EP1230718A1 - Systeme laser a longueurs d'onde multiples - Google Patents

Systeme laser a longueurs d'onde multiples

Info

Publication number
EP1230718A1
EP1230718A1 EP00960376A EP00960376A EP1230718A1 EP 1230718 A1 EP1230718 A1 EP 1230718A1 EP 00960376 A EP00960376 A EP 00960376A EP 00960376 A EP00960376 A EP 00960376A EP 1230718 A1 EP1230718 A1 EP 1230718A1
Authority
EP
European Patent Office
Prior art keywords
laser
range
core
mode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00960376A
Other languages
German (de)
English (en)
Inventor
Christian Laurent-Lund
Soeren Guldberg-Kjaer
Mads Sckerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cisilias AS
Original Assignee
Cisilias AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cisilias AS filed Critical Cisilias AS
Publication of EP1230718A1 publication Critical patent/EP1230718A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1215Multiplicity of periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • v(x,y) is the modal distribution of the electromagnetic field.
  • the confinement factor hence expresses the degree to which the mode of the electrical field is confined within the waveguide core.
  • the confinement factor has a value close to 1 (unity) while the value approaches 0 (zero) in the case of very weakly confined modes. This corresponds to situations where the effective refractive index n ⁇ ff approaches the refractive index of the core ( ⁇ « 1 ) and the refractive index of the cladding ( ⁇ « 0), respectively.
  • the confinement factor is influenced by the index difference between the core and the cladding, as well as the detailed shape of the index profile n(x,y).
  • the confinement factors of the waveguides used depends strongly on the width of the waveguide. Such a situation can typically be found in waveguides where the index profile changes abruptly between core and cladding (step-like index profile).
  • a number of different index profiles may give favourable confinement factors, where d ⁇ /dw lies within a desired interval.
  • dn ⁇ ff /dw (where dw is the differential variation of the width, and dn e ⁇ is the corresponding differential variation in the effective refractive index) can be calculated.
  • n(x,y) a refractive index distribution or profile, that yields a response dn eff /dw in a desired interval
  • a second substrate holding a silica-based second waveguide structure said second waveguide structure having a core and a cladding , wherein the core region comprises an active region holding one or more dopants, and
  • n e ⁇ - n ⁇ ff i a predetermined difference, n e ⁇ - n ⁇ ff i, between the refractive indices is desired
  • the waveguide core In order for the waveguide core to act as an active region, it is preferably doped with one or more dopants selected from the group consisting of: germanium, erbium, aluminium, neodymium, and ytterbium.
  • the active region consists of erbium co-doped Germanium-silica (germanosilicate), since the large gain bandwidth of this material allows for laser operation up to approximately 1620 nm.
  • the laser cavity is pumped with a pump wavelength within the range of 930 - 990 nm, 1470 - 1490 nm or 750 - 850 nm, and will typically emit light with centre wavelength within range 1528 - 1620 nm or 1300 - 1400 nm or 1000 - 1150 nm.
  • the power emitted from the laser cavity when pumped is preferably within the range 0.005 - 100 mW.
  • a plurality of single mode lasers as described above can be comprised in a multi- wavelength emitting device wherein the single-mode lasers have different widths at the positions of their first reflective members whereby each single-mode laser emit light with different centre frequencies.
  • providing the first laser comprising:
  • providing the second laser comprising:
  • the core widths ⁇ N I and w 2 and the predetermined relation between the first ⁇ — ⁇ and the second wavelength fulfil — — > 0.2 nm/ ⁇ m, in order for the lasers to span a w 2 - w, ⁇ — ⁇ large range of wavelengths for applicable widths.
  • — — is within the range w 2 - w,
  • Figure 5 shows measured laser output peak positions as function of temperature corresponding to the spectral trace in Figure 4. As the temperature is increased the peaks move towards higher wavelengths with 10.5 pm/°C, however, the spacing between the individual channels show no dependence on temperature within the measurement precision (10 pm) in the temperature interval.
  • the multi-wavelength emitting laser resonator structures can be realised in several ways, with the laser resonator structures are made either as distributed Bragg-reflector or distributed feedback types. Some of these will be discussed, with reference to Figure 1 , 3 and 6.
  • the Bragg gratings 31 and 32 are formed by exposure with coherent actinic radiation through a suitable phasemask. In some cases one of the gratings can be replaced by a highly reflective dielectric mirror.
  • the waveguide structure is high pressure loaded with deuterium or hydrogen previous to the exposure.
  • Example 2 For the purpose of demonstrating the applicability of the method according to the present invention, a four-channel planar waveguide laser array with integrated power splitters/combiners was designed, using the design curve from example 1, and fabricated.
  • a silicon substrate 21 In a silicon substrate 21 an approximately 12 ⁇ m thick buffer layer 12 of thermal oxide was grown, as shown in Figure 3.
  • An approximately 5 ⁇ m thick layer of erbium and aluminium doped germanosilicate core glass was deposited using PECVD and subsequently annealed. Waveguide widths that should render it possible to fabricate an array of lasers with 50 GHz channel spacing were inferred from the curve 42 on Figure 2A.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

