EP1237842B1 - Methode und einrichtung zur kontinuierlichen herstellung von diarylcarbonaten - Google Patents

Methode und einrichtung zur kontinuierlichen herstellung von diarylcarbonaten Download PDF

Info

Publication number
EP1237842B1
EP1237842B1 EP00978668A EP00978668A EP1237842B1 EP 1237842 B1 EP1237842 B1 EP 1237842B1 EP 00978668 A EP00978668 A EP 00978668A EP 00978668 A EP00978668 A EP 00978668A EP 1237842 B1 EP1237842 B1 EP 1237842B1
Authority
EP
European Patent Office
Prior art keywords
column
stream
reactive distillation
carbonate
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00978668A
Other languages
English (en)
French (fr)
Other versions
EP1237842A1 (de
Inventor
Philip R. De Bruin
James S. Law
Vincentius Antonius Vriens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1237842A1 publication Critical patent/EP1237842A1/de
Application granted granted Critical
Publication of EP1237842B1 publication Critical patent/EP1237842B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/06Reactor-distillation

Definitions

  • This application relates to the continuous production of diaryl carbonates by reaction of dialkyl carbonates and an aromatic alcohol in the presence of a catalyst.
  • Diaryl carbonates such as diphenyl carbonate
  • diphenyl carbonate are an important reactant in the production of polycarbonate resins.
  • the efficient production of diaryl carbonates has become of greater significance.
  • Early processes for the production of diaryl carbonates utilized phosgene as a reagent. The toxicity of phosgene, however, prompted the development of a non-phosgene process. As shown schematically in Fig. 1, the non-phosgene process involves a two-step process.
  • a dialkyl carbonate such as dimethyl carbonate (DMC) reacts with an aromatic alcohol such as phenol to produce an alkyl aryl carbonate (e.g., phenylmethyl carbonate) and an alkyl alcohol (methanol).
  • an alkyl aryl carbonate e.g., phenylmethyl carbonate
  • methanol alkyl alcohol
  • two molecules of the alkyl aryl carbonate undergo a transesterification reaction to produce one molecule of diaryl carbonate (diphenyl carbonate, DPC) and one molecule of dialkyl carbonate (DMC).
  • U.S. Patent No. 5,210,268 relates to a process for continuously producing aromatic carbonates. The process is carried out in a distillation column, with product being recovered from the bottom of the column, and low boiling by-products being removed via the top of the column.
  • Other processes for production of diaryl carbonates using a series of distillation columns are disclosed in U.S. Patents Nos. 5,344,954 and 5,705,673.
  • EP-A-0781760 discloses a continuous method for preparing aromatic carbonates in which when reacting dialkyl carbonate and an aromatic hydroxy compound in the presence of a catalyst in a reactor, recovering dialkyl carbonate and aromatic hydroxy compound removed from the reactor, and returning it to the reaction system, at least one of the following refinement and recycling processes is conducted: (I) alcohols and alkyl aromatic ethers (anisoles) are separated and removed from the reaction mixture removed from the top of the reactor, and the dialkyl carbonate thus obtained is returned to the reaction system and (II) alkyl aromatic ethers are separated and removed from the reaction mixture removed from the bottom of the reactor and dialkyl carbonate and/or aromatic hydroxy compound are returned to the reaction system.
  • EP-A-0582931 discloses a continuous process for the preparation of diaryl carbonates by reaction of dialkyl carbonates and phenols using conventional transesterification catalysts in a specific mass-coupled and energy-coupled combination of columns.
  • EP-A-0785184 discloses a continuous process for the preparation of phenyl methyl carbonate carried out in a first distillation column consisting of a lower reactive section and an upper rectification section and a second rectification column, under such operating conditions that the reactive section of the first column has a practically constant thermal profile at the optimum temperature of the reaction, and that with the use of the second column a circulation of dimethyl carbonate is created between the top and bottom of the first column which allows an advantageous excess of dimethylcarbonate to be fed to the bottom of the first column.
  • the reaction shown in Fig. 1 is the reaction which is desired, but as is known to persons skilled in the art, there are number of side reactions which occur, producing unwanted by-products. These by-products can interfere with continuing production of the desired product, reduce the efficiency of the over-all process, and in some cases produce waste streams which require special handling for disposal. Thus, a significant challenge to the utilization of this process is the development of a process which minimizes the quantities and effects of the reaction by-products, while providing a good yield of the desired product.
  • the present invention provides a method for continuous production of diphenyl carbonate which has a high production rate while at the same time maintaining an energy efficient process.
  • the present invention further provides an apparatus for continuous production of diphenyl carbonate which has a high production rate while at the same time maintaining an energy efficient process.
  • the invention is directed to a method for continuous production of diaryl carbonates by reaction of a dialkyl carbonate and an aromatic alcohol in the presence of a transesterification catalyst.
  • the method comprises the steps of:
