EP0308327B1 - Method for determining the wear of a tool cutter while drilling rock formations - Google Patents

Method for determining the wear of a tool cutter while drilling rock formations Download PDF

Info

Publication number
EP0308327B1
EP0308327B1 EP88402319A EP88402319A EP0308327B1 EP 0308327 B1 EP0308327 B1 EP 0308327B1 EP 88402319 A EP88402319 A EP 88402319A EP 88402319 A EP88402319 A EP 88402319A EP 0308327 B1 EP0308327 B1 EP 0308327B1
Authority
EP
European Patent Office
Prior art keywords
tool
wear
weight
curve
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88402319A
Other languages
German (de)
French (fr)
Other versions
EP0308327A1 (en
Inventor
Hubert Fay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0308327A1 publication Critical patent/EP0308327A1/en
Application granted granted Critical
Publication of EP0308327B1 publication Critical patent/EP0308327B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B12/00Accessories for drilling tools
    • E21B12/02Wear indicators
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions

Definitions

  • the present invention relates to a method for determining the wear of cutting elements of a tool during drilling of a rock formation.
  • US-A-3,782,190 deals with the detection of faults on the rolling bearings of a tricone bit tool.
  • surface sensors 33 and 36, Fig. 1 measure the torque at the rotation table (T) and the weight suspended from the drilling hook.
  • the method consists in using an analog module to calculate the T / WD ratio. W being the weight on the tool, deducted from the hook load in a conventional manner, D being the diameter of the drilling tool.
  • Patent EP-A-0.168.996 presents a device for detecting events during drilling, such as in particular ruptures on the drilling tools.
  • said first series of measurements from which the first portion of the curve is obtained is carried out on a new tool practically without wear.
  • the quantity linked to said portions of curves depends on the value of the mean radius of curvature of said portion of curves.
  • the portion of the curve obtained can be considered to be more representative of actual wear.
  • the weight value is scanned in stages in the vicinity of its target value and the corresponding values of W and T are determined during this sweep.
  • the invention makes it possible to obtain a determination of the wear of cutting members such as, in particular, the teeth of a tool. It therefore applies perfectly to tools with knurled teeth with countersunk teeth and spikes, or to drilling tools having a relationship of the same type of the applied torque (T) as a function of the weight (W), which is the case, for example. example, PDC tools (Polycrystalline Diamond Compact).
  • the present invention makes it possible to determine the wear of a tool from the measurement of the torque on the tool and of the weight on the tool.
  • the present invention is concerned with the determination of the parameters u and v.
  • K1 being a constant, for a given tool, function of the decentering of the axis of the wheels relative to the axis of the tool, R the current radius of a wheel and ⁇ ′ the complementary angle of the half-angle at top of the same wheel.
  • equation (12) knowing that the penetration ⁇ is related to the weight on the tool according to Cheatham and Gnirk by relationship: with: K2 and K3, parameters depending on the geometrical characteristics of the teeth, the internal friction angle of the formation and, to a small extent, the speed of rotation N. ⁇ , compressive stress at differential pressure P. ⁇ , width of the flat surface of the worn teeth.
  • Equation (14) is written:
  • FIG. 3 represents the experimental curves 15, 16, 17 of the torque (T) as a function of the weight on the tool (W).
  • Curve 15 corresponds to a new tool, curve 16 to the same type of tool with a degree of wear T4 (the designation of the tool in this state being: J3DT4).
  • Curve 17 corresponds to the same tool type with a degree of wear T8 (the tool in this state being designated by J3DT8).
  • the abscissa of FIG. 3 represents the weight exerted on the tool expressed in tonnes and on the ordinate, the torque T expressed in m.daN.
  • Table 1 gives for each curve the designation of the tool and the values of u * and v *.
  • the present invention will now be described in its practical implementation on a drilling site and in particular in the implementation of the determination of the wear of the cutting members.
  • FIG. 1 diagrams the environment allowing the value of the wear criterion v or f (v) to be obtained, the function f corresponding to an additional processing of the parameter v, for example to present the results in a simple manner to the operator.
  • the invention mainly requires knowledge of the two background parameters, weight on the tool (W) and torque on the tool (T).
  • a weight sweep is carried out in stages on the tool.
  • the scanning range and the number of steps must be sufficient.
  • the duration of each weight step is determined by establishing a stabilized operating regime.
  • the reference 1 represents a well drilled using a drilling tool of the tricone type 2 fixed to the end of a drill string 3.
  • the weight and torque measurements exerted on the tool 2 can be transmitted to the surface, for example by the drilling fluid channel, or by any other means (electric cable, etc.) and to the computer 4 by a power line symbolized by the arrow 5.
  • the computer supplies the operator with the value of the wear criterion according to the invention.
  • FIG. 2 shows side by side an evolution curve 6 of the weight W acting on the tool as a function of the depth PR and a curve 7 of evolution of the torque T acting on the tool as a function of the PR depth.
  • the depth scales PR of curves 6 and 7 are identical and correspond to each other.
  • the weight and torque measurements exerted on the tool can be carried out in a manner known to those skilled in the art, for example using the method known as M.W.D. ("Measurement While Drilling").
  • the variation of the weight exerted on the tool can be obtained in a conventional manner by supporting more or less the drill string from the surface.
  • Parameter measurements are made as a function of depth and / or time. It is recommended to be able to perform at least five steps per test, which leads to an overall test duration of around fifteen minutes.
  • FIG. 2 schematically represents a test comprising five stages.
  • the level of the bearing 8 corresponds to the weight on the tool being drilled from which the operator decides to trigger the test.
  • the test includes a reduction in the weight on the tool to arrive at level 9 and then an increase in four other levels, respectively 10, 11, 12 and 13 corresponding to an increase in weight on the tool.
  • the first series of measurements carried out at the bottom of the well, at the level of the tool, on the torque and the weight corresponds to the beginning of the attack of the rock by the tool, that is to say that its wear can to be considered practically zero.
  • the series of measurements made during the first test period is transmitted to the surface of the computer, which establishes from this data a portion of the curve representative of the variations in torque as a function of variations in weight.
  • the computer then keeps in memory this curve corresponding to the test period.
  • the operator triggers a new test period, causing a step change in the weight applied to the tool, the computer again receives a new series of measurements from which he can obtain the curve representative of the variations of T as a function of W.
  • the measurements made at the bottom of the well may present some inaccuracies, it is therefore necessary, from these measurements, to determine an average curve, for example by the method of least squares, and to deduce therefrom the average concavity of this curve represented by the mean radius of curvature, or a quantity linked to this mean value. Then, the determination of the wear can be done, either by controlling the evolution of the average concavity according to the progress of the drilling, or by composing the average concavity with average concavities established during reference tests.
  • this surface measurement can possibly be used in the context of the present invention.
  • the characteristics of the formation crossed, of the tool, the values of the hydraulic conditions and of N can be taken into account to normalize the value of the parameter v and / or that of the criterion.
  • the abscissa of FIG. 4 expresses the weight exerted on the tool in tonnes and the ordinate the torque exerted on the tool expressed in m.daN.
  • Curve 18 is located between dimensions 1320 and 1347 m, curve 19 between dimensions 1460 and 1463.5 m and curve 20 between dimensions 1559 and 1566.5 m.
  • the method according to the present invention makes it possible to avoid drilling with worn tools or to reassemble tools too early.
  • the knowledge of the degree of wear of the tools that it allows plays a direct role in reducing the cost of drilling.

