EP1236808A2 - Composite material made from metal powder, starting material and process of preparation - Google Patents

Composite material made from metal powder, starting material and process of preparation Download PDF

Info

Publication number
EP1236808A2
EP1236808A2 EP01130567A EP01130567A EP1236808A2 EP 1236808 A2 EP1236808 A2 EP 1236808A2 EP 01130567 A EP01130567 A EP 01130567A EP 01130567 A EP01130567 A EP 01130567A EP 1236808 A2 EP1236808 A2 EP 1236808A2
Authority
EP
European Patent Office
Prior art keywords
metal
material according
starting material
metal powder
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01130567A
Other languages
German (de)
French (fr)
Other versions
EP1236808B1 (en
EP1236808A3 (en
Inventor
Wilfried Dr. Aichele
Hans-Peter Dr. Koch
Andreas Harzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to EP09100109A priority Critical patent/EP2053138A1/en
Publication of EP1236808A2 publication Critical patent/EP1236808A2/en
Publication of EP1236808A3 publication Critical patent/EP1236808A3/en
Application granted granted Critical
Publication of EP1236808B1 publication Critical patent/EP1236808B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the invention relates to a metal powder composite high specific electrical resistance and a raw material and a method of manufacturing such Composite.
  • Metal powder composites with high specific electrical Technical applications find resistance, for example, as high-impedance Steels and as soft magnetic components in fast-switching Solenoid valves.
  • Metal powder-plastic composites have been developed. They will with Powder metallurgy techniques by pressing metal powder particles generated which with electrically insulating plastic are coated. The pressed metal powder particles are over glued the plastic together.
  • These metal powder-plastic composites have a very high compared to pure iron electrical resistance. However, it is the opposite of the classical sintered materials reductions in strength, Permeability, magnetic saturation and temperature and Show fuel resistance.
  • the metal powders are pressed before being pressed mixed with small amounts of release agents or lubricants. This addition results in a higher density of the moldings because it is a The metal powder particles slide together during compaction promotes, it reduces the demolding forces, and it increases the Lifetime of the press tool through lubrication of press ram and Die.
  • the release agents or lubricants are usually used in quantities between 0.1 and 1.5 wt .-% added to the metal powders.
  • metal powders with the metal powder particles To coat release agents. This can be done with a solution to the Release agents are made in a suitable solvent as is is described for example in EP 0 673 284 B1, or in that wetted the metal particles with the melt of the release agent become. This is followed by the shaping by axial pressing usually a heat treatment.
  • release agents on a purely organic basis such as waxes and Fatty acids, pyrolyze largely without residue under protective gas, leave metal soaps in the powder dressing, for example Metal oxides.
  • metal oxides such as ZnO, weaken the structure, if they are not, such as iron, cobalt, Nickel, copper, molybdenum or manganese oxides in the subsequent Reduce sintering process to metals in a reducing atmosphere to let.
  • EP 0 673 284 B1 describes the combination various metal soaps as release agents by reduction of the oxides generated in the pyrolysis in a hydrogen atmosphere and targeted sintering of metal alloys with one another or generated with the pressed metal powders.
  • oxides mainly consist of metal powder Composites partly the properties, such as mechanical and possibly negatively influence magnetic properties, the inventors have found that several oxides, which at least form a common phase, the composite materials one very good mechanical, thermal and chemical resistance convey.
  • the starting material according to the invention for the production of a Metal powder composite with high specific electrical Resistance can easily be put together so that the result manufactured composite material in addition to the high resistance has satisfactory compression density.
  • required amount of release agent is large in order to obtain an optimal compression density at the same time, In such cases it can oxidize the at least one release agent Fine powder can be added, which in the further processing with the pyrolysis product formed from the at least one release agent is able to form at least one common phase. It must there is no deterioration in the properties of the composite put up with.
  • the method according to the invention is therefore particularly advantageous because the pyrolysis of those used in powder metallurgy Release agents created oxides to generate the common Let phase begin.
  • the high-resistance elements according to the invention can advantageously be used Composites designed as soft magnetic Composites also because of their high magnetic saturation and high permeability especially for solenoid valves with good Use switching dynamics. It is particularly beneficial if that Metal powder consisting essentially of ferrous materials, for example those of iron, iron silicon, iron cobalt and iron nickel or Mixtures of the materials mentioned exist, iron in particular is preferred. "consists essentially of " means in this connection that other substances only in such quantities can be present that the soft magnetic properties not deteriorate significantly.
  • the at least one common phase a glass, such as silicate or boron-containing glass, or one defined compound from the group of mixed oxides with spinel structure, the metal phosphates and the metal silicates.
  • At least one metal soap is used as the release agent and / or at least one material from the group mono-, di- or Triester of phosphoric acid, boric acid and silica with long chain alcohols and / or polydimethyldisiloxane in the Starting material is included.
  • a release agent with oxidic fine powder in the starting material according to the invention is as fine powder preferably at least one metal oxide and / or silica used.
  • the particle diameter (primary grain diameter) of the fine powder is ⁇ approximately 100 nm.
  • a satisfactory compression density in the molded body combined with a sufficiently high electrical resistance in the metal powder composite material can be achieved in an advantageous manner if based on the weight of the metal powder, the proportion of the release agents between about 0.1 and about 1.5% by weight or the sum of the Shares of release agent and fine powder between about 0.2 and about 3 wt .-% is.
  • the ratio of the amounts added Release agent or release agent and fine powder, if necessary taking into account the amounts of co-reactive metal from the metal powder surfaces, with regard to the at least one defined compound to be formed in the reaction of the oxides is approximately stoichiometric.
  • the soft magnetic composite materials with high specific electrical resistance consist of pressed metal powder particles, which are provided with a coating mainly of defined chemical compounds, which adhere well to the bare or surface-modified, for example phosphated metal particles and, depending on the application, also have a high electrical resistance, temperature and Provide fuel resistance and / or protect the metal from corrosion.
  • the coating prevents an electrical connection between the metal particles.
  • the defined chemical compounds are derived from mixed oxides with a spinel structure, such as mixed oxides from the group Al 2 MgO 4 (spinel), Al 2 ZnO 4 (zinc spinel), Al 2 MnO 4 (manganese spinel), Al 2 FeO 4 (iron spinel), Fe 2 MgO 4 (magnoferrite), Fe 3 O 4 (magnetite), Fe 2 ZnO 4 (franklinite), Fe 2 MnO 4 (jacobsite), Fe 2 NiO 4 (trevirite), Cr 2 FeO 4 (chromite) and Cr 2 MgO 4 ( Magnochromit), metal phosphates, such as zinc and iron phosphate, silicate glasses, boron-containing glasses and metal silicates, such as CoSiO 3 .
  • a spinel structure such as mixed oxides from the group Al 2 MgO 4 (spinel), Al 2 ZnO 4 (zinc spinel), Al 2 MnO 4 (manganese spinel), Al 2 FeO 4 (
  • the soft magnetic composite materials according to the invention contain So no thermoplastics or thermosets as insulation and binding agents like the metal-plastic composites. Nevertheless, they have Compared to these also a high specific electrical Resistance, comparable or better mechanical strength, better temperature and fuel resistance, one comparable magnetic saturation and a comparable Permeability.
  • the soft magnetic composite materials according to the invention are therefore suitable for use in fast switching solenoid valves especially of those in automotive engineering be used.
  • the soft magnetic composite materials according to the invention are metal powder with combinations of new or known release agents or lubricants mixed or with these combinations coated (see above).
  • the release agents are explained also used in the invention to have a composite material to generate a high electrical resistance. But that's how it is, that a too high release agent content the compression density in the molded body diminished again. With regard to the density, the optimum lies Release agent content based on the amount of metal powder at ⁇ about 1% by weight. Release agent contents of> about 2% by weight are therefore in the generally not usable.
  • the release agents oxidic fine powder (primary grain diameter preferably ⁇ about 100 nm) to disperse with the pyrolysis residues (see below) of the release agents react instead of Release agent content significantly above the optimum in terms of Increase density.
  • the quantitative ratio of the release agents or The release agent and fine powder depend on the composition by the reaction of the pyrolysis products and optionally the fine powder aimed at common phase. Act it are mixed oxides with spinel structure, metal phosphates or metal silicates, should the release agent or the release agent / fine powder combinations be composed so that a stoichiometric conversion into the compounds mentioned takes place.
  • release agents mentioned are metal soaps, such as the stearates of calcium, magnesium, aluminum, zinc, cobalt, iron, nickel, copper, molybdenum and manganese, or esters of higher alcohols of phosphoric, boric or silica.
  • fine powders mentioned are oxides, such as Fe 2 O 3 and silica.
  • the mixture of metal powder, release agent and optionally Fine powder is pressed axially into shaped bodies. Then be the moldings in a non-reducing atmosphere, for example in a nitrogen or argon atmosphere, to a temperature heated, which is significantly below the sintering temperature of the Metal powder, i.e. preferably below about 800 ° C and particularly preferably between about 150 and about 550 ° C, so that the Pyrolyze release agent. Below about 150 ° C at best incompletely pyrolyzed and the reactions proceed very well slowly. At temperatures below 550 ° C it is impossible that the metal particles sinter together and become electrical Can form current paths. The pyrolysis residues react with the applied temperatures either with each other and / or with the added fine powders and optionally with the surface of the Metal particles to the specified, defined chemical compounds.
  • a temperature heated which is significantly below the sintering temperature of the Metal powder, i.e. preferably below about 800 ° C and particularly preferably between about 150 and about 550 ° C, so
  • a mixture of iron powder and zinc stearate and a mono-, di- or trieste of phosphoric acid with long-chain alcohols such as, for example, a mixture of phosphoric acid monostearyl ester and phosphoric acid distearyl ester with a melting point of 70 ° C., as a release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder was about 1.7% by weight and the atomic ratio Zn: P was about 3: 2.
  • the shaped body was heated in a non-reducing atmosphere, for example in nitrogen, to a maximum temperature of about 550 ° C., the release agents pyrolyzing to ZnO or P 2 O 5 and the oxides formed reacting with one another to form zinc phosphate.
  • zinc phosphate has a high specific electrical resistance, adheres well to metals and protects iron in particular from corrosion.
  • the composite material obtained was suitable as a soft magnetic material for fast-switching electrical valves.
  • a mixture of iron powder and cobalt stearate and polydimethylsiloxane modified with reactive groups as the release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.6% by weight and the atomic ratio Co: Si being about 1 ,
  • the molded body was further treated as described in Example 1.
  • the pyrolysis products CoO and SiO 2 formed from the release agents reacted to CoSiO 3 .
  • the cobalt silicate had good adhesion to the iron powder, was good electrical insulation and well protected iron from corrosion.
  • the molded body was further treated as described in Example 1.
  • the pyrolysis product CoO formed from the release agent reacted with the SiO 2 of the silica to form CoSiO 3 .
  • a mixture of iron powder and zinc stearate and iron stearate as release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.4% by weight and the atomic ratio Zn: Fe being about 1: 2.
  • the molded body was further treated as described in Example 1.
  • the pyrolysis products ZnO and Fe 2 O 3 formed from the separating agents reacted with one another to form the spinel Fe 2 ZnO 4 (franklinite).
  • spinels have good adhesion to iron powder, they have good electrical insulation and they provide excellent protection for iron against corrosion.
  • the molded body was further treated as described in Example 1.
  • the pyrolysis product ZnO formed from the release agent reacted with the Fe 2 O 3 to form the spinel Fe 2 ZnO 4 .
  • a mixture containing iron powder and nickel stearate and iron stearate as a release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.5% by weight and the atomic ratio Ni: Fe being about 1: 2 lies.
  • the molded body was further treated as described in Example 1.
  • the pyrolysis products NiO and Fe 2 O 3 formed from the release agents reacted together to form the spinel Fe 2 NiO 4 .

