EP1235960A1 - Metal sheet piling - Google Patents

Metal sheet piling

Info

Publication number
EP1235960A1
EP1235960A1 EP00985442A EP00985442A EP1235960A1 EP 1235960 A1 EP1235960 A1 EP 1235960A1 EP 00985442 A EP00985442 A EP 00985442A EP 00985442 A EP00985442 A EP 00985442A EP 1235960 A1 EP1235960 A1 EP 1235960A1
Authority
EP
European Patent Office
Prior art keywords
interlocks
pile
sheet
interlock
piles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00985442A
Other languages
German (de)
French (fr)
Inventor
Graham Robert White
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corus UK Ltd
Original Assignee
Corus UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corus UK Ltd filed Critical Corus UK Ltd
Publication of EP1235960A1 publication Critical patent/EP1235960A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel
    • E02D5/06Fitted piles or other elements specially adapted for closing gaps between two sheet piles or between two walls of sheet piles

Definitions

  • This invention relates to metal sheet piling. More especially, but not exclusively, the invention relates to steel sheet piling.
  • Steel sheet piles are used in general and marine engineering as permanent structures inter alia for retaining walls, basements, underground car parks, pumping stations, bridge abutments, containment barriers and marine structures. These are only examples of such structures.
  • Conventional sheet piles include those known as Larssen or LX sheet piles which are of generally "U" shape and includes a wall section comprising a pan defined by a central flange flanked by outwardly inclined side walls along the free edges of which are formed interlocks.
  • These interlocks also known as clutches
  • These interlocks normally extend over the entire height of the pile and typically comprise a locking toe of generally triangular cross-section which stands proud of a lip which extends along each side edge of the pile, the lip lying generally normal to the adjoining pile surface.
  • the space between the toe and the lip defines an elongate cavity for receiving the locking toe of an adjoining pile.
  • the lip defines the bottom wall of this recess.
  • Frodingham piles which are of generally "Z" profile and typically comprise a wall section including an inclined central web flanked by outwardly extending flanges along the free edges of which are formed interlocks.
  • FIG. 1 shows a grounded sheet pile 1 before the driving of a neighbouring pile 2 (see Figure 2).
  • the piles 1 , 2 have interlocks 3, 4 (only one for each pile being shown) along each of their side edges.
  • the cavity 5 defined between the toe 6 and lip 7 of interlock 3 is closed by an angled metal strip 8 which extends over the entire height of the pile 1 and is welded to the pile at the junction between the interlock and the adjoining pile wall.
  • the cavity is filled with a sealant 9. Only one interlock of each pile carries an angled strip 8.
  • the interlock 4 is positioned immediately above the interlock 3 and the strip 8 flexed to allow entry of the interlock 4 into the space defined between the interlock 3 and the strip 8.
  • the pile 2 is then driven downwardly to the position shown in Figure 2, the so formed joint being sealed by the presence of the sealant 9 and the angled strip 8.
  • the joint produced is effective in preventing migration of water and other fluids into and through the joint.
  • driving of the second pile 2 is not straightforward and results in misalignment of the piles and the cooperating interlocks.
  • it is necessary to withdraw the second pile 2 and restart the assembly procedure. Withdrawal of the second pile 2 disturbs the sealant 9 and can result in damage to the integrity of the joint.
  • additional sealant it is not possible to guarantee that the repaired joint will provide the required insulation against water migration over the entire length of the interlock. The integrity of the joint formed between the neighbouring piles is therefore suspect.
  • the invention provides a metal sheet pile which includes a wall section comprising a central flange flanked by outwardly inclined side walls along the free edges of which are longitudinally extending interlocks, and at least one additional longitudinal interlock secured to the wall section of the sheet pile and extending generally parallel to the interlocks secured to the edges of the side walls of the pile.
  • the invention provides a sheet piling structure which comprises a plurality of sheet piles each of which includes a wall section comprising a central flange flanked by outwardly inclined side walls along the face edges of which are longitudinally extending interlocks through which neighbouring piles are interconnected, at least some of the sheet piles of the structure including at least one additional longitudinal interlock which extends generally parallel to the interlocks secured to the edges of the side walls of the respective pile.
  • the sheet piles formed with one or more additional interlocks may be spaced one from another by one or more sheet piles not being formed with one or more additional interlocks.
  • FIGS 3 and 4 illustrate typical sheet piles in accordance with the invention
  • FIG 5 illustrates a detail of a piling structure in accordance with the invention
  • Figures 6a and 6b show typical pile structures in accordance with the invention
  • FIGS. 7 to 9 illustrate further sheet pile structures incorporating a plurality of sheet piles in accordance with the invention.
  • the sheet pile conventionally comprises a wall section including a pan 11 defined by a central flange 12 flanked by outwardly inclined side walls 14 along the free edges of which are longitudinally extending interlocks 15.
  • an angle plate 16 is provided to seal the cavity defined between the toe and lip of one interlock and sealant is located within this cavity. No angle plate is provided to seal the cavity of the other interlock.
  • Interlock sealing apparatus or methods different from that shown in the drawings may be adopted. Also, in some cases, no interlock sealing will be required.
  • this additional interlock is welded to the pile surface of the central flange 12 and extends in a direction generally parallel to the interlocks 15.
  • An angled strip 19 is welded to the interlock to provide a seal for sealant located within the interlock cavity. Sealant 20 is positioned within the interlock interior.
  • the interlock 18 can be welded or otherwise secured to the pile wall at locations other than that illustrated. Also, more than one additional interlock may be provided. The or each interlock 18 may extend over the entire height of the pile. Alternatively, two or more spaced interlocks of lessor height may be provided.
  • the additional interlock 18 is welded to the pile surface at the junction between the central flange 12 and one side wall 14.
  • a neighbouring sheet pile is shown connected to the pile through adjoining interlocks 15.
  • opposite piles of two generally parallel wall structures are joined together through the additional interlocks 18.
  • Figures 6a and 6b illustrate piling structures which comprise a plurality of interconnected sheet piles, two of which include additional interlocks 18.
  • the interlocks are sealed; in Figure 6b, the interlocks 15 are not provided with sealing apparatus.
  • additional piles 23 have been employed to create an enclosed area between sheet pile rows 26, 27 which can, if necessary, be excavated to facilitate, for example, repairs to existing sheet piles of the rows. Connection between the existing piles and the additional piles 23 is facilitated through the additional interlocks 18 or, in the case of one connection, through an interlock coupling 26.
  • FIGs 8a, 8b and 8c different structures can be created from the single piling structure shown in Figure 8a. Two typical possible structures are illustrated in Figures 8b and8C. Again, existing interlocks are connected to newly installed piles through the additional interlocks 18.
  • FIG. 9 A further alternative structure is shown in Figure 9..
  • neighbouring piles 28, 29 are welded together prior to driving instead of the angle plate and sealant arrangement discussed previously.
  • the presence of the additional interlock also enables damaged piles to be replaced and pipe or service crossings to be installed by installing a second barrier as described, and excavating the space between the original structure and the barrier to provide a space in which the required work can be carried out. Changes in direction or position of the original structure can readily be achieved by linking fresh sheet piles with the original structure through the additional interlocks 18.
  • the presence of the additional interlocks 18 will enable an installer to provide a guarantee of the integrity of a sheet piling structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