  • the present invention provides an energy efficient series of mass and energy integrated reactive distillation columns and distillation columns to effect the production of diaryl carbonate. Utilizing the method or apparatus of the invention facilitates high diaryl carbonate production rates, and convenient recovery of unreacted starting materials and side-reaction products for recycle within the process for making diaryl carbonates or utilization in parallel reactions such as the manufacture of dialkyl carbonates.
  • Fig. 1 The principal reaction which is carried out in the method of the present invention is the reaction illustrated in Fig. 1. It will be appreciated by persons skilled in the art that this process can be carried out using various dialkyl carbonates and various aromatic alcohols. Exemplary materials of each type are listed in the patents discussed above. Since the most common reactants used industrially are dimethyl carbonate and phenol, which react to produce diphenyl carbonate, however, these materials will be used as examples throughout the following discussion of the invention which follows. It should be understood, however, that this usage is merely for clarity of discussion, and that no limitation on the invention to the use of these specific materials is intended.
  • Fig. 2 shows a schematic representation of the apparatus of the invention, including five columns A, B 1 , B 2 , B 3 and C. Various feed, product and recycle streams indicated by the numbers 1-18.
  • Columns A, B 1 and C are reactive/distillation columns. Thus, these columns each have a lower reaction section in which a chemical reaction occurs, and an upper rectification section.
  • the construction of columns of this type are known in the art.
  • the reactive portion of the column will be furnished with arranged packings, dumped packings or fixed internals to provide at least three theoretical distillation stages.
  • the reactive section of Column A will provide 10 to 60, and more preferably 15 to 40, theoretical distillation steps.
  • Columns B 2 and B 3 are rectification columns. Thus, these columns are intended to carry out a separation of materials based upon boiling point, without driving a concurrent chemical reaction.
  • the construction of columns of this type are known in the art.
  • Fig. 2 The five columns illustrated in Fig. 2 are interconnected by a series of feed/recycle lines which serve to transport reactants and products. The direction of flow for each such line is indicated on Fig. 2.
  • Various valves, heaters, and other fittings may be included with these feed/recycle lines in adapting the design to a particular installation, and the inclusion of such components is within the skill in the art.
  • Fig. 2 The apparatus depicted in Fig. 2 can be utilized in accordance with the method of the invention to produce DPC.
  • Starting materials are introduced to column A through as streams 3 and 4.
  • Stream 3 is a combination of stream 1, which contains mainly phenol, either fresh or recycled, and stream 3' which contains phenol and catalyst.
  • stream 3 can also include DMC and side-reaction products recycled from reactive distillation column C via line 16.
  • Stream 4 is a mixture of stream 2, containing mainly DMC and recycle stream 8 which contains mainly DMC and some minor amounts of phenol and side-reaction products recovered from the bottom of rectification column B 2 .
  • Stream 4 is fed into the bottom section of column A, preferably to the reboiler.
  • the stream may be a liquid or a vapor, depending on the type of reboiler used. For example, if an external reboiler, e.g., a kettle reboiler, is used, stream 4 enters column A as a vapor.
  • Stream 3 is fed as a liquid into the middle section of column A, at a location at the top of the reactive distillation section.
  • the feed rate of streams 3 and 4 is such that the molar ratio of aromatic alcohol to dialkyl carbonate which is introduced into column A is between 0.1 and io, preferably between 0.5 and 5 and most preferably between 1 and 3.
  • dialkyl carbonate serves as both a reactant and a stripping agent which facilitates removal of alkyl alcohol produced in the transesterification reaction. This removal increases the rate of production of alkyl aryl carbonate in column A.
  • the transesterification reaction in column A is carried out at a temperature from 100°C to 300°C, preferably from 130°C to 250°C, and most preferably from 140°C to 220°C.
  • the operating pressure at the top of column A is suitably in the range of 50 mbar to 20 bar, preferably 0.5 to 10 bar, and most preferably 3 to 7 bar.
  • Reaction products and unreacted starting materials are removed from column A in continuous manner through streams 5 and 6.
  • Stream 5 which is drawn from the head of column A contains unreacted dialkyl carbonate and virtually all of the alkyl alcohol produced in the transesterification reaction. This stream is passed to rectification column B 2 for processing and recovery.
  • Stream 6 which is drawn from near the bottom of column A contains the alkyl aryl carbonate produced in column A, in combination with unreacted starting materials and catalyst. This stream 6 is passed to the second reactive distillation column B 1 .
  • Column B 1 has a lower reaction section and an upper rectification section. This column promotes the disproportionation of alkyl aryl carbonate into diaryl carbonate and dialkyl carbonate, while at the same time separating dialkyl carbonate from the reaction mixture.
  • the reactive and rectification sections of column B 1 are each furnished with arranged packings, dumped packings or fixed internals to provide 1 to 50, preferably 5 to 20 theoretical distillation steps.