Abstract

Metal powder composite material contains at least two oxides enclosing metal powder particles. The oxides form a common phase. An Independent claim is also included for a process for the production of a composite material comprising pressing a starting material into molded bodies, pyrolyzing the separating agent by heating in a non-reducing atmosphere to oxides, and reacting the oxides with each other forming a common phase. Preferred Features: The metal powder is made from iron. The common phase is a silicate- or boron-containing glass or a defined compound selected from mixed oxides with a spinal structure, metal phosphates and metal silicates. The mixed oxides are selected from Al2MgO4, Al2ZnO4, Al2MnO4, Al2FeO4, Fe2MgO4, Fe3O4, Fe2ZnO4, Fe2MnO4, Fe2NiO4, Cr2FeO4 and Cr2MgO4.

Description

Stand der TechnikState of the art

Die Erfindung betrifft einen Metallpulver-Verbundwerkstoff mit hohem spezifischem elektrischem Widerstand und ein Ausgangsmaterial und ein Verfahren zur Herstellung eines solchen Verbundwerkstoffs.The invention relates to a metal powder composite high specific electrical resistance and a raw material and a method of manufacturing such Composite.

Metallpulver-Verbundwerkstoffe mit hohem spezifischem elektrischem Widerstand finden technische Anwendung beispielsweise als hochohmige Stähle und als weichmagnetische Komponenten in schnellschaltenden Magnetventilen. Für die letztere Anwendung sind spezielle Metallpulver-Kunststoffverbunde entwickelt worden. Sie werden mit Techniken der Pulvermetallurgie durch Verpressen von Metallpulverteilchen erzeugt, welche mit elektrisch isolierendem Kunststoff beschichtet sind. Die verpreßten Metallpulverteilchen sind über den Kunststoff miteinander verklebt. Diese Metallpulver-Kunststoffverbunde haben im Vergleich zu Reineisen einen sehr hohen elektrischen Widerstand. Jedoch ist es so, daß sie gegenüber den klassischen Sinterwerkstoffen Abminderungen bezüglich Festigkeit, Permeabilität, magnetischer Sättigung und Temperatur- und Kraftstoffbeständigkeit zeigen.Metal powder composites with high specific electrical Technical applications find resistance, for example, as high-impedance Steels and as soft magnetic components in fast-switching Solenoid valves. For the latter application are special Metal powder-plastic composites have been developed. They will with Powder metallurgy techniques by pressing metal powder particles generated which with electrically insulating plastic are coated. The pressed metal powder particles are over glued the plastic together. These metal powder-plastic composites have a very high compared to pure iron electrical resistance. However, it is the opposite of the classical sintered materials reductions in strength, Permeability, magnetic saturation and temperature and Show fuel resistance.

In der Pulvermetallurgie (PM) werden die Metallpulver vor dem Verpressen mit kleinen Anteilen an Trenn- bzw. Gleitmitteln versetzt. Dieser Zusatz bewirkt eine höhere Dichte der Formkörper, da er ein Aneinandergleiten der Metallpulverteilchen während der Verdichtung fördert, er verringert die Entformungskräfte, und er erhöht die Lebensdauer des Preßwerkzeugs durch Schmierung von Preßstempel und Gesenk. In powder metallurgy (PM), the metal powders are pressed before being pressed mixed with small amounts of release agents or lubricants. This addition results in a higher density of the moldings because it is a The metal powder particles slide together during compaction promotes, it reduces the demolding forces, and it increases the Lifetime of the press tool through lubrication of press ram and Die.

Die Trenn- bzw. Gleitmittel werden üblicherweise in Mengen zwischen 0,1 und 1,5 Gew.-% den Metallpulvern zugesetzt. Neben dem reinen Mischen von feinpulverisierten Trennmitteln mit den Metallpulvern ist es auch möglich, die Metallpulverteilchen mit Trennmitteln zu überziehen. Dies kann mit einer Lösung der Trennmittel in einem geeigneten Lösungsmittel erfolgen, wie es beispielsweise in der EP 0 673 284 B1 beschrieben ist, oder indem die Metallpartikel mit der Schmelze der Trennmittel benetzt werden. An die Formgebung durch axiales Pressen schließt sich üblicherweise eine Wärmebehandlung an. Dabei pyrolysieren die zugesetzten Verarbeitungsmittel bei Temperaturen zwischen 150 und 500°C weit unterhalb der Sintertemperatur der Metallpulver (Sintertemperatur von Eisen 1120°C bis 1280°C).The release agents or lubricants are usually used in quantities between 0.1 and 1.5 wt .-% added to the metal powders. Next to the pure mixing of finely powdered release agents with the It is also possible to use metal powders with the metal powder particles To coat release agents. This can be done with a solution to the Release agents are made in a suitable solvent as is is described for example in EP 0 673 284 B1, or in that wetted the metal particles with the melt of the release agent become. This is followed by the shaping by axial pressing usually a heat treatment. The pyrolyze added processing agent at temperatures between 150 and 500 ° C far below the sintering temperature of the metal powder (Sintering temperature of iron 1120 ° C to 1280 ° C).