A metal sheet pile includes a wall section which comprises a central flange flanked by outwardly inclined side walls along the free edges of which are longitudinally extending interlocks. At least one additional longitudinal interlock (18) is secured to the wall section of the sheet pile and extends generally parallel to the interlocks secured to the edges of the side walls of the pile.

Description

METAL SHEET PILING
This invention relates to metal sheet piling. More especially, but not exclusively, the invention relates to steel sheet piling.
Steel sheet piles are used in general and marine engineering as permanent structures inter alia for retaining walls, basements, underground car parks, pumping stations, bridge abutments, containment barriers and marine structures. These are only examples of such structures.
Conventional sheet piles include those known as Larssen or LX sheet piles which are of generally "U" shape and includes a wall section comprising a pan defined by a central flange flanked by outwardly inclined side walls along the free edges of which are formed interlocks. These interlocks (also known as clutches) normally extend over the entire height of the pile and typically comprise a locking toe of generally triangular cross-section which stands proud of a lip which extends along each side edge of the pile, the lip lying generally normal to the adjoining pile surface. The space between the toe and the lip defines an elongate cavity for receiving the locking toe of an adjoining pile. The lip defines the bottom wall of this recess.
Other known sheet piles include Frodingham piles which are of generally "Z" profile and typically comprise a wall section including an inclined central web flanked by outwardly extending flanges along the free edges of which are formed interlocks.
Conventionally sheet piling structures are produced by sequentially driving a plurality of piles to produce the barrier required, the interlocks of neighbouring piles being connected one to the other during the driving process. In cases where water- tightness is required, methods of enclosing sealant n the interlocks may be adopted. For ease of understanding, this conventional process will be described with reference to Figures 1 and 2. Figure 1 shows a grounded sheet pile 1 before the driving of a neighbouring pile 2 (see Figure 2). The piles 1 , 2 have interlocks 3, 4 (only one for each pile being shown) along each of their side edges. As will be seen, the cavity 5 defined between the toe 6 and lip 7 of interlock 3 is closed by an angled metal strip 8 which extends over the entire height of the pile 1 and is welded to the pile at the junction between the interlock and the adjoining pile wall. The cavity is filled with a sealant 9. Only one interlock of each pile carries an angled strip 8.
For assembly of the pile 2, the interlock 4 is positioned immediately above the interlock 3 and the strip 8 flexed to allow entry of the interlock 4 into the space defined between the interlock 3 and the strip 8. The pile 2 is then driven downwardly to the position shown in Figure 2, the so formed joint being sealed by the presence of the sealant 9 and the angled strip 8.
In the majority of cases, the joint produced is effective in preventing migration of water and other fluids into and through the joint. On occasions, however, driving of the second pile 2 is not straightforward and results in misalignment of the piles and the cooperating interlocks. In these cases it is necessary to withdraw the second pile 2 and restart the assembly procedure. Withdrawal of the second pile 2 disturbs the sealant 9 and can result in damage to the integrity of the joint. Although it is possible to introduce additional sealant, it is not possible to guarantee that the repaired joint will provide the required insulation against water migration over the entire length of the interlock. The integrity of the joint formed between the neighbouring piles is therefore suspect.
Repairs to conventional sheet pile structures can be expensive and time consuming. This can entail excavating the soil alongside a suspect joint to enable a repair to be effected. Alternatively, individual piles are removed and replaced, the integrity of the joints between replaced and retained piles being suspect for the reasons explained above. It is also the case that structural modifications are required after completion of a piling structure, for example the installation of pipe or service crossings, the replacement of damaged piles, the creation of openings, and the change of direction and positioning of an existing barrier structure to accommodate the building of other structures.
According to the present invention in one aspect, the invention provides a metal sheet pile which includes a wall section comprising a central flange flanked by outwardly inclined side walls along the free edges of which are longitudinally extending interlocks, and at least one additional longitudinal interlock secured to the wall section of the sheet pile and extending generally parallel to the interlocks secured to the edges of the side walls of the pile.
In another aspect, the invention provides a sheet piling structure which comprises a plurality of sheet piles each of which includes a wall section comprising a central flange flanked by outwardly inclined side walls along the face edges of which are longitudinally extending interlocks through which neighbouring piles are interconnected, at least some of the sheet piles of the structure including at least one additional longitudinal interlock which extends generally parallel to the interlocks secured to the edges of the side walls of the respective pile.
