synchronization status of memory modules during initialization of the memory modules
JP2005339675A (ja) * 2004-05-27 2005-12-08 Hitachi Ltd 半導体集積回路装置
US7392331B2 (en) * 2004-08-31 2008-06-24 Micron Technology, Inc. System and method for transmitting data packets in a computer system having a memory hub architecture
US9135008B2 (en) * 2009-09-24 2015-09-15 Freescale Semiconductor, Inc. Device and method for performing conditional bitwise set/clear/toggle manipulations in a general purpose register

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5034885A (en) 1988-03-15 1991-07-23 Kabushiki Kaisha Toshiba Cache memory device with fast data-write capacity
GB2244158B (en) 1990-04-30 1994-09-07 Sun Microsystems Inc Cache memory arrangement with write buffer pipeline providing for concurrent cache determinations
GB9116480D0 (en) 1991-07-30 1991-09-11 Inmos Ltd Read and write circuitry for a memory
US5481500A (en) * 1994-07-22 1996-01-02 International Business Machines Corporation Precharged bit decoder and sense amplifier with integrated latch usable in pipelined memories
US5838631A (en) * 1996-04-19 1998-11-17 Integrated Device Technology, Inc. Fully synchronous pipelined ram
US6044429A (en) * 1997-07-10 2000-03-28 Micron Technology, Inc. Method and apparatus for collision-free data transfers in a memory device with selectable data or address paths

Also Published As

Publication number Publication date
US6507899B1 (en) 2003-01-14
DE60010511D1 (de) 2004-06-09
DE60010511T2 (de) 2005-04-14
WO2001042926A1 (en) 2001-06-14
EP1238339A1 (de) 2002-09-11

Similar Documents

Publication Publication Date Title
EP1238339B1 (de) Schnittstelle für eine speichereinheit
US6567338B1 (en) Fully synchronous pipelined RAM
US5434818A (en) Four port RAM cell
US5561781A (en) Port swapping for improved virtual SRAM performance and processing of concurrent processor access requests
EP1163598B1 (de) Mikroprozessorvorrichtung mit programmierbaren wartezuständen
US10456819B2 (en) Memory interface configurable for asynchronous and synchronous operation and for accessing storage from any clock domain
US20100325631A1 (en) Method and apparatus for increasing load bandwidth
JPH08321180A (ja) 半導体記憶装置
US6360307B1 (en) Circuit architecture and method of writing data to a memory
US6003120A (en) Method and apparatus for performing variable length processor write cycles
KR100377708B1 (ko) 저소비 전력화가 가능한 파이프라인 방식의 반도체 기억장치
US5185879A (en) Cache system and control method therefor
US6487140B2 (en) Circuit for managing the transfer of data streams from a plurality of sources within a system
JPH09505679A (ja) 選択フラッシュ機能を具備するメモリーバッファ
US5732011A (en) Digital system having high speed buffering
US5050076A (en) Prefetching queue control system
JP3028932B2 (ja) 入出力バッファメモリ回路
US7552301B2 (en) Information processing apparatus and memory access arranging method
EP0687984A1 (de) Datenverarbeitungssystem mit einem direkt mit Peripheriegerät gekoppelten Daten/Adressebus
US6175518B1 (en) Remote register hierarchy accessible using a serial data line
JP3520570B2 (ja) メモリアクセス制御装置
US6222793B1 (en) Memory devices having a restore start address counter
JPH1131066A (ja) バッファ制御システム
GB2214670A (en) Cache system and control method therefor
JPS62209640A (ja) 記憶装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RANDHAWA, SABEEN

Inventor name: MARTELLONI, YANNICK

Inventor name: BAROR, GIGY

Inventor name: HENFTLING, MANFRED

Inventor name: OBERLAENDER, KLAUS

Inventor name: WIEDHOLZ, CHRISTIAN

Inventor name: PELEG, ZOHAR

Inventor name: ZEMACH, RAMI

17Q First examination report despatched

Effective date: 20030320

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

REF Corresponds to:

Ref document number: 60010511

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151228

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161206

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60010511

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231