Während Trennmittel auf rein organischer Basis, wie Wachse und Fettsäuren, unter Schutzgas weitgehend rückstandsfrei pyrolysieren, hinterlassen beispielsweise Metallseifen im Pulververband Metalloxide. Diese, wie beispielsweise ZnO, schwächen das Gefüge, sofern sie sich nicht, wie beispielsweise Eisen-, Cobalt-, Nickel-, Kupfer-, Molybdän- oder Manganoxide beim anschließenden Sinterprozess in reduzierender Atmosphäre zu den Metallen reduzieren lassen. So beschreibt die EP 0 673 284 B1 wie durch Kombination verschiedenen Metallseifen als Trennmittel durch Reduktion der bei der Pyrolyse erzeugten Oxide in einer Wasserstoffatmosphäre und durch Sintern gezielt metallische Legierungen untereinander oder mit den verpreßten Metallpulvern erzeugt werden.While release agents on a purely organic basis, such as waxes and Fatty acids, pyrolyze largely without residue under protective gas, leave metal soaps in the powder dressing, for example Metal oxides. These, such as ZnO, weaken the structure, if they are not, such as iron, cobalt, Nickel, copper, molybdenum or manganese oxides in the subsequent Reduce sintering process to metals in a reducing atmosphere to let. For example, EP 0 673 284 B1 describes the combination various metal soaps as release agents by reduction of the oxides generated in the pyrolysis in a hydrogen atmosphere and targeted sintering of metal alloys with one another or generated with the pressed metal powders.

Auf diese Weise lassen sich auch weichmagnetische Verbundwerkstoffe für Magnetventile-herstellen. Jedoch müßten die gesinterten, axial verpreßten weichmagnetischen Metallpulver einen wesentlich (etwa um den Faktor 100) höheren elektrischen Widerstand aufweisen, um eine gute Schaltdynamik zu erzielen.In this way it is also possible to use soft magnetic composites for manufacturing solenoid valves. However, the sintered, axially pressed soft magnetic metal powder significantly higher electrical resistance (around a factor of 100) have to achieve good switching dynamics.

Die Erfindung und ihre VorteileThe invention and its advantages

Es ist die Aufgabe der Erfindung, einen Metallpulver-Verbundwerkstoff mit hohem spezifischem elektrischem Widerstand mit guter mechanischer Festigkeit, sehr guter Temperatur- und Kraftstoffbeständigkeit und ein Ausgangsmaterial und ein Verfahren für die rationelle Herstellung eines solchen Verbundwerkstoffs anzugeben.It is the object of the invention to provide a metal powder composite with high specific electrical resistance with good mechanical strength, very good temperature and fuel resistance and a starting material and method for the specify rational production of such a composite.

Diese Aufgabe wird mit einem Metallpulver-Verbundwerkstoff der eingangs genannten Art mit den Merkmalen des kennzeichnenden Teils des Anspruchs 1, mit einem Ausgangsmaterial der eingangs genannten Art mit den Merkmalen des kennzeichnenden Teils des Anspruchs 9 und mit einem Verfahren der eingangs genannten Art mit den Merkmalen des kennzeichnenden Teils des Anspruchs 20 gelöst.This task is accomplished with a metal powder composite initially mentioned type with the characteristics of the characterizing part of claim 1, with a starting material of the aforementioned Kind with the features of the characterizing part of claim 9 and with a method of the type mentioned above with the Features of the characterizing part of claim 20 solved.

Während Oxide in hauptsächlich aus Metallpulver bestehenden Verbundwerkstoffen zum Teil die Eigenschaften, wie mechanische und gegebenenfalls magnetische Eigenschaften, negativ beeinflussen, haben die Erfinder festgestellt, daß mehrere Oxide, welche mindestens eine gemeinsame Phase bilden, den Verbundwerkstoffen eine sehr gute mechanische, thermische und chemische Beständigkeit vermitteln.While oxides mainly consist of metal powder Composites partly the properties, such as mechanical and possibly negatively influence magnetic properties, the inventors have found that several oxides, which at least form a common phase, the composite materials one very good mechanical, thermal and chemical resistance convey.

Das erfindungsgemäße Ausgangsmaterial für die Herstellung eines Metallpulver-Verbundwerkstoffs mit hohem spezifischem elektrischem Widerstand läßt sich problemlos so zusammensetzen, daß der daraus hergestellte Verbundwerkstoff neben dem hohen Widerstand auch eine zufriedenstellende Preßdichte aufweist. Sofern die für einen hohen Widerstand im Verbundwerkstoff erforderliche Trennmittelmenge zu groß ist, um gleichzeitig eine optimale Preßdichte zu erhalten, kann in solchen Fällen dem mindestens einen Trennmittel oxidisches Feinpulver zugesetzt werden, das bei der Weiterverarbeitung mit dem aus dem mindestens einen Trennmittel entstandenen Pyrolyseprodukt mindestens eine gemeinsame Phase zu bilden vermag. Dabei muß man keine Verschlechterung der Eigenschaften des Verbundwerkstoffs in Kauf nehmen.The starting material according to the invention for the production of a Metal powder composite with high specific electrical Resistance can easily be put together so that the result manufactured composite material in addition to the high resistance has satisfactory compression density. Provided that for a high Resistance in the composite material required amount of release agent is large in order to obtain an optimal compression density at the same time, In such cases it can oxidize the at least one release agent Fine powder can be added, which in the further processing with the pyrolysis product formed from the at least one release agent is able to form at least one common phase. It must there is no deterioration in the properties of the composite put up with.

Das erfindungsgemäße Verfahren ist deshalb besonders vorteilhaft, weil sich die durch Pyrolyse der in der Pulvermetallurgie eingesetzten Trennmittel entstehenden Oxide zur Erzeugung der gemeinsamen Phase einsetzen lassen. The method according to the invention is therefore particularly advantageous because the pyrolysis of those used in powder metallurgy Release agents created oxides to generate the common Let phase begin.

In vorteilhafter Weise lassen sich die erfindungsgemäßen hochohmigen Verbundwerkstoffe in der Ausgestaltung als weichmagnetische Verbundwerkstoffe auch aufgrund ihrer hohen magnetischen Sättigung und hohen Permeabilität insbesondere für Magnetventile mit guter Schaltdynamik einsetzen. Dabei ist es besonders günstig, wenn das Metallpulver im wesentlichen aus Eisenwerkstoffen, beispielsweise solchen aus Eisen, Eisensilicium, Eisencobalt und Eisennickel oder Mischungen der genannten Materialien besteht, wobei Eisen besonders bevorzugt ist. "im wesentlichen aus ... besteht" bedeutet in diesem Zusammenhang, daß weitere Stoffe nur in solchen Mengen vorhanden sein können, daß sich die weichmagnetischen Eigenschaften nicht beachtlich verschlechtern.The high-resistance elements according to the invention can advantageously be used Composites designed as soft magnetic Composites also because of their high magnetic saturation and high permeability especially for solenoid valves with good Use switching dynamics. It is particularly beneficial if that Metal powder consisting essentially of ferrous materials, for example those of iron, iron silicon, iron cobalt and iron nickel or Mixtures of the materials mentioned exist, iron in particular is preferred. "consists essentially of ..." means in this connection that other substances only in such quantities can be present that the soft magnetic properties not deteriorate significantly.

Es ist vorteilhaft, wenn als die mindestens eine gemeinsame Phase ein Glas, wie silikatisches oder borhaltiges Glas, oder eine definierte Verbindung aus der Gruppe der Mischoxide mit Spinellstruktur, der Metallphosphate und der Metallsilikate dient.It is advantageous if as the at least one common phase a glass, such as silicate or boron-containing glass, or one defined compound from the group of mixed oxides with spinel structure, the metal phosphates and the metal silicates.

Es ist günstig, wenn als Trennmittel mindestens eine Metallseife und/oder mindestens ein Material aus der Gruppe Mono-, Di- oder Triester der Phosphorsäure, der Borsäure und der Kieselsäure mit langkettigen Alkoholen und/oder Polydimethyldisiloxan in dem Ausgangsmaterial enthalten ist (sind).It is advantageous if at least one metal soap is used as the release agent and / or at least one material from the group mono-, di- or Triester of phosphoric acid, boric acid and silica with long chain alcohols and / or polydimethyldisiloxane in the Starting material is included.