The sheet piles formed with one or more additional interlocks may be spaced one from another by one or more sheet piles not being formed with one or more additional interlocks.
The invention will now be described by way of example only with reference to the accompany diagrammatic drawings in which: -
Figures 3 and 4 illustrate typical sheet piles in accordance with the invention;
Figure 5 illustrates a detail of a piling structure in accordance with the invention; Figures 6a and 6b show typical pile structures in accordance with the invention; and
Figures 7 to 9 illustrate further sheet pile structures incorporating a plurality of sheet piles in accordance with the invention.
As will be seen from Figure 3, the sheet pile conventionally comprises a wall section including a pan 11 defined by a central flange 12 flanked by outwardly inclined side walls 14 along the free edges of which are longitudinally extending interlocks 15. As for the known piles illustrated in Figures 1 and 2, an angle plate 16 is provided to seal the cavity defined between the toe and lip of one interlock and sealant is located within this cavity. No angle plate is provided to seal the cavity of the other interlock. Interlock sealing apparatus or methods different from that shown in the drawings may be adopted. Also, in some cases, no interlock sealing will be required.
What is not conventional is the provision of an additional interlock 18. As shown, this additional interlock is welded to the pile surface of the central flange 12 and extends in a direction generally parallel to the interlocks 15. An angled strip 19 is welded to the interlock to provide a seal for sealant located within the interlock cavity. Sealant 20 is positioned within the interlock interior.
The interlock 18 can be welded or otherwise secured to the pile wall at locations other than that illustrated. Also, more than one additional interlock may be provided. The or each interlock 18 may extend over the entire height of the pile. Alternatively, two or more spaced interlocks of lessor height may be provided.
As shown in Figure 4, the additional interlock 18 is welded to the pile surface at the junction between the central flange 12 and one side wall 14. In Figure 4, a neighbouring sheet pile is shown connected to the pile through adjoining interlocks 15. In Figure 5, opposite piles of two generally parallel wall structures are joined together through the additional interlocks 18. Figures 6a and 6b illustrate piling structures which comprise a plurality of interconnected sheet piles, two of which include additional interlocks 18. In Figure 6a the interlocks are sealed; in Figure 6b, the interlocks 15 are not provided with sealing apparatus.
As will be seen from Figures 7 to 9, the presence of the additional interlock 18 enables other sheet piles to be added to the pile structure should this be necessary. Thus, if through difficulties experienced during driving the joint formed between the interlocks of neighbouring sheet piles 21, 22 is suspect, additional piles 23 can be driven to create a barrier around the suspect or leaking joint to ensure that where water and other fluids may pass through the joint formed between piles 21 and 22, this water does not pass through the structure as a whole.
In Figure 7, additional piles 23 have been employed to create an enclosed area between sheet pile rows 26, 27 which can, if necessary, be excavated to facilitate, for example, repairs to existing sheet piles of the rows. Connection between the existing piles and the additional piles 23 is facilitated through the additional interlocks 18 or, in the case of one connection, through an interlock coupling 26.
As will be seen from Figures 8a, 8b and 8c, different structures can be created from the single piling structure shown in Figure 8a. Two typical possible structures are illustrated in Figures 8b and8C. Again, existing interlocks are connected to newly installed piles through the additional interlocks 18.
A further alternative structure is shown in Figure 9.. In this embodiment, neighbouring piles 28, 29 are welded together prior to driving instead of the angle plate and sealant arrangement discussed previously.
The presence of the additional interlock also enables damaged piles to be replaced and pipe or service crossings to be installed by installing a second barrier as described, and excavating the space between the original structure and the barrier to provide a space in which the required work can be carried out. Changes in direction or position of the original structure can readily be achieved by linking fresh sheet piles with the original structure through the additional interlocks 18.
Importantly, the presence of the additional interlocks 18 will enable an installer to provide a guarantee of the integrity of a sheet piling structure.
It will be appreciated that the foregoing is merely exemplary of pile constructions in accordance with the invention and that modifications can readily be made thereto with departing from the true scope of the invention. Thus, interlock sealant apparatus other than that discussed above may be adopted. Also, in some cases, interlock sealing may be unnecessary. Furthermore, welding can be carried out on joints if the piles are installed in pairs to be incorporated in the structure.

