EP1229172B1 - Method and apparatus for making drilled piles in hard ground - Google Patents

Method and apparatus for making drilled piles in hard ground Download PDF

Info

Publication number
EP1229172B1
EP1229172B1 EP02290128A EP02290128A EP1229172B1 EP 1229172 B1 EP1229172 B1 EP 1229172B1 EP 02290128 A EP02290128 A EP 02290128A EP 02290128 A EP02290128 A EP 02290128A EP 1229172 B1 EP1229172 B1 EP 1229172B1
Authority
EP
European Patent Office
Prior art keywords
variable
tool
values
successive
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290128A
Other languages
German (de)
French (fr)
Other versions
EP1229172A1 (en
Inventor
Daniel Gouvenot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie du Sol SARL
Original Assignee
Compagnie du Sol SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie du Sol SARL filed Critical Compagnie du Sol SARL
Publication of EP1229172A1 publication Critical patent/EP1229172A1/en
Application granted granted Critical
Publication of EP1229172B1 publication Critical patent/EP1229172B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/003Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by analysing drilling variables or conditions

Definitions

  • the present invention relates to a method and a machine for producing piles bored in hard ground and in particular in granite soils.
  • the soil with suitable physical properties will be for example a hard rock and in particular granite.
  • the granite zone is sufficiently healthy, that is to say that the granite is non-friable and that it has little or no cracks which would be susceptible alter the mechanical resistance of the granite zone or, more generally, of the zone with high mechanical resistance.
  • the solution currently used consists in carrying out, in the ground where the piles are to be made, cores of relatively reduced diameter of the order of 20 to 30 cm used to take rock samples from the depth. coring.
  • a first object of the invention is to provide a method which makes it possible to ensure that the bored pile produced actually has an anchoring in a layer of ground having the required physical properties.
  • At least one variable representative of the quality of the subsoil is measured in real time, for successive predetermined depths, from measurements carried out using sensors mounted on the machine.
  • the calculated successive values of the variable are processed to determine or detect the fact that the variable has the required value substantially continuously for a predetermined depth difference, this predetermined depth difference corresponding to the required pile anchoring height. When such a difference in depth has been detected, drilling is stopped and the pile can then be made.
  • two distinct variables are calculated, representative of the qualities of the soil necessary for the detection of a layer of soil having the physical properties required in order to constitute an anchorage for the pile. drilled.
  • the detection of course relates to the values of the two variables and the drilling is interrupted when, for the two variables, there is a common predetermined depth difference.
  • the method makes it possible to obtain a more precise evaluation of the qualities of the subsoil and therefore to ensure more precisely that the layer of suitable hard ground has actually been drilled.
  • a second object of the invention is to provide a machine for making bored piles for implementing a method of the type mentioned above.
  • FIG. 1 shows a drilling machine 10 comprising a platform 12 on which a guide mast 14 is articulated.
  • a carriage 16 On the guide mast 14 is mounted a carriage 16 which itself carries a drilling head or rotation head 18.
  • a drill string 20 at the lower end of which is mounted a drilling tool 22.
  • the drilling head 18 comprises in particular a motor 24 for rotating the drill string.
  • the insertion of the tool 22 into the ground to carry out the drilling is controlled, for example, by a set of chains or belts 26 serving for the translational movement of the carriage 16 along the mast, the chains 26 being driven in displacement by a motor assembly 28.
  • the machine is equipped with a number of sensors which are in particular a thrust sensor 30 corresponding for example to the pressure of the hydraulic motor 26 causing the sinking of the drill string, by a sensor 32 mounted on the carriage 16 and supplying the penetration speed V p of the tool, into the ground, and of the sensors 34, 36 also mounted on the drilling head supplying the speed of rotation of the drill string V r , as well as the torque C applied to the drilling tool.
  • sensors which are in particular a thrust sensor 30 corresponding for example to the pressure of the hydraulic motor 26 causing the sinking of the drill string, by a sensor 32 mounted on the carriage 16 and supplying the penetration speed V p of the tool, into the ground, and of the sensors 34, 36 also mounted on the drilling head supplying the speed of rotation of the drill string V r , as well as the torque C applied to the drilling tool.
  • means represented schematically by 38 make it possible to determine the depth of the drilling tool 22.
  • These different sensors 30 to 38 are connected to a processing assembly 40 making it possible to control the execution of
  • the dynamic parameters of the drilling tool chosen are the thrust P, the torque C exerted by the tool, the speed of rotation V r of the tool and the penetration speed V p of the tool in the ground. It goes without saying that we would not depart from the invention if we used other dynamic parameters of the tool.
  • This processing unit 40 essentially comprises a central unit 42 built around a microprocessor, a data memory 44, a working memory 46 and a program memory 48.
  • the measurements provided by the sensors and transmitted in digital (or possibly analog) form in real time to the central unit 42 are stored in the data memory 44 by being associated with the depth at which these measurements have been made.
  • the depth is, for example, taken into account for steps of 1 cm.
  • the depth step of 1 cm can be implemented by memorizing the measurements corresponding to the successive depths detected by the depth sensor 38.
  • the time taken to drill 1 cm can be important.
  • the determination of successive depths in relation to the measurements of the parameters is therefore random.
  • measurements of the four parameters associated with a depth are stored in real time.
  • curves 4a to 4d show values of parameters P, C, V r and V p for different depths as they are recorded in real time.
  • the first variable C M is the variation of the average torque which represents the average value of the couple over a certain period. It is understood that, the lower this variable C M , the more constant the force necessary to drill the soil, that is to say the more the soil will have properties of homogeneous hardness.
  • a succession of the values of these variables corresponding to acceptable qualities of ground to constitute the anchoring of the piles is detected.
  • this criterion will be that this parameter is less than a first predetermined value V 1 .
  • the criterion will be that this variable is greater than a predetermined value V 2 .
  • the variables C M and S are calculated for each depth.
  • the subroutines necessary for these calculations are stored in the memory 48. These variables are calculated in the memory 46 and stored again in the data memory 44.
  • the central unit compares the values of the variables C M and S with the predetermined values V 1 and V 2 . If the two values of variables conform to the criteria retained for the depth considered, a counter 50 is incremented as shown in FIG. 3 after the comparison step 52. On the other hand, if one of the two criteria retained does not is not respected in step 52, the counter 50 is reset to zero by 54.
  • an anchoring depth in hard ground is determined in advance, which most often depends on the diameter of the borehole itself.
  • This anchoring depth L shown in Figure 4 can therefore be converted into a number of unit depth steps.
  • the counter 50 is incremented to a value corresponding to the number N of depth steps associated with the difference in depth L, which is detected in step 56, the bottom of the drilling actually carried out penetrates the required depth L into a soil hard. The drilling machine can then be stopped since the required anchoring conditions are met.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Earth Drilling (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Turning (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

