EP1222400B1 - Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten - Google Patents
Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten Download PDFInfo
- Publication number
- EP1222400B1 EP1222400B1 EP99947181A EP99947181A EP1222400B1 EP 1222400 B1 EP1222400 B1 EP 1222400B1 EP 99947181 A EP99947181 A EP 99947181A EP 99947181 A EP99947181 A EP 99947181A EP 1222400 B1 EP1222400 B1 EP 1222400B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- cooling fluid
- stator part
- radial gap
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
Definitions
- the invention relates to a method and a device for indirect cooling the flow formed in between rotors and stators of turbomachinery Radial gaps, according to the preamble of claim 1 and the preamble of claim 7, but in particular for the indirect cooling of the flow in the radial gap between the compressor wheel and the housing of a centrifugal compressor.
- a simply constructed centrifugal compressor without one formed in the separation gap Sealing geometry is known from DE 195 48 852 A1. Also, it ensures the result resulting from flow shear layers on the rear wall of the compressor wheel Frictional heat for heating the compressor wheel and thus for a reduction of its life.
- the invention seeks to avoid all these disadvantages. It's up to you underlying, with respect to its cooling effect improved cooling method the flow formed in between rotors and stators of turbomachinery To create radial gaps. In addition, a simple, inexpensive and robust device for implementing the method can be specified.
- this is achieved by using a method according to The preamble of claim 1, water as a cooling fluid for the radial gap adjacent stator part is used.
- the water used as a cooling medium has a slightly higher density than the known lubricating oils and about twice as large specific heat capacity. Since the dissipated via a cooling medium heat flow proportional The product of density and specific heat capacity is obtained when used of water a distinct advantage over oil cooling. At the same Mass flow and the same temperature of the water can thus from the through the radial gap flowing medium on the stator part to be cooled a greater amount of heat to be withdrawn. The cooling effect on the at the radial gap adjacent areas of the rotor is therefore also larger. In reverse is used to derive the same amount of heat to the lubricating oil a smaller mass flow of cooling water needed, whereby the supply and discharge device can be dimensioned correspondingly smaller for the cooling medium.
- At least one inside the radial gap adjacent stator Recess formed or disposed on the stator at least one cavity.
- the recess or the cavity is both with a supply line and connected to a discharge line for the cooling fluid. About these lines is the cooling fluid introduced or discharged again.
- the cooling fluid introduced or discharged again.
- the rotor side Wall thickness which should be kept as low as possible, can through the the radial gap immediately adjacent water flow in the interior of the stator an improved cooling effect can be achieved.
- the recess formed in the stator of the cavity described on the stator so can with equally good cooling effect a simpler and more cost-effective production will be realized.
- a charge air cooler and an exhaust gas turbocharger existing system will either fresh water from outside the Systems or advantageously used in the system existing water as cooling fluid. In the latter case, this can be found in a cooling water circuit of the intercooler cooling water used, which branched off upstream of the intercooler becomes.
- the stationary stator part is a housing part of a radial compressor, which is the radial gap to the rotor, i. to the rotating compressor wheel an exhaust gas turbocharger limited.
- a tube cast in the latter is formed, whereby a simple and robust cooling device is created.
- Alternatively is arranged in the stator at least one groove, wherein in each groove at least one inserted as a recess serving pipe and shed.
- a stator with at least one corresponding, cast-in core is removed to form the recess.
- An additional benefit is achieved by removing the cooling fluid prior to water cooling of the radial gap adjacent stator for indirect cooling of the Main flow of the working medium downstream of the diversion of the leakage flow receiving diffuser and the diffuser delimiting the bearing housing Diffuser plate is used. This can also be done in this downstream Effective cooling of the material of the turbomachine can be achieved. In addition, the heat flow from the diffuser to the radial gap is adjacent Stator part reduced.
- a second cooling fluid is used and introduced into the radial gap, preferably using air comes. Due to the double cooling of the radial gap, the temperature of the thermally heavily loaded rotor are further lowered. These are at the radial gap at least one feed channel and a discharge device for the second Cooling fluid arranged.
- FIG. 1 shows, in a schematic illustration, one with a diesel engine trained internal combustion engine 1 cooperating exhaust gas turbocharger 2.
- the latter consists of a centrifugal compressor 3 and an exhaust gas turbine 4, which have a common shaft 5.
- the centrifugal compressor 3 is via a charge air line 6 and the exhaust gas turbine 4 via an exhaust pipe 7 with the internal combustion engine 1 connected.