  • the temperature profile of column B 1 ranges from 50 to 300°C, preferably 60 to 280°C, and most preferably 100 to 250°C.
  • the pressure in column B 1 is maintained in the range of 50 mbar to 10 bar, preferably 0.2 to 5 bar, and most preferably 1 to 3 bar. It is desirable to maintain the pressure of column B 1 below the pressure of column A. This results in an adiabatic flash of stream 6, hence facilitating disengagement of dialkyl carbonate from the reaction mixture.
  • Column B 1 is operated in such a way that dialkyl carbonate entering the column through stream 6 is separated from the reaction mixture, hence increasing the rate of the disproportionation reaction taking place in the reactive section.
  • Column B 1 can also be utilized as a reboiler for column B 2 , in which case the two columns are connected by streams 9 and 11 as shown in Fig. 2. In this case, care should be taken to avoid carryover of alkyl aryl carbonate to column B 2 in this configuration, since this could result in recycle of alkyl aryl carbonate to column A via stream 8. This would drive the composition in column A towards the starting materials, hence lowering the net production rate of alkyl aryl carbonate in column A.
  • columns B 1 and B 2 are operated such that stream 9, when present, contains mainly dialkyl carbonate in the liquid phase, refluxing back from rectification column B 2 .
  • Stream i i when present, contains mainly dialkyl carbonate and the unwanted byproduct alkyl aryl ether (for example anisole) in the vapor phase. This provides most of the energy to drive the separation processes taking place in the column B 2 . Therefore, heat and mass integration is realized advantageously between columns B 1 and B 2 via streams 9 and 11.
  • Rectification column B 2 produces a by-product stream 7 containing an azeotropic mixture of dialkyl carbonate and essentially all of the alkyl alcohol produced in the process. This stream can be condensed and reused as a feed stream for a complementary dialkyl carbonate production process without further purification.
  • Column B 2 is furnished with arranged packings, dumped packings or fixed internals to provide at least 3 and preferably 5 to 50 theoretical distillation steps.
  • the temperature profile of column B 2 ranges from 10 to 200°C, preferably 50 to 150°C.
  • the operating pressure in column B 2 is in the range of 0.1 to 10 bar, preferably 0.5 to 2 bar.
  • streams 9 and 11 which interchange materials with column B 2
  • materials leave column B 1 via streams 10 and 12.
  • Stream 12 contains mainly dialkyl carbonate and alkyl aryl ether and is drawn off as a side stream from column B 1 and fed to a second rectification column B 3 .
  • Column B 3 separates dialkyl carbonate from alkyl aryl ethers, and returns the dialkyl carbonate to column B 2 via line 14.
  • the alkyl aryl ethers are discharged through line 13. This separation of alkyl aryl ethers such as anisole is important, since these products can build up within the apparatus if not removed.
  • Stream 10 contains the diaryl carbonate produced in column B 1 , in combination with unreacted starting materials, and some alkyl aryl carbonate and alkyl aryl ethers.
  • Stream 10 is fed to reactive distillation column C, which is operated to further drive the reaction toward the desired diaryl carbonate product, while separating other materials for recycle.
  • Two streams are removed from column C.
  • the first is a product stream 15 which contains all of the diaryl carbonate produced together with residual catalyst, some alkyl aryl carbonate and unwanted high boiling by-products. This product stream 15 may be further distilled if additional purification is desired.
  • the second stream 16 is removed from the head of column C as a recycle stream containing all of the unreacted aromatic alcohol starting material, and some dialkyl carbonate and alkyl aryl ether, and recycled to make up part of stream 3.
  • Column C is suitably operated at a temperature of from 100 to 300°C, preferably 100 to 250°C, and most preferably 140 to 200°C.
  • the operating pressure in the column is suitably 10 mbar to 3 bar, preferably from 50 mbar to 1 bar, and most preferably from 100 to 400 mbar.
  • stream 10 may be augmented by addition of a stream containing alkyl aryl carbonate via stream 17 to form stream 18. This results in an improvement in the overall production of diaryl carbonate.
  • stream 17 may be a alkyl aryl carbonate-containing stream recovered from the purification of diaryl carbonates.
  • This apparatus comprises first, second and third reactive distillation columns, and first and second rectification column and a plurality of lines for transporting reactant and product streams, wherein:
  • the apparatus may further comprise additional transfer lines running in opposing directions between the bottom of the first rectification column and the top of the second reactive distillation column and/or an augmentation line connected to the fourth transfer line for introduction of an augmenting reactant stream into the third reactive distillation column.
  • the method and apparatus of the invention allow the continuous production of diaryl carbonates via a catalyzed transesterification to proceed in a highly efficient manner on an industrial scale.
  • the multistage process and apparatus of the invention provide production rates that are higher than those known in the art, and efficient separation and recycle (where appropriate) of unreacted starting materials and reaction by-products.
  • the present invention represents an improvement over prior processes.