Bei der Kombination eines Trennmittels mit oxidischem Feinpulver in dem erfindungsgemäßen Ausgangsmaterial wird als Feinpulver bevorzugt mindestens ein Metalloxid und/oder Kieselsäure eingesetzt.When combining a release agent with oxidic fine powder in the starting material according to the invention is as fine powder preferably at least one metal oxide and / or silica used.

Um eine hohe Reaktionsfähigkeit der Feinpulver mit den Pyrolyserückständen der Trennmittel zu gewährleisten, ist es besonders vorteilhaft, wenn der Teilchendurchmesser (Primärkorndurchmesser) des Feinpulvers ≤ etwa 100 nm ist.To ensure a high reactivity of the fine powder with the pyrolysis residues To ensure the release agent, it is special advantageous if the particle diameter (primary grain diameter) of the fine powder is ≤ approximately 100 nm.

Eine zufriedenstellende Preßdichte im Formkörper kombiniert mit einem ausreichend hohen elektrischen Widerstand im Metallpulver-Verbundmaterial läßt sich in vorteilhafter Weise erreichen, wenn bezogen auf das Gewicht des Metallpulvers der Anteil der Trennmittel zwischen etwa 0,1 und etwa 1,5 Gew.-% oder die Summe aus den Anteilen an Trennmittel und Feinpulver zwischen etwa 0,2 und etwa 3 Gew.-% liegt.A satisfactory compression density in the molded body combined with a sufficiently high electrical resistance in the metal powder composite material can be achieved in an advantageous manner if based on the weight of the metal powder, the proportion of the release agents between about 0.1 and about 1.5% by weight or the sum of the Shares of release agent and fine powder between about 0.2 and about 3 wt .-% is.

Es ist vorteilhaft, wenn das Verhältnis der zugefügten Mengen an Trennmittel bzw. an Trennmittel und Feinpulver, gegebenenfalls unter Berücksichtigung der Mengen an mitreagierendem Metall von den Metallpulveroberflächen, im Hinblick auf die mindestens eine bei der Reaktion der Oxide zu bildende definierte Verbindung angenähert stöchiometrisch ist.It is advantageous if the ratio of the amounts added Release agent or release agent and fine powder, if necessary taking into account the amounts of co-reactive metal from the metal powder surfaces, with regard to the at least one defined compound to be formed in the reaction of the oxides is approximately stoichiometric.

Es ist vorteilhaft, wenn beim Pyrolysieren und Reagieren auf eine Temperatur deutlich unterhalb der Sintertemperatur des Metallpulvers und besonders bevorzugt - sofern das Metall Eisen ist - auf eine Temperatur zwischen etwa 150 und etwa 550°C erhitzt wird. Bei Temperaturen oberhalb etwa 550°C können Strompfade zwischen den Metallteilchen entstehen, und bei Temperaturen unter etwa 150°C ist die Pyrolyse unvollständig und dauert für ein industrielles Verfahren zu lange.It is advantageous if when pyrolyzing and reacting to a Temperature significantly below the sintering temperature of the metal powder and particularly preferably - if the metal is iron - on a temperature between about 150 and about 550 ° C is heated. at Temperatures above about 550 ° C can cause current paths between the Metal particles are formed, and at temperatures below about 150 ° C pyrolysis is incomplete and lasts for an industrial one Procedure too long.

Es ist vorteilhaft, wenn in einer nicht reduzierenden Atmosphäre erhitzt wird, und besonders vorteilhaft, wenn dabei die Atmosphäre auf den Pyrolyseprozess abgestimmt wird.It is beneficial if in a non-reducing atmosphere is heated, and particularly advantageous if the atmosphere is matched to the pyrolysis process.

Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Metallpulver-Verbundmaterials, des erfindungsgemäßen Ausgangsmaterials und des erfindungsgemäßen Verfahrens sind in den Unteransprüchen aufgeführt.Further advantageous configurations of the metal powder composite material according to the invention, of the starting material according to the invention and the method according to the invention are in the subclaims listed.

Im folgenden wird die Erfindung anhand von weichmagnetischen Verbundwerkstoffen und von Ausgangsmaterialien und von Verfahren zu ihrer Herstellung detailliert beschrieben. Es sei aber klargestellt, daß sich zwar die Erfindung anhand dieser Beispiele besonders anschaulich erläutern läßt, daß aber die Erfindung nicht auf diese Beispiele beschränkt ist, und von ihnen im Rahmen der Ansprüche mannigfaltige Abweichungen möglich sind. In the following the invention is based on soft magnetic Composites and raw materials and processes described in detail for their manufacture. But it should be clarified that the invention is particularly based on these examples clearly explains, but that the invention is not these examples is limited, and by them under the Different variations are possible.

Die weichmagnetischen Verbundwerkstoffe mit hohem spezifischem elsktrischen Widerstand bestehen aus verpreßten Metallpulverteilchen, die mit einem Überzug hauptsächlich aus definierten chemischen Verbindungen versehen sind, welche an den blanken oder oberflächenmodifizierten, beispielsweise phosphatierten Metallteilchen gut haften und je nach Anwendungsfall zusätzlich einen hohen elektrischen Widerstand, Temperatur- und Kraftstoffbeständigkeit vermitteln und/oder das Metall vor Korrosion schützen. Der Überzug verhindert eine elektrische Verbindung zwischen den Metallteilchen. Die definierten chemischen Verbindungen werden von Mischoxiden mit Spinellstruktur, wie Mischoxide aus der Gruppe Al2MgO4 (Spinell), Al2ZnO4 (Zinkspinell), Al2MnO4 (Manganspinell), Al2FeO4 (Eisenspinell), Fe2MgO4 (Magnoferrit), Fe3O4 (Magnetit), Fe2ZnO4 (Franklinit), Fe2MnO4 (Jakobsit), Fe2NiO4 (Trevirit), Cr2FeO4 (Chromit) und Cr2MgO4 (Magnochromit), Metallphosphaten, wie Zink- und Eisenphosphat, silikatischen Gläsern, borhaltigen Gläsern und Metallsilikaten, wie CoSiO3, gebildet.The soft magnetic composite materials with high specific electrical resistance consist of pressed metal powder particles, which are provided with a coating mainly of defined chemical compounds, which adhere well to the bare or surface-modified, for example phosphated metal particles and, depending on the application, also have a high electrical resistance, temperature and Provide fuel resistance and / or protect the metal from corrosion. The coating prevents an electrical connection between the metal particles. The defined chemical compounds are derived from mixed oxides with a spinel structure, such as mixed oxides from the group Al 2 MgO 4 (spinel), Al 2 ZnO 4 (zinc spinel), Al 2 MnO 4 (manganese spinel), Al 2 FeO 4 (iron spinel), Fe 2 MgO 4 (magnoferrite), Fe 3 O 4 (magnetite), Fe 2 ZnO 4 (franklinite), Fe 2 MnO 4 (jacobsite), Fe 2 NiO 4 (trevirite), Cr 2 FeO 4 (chromite) and Cr 2 MgO 4 ( Magnochromit), metal phosphates, such as zinc and iron phosphate, silicate glasses, boron-containing glasses and metal silicates, such as CoSiO 3 .

Die erfindungsgemäßen weichmagnetischen Verbundwerkstoffe enthalten also keine Thermo- oder Duroplaste als Isolations- und Bindemittel wie die Metall-Kunststoffverbunde. Trotzdem haben sie im Vergleich zu diesen auch einen hohen spezifischen elektrischen Widerstand, eine vergleichbare oder bessere mechanische Festigkeit, eine bessere Temperatur- und Kraftstoffbeständigkeit, eine vergleichbare magnetische Sättigung und eine vergleichbare Permeabilität.The soft magnetic composite materials according to the invention contain So no thermoplastics or thermosets as insulation and binding agents like the metal-plastic composites. Nevertheless, they have Compared to these also a high specific electrical Resistance, comparable or better mechanical strength, better temperature and fuel resistance, one comparable magnetic saturation and a comparable Permeability.

Die erfindungsgemäßen weichmagnetischen Verbundwerkstoffe sind deshalb geeignet für den Einsatz in schnell schaltenden Magnetventilen insbesondere von solchen, die in der Kraftfahrzeugtechnik eingesetzt werden.The soft magnetic composite materials according to the invention are therefore suitable for use in fast switching solenoid valves especially of those in automotive engineering be used.