The drilling machine is fitted with detectors which measure dynamic characteristics of the drill tool. The measurements at different successive depths are stored and used to calculate a succession of variable representative of terrain quality at each depth. When a succession of values which correspond to a acceptable terrain quality is encountered, drilling is stopped.

Description

La présente invention a pour objet un procédé et une machine pour la réalisation de pieux forés en terrain dur et notamment dans des terrains granitiques.The present invention relates to a method and a machine for producing piles bored in hard ground and in particular in granite soils.

Lorsque l'on doit réaliser un ensemble de pieux forés pour servir notamment de base à la réalisation de constructions ultérieures, il est bien connu que, dans un premier temps, on réalise un forage de diamètre et de profondeur requis, puis on coule dans le forage ainsi réalisé du béton éventuellement armé pour constituer le pieu, le forage constituant le moule dans lequel le pieu est fabriqué.When it is necessary to carry out a set of bored piles to serve in particular as a basis for carrying out subsequent constructions, it is well known that, initially, a drilling is carried out with the required diameter and depth, then it is poured into the drilling thus carried out of possibly reinforced concrete to constitute the pile, the drilling constituting the mold in which the pile is manufactured.

Un des problèmes qui se posent pour assurer la réalisation convenable des pieux forés est de s'assurer que le fond du forage réalisé est bien situé sur une profondeur suffisante dans un sol de propriétés physiques convenables pour servir d'ancrage aux pieux. Le sol de propriétés physiques convenables sera par exemple une roche dure et notamment du granite. Dans le cas de cette dernière roche, il est nécessaire de s'assurer que la zone granitique est suffisamment saine, c'est-à-dire que le granite est non friable et qu'il ne présente pas ou peu de fissures qui seraient susceptibles d'altérer la résistance mécanique de la zone granitique ou, plus généralement, de la zone à résistance mécanique élevée.One of the problems which arise in ensuring the proper construction of bored piles is to ensure that the bottom of the borehole is well located over a sufficient depth in a soil of suitable physical properties to serve as anchoring to the piles. The soil with suitable physical properties will be for example a hard rock and in particular granite. In the case of this last rock, it is necessary to ensure that the granite zone is sufficiently healthy, that is to say that the granite is non-friable and that it has little or no cracks which would be susceptible alter the mechanical resistance of the granite zone or, more generally, of the zone with high mechanical resistance.

Pour résoudre ce problème, la solution utilisée actuellement consiste à réaliser, dans le terrain où l'on veut fabriquer les pieux, des carottages de diamètre relativement réduit de l'ordre de 20 à 30 cm servant à effectuer des prélèvements de roche sur la profondeur du carottage.To solve this problem, the solution currently used consists in carrying out, in the ground where the piles are to be made, cores of relatively reduced diameter of the order of 20 to 30 cm used to take rock samples from the depth. coring.

On comprend cependant que, dans certains cas, ces carottages, du fait de leur diamètre relativement réduit et du fait qu'ils sont nécessairement relativement espacés les uns des autres, ne permettent pas d'assurer que les pieux forés effectivement réalisés présenteront un ancrage dans une couche de terrain dur présentant les propriétés physiques requises.It is understood, however, that in certain cases, these cores, owing to their relatively small diameter and the fact that they are necessarily relatively spaced from one another, do not make it possible to ensure that the bored piles actually produced will have an anchoring in a layer of hard ground with the required physical properties.