Claims (4)

  1. Verfahren zur kontinuierlichen Herstellung von Diarylcarbonaten durch Umsetzung eines Dialkylcarbonats und eines aromatischen Alkohols in Gegenwart eines Umesterungskatalysators, umfassend die Schritte, dass man:
    (a) Reaktantenströme, die Dialkylcarbonat, aromatischen Alkohol und Umesterungskatalysator enthalten, in eine erste Reaktivdestillationskolonne einführt, um Alkylarylcarbonat und Alkylalkohol herzustellen;
    (b) aus der ersten Reaktivdestillationskolonne, einen ersten Kopfstrom gewinnt, der Dialkylcarbonat und Alkylalkohol enthält, und einen ersten Bodenstrom, der Alkylarylcarbonat enthält;
    (c) den ersten Bodenstrom in eine zweite Reaktivdestillationskolonne einleitet, um Diarylcarbonat durch Disproportionierung des Alkyarylkarbonats zu erzeugen;
    (d) aus der zweiten Reaktivdestillationskolonne einen ersten Seitenstrom gewinnt, der Dialkylcarbonat und Alkyarylether enthält, und einen zweiten Bodenstrom der Diarylcarbonat, Alkylarylcarbonat und Dialkylcarbonat enthält;
    (e) den ersten Seitenstrom in eine zweite Rektifikationskolonne einleitet, um einen Dialkylcarbonatstrom vom Alkyarylether zu trennen, und den Dialkylcarbonatstrom zur ersten Rektifikationskolonne rezykliert;
    (f) den zweiten Bodenstrom in eine dritte Reaktivdestillationskolonne einleitet, um die Reaktion weiter in Richtung des Diarylcarbonats zu treiben;
    (g) aus der dritten Reaktivdestillationskolonne einen zweiten Kopfstrom gewinnt, der nicht umgesetzten aromatischen Alkohol, Dialkylcarbonat und Alkylarlylether enthält und den zweiten Kopfstrom zur ersten Reaktivdestillationskolonne rezykliert;
    (h) den ersten Kopfstrom in eine erste Rektifikationskolonne einleitet;
    (i) aus der ersten Rektifikationskolonne einen azeotropen Kopfstrom gewinnt, der aus Dialkylcarbonat / Alkylalkohol-Azeotrop besteht und einem dritten Bodenstrom, der Dialkylcarbonat enthält, und den dritten Bodenstrom zur ersten Reaktivdestillationskolonne rezykliert; und
    (j) einen Produktstrom wiedergewinnt, der Diarylcarbonat enthält, das aus dem Boden der dritten Reaktivdestillationskolonne hergestellt wurde; wobei die erste Reaktivdestillationskolonne bei einer Temperatur von 100°C bis 300°C gehalten wird, und ein Druck am Kopf der Kolonne im Bereich von 50 mbar bis 20 bar, wobei die zweite Reaktivdestillationskolonne bei einer Temperatur von 50 bis 300°C und einem Druck von 50 mbar bis 10 bar gehalten wird, und wobei die dritte Reaktivdestillationskolonne bei einer Temperatur von 100 bis 300°C und einem Druck von 10 mbar bis 3 bar gehalten wird.
  2. Verfahren nach Anspruch 1, weiterhin aufweisend die Schritte, dass man einen flüssigen Bodenstrom aus der ersten Rektifikationskolonne wiedergewinnt und den flüssigen Bodenstrom am Kopf der zweiten Reaktivdestillationskolonne einleitet; und einen Dampfstrom wiedergewinnt der Dialkylcarbonat enthält, und den Dampfstrom am Boden der ersten Rektifikationskolonne einleitet, wodurch die zweite Reaktivdestillationskolonne als Verdampfer für die erste Rektifikationskolonne dient.
  3. Verfahren nach Anspruch 1, weiterhin aufweisend den Schritt, dass man den zweiten Bodenstrom um einen zusätzlichen Strom vermehrt, der Alkylarylcarbonat enthält.
  4. Verfahren nach Anspruch 1, wobei die zweite Reaktivdestillationskolonne auf einem Druck gehalten wird, der geringer als der Druck der ersten Reaktivdestillationskolonne ist.
EP00978668A 1999-12-08 2000-11-15 Methode und einrichtung zur kontinuierlichen herstellung von diarylcarbonaten Expired - Lifetime EP1237842B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/457,320 US6294684B1 (en) 1999-12-08 1999-12-08 Method and apparatus for the continuous production of diaryl carbonates
US457320 1999-12-08
PCT/US2000/031335 WO2001042187A1 (en) 1999-12-08 2000-11-15 Method and apparatus for the continuous production of diaryl carbonates