- a charge air cooler 8 is arranged in the charge air line 6, i. between the centrifugal compressor 3 and the internal combustion engine 1.
- the intercooler 8 has a cooling water circuit 9 with a not shown Supply and removal.
- the centrifugal compressor 3 is equipped with a compressor housing 10 in which designed as a compressor wheel and connected to the shaft 5 rotor 11 is arranged is.
- the compressor wheel 11 has one with a plurality of blades 12 occupied hub 13. Between the hub 13 and the compressor housing 10th a flow channel 14 is formed. Downstream of the blades 12 connects the flow channel 14 a radially arranged, bladed diffuser 15, which in turn opens into a spiral 16 of the centrifugal compressor 3.
- the compressor housing 10 consists mainly of an air inlet housing 17, a Air outlet housing 18, a diffuser plate 19 and as an intermediate wall to a Bearing housing 21 of the exhaust gas turbocharger 2 formed stator 20 (FIG. 2).
- the hub 13 has on the turbine side a rear wall 22 and a mounting sleeve 23 for the shaft 5 on.
- the fastening sleeve 23 is from the intermediate wall 20th received the compressor housing 10.
- another suitable Compressor wheel shaft connection can be selected.
- a bladed diffuser possible.
- a separating gap which is formed as a radial gap 24 in a centrifugal compressor 3 is.
- the radial gap 24 takes a the compressor housing 10 opposite the bearing housing 21 sealing labyrinth seal 25.
- a circumferential recess 26 is formed and with both a supply and with a discharge line 27, 28 for a Cooling fluid 29 connected (Fig. 2, Fig. 3).
- the intermediate wall 20 is the compressor wheel side the recess 26 formed as thin as possible. This is in the production the intermediate wall 20 a thin-walled and closed at both ends Poured tube 30 whose interior forms the recess 26 (Fig. 2).
- the compressor wheel 11 sucks as a working medium 31 ambient air, as a main flow 32 through the flow channel 14 and the diffuser 15 enters the spiral 16, there further compressed and finally via the charge air line 6 for charging with the exhaust gas turbocharger 2 connected internal combustion engine 1 is used. But before that happens in the intercooler 8 a corresponding cooling of the heated during the compression process Working medium 31.
- cooling fluid 29 After the cooling process is the now heated cooling fluid 29 via the discharge line 28 downstream of the intercooler 8 fed back into the cooling water circuit 9 (Fig. 1).
- intercooler 8 and Exhaust gas turbocharger 2 existing cooling water and fresh water from outside supplied to the system as cooling fluid 29 (not shown).
- a third embodiment 20 is a groove in the intermediate wall 35 trained.
- two tubes 36 are inserted and potted, wherein the two tubes 36 have a connecting line 37. Again form the Interiors of the tubes 36, the recess 26 (Fig. 4).
- the groove 35 are arranged only a single tube 36.
- two or more grooves 35 are formed, which also can accommodate more than two tubes 36 (not shown).
- a cavity 38 which on the turbine side is completed by a cover 39 (Fig. 5).
- the cavity 38 with a supply and with a discharge line 27, 28 connected for the cooling fluid 29.
- the lid 39 and thus also the cavity 38 can with the same function of course arranged on the compressor side of the intermediate wall 21 be (not shown).
- the intermediate wall 20 is radially outward formed extended so that they are essential areas of the diffuser 15th covered.
- the intermediate wall 20 has a corresponding outer ring 43 on.
- a circumferential cavity 44 is formed in the interior of the outer ring 43.
- the supply line 27 for the cooling fluid 29 engages the outer ring 43 and opens into the cavity 44, which other end with the recess 26th the intermediate wall 20 is connected (Fig. 6).
- the cooling fluid 29, starting from the supply line 27 first introduced into the cavity 44 of the outer ring 43, where it is the indirect Cooling of the diffuser 15 and the diffuser plate 19 is used. Only then does the Introduction of the cooling fluid 29 in the recess 26 of the intermediate wall 20. There the indirect cooling of the leakage flow 33, which has already been described above, takes place. The recirculation of the cooling fluid 29 into the cooling water circuit 9 also becomes realized via the discharge line 28.
- the intermediate wall 20, as in the US 4815184, also directly into the Pass over diffuser plate 19 and with the recess 26 of the intermediate wall 20 connected cavity 44 may be disposed in the diffuser plate 19 (not shown).
- a direct cooling of the leakage flow 33 is provided.