Un premier objet de l'invention est de fournir un procédé qui permet d'assurer que le pieu foré réalisé présente effectivement un ancrage dans une couche de terrain présentant les propriétés physiques requises.A first object of the invention is to provide a method which makes it possible to ensure that the bored pile produced actually has an anchoring in a layer of ground having the required physical properties.

Pour atteindre ce but selon l'invention, le procédé de réalisation d'un pieu foré dans un terrain dur à l'aide d'une machine de forage se caractérise en ce qu'il comprend les étapes suivantes :

  • on équipe la machine de forage de capteurs pour mesurer des caractéristiques dynamiques de l'outil de forage comprenant au moins certaines des caractéristiques suivantes : couple de l'outil, vitesse de pénétration de l'outil, vitesse de rotation de l'outil, poussée exercée sur l'outil ;
  • on mémorise, au fur et à mesure de leur acquisition, les mesures faites par lesdits capteurs pour des profondeurs successives correspondant à un pas prédéterminé ;
  • pour chaque profondeur, on calcule au moins une première variable représentative de la qualité du terrain rencontré à partir des mesures mémorisées, et on mémorise les valeurs successives de la première variable pour les profondeurs successives au fur et à mesure de leur calcul ;
  • on traite les valeurs successives de ladite variable pour rechercher dans les valeurs successives de ladite variable une succession sensiblement continue de valeurs de la variable correspondant à une qualité de terrain acceptable, pour des profondeurs successives correspondant à une différence de profondeurs prédéterminée ; et
  • on interrompt le forage lorsqu'on a détecté ladite succession sensiblement continue de valeurs acceptables pour ladite différence de profondeur prédéterminée.
To achieve this object according to the invention, the method of producing a pile drilled in hard ground using a drilling machine is characterized in that it comprises the following steps:
  • the drilling machine is equipped with sensors to measure dynamic characteristics of the drilling tool comprising at least some of the following characteristics: tool torque, tool penetration speed, tool rotation speed, thrust exerted on the tool;
  • the measurements made by said sensors are stored, as they are acquired, for successive depths corresponding to a predetermined pitch;
  • for each depth, at least a first variable representative of the quality of the terrain encountered is calculated from the stored measurements, and the successive values of the first variable are stored for the successive depths as they are calculated;
  • the successive values of said variable are processed to search in the successive values of said variable for a substantially continuous succession of values of the variable corresponding to an acceptable quality of terrain, for successive depths corresponding to a predetermined difference in depths; and
  • the drilling is interrupted when said substantially continuous succession of acceptable values for said predetermined depth difference has been detected.

On comprend que, dans le procédé selon l'invention, on mesure en temps réel, pour des profondeurs successives prédéterminées, au moins une variable représentative de la qualité du sous-sol à partir de mesures réalisées à l'aide de capteurs montés sur la machine. Les valeurs successives calculées de la variable sont traitées pour déterminer ou détecter le fait que la variable présente la valeur requise de façon sensiblement continue pour une différence de profondeur prédéterminée, cette différence de profondeur prédéterminée correspondant à la hauteur requise d'ancrage du pieu. Lorsqu'une telle différence de profondeur a été détectée, on interrompt le forage et le pieu peut alors être réalisé.It will be understood that, in the method according to the invention, at least one variable representative of the quality of the subsoil is measured in real time, for successive predetermined depths, from measurements carried out using sensors mounted on the machine. The calculated successive values of the variable are processed to determine or detect the fact that the variable has the required value substantially continuously for a predetermined depth difference, this predetermined depth difference corresponding to the required pile anchoring height. When such a difference in depth has been detected, drilling is stopped and the pile can then be made.

Il faut souligner qu'on peut simultanément enregistrer, pour les différentes profondeurs, les mesures faites par les capteurs, ainsi que les valeurs calculées de la variable pour les différentes profondeurs, ce qui constituera un élément de preuve que le pieu foré a été réalisé dans les conditions fixées.It should be noted that the measurements made by the sensors, as well as the calculated values of the variable for the different depths, which will constitute evidence that the bored pile was made under the conditions laid down.

De préférence, à partir des paramètres fournis par les capteurs pour les différentes profondeurs, on calcule deux variables distinctes représentatives des qualités du sol nécessaires pour la détection d'une couche de sol présentant les propriétés physiques requises en vue de constituer un ancrage pour le pieu foré. La détection porte bien sûr sur les valeurs des deux variables et le forage est interrompu lorsque, pour les deux variables, on trouve une différence de profondeur prédéterminée commune.Preferably, from the parameters provided by the sensors for the different depths, two distinct variables are calculated, representative of the qualities of the soil necessary for the detection of a layer of soil having the physical properties required in order to constitute an anchorage for the pile. drilled. The detection of course relates to the values of the two variables and the drilling is interrupted when, for the two variables, there is a common predetermined depth difference.

On comprend que, dans cette variante, le procédé permet d'obtenir une évaluation plus précise des qualités du sous-sol et donc de s'assurer de façon plus précise que la couche de terrain dur convenable a été effectivement forée.It is understood that, in this variant, the method makes it possible to obtain a more precise evaluation of the qualities of the subsoil and therefore to ensure more precisely that the layer of suitable hard ground has actually been drilled.