Publications (2)

Publication Number Publication Date
EP1237842A1 EP1237842A1 (de) 2002-09-11
EP1237842B1 true EP1237842B1 (de) 2007-01-17

Family

ID=23816275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00978668A Expired - Lifetime EP1237842B1 (de) 1999-12-08 2000-11-15 Methode und einrichtung zur kontinuierlichen herstellung von diarylcarbonaten

Country Status (7)

Country Link
US (2) US6294684B1 (de)
EP (1) EP1237842B1 (de)
JP (1) JP2003516376A (de)
AU (1) AU1610701A (de)
DE (1) DE60033051T2 (de)
TW (1) TW588042B (de)
WO (1) WO2001042187A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040732B2 (en) 2008-06-21 2015-05-26 Bayer Materialscience Ag Process for preparing diaryl carbonates from dialkyl carbonates

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859290A1 (de) * 1998-12-22 2000-06-29 Bayer Ag Verfahren zur Herstellung von Diarylcarbonaten
US6420588B1 (en) * 2001-07-24 2002-07-16 General Electric Company Interfacial method of preparing ester-substituted diaryl carbonates
US7151189B2 (en) * 2003-06-19 2006-12-19 General Electric Company Method and apparatus for waste stream recovery
US7141641B2 (en) * 2003-06-26 2006-11-28 General Electric Company Method and apparatus for production of alkyl aryl ether and diaryl carbonate
EP1762560A4 (de) * 2004-06-25 2008-05-07 Asahi Kasei Chemicals Corp Verfahren zur herstellung von aromatischem carbonat im kommerziellen massstab
WO2006006568A1 (ja) * 2004-07-13 2006-01-19 Asahi Kasei Chemicals Corporation 芳香族カーボネート類を工業的に製造する方法
BRPI0513320B1 (pt) * 2004-07-13 2015-11-24 Asahi Kasei Chemicals Corp processo para a produção de um carbonato aromático, e, coluna de destilação contínua de estágios múltiplos para realizar a reação e a destilação
KR100846330B1 (ko) * 2004-07-13 2008-07-15 아사히 가세이 케미칼즈 가부시키가이샤 방향족 카보네이트류를 공업적으로 제조하는 방법
JP4224104B2 (ja) * 2004-07-14 2009-02-12 旭化成ケミカルズ株式会社 芳香族カーボネート類を工業的に製造する方法
KR100846333B1 (ko) * 2004-07-14 2008-07-15 아사히 가세이 케미칼즈 가부시키가이샤 방향족 카보네이트류를 공업적으로 제조하는 방법
US20070255069A1 (en) * 2004-07-14 2007-11-01 Shinsuke Fukuoka Process for Industrially Producing an Aromatic Carboante
ATE516259T1 (de) 2004-08-25 2011-07-15 Asahi Kasei Chemicals Corp Industrielles verfahren zur herstellung von hochreinem diphenylcarbonat
CN100554241C (zh) 2004-09-17 2009-10-28 旭化成化学株式会社 醇类副产物的工业分离方法
JP2007326782A (ja) * 2004-09-21 2007-12-20 Asahi Kasei Chemicals Corp 副生アルコール類の工業的分離装置
EA009650B1 (ru) * 2004-09-21 2008-02-28 Асахи Касеи Кемикалз Корпорейшн Промышленный способ выделения побочно полученного спирта
BRPI0514936A (pt) * 2004-09-27 2008-07-01 Asahi Kasei Chemicals Corp aperfeiçoamento em um processo industrial para a produção de um carbonato aromático
WO2006041075A1 (ja) * 2004-10-14 2006-04-20 Asahi Kasei Chemicals Corporation 高純度ジアリールカーボネートの製造方法