Description

La présente invention concerne une méthode de détermination de l'usure d'organes de découpe d'un outil en cours de forage d'une formation rocheuse.The present invention relates to a method for determining the wear of cutting elements of a tool during drilling of a rock formation.

Les techniques de forage des puits pétroliers se sont considérablement développés durant ces dernières décennies et ont donc entraîné une évolution des outils de forage qui servent à découper les roches.Oil well drilling techniques have developed considerably in recent decades and have therefore led to an evolution in the drilling tools used to cut rocks.

Les outils de forage les plus utilisés dans ce domaine sont les trépans, notamment ceux du type à molettes qui cisaillent, fragmentent et broient la roche quand on fait tourner le train de tiges. Cependant, ces outils ont des durées de vie relativement courtes de 15 à 20 heures et il est nécessaire de contrôler leur usure pour prévoir leur remplacement. Des problèmes d'usure se présentent également dans le cas des outils P.D.C. (Polycrystalline Diamond Compact), mais de façon moins critique.The most commonly used drilling tools in this field are drill bits, especially those of the wheel type which shear, fragment and grind the rock when the drill string is rotated. However, these tools have relatively short lifetimes of 15 to 20 hours and it is necessary to check their wear to plan their replacement. Wear problems also arise in the case of P.D.C. (Polycrystalline Diamond Compact), but less critically.

Le brevet US-A-3.782.190 traite de la détection de défectuosités sur les paliers de roulement d'un outil tricône. Pour cela, des capteurs de surface (33 et 36, Fig. 1) mesurent le couple à la table de rotation (T) et le poids suspendu au crochet de forage. La méthode consiste à utiliser un module analogique pour calculer le rapport T/WD. W étant le poids sur l'outil, déduit de la charge au crochet de manière conventionnelle, D étant le diamèt de l'outil de forage.US-A-3,782,190 deals with the detection of faults on the rolling bearings of a tricone bit tool. For this, surface sensors (33 and 36, Fig. 1) measure the torque at the rotation table (T) and the weight suspended from the drilling hook. The method consists in using an analog module to calculate the T / WD ratio. W being the weight on the tool, deducted from the hook load in a conventional manner, D being the diameter of the drilling tool.

On connait déjà par le brevet US-A-4.627.276 une méthode dans laquelle on détermine des valeurs moyennes de la vitesse d'avancement d'un outil de forage, de la vitesse de rotation et du poids sur l'outil, pour en déduire l'efficacité du forage, ainsi que la résistance au cisaillement de la roche dans laquelle s'effectue le forage.We already know from US-A-4,627,276 a method in which average values of the advancement speed of a drilling tool, the speed of rotation and the weight on the tool are determined, to deduce the efficiency of drilling, as well as the shear strength of the rock in which drilling is carried out.

Le brevet EP-A-0.168.996 présente quant à lui un dispositif de détection d'évènements en cours de forage tels que notamment des ruptures sur les outils de forage.Patent EP-A-0.168.996 presents a device for detecting events during drilling, such as in particular ruptures on the drilling tools.

Cependant, aucun de ces documents ne présente une méthode de détermination de l'usure progressive des organes de découpe, tels que notamment les dents d'un trépan à molettes. La méthode de la présente invention, simple et commode, utilise la mesure de deux paramètres de fond, le poids sur l'outil W et le couple sur l'outil T ; le degré d'usure peut être obtenu à tout moment par l'opérateur quand il le désire.However, none of these documents presents a method for determining the progressive wear of the cutting members, such as in particular the teeth of a rotary cutter bit. The method of the present invention, simple and convenient, uses the measurement of two background parameters, the weight on the tool W and the torque on the tool T; the degree of wear can be obtained at any time by the operator when he wishes.

La présente invention a donc pour objet une méthode de détermination de l'usure d'organes de découpe d'un outil en cours de forage d'une formation rocheuse, par laquelle on mesure le poids W appliqué sur l'outil et le couple T nécessaire à la rotation dudit outil, le poids sur l'outil W et le couple T étant liés par une relation du type T = uW + vWα dans laquelle u et v sont des paramètres et α est un coefficient dépendant entre autre de la formation, caractérisée en ce que

  • on applique une succession de valeurs de poids sur l'outil en cours de forage pendant sur une première période de test,
  • on effectue une première série de mesures, au niveau de l'outil, sur le couple et le poids pendant la première période de test,
  • on établit à partir de ladite première série de mesures une portion de courbe représentative des variations du couple en fonction des variations du poids,
  • on garde en mémoire ladite portion de courbe établie pendant la première période de test,
  • on réalise au cours de l'avance du forage une succession de périodes de test, pour chacune desquelles on établit ladite portion de courbe représentative correspondante,
  • on compare la portion de courbe obtenue pour une période de test donnée avec au moins une portion de courbe précédemment obtenue,
  • on en déduit le degré d'usure des organes de découpe en fonction de la variation d'au moins une grandeur liée à la concavité desdites portions de courbe, par exemple le rayon de courbure moyen desdites portions de courbe, la diminution de la concavité de la courbe indiquant une augmentation de l'usure de l'outil, toutes conditions égales par ailleurs.
The present invention therefore relates to a method for determining the wear of cutting elements of a tool during drilling of a rock formation, by which the weight W applied to the tool and the torque T are measured. necessary for the rotation of said tool, the weight on the tool W and the torque T being linked by a relation of the type T = uW + vW α in which u and v are parameters and α is a coefficient depending among other things on the formation , characterized in that
  • a series of weight values are applied to the tool being drilled during a first test period,
  • a first series of measurements is made, at the tool level, on the torque and the weight during the first test period,
  • a portion of the curve representative of the variations in torque as a function of the variations in weight is established from said first series of measurements,
  • said portion of the curve established during the first test period is kept in memory,
  • a series of test periods are carried out during the advance of the drilling, for each of which said portion of the corresponding representative curve is established,
  • the portion of the curve obtained for a given test period is compared with at least one portion of the curve previously obtained,
  • the degree of wear of the cutting members is deduced therefrom as a function of the variation of at least one quantity linked to the concavity of said curve portions, for example the mean radius of curvature of said curve portions, the decrease in the concavity of the curve indicating an increase in tool wear, all conditions being equal.

Selon un mode de réalisation préféré de la présente invention, ladite première série de mesures à partir de laquelle on obtient la première portion de courbe, est réalisée sur un outil neuf pratiquement sans usure.According to a preferred embodiment of the present invention, said first series of measurements from which the first portion of the curve is obtained, is carried out on a new tool practically without wear.

De manière à s'affranchir des imprécisions des mesures se répercutant sur la concavité, la grandeur liée auxdites portions de courbes dépend de la valeur du rayon de courbure moyen de ladite portion de courbe. En utilisant un rayon de courbure moyen, la portion de courbe obtenue peut être considérée comme plus représentative de l'usure réelle.In order to overcome the inaccuracies of the measurements having an effect on the concavity, the quantity linked to said portions of curves depends on the value of the mean radius of curvature of said portion of curves. By using an average radius of curvature, the portion of the curve obtained can be considered to be more representative of actual wear.