Zur Herstellung der erfindungsgemäßen weichmagnetischen Verbundwerkstoffe werden Metallpulver mit Kombinationen aus neuen oder bekannten Trenn- bzw. Gleitmitteln gemischt oder mit diesen Kombinationen beschichtet (s.o.). Wie erläutert werden die Trennmittel bei der Erfindung auch gebraucht, um einen Verbundwerkstoff mit einem hohen elektrischen Widerstand zu erzeugen. Es ist aber so, daß ein zu hoher Trennmittelanteil die Preßdichte im Formkörper wieder vermindert. Hinsichtlich der Preßdichte liegt der optimale Trennmittelanteil bezogen auf die Metallpulvermenge bei < etwa 1 Gew.-%. Trennmittelanteile von > etwa 2 Gew.-% sind deshalb im allgemeinen nicht brauchbar. In den Fällen, in denen der optimale Trennmittelanteil nicht ausreicht, um den gewünschten hohen elektrischen Widerstand zu erzeugen, ist es deshalb günstiger, in den Trennmitteln oxidische Feinpulver (Primärkorndurchmesser bevorzugt ≤ etwa 100 nm) zu dispergieren, die mit den Pyrolyserückständen (s.u.) der Trennmittel reagieren, statt den Trennmittelanteil wesentlich über das Optimum hinsichtlich der Preßdichte zu erhöhen. Das Mengenverhältnis der Trennmittel bzw. der Trennmittel und Feinpulver richtet sich nach der Zusammensetzung der durch die Reaktion der Pyrolyseprodukte und gegebenenfalls der Feinpulver angestrebten gemeinsamen Phase. Handelt es sich dabei um Mischoxide mit Spinellstruktur, um Metallphosphate oder Metallsilikate, sollten die Trennmittel- bzw. die Trennmittel/Feinpulverkombinationen so zusammengesetzt sein, daß eine stöchiometrische Umwandlung in die genannten Verbindungen stattfindet. Dabei ist zu berücksichtigen, daß ein Teil der Bestandteile der definierten Verbindungen auch aus der Oberfläche der Metallpulver stammen kann. Im Einzelfall muß die richtige Zusammensetzung der Trennmittel- bzw. Trennmittel-/Feinpulverkombination durch einfache Versuche festgelegt werden. Entstehen bei der Reaktion statt definierter Verbindungen eine gemeiname Phase in Form von Gläsern, so können bei der Zusammensetzung der Trennmittel- bzw. Trennmittel-/Feinpulverkombinationen größere Toleranzen zugelassen werden.For the production of the soft magnetic composite materials according to the invention are metal powder with combinations of new or known release agents or lubricants mixed or with these combinations coated (see above). The release agents are explained also used in the invention to have a composite material to generate a high electrical resistance. But that's how it is, that a too high release agent content the compression density in the molded body diminished again. With regard to the density, the optimum lies Release agent content based on the amount of metal powder at <about 1% by weight. Release agent contents of> about 2% by weight are therefore in the generally not usable. In cases where the optimal Release agent content is not sufficient to the desired high it is therefore cheaper to generate electrical resistance the release agents oxidic fine powder (primary grain diameter preferably ≤ about 100 nm) to disperse with the pyrolysis residues (see below) of the release agents react instead of Release agent content significantly above the optimum in terms of Increase density. The quantitative ratio of the release agents or The release agent and fine powder depend on the composition by the reaction of the pyrolysis products and optionally the fine powder aimed at common phase. Act it are mixed oxides with spinel structure, metal phosphates or metal silicates, should the release agent or the release agent / fine powder combinations be composed so that a stoichiometric conversion into the compounds mentioned takes place. It should be borne in mind that part of the Components of the defined connections also from the surface the metal powder can come from. In the individual case, the right one Composition of the release agent or release agent / fine powder combination be determined by simple experiments. Originate from the reaction instead of defined compounds a common phase in the form of glasses, so in the composition of the Release agent or release agent / fine powder combinations larger Tolerances are allowed.

Beispiele für die genannten Trennmittel sind Metallseifen, wie die Stearate von Calcium, Magnesium, Aluminium, Zink, Cobalt, Eisen, Nickel, Kupfer, Molybdän und Mangan, oder Ester höherer Alkohole der Phosphor-, der Bor- oder der Kieselsäure. Beispiele der genannten Feinpulver sind Oxide, wie Fe2O3 und Kieselsäure.Examples of the release agents mentioned are metal soaps, such as the stearates of calcium, magnesium, aluminum, zinc, cobalt, iron, nickel, copper, molybdenum and manganese, or esters of higher alcohols of phosphoric, boric or silica. Examples of the fine powders mentioned are oxides, such as Fe 2 O 3 and silica.

Das Gemisch aus Metallpulver, Trennmittel und gegebenenfalls Feinpulver wird zu Formkörpern axial verpreßt. Anschließend werden die Formkörper in einer nicht reduzierenden Atmosphäre, beispielsweise in einer Stickstoff- oder Argonatmosphäre, auf eine Temperatur erhitzt, die deutlich unterhalb der Sintertemperatur des Metallpulvers, d.h. bevorzugt unter etwa 800°C und besonders bevorzugt zwischen etwa 150 und etwa 550°C, liegt, damit die Trennmittel pyrolysieren. Unterhalb etwa 150°C wird allenfalls unvollständig pyrolysiert und die Reaktionen verlaufen sehr langsam. Bei Temperaturen unterhalb 550°C ist ausgeschlossen, daß die Metallteilchen zusammensintern und sich dabei elektrische Strompfade bilden können. Die Pyrolyserückstände reagieren bei den angewandten Temperaturen entweder miteinander und/oder mit den zugesetzten Feinpulvern und gegebenenfalls mit der Oberfläche der Metallteilchen zu den genannten, definierten chemischen Verbindungen.The mixture of metal powder, release agent and optionally Fine powder is pressed axially into shaped bodies. Then be the moldings in a non-reducing atmosphere, for example in a nitrogen or argon atmosphere, to a temperature heated, which is significantly below the sintering temperature of the Metal powder, i.e. preferably below about 800 ° C and particularly preferably between about 150 and about 550 ° C, so that the Pyrolyze release agent. Below about 150 ° C at best incompletely pyrolyzed and the reactions proceed very well slowly. At temperatures below 550 ° C it is impossible that the metal particles sinter together and become electrical Can form current paths. The pyrolysis residues react with the applied temperatures either with each other and / or with the added fine powders and optionally with the surface of the Metal particles to the specified, defined chemical compounds.

Die Erfindung soll im folgenden durch sechs spezielle Ausführungsbeispiele noch mehr im Detail besprochen werden.The invention is intended in the following by six special Embodiments are discussed in more detail.

Beispiel 1example 1

Ein Gemisch aus Eisenpulver und Zinkstearat und einem Mono-, Dioder Triester der Phosphorsäure mit langkettigen Alkoholen, wie beispielsweise einem Gemisch von Phosphorsäuremonostearylester und Phosphorsäuredistearylester mit einem Schmelzpunkt von 70°C, als Trennmittel wurde zu einem Formkörper gepreßt, wobei der Anteil der Trennmittel bezogen auf das Gewicht des Eisenpulvers etwa 1,7 Gew.-% betrug und das Atomverhältnis Zn:P bei etwa 3:2 lag. Der Formkörper wurde in einer nicht reduzierenden Atmosphäre, beispielsweise in Stickstoff, auf eine Temperatur von maximal etwa 550°C erhitzt, wobei die Trennmittel zu ZnO bzw. P2O5 pyrolysierten und die entstandenen Oxide mit einander zu Zinkphosphat reagierten. Zinkphosphat hat - wie festgestellt wurde - einen hohen spezifischen elektrischen Widerstand, haftet gut an Metallen und schützt speziell Eisen vor Korrosion. Der erhaltene Verbundwerkstoff eignete sich als weichmagnetisches Material für schnellschaltende elektrische Ventile. A mixture of iron powder and zinc stearate and a mono-, di- or trieste of phosphoric acid with long-chain alcohols, such as, for example, a mixture of phosphoric acid monostearyl ester and phosphoric acid distearyl ester with a melting point of 70 ° C., as a release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder was about 1.7% by weight and the atomic ratio Zn: P was about 3: 2. The shaped body was heated in a non-reducing atmosphere, for example in nitrogen, to a maximum temperature of about 550 ° C., the release agents pyrolyzing to ZnO or P 2 O 5 and the oxides formed reacting with one another to form zinc phosphate. As has been established, zinc phosphate has a high specific electrical resistance, adheres well to metals and protects iron in particular from corrosion. The composite material obtained was suitable as a soft magnetic material for fast-switching electrical valves.