Claims

1. A metal sheet pile which includes a wall section comprising a central flange flanked by outwardly inclined side walls along the free edges of which are longitudinally extending interlocks, and at least one additional longitudinal interlock secured to the wall section of the sheet pile and extending generally parallel to the interlocks secured to the edges of the side walls of the pile.
2. A sheet pile as claimed in claim 1 wherein the interior of at least one interlock is sealed by an angle plate.
3. A sheet pile as claimed in claim 1 or claim 2 wherein sealant is positioned within the interior of at least one interlock.
4. A sheet pile as claimed in any one of claims 1 to 3 wherein the length of the additional interlock is equal to or less than the height of the sheet pile.
5. A sheet piling structure which comprises a plurality of sheet piles each of which includes a wall section comprising a central flange flanked by outwardly inclined side walls along the face edges of which are longitudinally extending interlocks through which neighbouring piles are interconnected, at least some of the sheet piles of the structure including at least one additional longitudinal interlock which extends generally parallel to the interlocks secured to the edges of the side walls of the respective pile.
6. A piling structure as claimed in claim 5 in which sheet piles formed with one or more additional interlocks are spaced one from another by one or more sheet piles not being formed with one or more additional interlocks.
7. A metal sheet pile substantially as herein described and as described with reference to Figures 3 and 4 of the accompanying drawings. A sheet piling structure substantially as herein described and as described with reference to Figures 5 to 9 of the accompanying drawings.
EP00985442A 1999-11-26 2000-11-24 Metal sheet piling Withdrawn EP1235960A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9927867 1999-11-26
GB9927867A GB2356660B (en) 1999-11-26 1999-11-26 Metal sheet piling
PCT/GB2000/004491 WO2001038645A1 (en) 1999-11-26 2000-11-24 Metal sheet piling