Selon un mode de réalisation particulier de l'invention, on détermine pour une période de test donnée au moins une fonction du paramètre v à partir, d'une part desdites portions de courbes liées aux périodes de tests précédents et d'autre part de la relation T = uW + vWα, et l'on déduit le degré d'usure des organes de découpe de l'outil par la diminution de ladite fonction du paramètre v.According to a particular embodiment of the invention, at least one function of the parameter v is determined for a given test period from, on the one hand, said portions of curves linked to the periods of previous tests and on the other hand from the relation T = uW + vW α , and the degree of wear of the cutting members of the tool is deduced by the reduction of said function of the parameter v.

Avantageusement, on effectue un balayage par paliers de la valeur du poids sur l'outil au voisinage de sa valeur de consigne et on détermine les valeurs correspondantes de W et T au cours de ce balayage.Advantageously, the weight value is scanned in stages in the vicinity of its target value and the corresponding values of W and T are determined during this sweep.

L'invention sera bien comprise en se référant à la description correspondant aux figures annexées, parmi lesquelles :

  • la figure 1 illustre schématiquement une méthode d'obtention du critère d'usure du trépan en fonction des paramètres poids exercé sur l'outil W et couple de rotation exercé sur l'outil T,
  • la figure 2 est une représentation schématique d'enregistrements effectués en fonction des mesures des paramètres T et W, et
  • les figures 3 et 4 montrent des courbes représentatives du couple (T) de rotation en fonction du poids exercé sur l'outil (W).
The invention will be better understood by referring to the description corresponding to the appended figures, among which:
  • FIG. 1 schematically illustrates a method for obtaining the drill bit wear criterion as a function of the parameters of the weight exerted on the tool W and the torque exerted on the tool T,
  • FIG. 2 is a schematic representation of recordings made as a function of the measurements of the parameters T and W, and
  • Figures 3 and 4 show representative curves of the torque (T) of rotation as a function of the weight exerted on the tool (W).

L'invention permet d'obtenir une détermination de l'usure d'organes de découpe tels que, notamment, les dents d'un outil. Elle s'applique donc parfaitement aux outils à molettes à dents fraisées et à picots, ou à des outils de forage présentant une relation de même type du couple appliqué (T) en fonction du poids (W), ce qui est le cas, par exemple, des outils P.D.C. (Polycrystalline Diamond Compact).The invention makes it possible to obtain a determination of the wear of cutting members such as, in particular, the teeth of a tool. It therefore applies perfectly to tools with knurled teeth with countersunk teeth and spikes, or to drilling tools having a relationship of the same type of the applied torque (T) as a function of the weight (W), which is the case, for example. example, PDC tools (Polycrystalline Diamond Compact).

La présente invention permet de déterminer l'usure d'un outil à partir de la mesure du couple sur l'outil et du poids sur l'outil.The present invention makes it possible to determine the wear of a tool from the measurement of the torque on the tool and of the weight on the tool.

On a déjà utilisé dans plusieurs méthodes de détermination d'événements, comme par exemple des défauts au niveau des roulements, la variation du couple sur l'outilWe have already used in several methods of determining events, such as for example faults in the bearings, the variation of the torque on the tool

Ceci est notamment le cas dans le brevet EP-A-0.168.996 où l'on indique que ces deux paramètres peuvent dépendre l'un de l'autre suivant la relation : T = uW + vW²

Figure imgb0001
De manière plus générale, cette équation peut s'écrire sous la forme : T = uW + vW α
Figure imgb0002
avec α coefficient dépendant entre autre paramètre ,de la formation rocheuse et dont la valeur peut être prise égale à 2.This is notably the case in patent EP-A-0.168.996 where it is indicated that these two parameters can depend on each other according to the relationship: T = uW + vW²
Figure imgb0001
More generally, this equation can be written in the form: T = uW + vW α
Figure imgb0002
with α coefficient depending among other parameters, on the rock formation and whose value can be taken equal to 2.

Cependant, les développements de cette méthode dans le document considéré s'intéresse à un calcul sur un ensemble limité des valeurs enregistrées.However, the developments of this method in the document considered are interested in a calculation on a limited set of the recorded values.

La présente invention s'intéresse, quant à elle, à la détermination des paramètres u et v.The present invention is concerned with the determination of the parameters u and v.

Afin de mener à bien cette démarche, on considère tout d'abord une approche théorique.In order to carry out this approach, we first consider a theoretical approach.

On se réfèrera aux publications suivantes :

  • H.W.R. Wardlaw - Optimization of Rotary Drilling Parameters - Dissertation - University of Texas, 1971.
  • T.M. Warren - Factors Affecting Torque for a Tricone Bit - S.P.E. 11 994 - 1983.
  • P.F. Gnirk and J.B. Cheatham - A Theoretical Description of Rotary Drilling for Idealized Down-Hole Bit-Rock Conditions - S.P.E. Journal, Dec. 1969.
Refer to the following publications:
  • HWR Wardlaw - Optimization of Rotary Drilling Parameters - Dissertation - University of Texas, 1971.
  • TM Warren - Factors Affecting Torque for a Tricone Bit - SPE 11 994 - 1983.
  • PF Gnirk and JB Cheatham - A Theoretical Description of Rotary Drilling for Idealized Down-Hole Bit-Rock Conditions - SPE Journal, Dec. 1969.

On définit tout d'abord un certain nombre de notations utilisées ci-après :
C₁: Demi-largeur des dents de l'outil de forage (à l'enfoncement)
D : Diamètre de l'outil
E : Module d'Young de la formation
m : Constante sans dimension (fonction du type de formation)
N : Vitesse de rotation de l'outil
n : Méplat des dents usées
P : Pression différentielle sur le front de taille
Q : Débit de boue
r : Distance d'un éclat de roche par rapport à l'axe de l'outil
R : Rayon d'une molette
S : Contrainte de cisaillement de la roche à la rupture
T : Couple sur l'outil
V : Vitesse de la boue au niveau du front de taille
VA : Vitesse instantanée d'avancement de l'outil
W : Poids sur l'outil
Z : Masse spécifique de la boue
α : Exposant du poids dans la relation T=uW + vWα
γ

Figure imgb0003
: Fraction de la surface du front de taille enlevée par les dents de l'outil
δ : Pénétration des dents dans la formation
η : Facteur d'efficacité de la boue au niveau du front de taille
λ
Figure imgb0004
: Fraction de la surface du front de taille supportant le poids W
µ : Viscosité dynamique de la boue
ϑ : Angle définissant la géométrie d'un copeau
We first define a number of notations used below:
C₁: Half-width of the teeth of the drilling tool (when driving in)
D: Tool diameter
E: Young module of training
m: Dimensionless constant (depending on the type of training)
N: Tool rotation speed
n: Flat of worn teeth
P: Differential pressure on the working face
Q: Sludge flow
r: Distance of a rock chip from the tool axis
R: Radius of a dial
S: Shear stress of the rock at break
T: Torque on the tool
V: Speed of the mud at the cutting face
V A : Instantaneous tool forward speed
W: Weight on the tool
Z: Specific mass of the mud
α: Exponent of the weight in the relation T = uW + vW α
γ
Figure imgb0003
: Fraction of the face of the face removed by the teeth of the tool
δ: Penetration of teeth in formation
η: Factor of mud efficiency at the cutting face
λ
Figure imgb0004
: Fraction of the surface of the working face supporting the weight W
µ: Dynamic viscosity of the mud
ϑ: Angle defining the geometry of a chip