La présente invention concerne un système et un procédé permettant d'obtenir un guide d'onde optique plan et intégré émettant dans plusieurs longueurs d'onde avec une large gamme de longueurs d'onde, ayant une commande stricte sur les positions absolues, et surtout relatives, des longueurs d'onde émises, ainsi que des largeurs de raie étroites. L'indice de réfraction effectif neff d'un mode laser dans un guide d'onde est au moins en partie déterminé par le recouvrement physique, le facteur de confinement, entre le mode laser et le profil de l'indice de réfraction de l'âme du guide d'onde. Lorsque des guides d'onde possèdent des profils d'indice de réfraction bien définis, en réglant les dimensions transversales de l'âme du guide d'onde on règle le profil d'indice de réfraction et, par conséquent, le facteur de confinement et neff. Selon la présente invention, au moins deux lasers en guide d'onde sont formés dans lesquels les éléments réflecteurs constituant la cavité du laser possèdent une réflectivité dépendante du spectre qui dépend de l'indice de réfraction effectif, neff, ressenti par un mode laser à la position de l'élément réflecteur. Au moyen d'éléments réflecteurs identiques, tels que des réseaux de Bragg, pour les différents lasers, on peut ajuster la longueur d'onde des lasers en réglant les dimensions transversales relatives, telles que les largeurs, desdits lasers. Ceci permet un réglage relatif précis des lasers et élimine les incertitudes sur les périodes relatives des réseaux de Bragg. La dépendance de neff de la largeur w, neff(w), est de préférence grande de manière à couvrir une large gamme de longueurs d'onde simplement au moyen d'une faible variation de la largeur des guides d'onde. Ainsi, des lasers différents ont à peu près les mêmes dimensions.
EP00960376A 1999-09-20 2000-09-20 Systeme laser a longueurs d'onde multiples Withdrawn EP1230718A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15465599P 1999-09-20 1999-09-20
US154655P 1999-09-20
PCT/DK2000/000521 WO2001022542A2 (fr) 1999-09-20 2000-09-20 Systeme laser a longueurs d'onde multiples

Publications (1)

Publication Number Publication Date
EP1230718A1 true EP1230718A1 (fr) 2002-08-14

Family

ID=22552209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00960376A Withdrawn EP1230718A1 (fr) 1999-09-20 2000-09-20 Systeme laser a longueurs d'onde multiples

Country Status (5)

Country Link
EP (1) EP1230718A1 (fr)
JP (1) JP2003510822A (fr)
AU (1) AU7271100A (fr)
CA (1) CA2385364A1 (fr)
WO (1) WO2001022542A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603980A (zh) * 2015-11-12 2018-09-28 Bb光电公司 具有介质结构的光子集成器件