WO2006043491A1 (ja) * 2004-10-22 2006-04-27 Asahi Kasei Chemicals Corporation 高純度ジアリールカーボネートの工業的製造方法
TWI321561B (en) 2004-12-21 2010-03-11 Asahi Kasei Chemicals Corp Method for producing aromatic carbonate
US7378540B2 (en) * 2005-10-21 2008-05-27 Catalytic Distillation Technologies Process for producing organic carbonates
US7288668B2 (en) * 2005-11-17 2007-10-30 Catalytic Distillation Technologies Process for making diaryl carbonate
TWI383976B (zh) * 2006-02-22 2013-02-01 Shell Int Research 製備碳酸二烷酯及烷二醇的方法
TW200740749A (en) * 2006-02-22 2007-11-01 Shell Int Research Process for the preparation of an alkanediol and a dialkyl carbonate
TWI382979B (zh) * 2006-02-22 2013-01-21 Shell Int Research 碳酸伸烷酯之生產方法及由此生產的碳酸伸烷酯於烷二醇及碳酸二烷酯之製造中的用途
TW200740731A (en) * 2006-02-22 2007-11-01 Shell Int Research Process for the preparation of alkanediol
TWI378087B (en) * 2006-02-22 2012-12-01 Shell Int Research Process for the preparation of an alkanediol and a dialkyl carbonate
TWI387584B (zh) * 2006-03-13 2013-03-01 Shell Int Research 碳酸伸烷酯之生產方法及由此生產之碳酸伸烷酯於烷二醇及碳酸二烷酯之製造中之用途
WO2008090107A1 (en) * 2007-01-23 2008-07-31 Shell Internationale Research Maatschappij B.V. Process for the preparation of diaryl carbonate
US7803961B2 (en) * 2007-02-16 2010-09-28 Sabic Innovative Plastics Ip B.V. Process for manufacturing dimethyl carbonate
WO2008099369A2 (en) * 2007-02-16 2008-08-21 Sabic Innovative Plastics Ip Bv Process for manufacturing dimethyl carbonate
EP1995233A3 (de) * 2007-05-25 2010-06-02 Bayer MaterialScience AG Verfahren zur Herstellung von Diaryl- oder Arylalkylcarbonaten aus Dialkylcarbonaten
ES2678121T3 (es) 2009-12-04 2018-08-09 Shell Internationale Research Maatschappij B.V. Proceso para preparar carbonatos de diarilo
DE102010042937A1 (de) 2010-10-08 2012-04-12 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
WO2012076532A1 (en) 2010-12-08 2012-06-14 Shell Internationale Research Maatschappij B.V. Process for purifying aryl group containing carbonates
EP2650278A1 (de) 2012-04-11 2013-10-16 Bayer MaterialScience AG Verfahren zur Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
EP2679571B1 (de) 2012-06-29 2017-12-13 SABIC Global Technologies B.V. Verfahren und Vorrichtung zur Herstellung von Diarylcarbonat
EP2679572B1 (de) 2012-06-29 2017-12-13 SABIC Global Technologies B.V. Verfahren und Vorrichtung zur Herstellung von Diarylcarbonat
US9718761B2 (en) 2013-07-16 2017-08-01 Mitsubishi Gas Chemical Company, Inc Method for producing A-hydroxyisobutyric acid amide and reactor
JP2015038160A (ja) * 2014-11-28 2015-02-26 旭化成ケミカルズ株式会社 ジアリールカーボネートの製造方法
TWI721044B (zh) 2015-11-26 2021-03-11 荷蘭商蜆殼國際研究所 製備碳酸二芳酯之方法
CN112774232A (zh) * 2020-12-02 2021-05-11 李桂凤 一种用于进行化学反应的催化反应性精馏塔