En utilisant les hypothèses de Wardlaw et en intégrant le couple élémentaire le long du rayon r, l'expression du couple global T s'écrit : T = Cosϑ Sinϑ 8

Figure imgb0005
Using Wardlaw's hypotheses and integrating the elementary couple along the radius r, the expression of the global couple T is written: T = Cosϑ Sinϑ 8
Figure imgb0005

Par ailleurs, en appelant γ1

Figure imgb0006
la fraction de surface du front de taille correspondant à des éclats de roche se libérant de la pression différentielle P et en appelant de même celle correspondant à des éclats broyés sous équipression, soit γ3
Figure imgb0007
dans le cas où l'influence du débit de la boue et son efficacité de la boue η au niveau du front de taille sont prépondérants, soit γ₂
Figure imgb0008
, la pénétration moyenne des dents δ est donnée par : δ = γ₁ + γ i V A N
Figure imgb0009
avec i = 2,3 suivant le mode de fonctionnement considéré, d'où : T = γ₁ + γ i 1 Sin ϑ Cos ϑ SD² 8 V A N
Figure imgb0010
et en remplaçant VA par son expression en fonction du mode de forage considéré par Wardlaw, les expressions du couple s'écrivent :
Figure imgb0011
Figure imgb0012
Figure imgb0013
dans l'équation 7, m est une constante sans dimension, dépendant de la nature de la formation.By the way, by calling γ1
Figure imgb0006
the fraction of the surface area of the face corresponding to fragments of rock freeing from the differential pressure P and similarly calling that corresponding to fragments crushed under equipression, that is to say γ3
Figure imgb0007
in the case where the influence of the mud flow and its mud efficiency η at forehead level are preponderant, that is γ₂
Figure imgb0008
, the average penetration of the teeth δ is given by: δ = γ₁ + γ i V AT NOT
Figure imgb0009
with i = 2.3 depending on the operating mode considered, hence: T = γ₁ + γ i 1 Sin ϑ Cos ϑ SD² 8 V AT NOT
Figure imgb0010
and replacing V A by its expression according to the drilling mode considered by Wardlaw, the expressions of the couple are written:
Figure imgb0011
Figure imgb0012
Figure imgb0013
in equation 7, m is a dimensionless constant, depending on the nature of the formation.

En prenant l'exemple du premier mode de fonctionnement (équation 5), il est possible de montrer que le rayon de courbure de la courbe représentative augmente lorsque l'outil s'use, et donc que le terme v de l'équation 1 diminue.By taking the example of the first operating mode (equation 5), it is possible to show that the radius of curvature of the representative curve increases when the tool wears, and therefore that the term v of equation 1 decreases .

En effet l'équation 5 peut s'écrire : T = I 1 + j W²

Figure imgb0014
et si l'on se place sur cette courbe en dessous du point d'inflexion, c'est-à-dire pour W < 1 3j
Figure imgb0015
le rayon de courbure est donné par :
Figure imgb0016
Indeed equation 5 can be written: T = I 1 + j W²
Figure imgb0014
and if we place ourselves on this curve below the inflection point, that is to say for W < 1 3d
Figure imgb0015
the radius of curvature is given by:
Figure imgb0016

Sachant que la valeur du rapport T W

Figure imgb0017
est en général bien inférieure à 1, la variation de ρ lorsque l'outil s'use dépend principalement de celle de I. Or : I = 8 λ² C₁ D γ₁ γ₁ + γ₂ sin²β/2 sinβ 1 DP
Figure imgb0018
Knowing that the value of the report T W
Figure imgb0017
is generally much less than 1, the variation of ρ when the tool wears depends mainly on that of I. Now: I = 8 λ² C₁ D γ₁ γ₁ + γ₂ sin²β / 2 sinβ 1 DP
Figure imgb0018

Au fur et à mesure de l'usure des dents δ décroît (équation 14), donc C₁ décroît aussi puisque : C₁ = δtg ß/2

Figure imgb0019
par ailleurs la valeur de λ augmentant, I ne peut que décroître, ρ croître et donc v diminuer corrélativement.As the teeth wear δ decreases (equation 14), so C₁ also decreases since: C₁ = δtg ß / 2
Figure imgb0019
moreover, the value of λ increasing, I can only decrease, ρ increase and therefore v decrease correspondingly.

De même Warren propose comme équation du couple sur l'outil :

Figure imgb0020

K₁ étant une constante, pour un outil donné, fonction du décentrement de l'axe des molettes par rapport à l'axe de l'outil, R le rayon courant d'une molette et ϑ′ l'angle complémentaire du demi-angle au sommet de la même molette.Similarly Warren proposes as an equation for the torque on the tool:
Figure imgb0020

K₁ being a constant, for a given tool, function of the decentering of the axis of the wheels relative to the axis of the tool, R the current radius of a wheel and ϑ ′ the complementary angle of the half-angle at top of the same wheel.

L'intégration de l'équation (12) conduit à l'équation (13) :

Figure imgb0021

sachant que la pénétration δ est liée au poids sur l'outil d'après Cheatham et Gnirk par la relation :
Figure imgb0022

avec :
K₂ et K₃, paramètres fonction des caractéristiques géométriques des dents, de l'angle de frottement interne de la formation et, dans une faible mesure, de la vitesse de rotation N.
σ, contrainte de compression à la pression différentielle P.
η , largeur du méplat des dents usées.The integration of equation (12) leads to equation (13):
Figure imgb0021

knowing that the penetration δ is related to the weight on the tool according to Cheatham and Gnirk by relationship:
Figure imgb0022

with:
K₂ and K₃, parameters depending on the geometrical characteristics of the teeth, the internal friction angle of the formation and, to a small extent, the speed of rotation N.
σ, compressive stress at differential pressure P.
η, width of the flat surface of the worn teeth.

L'équation (14) s'écrit :Equation (14) is written:

Figure imgb0023

Donc pour un outil, une formation, des conditions hydrauliques et de forage donnés, lorsque l'outil s'use η augmente et, l'équation (15) montrant que la concavité de la courbe représentative diminue dans ce cas, la valeur du paramètre v de l'équation : T = uW + vW α.
Figure imgb0024
diminue elle aussi.
Figure imgb0023

So for a given tool, training, hydraulic and drilling conditions, when the tool wears η increases and, equation (15) showing that the concavity of the representative curve decreases in this case, the value of the parameter v of the equation: T = uW + vW α.
Figure imgb0024
decreases too.

Ainsi, selon la méthode de la présente invention, le degré d'usure d'un outil est estimé à l'aide d'un critère ou d'une grandeur liée à la concavité moyenne dépendant de la valeur du paramètre v défini par la relation : T = uW + vW α.

Figure imgb0025
relation dans laquelle u et v sont deux paramètres fonction du type d'outil, de la formation, des conditions hydrauliques, de la vitesse de rotation de l'outil, et où α est un coefficient de valeur numérique en général voisine de 2.Thus, according to the method of the present invention, the degree of wear of a tool is estimated using a criterion or a quantity linked to the mean concavity depending on the value of the parameter v defined by the relation : T = uW + vW α.
Figure imgb0025
relation in which u and v are two parameters depending on the type of tool, the formation, the hydraulic conditions, the speed of rotation of the tool, and where α is a coefficient of numerical value generally close to 2.