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952504B2 (en) 2001-12-21 2005-10-04 Neophotonics Corporation Three dimensional engineering of planar optical structures
KR100890981B1 (ko) 2000-10-26 2009-03-27 네오포토닉스 코포레이션 모놀리식 광학 구조체, 이 모놀리식 광학 구조체의 형성 방법, 가요성 광섬유, 광섬유 형성 방법, 및 광섬유 예비 성형체
SG111918A1 (en) * 2001-09-07 2005-06-29 Gbs Data Pte Ltd Integrated semiconductor laser source
JP2006332137A (ja) * 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 発光素子
US8068525B2 (en) 2007-08-30 2011-11-29 Mitsubishi Electric Corporation Solid-state laser element
CN103311807B (zh) * 2013-06-09 2015-04-08 中国科学院半导体研究所 多波长激光器阵列芯片的制作方法
US9568640B2 (en) 2014-09-15 2017-02-14 Baker Hughes Incorporated Displacement measurements using simulated multi-wavelength light sources
TWI608260B (zh) * 2016-05-17 2017-12-11 國立勤益科技大學 All-fiber optical signal acquisition multiplexer design method and all-fiber optical signal pickup multiplexer
CN106253057A (zh) * 2016-09-30 2016-12-21 青岛海信宽带多媒体技术有限公司 一种激光器件
JP7302430B2 (ja) * 2019-10-24 2023-07-04 富士通株式会社 波長可変光源、これを用いた光伝送装置、及び波長可変光源の制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242591A (ja) * 1997-03-03 1998-09-11 Nippon Telegr & Teleph Corp <Ntt> 多波長レーザ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0122542A3 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603980A (zh) * 2015-11-12 2018-09-28 Bb光电公司 具有介质结构的光子集成器件
CN108603980B (zh) * 2015-11-12 2020-07-28 Bb光电公司 具有介质结构的光子集成器件

Also Published As

Publication number Publication date
CA2385364A1 (fr) 2001-03-29
WO2001022542A3 (fr) 2001-11-01
JP2003510822A (ja) 2003-03-18
WO2001022542A2 (fr) 2001-03-29
AU7271100A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
US6151429A (en) Polarisation asymmetric active optical waveguide, method of its production, and its uses
US10461489B2 (en) Photonic devices and methods of using and making photonic devices
US6636678B1 (en) Method and apparatus for waveguide optics and devices
US5771251A (en) Optical fibre distributed feedback laser
JP4414344B2 (ja) Uv放射による導波路およびブラッグ格子の製造
Slavík et al. High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings
Moon et al. Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating
Zhang et al. Room-temperature power-stabilized narrow-linewidth tunable erbium-doped fiber ring laser based on cascaded Mach-Zehnder interferometers with different free spectral range for strain sensing
KR102592497B1 (ko) 모드 홉 프리 파장 튜닝을 위해 구성된 집적 광학 기반 외부 공동 레이저
EP1028333A2 (fr) Dispositif de multiplexage optique à longueur d&#39;onde multiple, source lumineuse à longueur d&#39;onde multiple comprenant ledit dispositif et amplificateur optique
WO2001022542A2 (fr) Systeme laser a longueurs d&#39;onde multiples
Hill Photosensitivity in optical fiber waveguides: From discovery to commercialization
US20200259313A1 (en) Compact narrow-linewidth integrated laser
Hibino et al. Wavelength division multiplexer with photoinduced Bragg gratings fabricated in a planar-lightwave-circuit-type asymmetric Mach-Zehnder interferometer on Si
Deki et al. Wide-wavelength tunable lasers with 100 GHz FSR ring resonators
EP1291985A1 (fr) Filtre optique d&#39;aplatissement du gain , amplificateur optique muni d&#39;un tel filtre et méthode de fabrication
US8077747B2 (en) Phosphate glass based optical device and method
Belt Optically pumped ultra-low loss waveguide lasers and amplifiers
EP1037415A1 (fr) Filtre optique accordable
Mizunami et al. A flexible fabrication technique of long-period fiber gratings using a tilted amplitude mask
Kores et al. Lasing wavelength in dielectric distributed-feedback lasers with a distributed phase shift
Winz The construction and computational modeling of a fiber Bragg grating tunable laser diode
Rahman et al. Design of strong Bragg gratings in semiconductors
Okai et al. Wavelength-tunable in-line Fabry-Perot laser with lateral-grating-assisted vertical codirectional coupled filter
Kim et al. Highly linear-polarized external cavity laser with 45-degree-tilted waveguide grating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030324

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031007