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4218391A (en) 1976-09-30 1980-08-19 Anic, S.P.A. Method for the preparation of esters of carbonic acid
IT1127270B (it) 1979-12-04 1986-05-21 Anic Spa Processo per la produzione di dimetilcarbonato
JPH06725B2 (ja) 1985-01-29 1994-01-05 ダイセル化学工業株式会社 炭酸ジフエニルの製造方法
JPH0662512B2 (ja) 1986-05-27 1994-08-17 ダイセル化学工業株式会社 炭酸ジフエニルの製造方法
CA1305579C (en) 1987-09-28 1992-07-21 Shinsuke Fukuoka Method for producing a crystallized aromatic polycarbonate, and a crystallized aromatic polycarbonate obtained thereby
WO1991009832A1 (fr) 1989-12-28 1991-07-11 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production en continu de carbonate aromatique
IT1248686B (it) 1990-06-04 1995-01-26 Enichem Sintesi Procedimento per la produzione di dimetil carbonato
IT1248687B (it) 1990-06-04 1995-01-26 Enichem Sintesi Processo per la produzione di dimetilcarbonato ed apparecchiatura adatta allo scopo
GB2255972A (en) 1991-04-12 1992-11-25 Davy Res & Dev Ltd Production of diaryl carbonates.
DE4226755A1 (de) 1992-08-13 1994-02-17 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
DE4226756A1 (de) 1992-08-13 1994-02-17 Bayer Ag Verfahren zur Herstellung von Dicarbonaten
ES2107066T3 (es) * 1993-03-12 1997-11-16 Bayer Ag Procedimiento para la obtencion en continuo de arilcarbonatos.
US5498319A (en) 1993-06-29 1996-03-12 General Electric Company Process for purifying diaryl carbonates
IT1264937B1 (it) 1993-07-15 1996-10-17 Enichem Sintesi Metodo per la rimozione dei contaminanti acidi e salini da una corrente gassosa in uscita da un reattore per la sintesi di
IT1269916B (it) 1994-03-25 1997-04-16 Enichem Spa Procedimento migliorato per la sintesi di dimetilcarbonato
JPH08198816A (ja) 1995-01-23 1996-08-06 Mitsubishi Gas Chem Co Inc 炭酸ジフェニルの精製方法
JP3846926B2 (ja) 1995-12-27 2006-11-15 日本ジーイープラスチックス株式会社 芳香族カーボネートの連続的製造方法
IT1282363B1 (it) 1996-01-16 1998-03-20 Enichem Spa Procedimento continuo per la preparazione di fenil metil carbonato
JP3807817B2 (ja) 1997-06-18 2006-08-09 三菱化学株式会社 ジフェニルカーボネートの精製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040732B2 (en) 2008-06-21 2015-05-26 Bayer Materialscience Ag Process for preparing diaryl carbonates from dialkyl carbonates