Afin d'appuyer cette conclusion théorique, des études expérimentales sur banc d'essais ont permis de confirmer et même de quantifier l'influence de l'usure des dents sur la valeur du paramètre v.In order to support this theoretical conclusion, experimental studies on a test bench made it possible to confirm and even to quantify the influence of tooth wear on the value of the parameter v.

Les conditions d'essais étaient :

  • diamètre des outils : 0,152 m (6")
  • formation : calcaire de Buxy
  • vitesse de rotation : 116 tr/min
  • pression de confinement : 90 bars
  • débit de la boue à l'eau : 400 l/min
Les résultats obtenus ont permis de tracer les courbes T = uW + vW α       avec α = 2
Figure imgb0026
par régression en utilisant la méthode des moindres carrés.The test conditions were:
  • tool diameter: 0.152 m (6 ")
  • formation: Buxy limestone
  • rotation speed: 116 rpm
  • confinement pressure: 90 bars
  • flow of mud to water: 400 l / min
The results obtained made it possible to draw the curves T = uW + vW α with α = 2
Figure imgb0026
by regression using the method of least squares.

Ces courbes sont représentées à la figure 3.These curves are shown in Figure 3.

Ainsi la figure 3 indique la diminution de la valeur de v pour un même type d'outil (J3D), en fonction de trois degrés d'usure différents (outil neuf, usure T4 et usure complète des dents T8) avec, du fait du choix des unités non normalisées : u* = 10³ u

Figure imgb0027
v* = 10⁷ v
Figure imgb0028
Thus Figure 3 shows the decrease in the value of v for the same type of tool (J3D), as a function of three different degrees of wear (new tool, wear T4 and complete wear of teeth T8) with, due to the choice of non-standard units: u * = 10³ u
Figure imgb0027
v * = 10⁷ v
Figure imgb0028

La figure 3 représente les courbes expérimentales 15, 16, 17 du couple (T) en fonction du poids sur l'outil (W). La courbe 15 correspond à un outil neuf, la courbe 16 au même type d'outil avec un degré d'usure T4 (la désignation de l'outil dans cet état étant : J3DT4).FIG. 3 represents the experimental curves 15, 16, 17 of the torque (T) as a function of the weight on the tool (W). Curve 15 corresponds to a new tool, curve 16 to the same type of tool with a degree of wear T4 (the designation of the tool in this state being: J3DT4).

La courbe 17 correspond au même type outil avec un degré d'usure T8 (l'outil dans cet état étant désigné par J3DT8).Curve 17 corresponds to the same tool type with a degree of wear T8 (the tool in this state being designated by J3DT8).

L'abscisse de la figure 3 représente le poids exercé sur l'outil exprimé en tonnes et en ordonnée, le couple T exprimée en m.daN.The abscissa of FIG. 3 represents the weight exerted on the tool expressed in tonnes and on the ordinate, the torque T expressed in m.daN.

Le tableau 1 donne pour chaque courbe la désignation de l'outil et les valeurs de u* et v*.

Figure imgb0029
Table 1 gives for each curve the designation of the tool and the values of u * and v *.
Figure imgb0029

Ainsi, il apparaît nettement que v décroît lorsque l'usure de l'outil augmente. Un examen des courbes montre bien que c'est la courbe 15 qui a la concavité la plus grande.Thus, it clearly appears that v decreases when the wear of the tool increases. An examination of the curves clearly shows that it is curve 15 which has the greatest concavity.

Il est donc vérifié que, pour un forage dont les conditions hydrauliques et la vitesse de rotation du train de tige varient peu et dont la lithologie des formations traversées n'est pas radicalement diversifiée, la valeur de v diminue au fur et à mesure que l'outil s'use. Il est donc possible de considérer cette valeur, ou toute autre fonction de v, comme représentant un critère d'usure des outils.It is therefore verified that, for a borehole whose hydraulic conditions and the speed of rotation of the rod train vary little and whose lithology of the formations crossed is not radically diversified, the value of v decreases as and when tool wears out. It is therefore possible to consider this value, or any other function of v, as representing a tool wear criterion.

Si par contre les conditions dont il vient d'être question varient de manière importante, il convient d'affecter v d'un facteur de pondération fonction des variations précédentes dont l'influence peut être déterminée par les relations 5, 6 et 7 et/ou par des essais de référence.If on the other hand the conditions which have just been mentioned vary significantly, it is advisable to assign v a weighting factor as a function of the preceding variations whose influence can be determined by the relationships 5, 6 and 7 and / or by reference tests.

La présente invention va maintenant être décrite dans sa réalisation pratique sur site de forage et notamment dans la mise en oeuvre de la détermination de l'usure des organes de découpe.The present invention will now be described in its practical implementation on a drilling site and in particular in the implementation of the determination of the wear of the cutting members.

La figure 1 schématise l'environnement permettant l'obtention de la valeur du critère d'usure v ou f(v), la fonction f correspondant à un traitement supplémentaire du paramètre v, par exemple pour présenter les résultats de manière simple à l'opérateur.FIG. 1 diagrams the environment allowing the value of the wear criterion v or f (v) to be obtained, the function f corresponding to an additional processing of the parameter v, for example to present the results in a simple manner to the operator.

L'invention nécessite principalement la connaissance des deux paramètres de fond, poids sur l'outil (W) et couple sur l'outil (T).The invention mainly requires knowledge of the two background parameters, weight on the tool (W) and torque on the tool (T).

Afin d'examiner les variations du couple sur l'outil, on effectue un balayage en poids par paliers sur l'outil. La plage de balayage et le nombre de paliers doivent être suffisants. La durée de chaque palier de poids est déterminé par l'établissement d'un régime de fonctionnement stabilisé.In order to examine the variations in torque on the tool, a weight sweep is carried out in stages on the tool. The scanning range and the number of steps must be sufficient. The duration of each weight step is determined by establishing a stabilized operating regime.

Sur la figure 1 la référence 1 représente un puits foré à l'aide d'un outil de forage du type tricône 2 fixé à l'extrémité d'un train de tiges de forage 3.In FIG. 1, the reference 1 represents a well drilled using a drilling tool of the tricone type 2 fixed to the end of a drill string 3.

Les mesures de poids et de couple s'exerçant sur l'outil 2 peuvent être transmises à la surface, par exemple par le canal du fluide de forage, ou par tout autre moyen (câble électrique, etc.) et au calculateur 4 par une ligne électrique symbolisée par la flèche 5.The weight and torque measurements exerted on the tool 2 can be transmitted to the surface, for example by the drilling fluid channel, or by any other means (electric cable, etc.) and to the computer 4 by a power line symbolized by the arrow 5.

Le calculateur fournit à l'opérateur la valeur du critère d'usure selon l'invention.The computer supplies the operator with the value of the wear criterion according to the invention.

Chaque fois que l'opérateur veut connaître la valeur du critère d'usure, il déclenche depuis la surface la procédure de test représentée sur la figure 2. Les valeurs de T et de W sont alors enregistrées, puis traitées et exploitées par le calculateur.Each time the operator wants to know the value of the wear criterion, he initiates from the surface the test procedure shown in Figure 2. The values of T and W are then recorded, then processed and used by the computer.