Un deuxième objet de l'invention est de fournir une machine de réalisation de pieux forés pour la mise en oeuvre d'un procédé du type mentionné ci-dessus.A second object of the invention is to provide a machine for making bored piles for implementing a method of the type mentioned above.

La machine de réalisation de pieux forés dans un terrain dur comprenant un outil de forage fixé à l'extrémité inférieure d'un train de tiges et des moyens de mise en rotation du train de tiges et d'enfoncement de ce train de tiges dans le sol se caractérise en ce qu'elle comprend en outre :

  • des capteurs pour mesurer des caractéristiques dynamiques de l'outil de forage comprenant au moins certaines des caractéristiques suivantes : couple de l'outil, vitesse de pénétration de l'outil, vitesse de rotation de l'outil, poussée exercée sur l'outil ;
  • des moyens pour mémoriser au fur et à mesure de leur acquisition les mesures faites par lesdits capteurs pour des profondeurs successives correspondant à un pas prédéterminé ;
  • des moyens pour calculer, pour chaque profondeur, au moins une première variable représentative de la qualité du terrain rencontré à partir des mesures mémorisées, et des moyens pour mémoriser les valeurs successives de la première variable pour les profondeurs successives au fur et à mesure de leur calcul ;
  • des moyens pour traiter les valeurs successives de ladite variable pour rechercher parmi les valeurs successives de ladite variable une succession sensiblement continue de valeurs de la variable correspondant à une qualité de terrain acceptable, pour des profondeurs successives correspondant à une différence de profondeurs prédéterminée ; et
  • des moyens pour interrompre le forage lorsque ladite succession sensiblement continue de valeurs acceptables pour ladite différence de profondeur prédéterminée a été détectée.
The machine for making piles drilled in hard ground comprising a drilling tool fixed to the lower end of a drill string and means for rotating the drill string and driving this drill string into the soil is characterized in that it further comprises:
  • sensors for measuring dynamic characteristics of the drilling tool comprising at least some of the following characteristics: tool torque, tool penetration speed, tool rotation speed, thrust exerted on the tool;
  • means for memorizing, as they are acquired, the measurements made by said sensors for successive depths corresponding to a predetermined pitch;
  • means for calculating, for each depth, at least a first variable representative of the quality of the terrain encountered from the stored measurements, and means for storing the successive values of the first variable for the successive depths as they are calculation;
  • means for processing the successive values of said variable to search among the successive values of said variable for a substantially continuous succession of values of the variable corresponding to an acceptable quality of terrain, for successive depths corresponding to a predetermined difference in depths; and
  • means for interrupting drilling when said substantially continuous succession of acceptable values for said predetermined difference in depth has been detected.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit de plusieurs modes de mise en oeuvre de l'invention donnés à titre d'exemples non limitatifs. La description se réfère aux figures annexées, sur lesquelles :

  • la figure 1 est une vue simplifiée en élévation d'une machine de réalisation de pieux forés conforme à l'invention ;
  • la figure 2 est un bloc-diagramme montrant les principaux circuits de traitement utilisés dans la machine ;
  • la figure 3 est un organigramme simplifié du traitement des mesures fournies par les capteurs ; et
  • la figure 4 montre un exemple d'enregistrements effectués à partir des capteurs et l'exploitation de ces enregistrements.
Other characteristics and advantages of the invention will appear better on reading the following description of several embodiments of the invention given by way of nonlimiting examples. The description refers to the appended figures, in which:
  • Figure 1 is a simplified elevational view of a machine for making bored piles according to the invention;
  • Figure 2 is a block diagram showing the main processing circuits used in the machine;
  • FIG. 3 is a simplified flow diagram of the processing of the measurements supplied by the sensors; and
  • FIG. 4 shows an example of recordings made from the sensors and the use of these recordings.

Sur la figure 1, on a représenté une machine de forage 10 comprenant une plate-forme 12 sur laquelle est articulé un mât de guidage 14. Sur le mât de guidage 14 est monté un chariot 16 qui porte lui-même une tête de forage ou tête de mise en rotation 18. Dans la tête de forage 18 est engagé un train de tiges 20 à l'extrémité inférieure duquel est monté un outil de forage 22. Comme cela est bien connu, la tête de forage 18 comporte notamment un moteur 24 de mise en rotation du train de tiges. L'enfoncement de l'outil 22 dans le sol pour réaliser le forage est commandé, par exemple, par un ensemble de chaînes ou de courroies 26 servant au déplacement en translation du chariot 16 le long du mât, les chaînes 26 étant entraînées en déplacement par un ensemble moteur 28.FIG. 1 shows a drilling machine 10 comprising a platform 12 on which a guide mast 14 is articulated. On the guide mast 14 is mounted a carriage 16 which itself carries a drilling head or rotation head 18. In the drilling head 18 is engaged a drill string 20 at the lower end of which is mounted a drilling tool 22. As is well known, the drilling head 18 comprises in particular a motor 24 for rotating the drill string. The insertion of the tool 22 into the ground to carry out the drilling is controlled, for example, by a set of chains or belts 26 serving for the translational movement of the carriage 16 along the mast, the chains 26 being driven in displacement by a motor assembly 28.