Also Published As

Publication number Publication date
US20010021786A1 (en) 2001-09-13
DE60033051T2 (de) 2007-10-18
US6294684B1 (en) 2001-09-25
US6767517B2 (en) 2004-07-27
WO2001042187A1 (en) 2001-06-14
DE60033051D1 (de) 2007-03-08
AU1610701A (en) 2001-06-18
EP1237842A1 (de) 2002-09-11
JP2003516376A (ja) 2003-05-13
TW588042B (en) 2004-05-21

Similar Documents

Publication Publication Date Title
EP1237842B1 (de) Methode und einrichtung zur kontinuierlichen herstellung von diarylcarbonaten
US7141641B2 (en) Method and apparatus for production of alkyl aryl ether and diaryl carbonate
US7339070B2 (en) Method and apparatus for waste stream recovery
EP1086940B1 (de) Verfahren zur kontinuierlichen herstellung eines dialkylcarbonats und eines diols
EP2679571B1 (de) Verfahren und Vorrichtung zur Herstellung von Diarylcarbonat
US5705673A (en) Continuous process for the preparation of phenyl methyl carbonate
EP2679572B1 (de) Verfahren und Vorrichtung zur Herstellung von Diarylcarbonat
EP1490323A1 (de) Niedrig korrosives integriertes verfahren zur herstellung von dialkylcarbonaten
EP1837328A1 (de) Verfahren zur herstellung von aromatischem carbonat
US7718820B2 (en) Process for the preparation of an alkanediol and a dialkyl carbonate
US20050240046A1 (en) Continuous method for preparing aromatic carbonate using a heterogeneous catalyst and a reaction apparatus for the same
JP4042870B2 (ja) 芳香族カーボネートの連続的製造方法
WO2016151488A1 (en) Integrated method and apparatus for the production of aryl carbonates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

17Q First examination report despatched

Effective date: 20040310

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60033051

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070907

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081112

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60033051

Country of ref document: DE

Representative=s name: SCHIEBER - FARAGO, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60033051

Country of ref document: DE

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NL

Free format text: FORMER OWNER: SABIC INNOVATIVE PLASTICS IP B.V., BERGEN OP ZOOM, NL

Ref country code: DE

Ref legal event code: R082

Ref document number: 60033051

Country of ref document: DE

Representative=s name: FARAGO PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60033051

Country of ref document: DE

Representative=s name: FARAGO PATENTANWALTS- UND RECHTSANWALTSGESELLS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60033051

Country of ref document: DE

Representative=s name: SCHIEBER - FARAGO, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60033051

Country of ref document: DE

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NL

Free format text: FORMER OWNER: SABIC GLOBAL TECHNOLOGIES B.V., BERGEN OP ZOOM, NL

Ref country code: DE

Ref legal event code: R082

Ref document number: 60033051

Country of ref document: DE

Representative=s name: FARAGO PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60033051

Country of ref document: DE

Representative=s name: FARAGO PATENTANWALTS- UND RECHTSANWALTSGESELLS, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161108

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161122

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60033051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115