La figure 2 représente côte à côte une courbe d'évolution 6 du poids W s'exerçant sur l'outil en fonction de la profondeur PR et une courbe 7 d'évolution du couple T s'exerçant sur l'outil en fonction de la profondeur PR. Les échelles de profondeur PR des courbes 6 et 7 sont identiques et se correspondent mutuellement.FIG. 2 shows side by side an evolution curve 6 of the weight W acting on the tool as a function of the depth PR and a curve 7 of evolution of the torque T acting on the tool as a function of the PR depth. The depth scales PR of curves 6 and 7 are identical and correspond to each other.

Les mesures de poids et de couple s'exerçant sur l'outil peuvent s'effectuer de manière connue de l'homme de l'art, par exemple à l'aide de la méthode dite du M.W.D. ("Measurement While Drilling"). La variation du poids s'exerçant sur l'outil peut être obtenue de manière classique en supportant plus ou moins le train de tiges à partir de la surface.The weight and torque measurements exerted on the tool can be carried out in a manner known to those skilled in the art, for example using the method known as M.W.D. ("Measurement While Drilling"). The variation of the weight exerted on the tool can be obtained in a conventional manner by supporting more or less the drill string from the surface.

Les mesures des paramètres sont effectuées en fonction de la profondeur et/ou du temps. Il est recommandé de pouvoir effectuer au moins cinq paliers par test, ce qui conduit à une durée globale de test d'environ quinze minutes.Parameter measurements are made as a function of depth and / or time. It is recommended to be able to perform at least five steps per test, which leads to an overall test duration of around fifteen minutes.

La figure 2 représente schématiquement un test comportant cinq paliers.FIG. 2 schematically represents a test comprising five stages.

Le niveau du palier 8 correspond au poids sur l'outil en cours de forage à partir duquel l'opérateur décide de déclencher le test. Le test comporte une diminution du poids sur l'outil pour arriver au palier 9 puis une montée en quatre autres paliers respectivement 10, 11, 12 et 13 correspondant à une augmentation du poids sur l'outil.The level of the bearing 8 corresponds to the weight on the tool being drilled from which the operator decides to trigger the test. The test includes a reduction in the weight on the tool to arrive at level 9 and then an increase in four other levels, respectively 10, 11, 12 and 13 corresponding to an increase in weight on the tool.

Durant cette variation du poids sur l'outil on enregistre les variations du couple T s'exerçant sur l'outil (courbe 7) et à la fin du cinquième palier 13, on peut revenir au niveau du palier 14, qui est sensiblement égal au poids sur l'outil du forage avant le déclenchement du test et qui donc correspond approximativement au palier 8. Par la suite, on peut revenir à un autre palier correspondant à des conditions optimum d'utilisation de l'outil de forage compte tenu de son état d'usure qui vient d'être déterminé. Le premier test doit être réalisé, l'outil étant en début de passe. Le nombre de tests suivants dépend des choix de l'opérateur.During this variation in the weight on the tool, the variations in the torque T acting on the tool are recorded (curve 7) and at the end of the fifth bearing 13, one can return to the level of the bearing 14, which is substantially equal to the weight on the drilling tool before the test is triggered and which therefore corresponds approximately to level 8. Thereafter, it is possible to return to another level corresponding to optimum conditions of use of the drilling tool taking into account its state of wear which has just been determined. The first test must be performed, the tool being at the start of the pass. The number of subsequent tests depends on the operator's choices.

La première série de mesures effectuée au fond du puits, au niveau de l'outil, sur le couple et le poids correspond au début de l'attaque de la roche par l'outil, c'est-à-dire que son usure peut être considérée comme pratiquement nulle.The first series of measurements carried out at the bottom of the well, at the level of the tool, on the torque and the weight corresponds to the beginning of the attack of the rock by the tool, that is to say that its wear can to be considered practically zero.

La série de mesures effectuées pendant la première période de test est transmise en surface au calculateur qui établit à partir de ces données une portion de courbe représentative des variations du couple en fonction des variations du poids. Le calculateur garde ensuite en mémoire cette courbe correspondant à la période de test.The series of measurements made during the first test period is transmitted to the surface of the computer, which establishes from this data a portion of the curve representative of the variations in torque as a function of variations in weight. The computer then keeps in memory this curve corresponding to the test period.

Lorsqu'il le désire, l'opérateur déclenche une nouvelle période de test, provoquant une variation par palier du poids appliqué sur l'outil, le calculateur reçoit à nouveau une nouvelle série de mesures à partir de laquelle il peut obtenir la courbe représentative des variations de T en fonction de W.When desired, the operator triggers a new test period, causing a step change in the weight applied to the tool, the computer again receives a new series of measurements from which he can obtain the curve representative of the variations of T as a function of W.

Le degré d'usure pourra être déduit alors de deux manières :

  • par comparaison du réseau de courbes ; toute diminution de la concavité de la courbe indiquera une augmentation de l'usure de l'outil. Bien entendu, ces courbes pourront être tracées géométriquement et donc transmises à l'opérateur qui en déduira le degré d'usure, mais on peut facilement envisager que la comparaison de la concavité des courbes soit effectuée directement par le calculateur sans qu'il soit nécessaire d'avoir un tracé visualisé,
  • par calcul du paramètre v ; les courbes obtenues expérimentalement vérifiant la relation T = uW + vWα, on peut calculer à partir des mesures réalisées la valeur de v. L'augmentation de l'usure de l'outil est déduite de la diminution de cette valeur de v.
The degree of wear can then be deduced in two ways:
  • by comparison of the network of curves; any decrease in the concavity of the curve will indicate an increase in tool wear. Of course, these curves can be traced geometrically and therefore transmitted to the operator who will deduce the degree of wear, but it can easily be envisaged that the comparison of the concavity of the curves is carried out directly by the computer without it being necessary to have a visualized route,
  • by calculating the parameter v; the curves obtained experimentally verifying the relation T = uW + vW α , the value of v can be calculated from the measurements carried out. The increase in tool wear is deducted from the decrease in this value of v.

Bien entendu, les mesures effectuées au fond du puits peuvent présenter quelques imprécisions, il convient donc, à partir de ces mesures, de déterminer une courbe moyenne, par exemple par la méthode des moindres carrés, et d'en déduire la concavité moyenne de cette courbe représentée par le rayon de courbure moyen, ou une grandeur liée à cette valeur moyenne. Ensuite, la détermination de l'usure peut se faire, soit en contrôlant l'évolution de la concavité moyenne en fonction de l'avancement du forage, soit en composant la concavité moyenne avec des concavités moyennes établies au cours d'essais de référence.Of course, the measurements made at the bottom of the well may present some inaccuracies, it is therefore necessary, from these measurements, to determine an average curve, for example by the method of least squares, and to deduce therefrom the average concavity of this curve represented by the mean radius of curvature, or a quantity linked to this mean value. Then, the determination of the wear can be done, either by controlling the evolution of the average concavity according to the progress of the drilling, or by composing the average concavity with average concavities established during reference tests.

Dans le cas où la valeur du poids sur l'outil au fond peut être obtenue de manière précise à partir d'une mesure en surface, notamment dans le cas des puits verticaux, cette mesure de surface peut être éventuellement utilisée dans le cadre de la présente invention.In the case where the value of the weight on the tool at the bottom can be obtained precisely from a surface measurement, in particular in the case of vertical wells, this surface measurement can possibly be used in the context of the present invention.