Selon l'invention, la machine est équipée d'un certain nombre de capteurs qui sont notamment un capteur de poussée 30 correspondant par exemple à la pression du moteur hydraulique 26 provoquant l'enfoncement du train de tiges, par un capteur 32 monté sur le chariot 16 et fournissant la vitesse de pénétration Vp de l'outil, dans le sol, et des capteurs 34, 36 montés également sur la tête de forage fournissant la vitesse de rotation du train de tiges Vr, ainsi que le couple C appliqué à l'outil de forage. Enfin, des moyens représentés schématiquement par 38 permettent de déterminer la profondeur de l'outil de forage 22. Ces différents capteurs 30 à 38 sont reliés à un ensemble de traitement 40 permettant de contrôler la réalisation du forage à l'aide de l'outil 22 et de la machine 10.According to the invention, the machine is equipped with a number of sensors which are in particular a thrust sensor 30 corresponding for example to the pressure of the hydraulic motor 26 causing the sinking of the drill string, by a sensor 32 mounted on the carriage 16 and supplying the penetration speed V p of the tool, into the ground, and of the sensors 34, 36 also mounted on the drilling head supplying the speed of rotation of the drill string V r , as well as the torque C applied to the drilling tool. Finally, means represented schematically by 38 make it possible to determine the depth of the drilling tool 22. These different sensors 30 to 38 are connected to a processing assembly 40 making it possible to control the execution of the drilling using the tool 22 and machine 10.

Dans la description qui suit, les paramètres dynamiques de l'outil de forage choisis sont la poussée P, le couple C exercé par l'outil, la vitesse de rotation Vr de l'outil et la vitesse de pénétration Vp de l'outil dans le sol. Il va de soi qu'on ne sortirait pas de l'invention si l'on utilisait d'autres paramètres dynamiques de l'outil.In the following description, the dynamic parameters of the drilling tool chosen are the thrust P, the torque C exerted by the tool, the speed of rotation V r of the tool and the penetration speed V p of the tool in the ground. It goes without saying that we would not depart from the invention if we used other dynamic parameters of the tool.

Les mesures faites par les capteurs 30 à 36 sont transmises en temps réel à l'ensemble de traitement 40. Cet ensemble de traitement comporte essentiellement une unité centrale 42 construite autour d'un microprocesseur, une mémoire de données 44, une mémoire de travail 46 et une mémoire de programme 48.The measurements made by the sensors 30 to 36 are transmitted in real time to the processing unit 40. This processing unit essentially comprises a central unit 42 built around a microprocessor, a data memory 44, a working memory 46 and a program memory 48.

Les mesures fournies par les capteurs et transmises sous forme numérique (ou éventuellement analogique) en temps réel à l'unité centrale 42 sont mémorisées dans la mémoire de données 44 en étant associées à la profondeur à laquelle ces mesures ont été réalisées. La profondeur est, par exemple, prise en compte pour des pas de 1 cm.The measurements provided by the sensors and transmitted in digital (or possibly analog) form in real time to the central unit 42 are stored in the data memory 44 by being associated with the depth at which these measurements have been made. The depth is, for example, taken into account for steps of 1 cm.

Pour obtenir des mesures significatives des paramètres, pour des pas de profondeur de l'ordre de 1 cm, deux techniques peuvent être utilisées. Lorsque le sol n'est pas trop dur, le pas de profondeur de 1 cm peut être mis en oeuvre en mémorisant les mesures correspondant aux profondeurs successives détectées par le capteur de profondeur 38. Lorsque le terrain est plus dur, le temps mis pour forer 1 cm peut être important. La détermination des profondeurs successives en relation avec les mesures des paramètres est donc aléatoire. Dans ce cas, on peut effectuer des mesures pour des intervalles de temps prédéterminés et affecter à chaque profondeur prédéterminée une valeur moyennée des mesures faites pour les intervalles de temps correspondant à cette profondeur. De toute manière, dans la mémoire 44, on stocke en temps réel des mesures des quatre paramètres associées à une profondeur.To obtain significant measurements of the parameters, for steps of depth of the order of 1 cm, two techniques can be used. When the ground is not too hard, the depth step of 1 cm can be implemented by memorizing the measurements corresponding to the successive depths detected by the depth sensor 38. When the ground is harder, the time taken to drill 1 cm can be important. The determination of successive depths in relation to the measurements of the parameters is therefore random. In this case, it is possible to carry out measurements for predetermined time intervals and to assign to each predetermined depth an average value of the measurements made for the time intervals corresponding to this depth. In any case, in memory 44, measurements of the four parameters associated with a depth are stored in real time.

Sur la figure 4, les courbes 4a à 4d montrent des valeurs de paramètres P, C, Vr et Vp pour différentes profondeurs telles qu'elles sont enregistrées en temps réel.In FIG. 4, curves 4a to 4d show values of parameters P, C, V r and V p for different depths as they are recorded in real time.