Publications (1)

Publication Number Publication Date
EP1235960A1 true EP1235960A1 (en) 2002-09-04

Family

ID=10865122

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00985442A Withdrawn EP1235960A1 (en) 1999-11-26 2000-11-24 Metal sheet piling

Country Status (4)

Country Link
EP (1) EP1235960A1 (en)
AU (1) AU2186101A (en)
GB (1) GB2356660B (en)
WO (1) WO2001038645A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596174B1 (en) * 2019-01-09 2019-10-23 株式会社第一基礎 Joint structure of wall member, wall member using the joint structure, wall member using the wall member, and method of constructing a wall member using the wall member
JP2021046702A (en) * 2019-09-18 2021-03-25 株式会社第一基礎 Joint device, steel structural member, and application method of joint device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB416315A (en) * 1932-12-08 1934-09-13 Josef Meiser Improvements in and relating to corner plates, branch plates and cross plates for tongued steel walls
FR871524A (en) * 1940-03-29 1942-04-29 Dortmund Hoerder Hu Ttenver Ag Blades junction profile
FR2041371A5 (en) * 1969-04-22 1971-01-29 Wendel Sidelor
DE3223870C1 (en) * 1982-06-25 1983-11-24 Stump Bohr Gmbh, 8045 Ismaning Sheet-pile wall with head beam and anchors
NL8602762A (en) * 1986-10-31 1988-05-16 Hattum & Blankevoort Bv Method for mfg. dam wall from planks or plates - has profiled ends of steel plates interfitting locked and sealed by elastic strip and hard setting sealant
DE69528082T2 (en) * 1995-05-11 2003-06-05 Francesco Piccone CONNECTABLE FORMWORK ELEMENTS
US5902074A (en) * 1996-11-05 1999-05-11 Berkley; David M. Apparatus and method for stabilizing sloped embankments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0138645A1 *

Also Published As

Publication number Publication date
GB2356660A (en) 2001-05-30
GB2356660B (en) 2003-07-30
WO2001038645A1 (en) 2001-05-31
AU2186101A (en) 2001-06-04
GB9927867D0 (en) 2000-01-26

Similar Documents

Publication Publication Date Title
KR101925597B1 (en) Underground continuous wall grouting waterproofing method
US20060179730A1 (en) Wall structural member and method for constructing a wall structure
CN106812131B (en) A kind of permanent sheet pile underground structure and its construction method
WO2001038645A1 (en) Metal sheet piling
CN1193675A (en) Underground walls for cast-in-situ concrete piles and constructioning process therefor
KR102251982B1 (en) Retaining Wall System usable as building underground wall and it's Construction Method
US5921716A (en) Apparatus and method for forming a barrier wall
JP3167937B2 (en) Construction method of shield lining segment and shield tunnel
CN112854238A (en) Open trench tunnel staged construction joint foundation pit supporting system and construction method thereof
JP2586975B2 (en) Connection method of shield tunnel
KR100659997B1 (en) Method and structure land-side protection wall using h-beam
JP4440152B2 (en) Construction method of underground penetrating body and steel shell element therefor
JP2005256571A (en) Continuous wall body and its construction method
JP2743279B2 (en) Protection method for buried objects
JP2891915B2 (en) Tunnel connection method and tunnel connection segment
EP1322820B1 (en) Metal sheet piling
JP7486392B2 (en) How to insert the H-shaped retaining steel
KR930023576A (en) Beam subsidence prevention method for underground tunnel construction
CN110761327B (en) Longitudinal sectional open caisson connecting structure of muddy water balance open caisson station and mounting method
JP3573873B2 (en) Steel box used for building retaining wall
JP4094990B2 (en) Slide gate device installed at the opening of a shaft and its construction method
KR200420018Y1 (en) Structure land-side protection wall using h-beam
JP3207151B2 (en) Steel panel joint structure
CN117364793A (en) Foundation pit supporting structure and foundation pit supporting construction method
JP2022048819A (en) Connection structure, connection method and segment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CORUS UK LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061012