Les caractéristiques de la formation traversée, de l'outil, les valeurs des conditions hydrauliques et de N peuvent être prises en compte pour normaliser la valeur du paramètre v et/ou celle du critère.The characteristics of the formation crossed, of the tool, the values of the hydraulic conditions and of N can be taken into account to normalize the value of the parameter v and / or that of the criterion.

Les résultats obtenus sur site de forage sont présentés à la figure 4. Ces résultats correspondent à un puits foré pour la Société Nationale Elf-Aquitaine au large des Pays-Bas. Contrairement aux essais sur banc présentés précedemment, l'outil était de gros diamètre (17"1/2). L'usure, après une passe de forage de la cote 1306 m à la cote 1673 m, était égale à T2. Les trois groupes des mesures effectuées se sont répartis respectivement sur 27 m, 3,5 m et 7,5 m.The results obtained on the drilling site are presented in Figure 4. These results correspond to a well drilled for the Société Nationale Elf-Aquitaine off the Netherlands. Unlike the bench tests presented above, the tool was large in diameter (17 "1/2). The wear, after a drill pass from dimension 1306 m to dimension 1673 m, was equal to T2. groups of the measurements carried out were distributed respectively over 27 m, 3.5 m and 7.5 m.

Bien que dans ce cas l'usure de l'outil soit faible, la décroissance de la valeur de v a bien lieu.Although in this case the wear of the tool is low, the decrease in the value of v does take place.

L'abscisse de la figure 4 exprime le poids exercé sur l'outil en tonnes et l'ordonnée le couple exercé sur l'outil exprimé en m.daN.The abscissa of FIG. 4 expresses the weight exerted on the tool in tonnes and the ordinate the torque exerted on the tool expressed in m.daN.

La courbe 18 se situe entre les cotes 1320 et 1347 m, la courbe 19 entre les cotes 1460 et 1463,5 m et la courbe 20 entre les cotes 1559 et 1566,5 m.Curve 18 is located between dimensions 1320 and 1347 m, curve 19 between dimensions 1460 and 1463.5 m and curve 20 between dimensions 1559 and 1566.5 m.

Au cours de cet essai l'outil est passé de l'état neuf à une usure T2, soit une usure faible.During this test, the tool went from new condition to T2 wear, ie little wear.

Le tableau suivant indique pour chaque courbe la cote de profondeur du test, la valeur de u* et la valeur de v* .

Figure imgb0030
The following table indicates for each curve the depth test depth, the value of u * and the value of v *.
Figure imgb0030

Ainsi il apparaît que pour une usure faible la valeur de v * (et par conséquent de v ) a variée de façon significative, ce qui indique que la méthode selon l'invention permet de connaître l'usure de l'outil avec précision.Thus it appears that for low wear the value of v * (and consequently of v) has varied significantly, which indicates that the method according to the invention makes it possible to know the wear of the tool with precision.

Les points représentés aux figures 3 et 4 correspondent aux valeurs ayant servi à l'établissement des différentes courbes. Il n'est pas nécessaire de tracer les courbes lors des différents tests. Il suffit d'obtenir la valeur de v ou d'une fonction de v pour être renseigné sur l'état d'usure de l'outil. Bien entendu, il est souhaitable que l'opérateur ait à sa disposition une représentation graphique des points représentatifs et des courbes correspondantes.The points shown in Figures 3 and 4 correspond to the values used to establish the different curves. It is not necessary to draw the curves during the various tests. It is enough to obtain the value of v or of a function of v to be informed about the state of wear of the tool. Of course, it is desirable that the operator has at his disposal a graphic representation of the representative points and of the corresponding curves.

Les différentes courbes ainsi que les valeurs de u ont été données pour faciliter au lecteur la compréhension de la présente demande.The various curves as well as the values of u have been given to facilitate the reader understanding of the present application.

La méthode selon la présente invention permet d'éviter de forer avec des outils usés ou de remonter trop tôt des outils. La connaissance du degré d'usure des outils qu'elle permet intervient directement dans la réduction du coût des forages.The method according to the present invention makes it possible to avoid drilling with worn tools or to reassemble tools too early. The knowledge of the degree of wear of the tools that it allows plays a direct role in reducing the cost of drilling.

Claims (4)

1. A method for determining the wear of cutting members of a tool during drilling in a rock formation, whereby the measurements of the weight W applied to the tool and the torque T required to rotate the tool are taken, the weight on the tool W and the torque T being linked by a ratio of the type T = uW +vWα in which u and v are the parameters and α is a coefficient dependent, among other things, on the formation, characterised in that
- a series of weight values is applied to the tool during drilling during an initial testing period,
- a first series of measurements is taken at the level of the tool on the torque and the weight during an initial testing period,
- on the basis of the first series of measurements, a curve section representing the variations in the torque in relation to the variations in the weight is drawn up,
- the curve section drawn up during the initial testing period is stored,
- during drilling, tests are carried out over a succession of periods and the corresponding representative curve section for each period is drawn up,
- the curve section obtained for a given test period is compared with at least one curve section obtained previously,
- from this, the degree of wear on the cutting members is determined on the basis of the variation in at least one measurement of the degree of concavity of the curve sections, for example the mean radius of curvature of the curve sections, the decrease in concavity of the curve denoting an increase in wear on the tool, all other conditions being equal.
2. A method of determining wear in accordance with claim 1, characterised in that the first series of measurements from which the first curve section is determined, is carried out on a practically new tool showing no signs of wear.
3. A method of determining wear in accordance with claim 1, characterised in that over a given test period, at least one function of the parameter v is determined on the basis of the curve sections relating to the previous test periods on the one hand the and ratio T= uW + vWα on the other and in that the degree of wear on the cutting members of the tool is deduced on the basis of the decrease in the function of the parameter V.
4. A method of determining wear in accordance with any one of claims 1 to 3, characterised in that a step by step scan is taken of the value of the weight on the tool close to the reference value and the corresponding values of W and T are determined during the scan.
EP88402319A 1987-09-17 1988-09-14 Method for determining the wear of a tool cutter while drilling rock formations Expired - Lifetime EP0308327B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8712928A FR2620819B1 (en) 1987-09-17 1987-09-17 METHOD OF DETERMINING THE WEAR OF A BIT DURING DRILLING
FR8712928 1987-09-17

Publications (2)

Publication Number Publication Date
EP0308327A1 EP0308327A1 (en) 1989-03-22
EP0308327B1 true EP0308327B1 (en) 1992-04-22

Family

ID=9355014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88402319A Expired - Lifetime EP0308327B1 (en) 1987-09-17 1988-09-14 Method for determining the wear of a tool cutter while drilling rock formations

Country Status (7)