Selon l'invention, à partir des mesures des quatre paramètres, on calcule deux variables représentatives de la qualité du sol. Ces variables peuvent être en nombres différents et calculées selon des formules différentes. Dans l'exemple particulier décrit, la première variable CM est la variation du couple moyenné qui représente la valeur moyennée du couple sur une certaine période. On comprend que, plus cette variable CM est faible, plus la force nécessaire pour forer le sol est constante, c'est-à-dire plus le sol aura des propriétés de dureté homogène.According to the invention, from the measurements of the four parameters, two variables representative of the quality of the soil are calculated. These variables can be in different numbers and calculated according to different formulas. In the particular example described, the first variable C M is the variation of the average torque which represents the average value of the couple over a certain period. It is understood that, the lower this variable C M , the more constant the force necessary to drill the soil, that is to say the more the soil will have properties of homogeneous hardness.

La deuxième variable choisie est connue sous le nom de coefficient de Sommerton. Elle est donnée par la formule suivante : S = P V r V p . The second variable chosen is known as the Sommerton coefficient. It is given by the following formula: S = P V r V p .

Plus ce coefficient S est élevé, plus le sol est dur.The higher this coefficient S, the harder the soil.

Selon le procédé de l'invention, on détecte, pour les profondeurs successives dans les valeurs des variables CM et S, une succession des valeurs de ces variables correspondant à des qualités de terrain acceptables pour constituer l'ancrage des pieux. Par exemple, pour la variable CM, ce critère sera que ce paramètre soit inférieur à une première valeur prédéterminée V1. En revanche, pour la deuxième variable S, le critère sera que cette variable soit supérieure à une valeur prédéterminée V2.According to the method of the invention, for the successive depths in the values of the variables C M and S, a succession of the values of these variables corresponding to acceptable qualities of ground to constitute the anchoring of the piles is detected. For example, for the variable C M , this criterion will be that this parameter is less than a first predetermined value V 1 . On the other hand, for the second variable S, the criterion will be that this variable is greater than a predetermined value V 2 .

Au fur et à mesure de l'acquisition et du stockage dans la mémoire 44 des valeurs de paramètre, on calcule les variables CM et S pour chaque profondeur. Les sous-programmes nécessaires à ces calculs sont stockés dans la mémoire 48. Ces variables sont calculées dans la mémoire 46 et stockées à nouveau dans la mémoire de données 44. L'unité centrale compare les valeurs des variables CM et S aux valeurs prédéterminées V1 et V2. Si les deux valeurs de variables sont conformes aux critères retenus pour la profondeur considérée, on incrémente un compteur 50 comme cela est représenté sur la figure 3 après l'étape de comparaison 52. En revanche, si l'un des deux critères retenus n'est pas respecté à l'étape 52, le compteur 50 est remis à zéro par 54.As the acquisition and storage of the parameter values in the memory 44, the variables C M and S are calculated for each depth. The subroutines necessary for these calculations are stored in the memory 48. These variables are calculated in the memory 46 and stored again in the data memory 44. The central unit compares the values of the variables C M and S with the predetermined values V 1 and V 2 . If the two values of variables conform to the criteria retained for the depth considered, a counter 50 is incremented as shown in FIG. 3 after the comparison step 52. On the other hand, if one of the two criteria retained does not is not respected in step 52, the counter 50 is reset to zero by 54.

Pour considérer que le fond du forage correspond aux conditions requises, on détermine à l'avance une profondeur d'ancrage dans un terrain dur qui dépend le plus souvent du diamètre du forage lui-même. Cette profondeur d'ancrage L figurée sur la figure 4 peut donc se convertir en un certain nombre de pas de profondeur unitaire. Lorsque le compteur 50 est incrémenté à une valeur correspondant au nombre N de pas de profondeur associé à la différence de profondeur L, ce qui est détecté à l'étape 56, le fond du forage effectivement réalisé pénètre de la profondeur L requise dans un sol dur. On peut alors procéder à l'arrêt de la machine de forage puisque les conditions d'ancrage requises sont atteintes.To consider that the bottom of the borehole corresponds to the required conditions, an anchoring depth in hard ground is determined in advance, which most often depends on the diameter of the borehole itself. This anchoring depth L shown in Figure 4 can therefore be converted into a number of unit depth steps. When the counter 50 is incremented to a value corresponding to the number N of depth steps associated with the difference in depth L, which is detected in step 56, the bottom of the drilling actually carried out penetrates the required depth L into a soil hard. The drilling machine can then be stopped since the required anchoring conditions are met.

On procède alors à l'introduction du béton ou du coulis dans le forage qui vient d'être réalisé pour obtenir le pieu foré.We then proceed to the introduction of concrete or grout into the borehole which has just been carried out to obtain the bored pile.

On comprend que, lors de la réalisation de chaque pieu moulé par la technique décrite précédemment, il est possible de garder les enregistrements du type de ceux représentés sur la figure 4 réalisés pour les quatre paramètres P, C, Vr et Vp et pour les valeurs de variables CM et S. Le maître d'ouvrage pourra ainsi prouver que le pieu moulé a été effectivement réalisé dans les conditions prévues par le cahier des charges.It is understood that, during the production of each pile molded by the technique described above, it is possible to keep the records of the type of those represented in FIG. 4 produced for the four parameters P, C, V r and V p and for the values of variables C M and S. The contracting authority will thus be able to prove that the molded pile was actually produced under the conditions provided for in the specifications.