Beispiel 2Example 2

Ein Gemisch aus Eisenpulver und Cobaltstearat und mit reaktiven Gruppen modifiziertem Polydimethylsiloxan als Trennmittel wurde zu einem Formkörper gepreßt, wobei der Anteil der Trennmittel bezogen auf das Gewicht des Eisenpulvers etwa 1,6 Gew.-% betrug und das Atomverhältnis Co:Si bei etwa 1 lag. Der Formkörper wurde, wie im Beispiel 1 beschrieben, weiterbehandelt. Die aus den Trennmitteln entstandenen Pyrolyseprodukte CoO und SiO2 reagierten dabei zu CoSiO3. Das Cobaltsilikat hatte auf dem Eisenpulver eine gute Haftung, war elektrisch gut isolierend und schützte Eisen gut vor Korrosion.A mixture of iron powder and cobalt stearate and polydimethylsiloxane modified with reactive groups as the release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.6% by weight and the atomic ratio Co: Si being about 1 , The molded body was further treated as described in Example 1. The pyrolysis products CoO and SiO 2 formed from the release agents reacted to CoSiO 3 . The cobalt silicate had good adhesion to the iron powder, was good electrical insulation and well protected iron from corrosion.

Beispiel 3Example 3

Ein Gemisch aus Eisenpulver, Cobaltstearat als Trennmittel, welchem eine stöchiometrische Menge an pyrogener Kieselsäure (Primärkorndurchmesser < etwa 100 nm) zugesetzt worden war, wurde zu einem Formkörper gepreßt, wobei der Anteil des Trennmittels bezogen auf das Gewicht des Eisenpulvers bei etwa 1,3 Gew.-% lag. Der Formkörper wurde, wie im Beispiel 1 beschrieben, weiterbehandelt. Das aus dem Trennmittel entstandene Pyrolyseprodukt CoO reagierte dabei mit dem SiO2 der Kieselsäure zu CoSiO3.A mixture of iron powder, cobalt stearate as a release agent, to which a stoichiometric amount of pyrogenic silica (primary grain diameter <about 100 nm) had been added, was pressed into a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.3% by weight .-%. The molded body was further treated as described in Example 1. The pyrolysis product CoO formed from the release agent reacted with the SiO 2 of the silica to form CoSiO 3 .

Beispiel 4Example 4

Ein Gemisch aus Eisenpulver und als Trennmittel Zinkstearat und Eisenstearat wurde zu einem Formkörper gepreßt, wobei der Anteil der Trennmittel bezogen auf das Gewicht des Eisenpulvers etwa 1,4 Gew.-% betrug und das Atomverhältnis Zn:Fe bei etwa 1:2 lag. Der Formkörper wurde, wie im Beispiel 1 beschrieben, weiterbehandelt. Die aus den Trennmitteln entstehenden Pyrolyseprodukte ZnO und Fe2O3 reagierten dabei miteinander zu dem Spinell Fe2ZnO4 (Franklinit). Spinelle haben - wie festgestellt wurde - eine gute Haftung auf Eisenpulver, sie sind elektrisch gut isolierend und sie schützen Eisen ausgezeichnet gegen Korrosion. A mixture of iron powder and zinc stearate and iron stearate as release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.4% by weight and the atomic ratio Zn: Fe being about 1: 2. The molded body was further treated as described in Example 1. The pyrolysis products ZnO and Fe 2 O 3 formed from the separating agents reacted with one another to form the spinel Fe 2 ZnO 4 (franklinite). As has been found, spinels have good adhesion to iron powder, they have good electrical insulation and they provide excellent protection for iron against corrosion.

Beispiel 5Example 5

Ein Gemisch aus Eisenpulver und Zinkstearat als Trennmittel, welchem eine stöchiometrische Menge von feinem Fe2O3 zugemischt worden war, das beispielsweise von der BASF AG als Pigment mit 100 nm Korngröße erhältlich ist, wurde zu einem Formkörper gepreßt, wobei der Anteil des Trennmittels bezogen auf das Gewicht des Eisenpulvers etwa 1 Gew.-% betrug. Der Formkörper wurde, wie im Beispiel 1 beschrieben, weiterbehandelt. Das aus dem Trennmittel entstandene Pyrolyseprodukt ZnO reagierte mit dem Fe2O3 zu dem Spinell Fe2ZnO4.A mixture of iron powder and zinc stearate as a release agent, to which a stoichiometric amount of fine Fe 2 O 3 had been added, which is available, for example, from BASF AG as a pigment with a particle size of 100 nm, was pressed to give a shaped body, the proportion of the release agent being obtained based on the weight of the iron powder was about 1% by weight. The molded body was further treated as described in Example 1. The pyrolysis product ZnO formed from the release agent reacted with the Fe 2 O 3 to form the spinel Fe 2 ZnO 4 .

Beispiel 6Example 6

Ein Gemisch, das Eisenpulver und als Trennmittel Nickelstearat und Eisenstearat enthielt, wurde zu einem Formkörper gepreßt, wobei der Anteil der Trennmittel bezogen auf das Gewicht des Eisenpulvers etwa 1,5 Gew.-% betrug und das Atomverhältnis Ni:Fe bei etwa 1:2 liegt. Der Formkörper wurde, wie im Beispiel 1 beschrieben, weiterbehandelt. Die aus den Trennmitteln entstandenen Pyrolyseprodukte NiO und Fe2O3 reagierten miteinander zu dem Spinell Fe2NiO4.A mixture containing iron powder and nickel stearate and iron stearate as a release agent was pressed to give a shaped body, the proportion of the release agent based on the weight of the iron powder being about 1.5% by weight and the atomic ratio Ni: Fe being about 1: 2 lies. The molded body was further treated as described in Example 1. The pyrolysis products NiO and Fe 2 O 3 formed from the release agents reacted together to form the spinel Fe 2 NiO 4 .

Claims (28)