Country Link
US (1) US4926686A (en)
EP (1) EP0308327B1 (en)
CA (1) CA1310753C (en)
DE (1) DE3870374D1 (en)
DK (1) DK509388A (en)
FR (1) FR2620819B1 (en)
NO (1) NO884098L (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679894A (en) * 1993-05-12 1997-10-21 Baker Hughes Incorporated Apparatus and method for drilling boreholes
US6186248B1 (en) 1995-12-12 2001-02-13 Boart Longyear Company Closed loop control system for diamond core drilling
US6612382B2 (en) * 1996-03-25 2003-09-02 Halliburton Energy Services, Inc. Iterative drilling simulation process for enhanced economic decision making
US6408953B1 (en) * 1996-03-25 2002-06-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system for a given formation
US6109368A (en) * 1996-03-25 2000-08-29 Dresser Industries, Inc. Method and system for predicting performance of a drilling system for a given formation
US5794720A (en) * 1996-03-25 1998-08-18 Dresser Industries, Inc. Method of assaying downhole occurrences and conditions
US7032689B2 (en) * 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
US6353799B1 (en) 1999-02-24 2002-03-05 Baker Hughes Incorporated Method and apparatus for determining potential interfacial severity for a formation
US6276465B1 (en) 1999-02-24 2001-08-21 Baker Hughes Incorporated Method and apparatus for determining potential for drill bit performance
US6386297B1 (en) 1999-02-24 2002-05-14 Baker Hughes Incorporated Method and apparatus for determining potential abrasivity in a wellbore
US6634441B2 (en) 2000-08-21 2003-10-21 Halliburton Energy Services, Inc. System and method for detecting roller bit bearing wear through cessation of roller element rotation
US6631772B2 (en) 2000-08-21 2003-10-14 Halliburton Energy Services, Inc. Roller bit rearing wear detection system and method
US6712160B1 (en) 2000-11-07 2004-03-30 Halliburton Energy Services Inc. Leadless sub assembly for downhole detection system
US6817425B2 (en) 2000-11-07 2004-11-16 Halliburton Energy Serv Inc Mean strain ratio analysis method and system for detecting drill bit failure and signaling surface operator
US6722450B2 (en) 2000-11-07 2004-04-20 Halliburton Energy Svcs. Inc. Adaptive filter prediction method and system for detecting drill bit failure and signaling surface operator
US6648082B2 (en) 2000-11-07 2003-11-18 Halliburton Energy Services, Inc. Differential sensor measurement method and apparatus to detect a drill bit failure and signal surface operator
US7357197B2 (en) 2000-11-07 2008-04-15 Halliburton Energy Services, Inc. Method and apparatus for monitoring the condition of a downhole drill bit, and communicating the condition to the surface
US9745799B2 (en) 2001-08-19 2017-08-29 Smart Drilling And Completion, Inc. Mud motor assembly
US9051781B2 (en) 2009-08-13 2015-06-09 Smart Drilling And Completion, Inc. Mud motor assembly
US6684949B1 (en) 2002-07-12 2004-02-03 Schlumberger Technology Corporation Drilling mechanics load cell sensor
JP4016796B2 (en) * 2002-10-22 2007-12-05 オムロン株式会社 In-vehicle imaging device and vehicle driving support device using the same
GB2413403B (en) 2004-04-19 2008-01-09 Halliburton Energy Serv Inc Field synthesis system and method for optimizing drilling operations
GB2468251B (en) * 2007-11-30 2012-08-15 Halliburton Energy Serv Inc Method and system for predicting performance of a drilling system having multiple cutting structures
WO2010039342A1 (en) 2008-10-03 2010-04-08 Halliburton Energy Services Inc. Method and system for predicting performance of a drilling system
BR112016007602A2 (en) 2013-11-08 2017-08-01 Halliburton Energy Services Inc dynamic wear prediction method and dynamic wear prediction system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782190A (en) * 1972-08-03 1974-01-01 Texaco Inc Method and apparatus for rotary drill testing
US4064749A (en) * 1976-11-11 1977-12-27 Texaco Inc. Method and system for determining formation porosity
GB8411361D0 (en) * 1984-05-03 1984-06-06 Schlumberger Cambridge Researc Assessment of drilling conditions
GB8416708D0 (en) * 1984-06-30 1984-08-01 Prad Res & Dev Nv Drilling motor
US4627276A (en) * 1984-12-27 1986-12-09 Schlumberger Technology Corporation Method for measuring bit wear during drilling

Also Published As

Publication number Publication date
FR2620819B1 (en) 1993-06-18
US4926686A (en) 1990-05-22
NO884098D0 (en) 1988-09-15
CA1310753C (en) 1992-11-24
EP0308327A1 (en) 1989-03-22
DK509388A (en) 1989-03-18
DK509388D0 (en) 1988-09-13
FR2620819A1 (en) 1989-03-24
DE3870374D1 (en) 1992-05-27
NO884098L (en) 1989-03-20

Similar Documents

Publication Publication Date Title
EP0308327B1 (en) Method for determining the wear of a tool cutter while drilling rock formations
JP2000507659A (en) How to adjust drilling conditions applied to well bits
EP3074748B1 (en) Method and device for determining the wear of a cutting tool flank
FR2611804A1 (en) METHOD FOR CONTROLLING WELL DRILLING OPERATIONS
EP0330558A1 (en) Method and device for transmitting information by cable and by mud waves
FR2614360A1 (en) METHOD FOR MEASURING THE SPEED OF ADVANCE OF A DRILLING TOOL
FR2869067A1 (en) SYSTEM AND METHOD FOR FIELD SYNTHESIS FOR OPTIMIZING A DRILLING DEVICE
NO324161B1 (en) Method for determining drill bit wear as a function of total drill bit work performed
EP0816629B1 (en) Method and system for real time estimation of at least one parameter connected to the rate of penetration of a drilling tool
FR2562151A1 (en) METHOD AND APPARATUS FOR DETERMINING PRESSURE IN FORMATIONS CROSSED BY A SURVEY
FR2562147A1 (en) METHOD OF OPTIMIZING THE MANEUVER SPEED OF A DRILL ROD TRAIN
EP0995009B1 (en) Device and method for measuring the flow rate of drill cuttings
EP3647533A1 (en) Optimisation of the drilling of a tunnel-boring machine according to land/machine interactions
EP1448304B1 (en) Method for evaluating the filling rate of a tubular rotary ball mill and device therefor
EP2157277B1 (en) Well drilling apparatus
CA2933504C (en) Method for detecting a drilling malfunction
WO2009004166A1 (en) 3-d ultrasonic imaging probe for characterising an area of land around a bore hole
WO2019016448A1 (en) Static penetrometer and associated measurement method
EP0887511B1 (en) Method and system for the detection of the precession of a drill string element
FR2674284A1 (en) PROBE FOR DETERMINING, IN PARTICULAR, THE INJECTIVITY OF A PETROFLIER WELL AND METHOD OF MEASURING THE SAME.
FR2723447A1 (en) METHOD AND SYSTEM FOR RECOGNIZING FIELDS AROUND EXCAVATION MACHINE
FR2986247A1 (en) DRILLING MACHINE FOR THE CONSTRUCTION OF PILES COMPRISING A PENETROMETRIC PROBE
EP1229172B1 (en) Method and apparatus for making drilled piles in hard ground
WO2021053005A1 (en) A method for determination of properties of cuttings from rock drilling
FR3052483A1 (en) AID FOR THE CONDUCT OF A TUNNELIER BY CORRELATION BETWEEN MEASUREMENTS MADE ON THE TUNNELIER AND DATA FROM SURFACE SURVEYS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 19900608

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3870374

Country of ref document: DE

Date of ref document: 19920527

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960712

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960819

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970914

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050914