Claims (10)

  1. A method of making a pile bored in hard ground using a boring machine, characterised in that it comprises the following steps:
    - fitting the boring machine with sensors for measuring dynamic characteristics of the boring tool and comprising at least some of the following characteristics: tool torque, speed of penetration of the tool, speed of rotation of the tool, thrust exerted on the tool;
    - acquiring the measurements made by said sensors and storing them progressively as they are being acquired for successive depths, each corresponding to a predetermined depth increment;
    - calculating, for each depth and from the stored measurements, at least a first variable representative of the quality of the ground encountered, and storing successive values of the first variable for the successive depths as they are calculated;
    - processing the successive values of said variable in order to find a substantially continuous succession of values of the variable in the successive values of said variable which succession corresponds to ground of acceptable quality at successive depths corresponding to a predetermined depth difference; and
    - interrupting boring once said substantially continuous succession of acceptable values has been detected for said predetermined depth difference.
  2. A method of making a bored pile according to claim 1, characterised in that:
    - calculating, for each depth and from the stored measurements, a second variable representative of the quality of the ground encountered, and storing successive values of the second variable for the successive depths;
    - processing the successive values of said first and second variables in order to find a substantially continuous succession of values for each of said variables in the successive values of each of said variables which succession corresponds to granite of acceptable quality at successive depths corresponding to the same predetermined depth difference; and
    - interrupting boring once said substantially continuous succession of acceptable values has been detected for the said same predetermined depth difference.
  3. A method according to claim 1 or claim 2, characterised in that the measured value of each parameter is calculated by measuring said parameter at predetermined time intervals and in allocating a parameter value to each determined depth, where said value is equal to the mean of the measurements performed at those ones of said time intervals which correspond to said depth.
  4. A method according to claim 2, characterised in that said first variable is the mean value of the tool torque, and said second variable is a function of the thrust, the speed of penetration of the tool, and the speed of rotation of the tool.
  5. A method according to claim 4, characterised in that said second variable is calculated using the following formula: S = P V r V p where P is thrust, Vr is speed of rotation, and Vp is speed of penetration.
  6. A method according to claim 5, characterised in that the value of said first variable is considered as being acceptable when it is less than a predetermined value, and the value of said second variable is considered as being acceptable when it is greater than a predetermined value.
  7. A machine for making a pile bored in hard ground, the machine comprising a boring tool fixed at the bottom end of a drill string and means for causing the drill string to rotate and to be driven into the soil, the machine being characterised in that it further comprises:
    - sensors for measuring dynamic characteristics of the boring tool, said characteristics comprising at least some of the following characteristics: tool torque, speed of penetration of the tool, speed of rotation of the tool, and thrust exerted on the tool;
    - means for storing the measurements made by said sensors as they are acquired for successive depths corresponding to a predetermined depth increment;
    - means for calculating for each depth and on the basis of the stored measurements at least a first variable representative of the quality of the ground encountered, and means for storing successive values of the first variable for the successive depths as they are calculated;
    - means for processing the successive values of said variable in order to find a substantially continuous succession of values of the variable in the successive values of said variable which succession corresponds to acceptable ground quality at successive depths corresponding to a predetermined depth difference; and
    - means for interrupting boring when said substantially continuous succession of acceptable values has been detected for said predetermined depth difference.
  8. A machine for making a bored pile according to claim 7, characterised in that it further comprises:
    - for each depth, means for calculating from the stored measurements a second variable representative of the quality of the ground encountered and for storing successive values of the second variable for the successive depths;
    - means for processing the successive values of said first and second variables in order to find a substantially continuous succession of values for each of said variables in the successive values of each of said variables which succession corresponds to granite of acceptable quality at successive depths corresponding to the same predetermined depth difference; and
    - means for interrupting boring when said substantially continuous succession of acceptable values has been detected for said same predetermined depth difference.
  9. A machine according to claim 7 and claim 8, characterised in that the measured value of each parameter is calculated by measuring said parameter at predetermined time intervals and by allocating a value of the parameter to a determined depth where said value is equal to the mean value of the measurements performed at those ones of said time intervals which correspond to said depth.
  10. A machine according to claim 8, characterised in that said first variable is the mean value of the tool torque, and said second variable is a function of the thrust, the speed of penetration of the tool, and the speed of rotation of the tool.
EP02290128A 2001-02-01 2002-01-18 Method and apparatus for making drilled piles in hard ground Expired - Lifetime EP1229172B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0101353A FR2820155B1 (en) 2001-02-01 2001-02-01 PROCESS AND MACHINE FOR THE PRODUCTION OF PILE DRILLS ON HARD GROUND
FR0101353 2001-02-01

Publications (2)

Publication Number Publication Date
EP1229172A1 EP1229172A1 (en) 2002-08-07
EP1229172B1 true EP1229172B1 (en) 2004-04-28