Metallpulver-Verbundwerkstoff mit hohem spezifischem elektrischem Widerstand, dadurch gekennzeichnet, daß er mindestens zwei die Metallpulverteilchen einhüllenden Oxide enthält, wobei die Oxide mindestens eine gemeinsame Phase bilden.Metal powder composite material with high specific electrical resistance, characterized in that it contains at least two oxides enveloping the metal powder particles, the oxides forming at least one common phase. Verbundwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß er weichmagnetisch ist.Composite material according to claim 1, characterized in that it is soft magnetic. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Metallpulver im wesentlichen aus Eisenwerkstoffen besteht.Composite material according to claim 1 or 2, characterized in that the metal powder consists essentially of iron materials. Verbundwerkstoff nach Anspruch 3, dadurch gekennzeichnet, daß das Metallpulver im wesentlichen aus Eisen besteht.Composite material according to claim 3, characterized in that the metal powder consists essentially of iron. Verbundwerkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als die mindestens eine gemeinsame Phase ein Glas, wie silikatisches oder borhaltiges Glas, oder eine definierte Verbindung aus der Gruppe der Mischoxide mit Spinellstruktur, der Metallphosphate und der Metallsilikate dient.Composite material according to one of claims 1 to 4, characterized in that a glass, such as silicate or boron-containing glass, or a defined compound from the group of mixed oxides with spinel structure, the metal phosphates and the metal silicates serves as the at least one common phase. Verbundwerkstoff nach Anspruch 5, dadurch gekennzeichnet, daß die Mischoxide ausgewählt sind aus der Gruppe Al2MgO4 (Spinell), Al2ZnO4 (Zinkspinell), Al2MnO4 (Manganspinell), Al2FeO4 (Eisenspinell), Fe2MgO4 (Magnoferrit), Fe3O4 (Magnetit), Fe2ZnO4 (Franklinit), Fe2MnO4 (Jakobsit), Fe2NiO4 (Trevirit), Cr2FeO4 (Chromit) und Cr2MgO4 (Magnochromit).Composite material according to claim 5, characterized in that the mixed oxides are selected from the group Al 2 MgO 4 (spinel), Al 2 ZnO 4 (zinc spinel), Al 2 MnO 4 (manganese spinel), Al 2 FeO 4 (iron spinel), Fe 2 MgO 4 (magnoferrite), Fe 3 O 4 (magnetite), Fe 2 ZnO 4 (franklinite), Fe 2 MnO 4 (jacobsite), Fe 2 NiO 4 (trevirite), Cr 2 FeO 4 (chromite) and Cr 2 MgO 4 (Magnochromit). Verbundwerkstoff nach Anspruch 5, dadurch gekennzeichnet, daß Zink- und Eisenphosphat als Metallphosphate eingesetzt sind. Composite material according to claim 5, characterized in that zinc and iron phosphate are used as metal phosphates. Verbundwerkstoff nach Anspruch 5, dadurch gekennzeichnet, daß CoSiO3 als Metallsilikat eingesetzt ist.Composite material according to claim 5, characterized in that CoSiO 3 is used as metal silicate. Metallpulver enthaltendes Ausgangsmaterial für die Herstellung eines Metallpulver-Verbundwerkstoffs mit hohem spezifischem elektrischem Widerstand insbesondere nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es mindestens zwei Trennmitttel mit oxidischem Pyrolyserückstand oder mindestens ein Trennmittel mit oxidischem Pyrolyserückstand und oxidisches Feinpulver beinhaltet.Starting material containing metal powder for the production of a metal powder composite material with high specific electrical resistance, in particular according to one of claims 1 to 8, characterized in that it contains at least two release agents with oxidic pyrolysis residue or at least one release agent with oxidic pyrolysis residue and oxidic fine powder. Ausgangsmaterial nach Anspruch 9, dadurch gekennzeichnet, daß als Trennmittel mindestens eine Metallseife und/oder mindestens ein Material aus der Gruppe Mono-, Di- oder Triester der Phosphorsäure, der Borsäure oder der Kieselsäure mit langkettigen Alkoholen und/oder - gegebenenfalls - mit reaktiven Gruppen modifiziertes Polydimethyldisiloxan enthalten ist (sind).Starting material according to claim 9, characterized in that at least one metal soap and / or at least one material from the group of mono-, di- or triesters of phosphoric acid, boric acid or silica with long-chain alcohols and / or - if appropriate - with reactive groups is used as the release agent modified polydimethyldisiloxane is (are). Ausgangsmaterial nach Anspruch 10, dadurch gekennzeichnet, daß die mindestens eine Metallseife ein Stearat ist.Starting material according to claim 10, characterized in that the at least one metal soap is a stearate. Ausgangsmaterial nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Metallion in der Metallseife ausgewählt ist aus der Gruppe Ca-, Mg-, Al-, Zn-, Co-, Fe-, Ni-, Cu-, Mo- und Mn-Ion.Starting material according to claim 10 or 11, characterized in that the metal ion in the metal soap is selected from the group Ca, Mg, Al, Zn, Co, Fe, Ni, Cu, Mo and Mn Ion. Ausgangsmaterial nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß das Feinpulver aus mindestens einem Metalloxid und/oder Kieselsäure gebildet ist.Starting material according to one of claims 9 to 12, characterized in that the fine powder is formed from at least one metal oxide and / or silica. Ausgangsmaterial nach Anspruch 13, dadurch gekennzeichnet, daß das mindestens eine Metalloxid ausgewählt ist aus der Gruppe Fe2O3, NiO, ZnO, CoO, MnO, MgO, Cr2O3, CuO, MoO2.Starting material according to claim 13, characterized in that the at least one metal oxide is selected from the group Fe 2 O 3 , NiO, ZnO, CoO, MnO, MgO, Cr 2 O 3 , CuO, MoO 2 . Ausgangsmaterial nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß der Teilchendurchmesser (Primärkorndurchmesser) des Feinpulvers < etwa 1µm ist.Starting material according to one of Claims 9 to 14, characterized in that the particle diameter (primary grain diameter) of the fine powder is <approximately 1 µm. Ausgangsmaterial nach Anspruch 15, dadurch gekennzeichnet, daß der Teichendurchmesser ≤ etwa 100 nm ist.Starting material according to claim 15, characterized in that the pond diameter is ≤ approximately 100 nm. Ausgangsmaterial nach einem der Ansprüche 9 bis 16, dadurch gekennzeichnet, daß bezogen auf das Gewicht des Metallpulvers der Anteil der Trennmittel zwischen etwa 0,1 und etwa 2 Gew.-%, oder die Summe aus den Anteilen an Trennmittel und Feinpulver zwischen etwa 0,2 und etwa 3 Gew.-% liegt.Starting material according to one of Claims 9 to 16, characterized in that, based on the weight of the metal powder, the proportion of the release agents is between about 0.1 and about 2% by weight, or the sum of the proportions of release agent and fine powder between about 0, 2 and about 3% by weight. Ausgangsmaterial nach Anspruch 17, dadurch gekennzeichnet, daß die Summe aus den Anteilen an Trennmittel und Feinpulver ≤ etwa 2 Gew.-% ist.Starting material according to claim 17, characterized in that the sum of the proportions of release agent and fine powder is ≤ about 2% by weight. Ausgangsmaterial nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß der Anteil der Trennmittel bzw. die Summe aus den Anteilen an Trennmittel und Feinpulver zwischen etwa 0,5 und etwa 1,5 Gew.-% liegt.Starting material according to claim 17 or 18, characterized in that the proportion of the release agents or the sum of the proportions of release agent and fine powder is between about 0.5 and about 1.5% by weight. Verfahren zum Herstellen eines Verbundwerkstoffs mit hohem spezifischem elektrischen Widerstand insbesondere nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ausgegangen wird von einem Ausgangsmaterial insbesondere nach einem der Ansprüche 9 bis 19, daß das Ausgangsmaterial zu Formkörpern gepreßt wird, daß die Trennmittel durch Erhitzen in einer nicht reduzierenden Atmosphäre zu Oxiden pyrolysiert und die dann vorliegenden Oxide unter Bildung mindestens einer gemeinsamen Phase miteinander zur Reaktion gebracht werden.A process for producing a composite material with a high specific electrical resistance, in particular according to one of claims 1 to 8, characterized in that it is assumed that a starting material, in particular according to one of claims 9 to 19, that the starting material is pressed into shaped bodies, that the release agents are heated pyrolyzed to oxides in a non-reducing atmosphere and the oxides then present are reacted with one another to form at least one common phase. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß als die mindestens eine gemeinsame Phase eine chemische Verbindung oder ein Glas erzeugt wird.A method according to claim 20, characterized in that a chemical compound or a glass is produced as the at least one common phase. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß das Verhältnis der zugefügten Mengen an Trennmittel bzw. an Trennmittel und Feinpulver, gegebenenfalls unter Berücksichtigung der Mengen an mitreagierendem Metall von den Metallpulveroberflächen, im Hinblick auf die mindestens eine bei der Reaktion der Oxide zu bildende definierte Verbindung angenähert stöchiometrisch ist. A method according to claim 21, characterized in that the ratio of the added amounts of release agent or release agent and fine powder, possibly taking into account the amounts of co-reacting metal from the metal powder surfaces, with regard to the at least one defined compound to be formed during the reaction of the oxides is approximately stoichiometric. Verfahren nach eine m der Ansprüche 20 bis 22, dadurch gekennzeichnet, daß der Formkörper auf eine Temperatur deutlich unterhalb der Sintertemperatur des Metallpulvers erhitzt wird.Method according to one of claims 20 to 22, characterized in that the shaped body is heated to a temperature significantly below the sintering temperature of the metal powder. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß das Metallpulver hauptsächlich Eisenwerkstoffe enthält, und auf eine Temperatur deutlich < 1150°C erhitzt wird.A method according to claim 23, characterized in that the metal powder mainly contains iron materials and is heated to a temperature significantly <1150 ° C. Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß auf eine Temperatur < etwa 800°C erhitzt wird.Process according to Claim 24, characterized in that the temperature is raised to <about 800 ° C. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß auf eine Temperatur zwischen etwa 150 und etwa 550°C erhitzt wird.A method according to claim 25, characterized in that the temperature is raised to between about 150 and about 550 ° C. Verfahren nach einem der Ansprüche 20 bis 26, dadurch gekennzeichnet, daß in einer nicht reduzierenden Atmosphäre erhitzt wird.Method according to one of claims 20 to 26, characterized in that heating is carried out in a non-reducing atmosphere. Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß in einer Stickstoff und/oder Argon enthaltenden Atmosphäre erhitzt wird.A method according to claim 27, characterized in that heating is carried out in an atmosphere containing nitrogen and / or argon.
EP01130567A 2001-03-03 2001-12-21 Process of preparation of a composite material made from metal powder Expired - Lifetime EP1236808B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09100109A EP2053138A1 (en) 2001-03-03 2001-12-21 Composite material made from metal powder, starting material and process of preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10110341 2001-03-03
DE10110341A DE10110341A1 (en) 2001-03-03 2001-03-03 Metal powder composite and starting material and method for producing such