Family

ID=8859496

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290128A Expired - Lifetime EP1229172B1 (en) 2001-02-01 2002-01-18 Method and apparatus for making drilled piles in hard ground

Country Status (7)

Country Link
EP (1) EP1229172B1 (en)
JP (1) JP3830395B2 (en)
AT (1) ATE265582T1 (en)
DE (1) DE60200403D1 (en)
ES (1) ES2220877T3 (en)
FR (1) FR2820155B1 (en)
HK (1) HK1050227B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809708B2 (en) * 2006-04-07 2011-11-09 日特建設株式会社 Ground judgment and crack judgment method and device when drilling with hydraulic down-the-hole hammer
ATE428043T1 (en) * 2007-01-04 2009-04-15 Bauer Maschinen Gmbh METHOD AND DEVICE FOR CREATING A HOLE IN THE GROUND BY DISPLACEMENT DRILLING
EP4065774A2 (en) * 2019-11-29 2022-10-05 Jammy Life GmbH Method and device for the layer-by-layer filling and compaction of cohesive building materials in boreholes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886754A (en) * 1973-07-27 1975-06-03 Lee A Turzillo Method of extending augered pile cavity through rock or like obstruction
FR2647849B1 (en) * 1989-05-31 1995-12-29 Soletanche METHOD OF CHARACTERIZING A LAYER
JPH06299531A (en) * 1993-04-13 1994-10-25 Kokudo Kiso:Kk Method and device of measuring support ground soil properties
US6109368A (en) * 1996-03-25 2000-08-29 Dresser Industries, Inc. Method and system for predicting performance of a drilling system for a given formation

Also Published As

Publication number Publication date
HK1050227A1 (en) 2003-06-13
ATE265582T1 (en) 2004-05-15
DE60200403D1 (en) 2004-06-03
FR2820155A1 (en) 2002-08-02
ES2220877T3 (en) 2004-12-16
HK1050227B (en) 2004-11-26
EP1229172A1 (en) 2002-08-07
FR2820155B1 (en) 2003-04-25
JP2002285781A (en) 2002-10-03
JP3830395B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
EP0308327B1 (en) Method for determining the wear of a tool cutter while drilling rock formations
FR2570757A1 (en) METHOD AND DEVICE FOR ESTIMATING THE TRAINING CHARACTERISTICS OF THE FORMATION EXPOSED AT THE BOTTOM OF A HOLE
FR2564980A1 (en) INSTANT ACOUSTIC DIAGRAPHY METHOD IN A WELLBORE
US4843875A (en) Procedure for measuring the rate of penetration of a drill bit
FR2608208A1 (en) METHOD FOR MONITORING ROTARY WELL DRILLING OPERATIONS
FR2611804A1 (en) METHOD FOR CONTROLLING WELL DRILLING OPERATIONS
CA2209056C (en) Method and system for real-time estimation of at least one parameter related to the displacement of a drill bit
FR2562147A1 (en) METHOD OF OPTIMIZING THE MANEUVER SPEED OF A DRILL ROD TRAIN
EP1229172B1 (en) Method and apparatus for making drilled piles in hard ground
FR2659387A1 (en) Method for estimating the pore pressure of an underground formation
CA2933504C (en) Method for detecting a drilling malfunction
FR2674284A1 (en) PROBE FOR DETERMINING, IN PARTICULAR, THE INJECTIVITY OF A PETROFLIER WELL AND METHOD OF MEASURING THE SAME.
JP2010133140A (en) Rotary penetrating pile construction system
EP2631367A2 (en) Drilling machine for manufacturing posts including a penetrometric probe
JP7076100B2 (en) How to identify the stratum
EP3728740A1 (en) Soil compaction method using a laser scanner
FR2797466A1 (en) Method, for measuring parameter in well at pre-determined depths, includes sliding down tube in well, inserting probe, with probe moving slowly upwards with tube between measurements
FR2647849A1 (en) METHOD OF CHARACTERIZING A LAYER OF FIELD
JP2563089B2 (en) Automatic penetration test method
OA10252A (en) Instant acoustic logging method in a wellbore
JP2004132103A (en) Penetration testing machine and automatic calculation method for conversion n-value
JPH0119101B2 (en)
FR2857096A1 (en) Determining orientation of a drill bit in rocky ground by making images of the shaft with and without the drill bit and indexing them relative to each other and reference data
BE625776A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021118

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040428

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60200403

Country of ref document: DE

Date of ref document: 20040603

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040729

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1050227

Country of ref document: HK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2220877

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050118

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050131

BERE Be: lapsed

Owner name: *CIE DU SOL

Effective date: 20050131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051216

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070119

EUG Se: european patent has lapsed
BERE Be: lapsed

Owner name: *CIE DU SOL

Effective date: 20050131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: COMPAGNIE DU SOL

Free format text: COMPAGNIE DU SOL#6 RUE DE WATFORD#92000 NANTERRE (FR) -TRANSFER TO- COMPAGNIE DU SOL#6 RUE DE WATFORD#92000 NANTERRE (FR)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130114

Year of fee payment: 12

Ref country code: ES

Payment date: 20130121

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151224

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20181220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181220

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131