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09100109A Division EP2053138A1 (en) 2001-03-03 2001-12-21 Composite material made from metal powder, starting material and process of preparation

Publications (3)

Publication Number Publication Date
EP1236808A2 true EP1236808A2 (en) 2002-09-04
EP1236808A3 EP1236808A3 (en) 2005-07-27
EP1236808B1 EP1236808B1 (en) 2009-08-19

Family

ID=7676239

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01130567A Expired - Lifetime EP1236808B1 (en) 2001-03-03 2001-12-21 Process of preparation of a composite material made from metal powder
EP09100109A Withdrawn EP2053138A1 (en) 2001-03-03 2001-12-21 Composite material made from metal powder, starting material and process of preparation

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09100109A Withdrawn EP2053138A1 (en) 2001-03-03 2001-12-21 Composite material made from metal powder, starting material and process of preparation

Country Status (3)

Country Link
US (1) US6756118B2 (en)
EP (2) EP1236808B1 (en)
DE (3) DE10110341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162383A1 (en) * 2015-04-09 2016-10-13 Volkswagen Aktiengesellschaft Method for producing a soft-magnetic body

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767034B2 (en) * 2004-09-30 2010-08-03 Sumitomo Electric Industries, Ltd. Soft magnetic material, powder magnetic core and method of manufacturing soft magnetic material
US7531151B1 (en) 2005-03-04 2009-05-12 Saint Marys Pressed Metal, Inc. Powdered metals extracted from acid mine drainage and their use in the manufacture of pressed metal articles
US8137805B2 (en) * 2007-06-21 2012-03-20 Caterpillar Inc. Manganese based coating for wear and corrosion resistance
US8137761B2 (en) * 2008-06-13 2012-03-20 Caterpillar Inc. Method of coating and induction heating a component
US8911663B2 (en) * 2009-03-05 2014-12-16 Quebec Metal Powders, Ltd. Insulated iron-base powder for soft magnetic applications
JP2010251696A (en) * 2009-03-25 2010-11-04 Tdk Corp Soft magnetic powder core and method of manufacturing the same
US20110147253A1 (en) * 2009-12-23 2011-06-23 Daniel Young-Doo Chung Kettle
KR101926100B1 (en) * 2010-12-23 2018-12-06 회가내스 아베 (피유비엘) Soft magnetic powder
EP2509081A1 (en) 2011-04-07 2012-10-10 Höganäs AB New composition and method
EP3199264A1 (en) 2016-02-01 2017-08-02 Höganäs Ab (publ) New composition and method
US11426791B2 (en) 2016-11-16 2022-08-30 Shoei Chemical Inc. Method for producing metal powder
EP3576110A1 (en) 2018-05-30 2019-12-04 Höganäs AB (publ) Ferromagnetic powder composition
CA3226704A1 (en) * 2021-07-29 2023-02-02 Francis Gary HANEJKO Magnetic compositions and methods of making and using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043921A1 (en) 1980-07-15 1982-01-20 BASF Aktiengesellschaft Ferromagnetic metal particles essentially consisting of iron with surface coating, process for their manufacture as well as their use in making magnetic-recording media
WO1998005453A1 (en) 1996-08-06 1998-02-12 Höganäs Ab Lubricant powder for powder metallurgy
EP0673284B1 (en) 1992-11-13 2000-01-26 Hoeganaes Corporation Method of making lubricated metallurgical powder composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2122977C3 (en) * 1971-05-10 1975-06-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Switching magnet made of silicon-containing iron powder, manufactured in a pressing and sintering process
US4788080A (en) * 1987-04-27 1988-11-29 Canadian Patents And Development Limited Process and apparatus for coating particles with fine powder
KR920701998A (en) * 1989-08-09 1992-08-12 미시마 마사요시 Ferromagnetic metal particles and preparation method thereof
JP3206496B2 (en) * 1997-06-02 2001-09-10 昭栄化学工業株式会社 Metal powder and method for producing the same
JP3137035B2 (en) * 1997-05-26 2001-02-19 昭栄化学工業株式会社 Nickel powder and method for producing the same
JP3475749B2 (en) * 1997-10-17 2003-12-08 昭栄化学工業株式会社 Nickel powder and method for producing the same
CA2287783C (en) * 1998-11-05 2005-09-20 Kabushiki Kaisha Kobe Seiko Sho Method for the compaction of powders for powder metallurgy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043921A1 (en) 1980-07-15 1982-01-20 BASF Aktiengesellschaft Ferromagnetic metal particles essentially consisting of iron with surface coating, process for their manufacture as well as their use in making magnetic-recording media
EP0673284B1 (en) 1992-11-13 2000-01-26 Hoeganaes Corporation Method of making lubricated metallurgical powder composition
WO1998005453A1 (en) 1996-08-06 1998-02-12 Höganäs Ab Lubricant powder for powder metallurgy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016162383A1 (en) * 2015-04-09 2016-10-13 Volkswagen Aktiengesellschaft Method for producing a soft-magnetic body
CN107396630A (en) * 2015-04-09 2017-11-24 大众汽车有限公司 The method for manufacturing soft magnetism object
CN107396630B (en) * 2015-04-09 2020-09-11 大众汽车有限公司 Method for producing soft magnetic bodies

Also Published As

Publication number Publication date
DE10110341A1 (en) 2002-10-31
EP2053138A1 (en) 2009-04-29
DE20122873U1 (en) 2008-10-30
EP1236808B1 (en) 2009-08-19
EP1236808A3 (en) 2005-07-27
US20020122942A1 (en) 2002-09-05
US6756118B2 (en) 2004-06-29
DE50115053D1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP1236808B1 (en) Process of preparation of a composite material made from metal powder
DE69724589T2 (en) PHOSPHATE-COATED IRON POWDER AND METHOD FOR THE PRODUCTION THEREOF
DE3120169C2 (en) Process for making a metal object
DE3017782A1 (en) METHOD FOR PRODUCING SINTERABLE ALLOY POWDERS BASED ON TITANIUM
DE3130920A1 (en) &#34;ELIGIBLE COPPER ALLOYS&#34;
DE10150830B4 (en) Soft magnetic metal powder, a treatment method thereof, and a soft magnetic molding method manufacturing method
DE3422281A1 (en) Process for manufacturing mouldings from magnetic metal alloys, and mouldings thus produced
DE19945619A1 (en) Press compound and method for producing a soft magnetic composite material with the press compound
DE3120168A1 (en) Magnetic metal alloy moulded articles, process for their production and device for carrying out the process
DE1906522A1 (en) Aluminium nitride yttrium oxide sintered - materials
DE1076549B (en) Process for the production of ferromagnetic ferrites
EP2376245A1 (en) Pre-product for the production of sintered metallic components, a method for producing the pre-product and the production of components
EP2242602B1 (en) Method for producing a metal powder and metal powder produced by this method
DE2429600A1 (en) MAGNETIC MATERIALS STABLE IN AIR AND METHOD OF PRODUCTION
DE2118888A1 (en) Method of making distant
DE936854C (en) Magnetic material and process for its manufacture
DE102012009374B4 (en) Inorganic, metal-containing moldings in a specific form previously imaged in a paper structure and process for its preparation
DE1209477B (en) Process for the pretreatment of powders, which are processed by pressing and sintering into molded bodies, in particular into magnetic cores
DE102015209970A1 (en) Soft magnetic powder composite material and process for its preparation
EP0269612B1 (en) Process for manufacturing articles
DE1471506C (en) Process for the production of molded articles partly made of electrographite
DE1284628B (en) Process for the production of metal-ceramic materials
AT213074B (en) Process for the production of metal-ceramic materials
DE1906522C (en) Process for the manufacture of a sintered aluminum nitride ytnum oxide article
CH394620A (en) Process for the production of a metal-ceramic material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 22C 33/02 B

Ipc: 7B 22F 1/02 B

Ipc: 7C 22C 1/10 A

Ipc: 7H 01F 1/24 B

17P Request for examination filed

Effective date: 20060127

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20060914

RTI1 Title (correction)

Free format text: PROCESS OF PREPARATION OF A COMPOSITE MATERIAL MADE FROM METAL POWDER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50115053

Country of ref document: DE

Date of ref document: 20091001

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100520

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151221

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160224

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151222

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115053

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701