- feed channels 40 for a second cooling fluid 41 both the Bearing housing 21 and the diffuser plate 19 arranged penetrating (Fig. 7).
- the feed channels 40 are downstream of the intercooler 8 with the charge air line 6 connected, so that is used as the second cooling fluid 41 cooled charge air (Fig. 1).
- the second Cooling fluid 41 Due to the tangential introduction of the second cooling fluid 41 is a pure film cooling realized the entire rear wall 22 of the compressor 11.
- the second Cooling fluid 41 replaces the hot leakage flow 33, so that at the Rear wall 22 of the compressor wheel 11 forming boundary layer already from the beginning is mainly formed by the cooled charge air.
- This combination of indirect and direct cooling has a special one Cooling effect, because the two cooling options complement each other in their effect and thus for a very high temperature reduction in the compressor 11th to care.
- other cooling media 41 may be used as the second cooling fluid 41 be, with an external supply of compressed air is possible (not shown).
- FIG. 1 additionally shows the arrangement of a control valve 45 in the feed channel 40 for the second cooling fluid 41.
- the quantitative Supply of the second cooling fluid 41 are regulated, so that an adjustment the cooling effect on the expected conditions or on the current temperature conditions during operation of the exhaust gas turbocharger 2 allows becomes.
- the control valve 45 also by hand as well as not shown Measuring and control unit are operated.
- questionable quantities are the temperature of the charge air after the intercooler 8 or the Temperature of the intermediate wall 20 itself.
- the supply of the second cooling fluid 41 not only partially but also completely prevented become. In the latter case, then only indirect cooling, i. a water cooling takes place.
- cooling configurations described above can be arbitrary be combined with each other, regardless of whether in the radial gap 24, a labyrinth seal 25 is arranged or not.
- partition wall cooling alone is from the outset any increase in the compressor thrust and the air leakage into the bearing housing 21 of the exhaust gas turbocharger 2 avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Supercharger (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
- Fig. 1
- eine schematische Darstellung des mit der Brennkraftmaschine verbundene Abgasturboladers;
- Fig. 2
- einen Teillängsschnitt durch den Radialverdichter des Abgasturboladers;
- Fig. 3
- eine Darstellung gemäss Fig. 2, jedoch in einem zweiten Ausführungsbeispiel;
- Fig. 4
- eine Darstellung gemäss Fig. 2, jedoch in einem dritten Ausführungsbeispiel;
- Fig. 5
- eine Darstellung gemäss Fig. 2, jedoch in einem vierten Ausführungsbeispiel;
- Fig. 6
- eine Darstellung gemäss Fig. 2, jedoch in einem weiteren Ausführungsbeispiel;
- Fig. 7
- eine Darstellung gemäss Fig. 2, jedoch in einem nächsten Ausführungsbeispiel.
- 1
- Brennkraftmaschine
- 2
- Abgasturbolader
- 3
- Radialverdichter
- 4
- Abgasturbine
- 5
- Welle
- 6
- Ladeluftleitung
- 7
- Abgasleitung
- 8
- Ladeluftkühler
- 9
- Kühlwasserkreislauf
- 10
- Verdichtergehäuse
- 11
- Rotor, Verdichterrad
- 12
- Laufschaufel
- 13
- Nabe
- 14
- Strömungskanal
- 15
- Diffusor
- 16
- Spirale
- 17
- Lufteintrittgehäuse
- 18
- Luftaustrittgehäuse
- 19
- Diffusorplatte
- 20
- Statorteil, Zwischenwand
- 21
- Lagergehäuse
- 22
- Rückwand
- 23
- Befestigungsmuffe
- 24
- Radialspalt, Trennspalt
- 25
- Labyrinthdichtung
- 26
- Ausnehmung
- 27
- Zufuhrleitung
- 28
- Abfuhrleitung
- 29
- Kühlfluid
- 30
- Rohr
- 31
- Arbeitsmedium
- 32
- Hauptströmung
- 33
- Leckageströmung
- 34
- Dichtungsring
- 35
- Nut
- 36
- Rohr
- 37
- Verbindungsleitung
- 38
- Hohlraum
- 39
- Deckel
- 40
- Zuführkanal
- 41
- zweites Kühlfluid, Ladeluft
- 42
- Abführeinrichtung
- 43
- Aussenring
- 44
- Hohlraum
- 45
- Stellventil
Claims (10)
- Verfahren zur Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten, wobei von einer Hauptströmung (32) eines Arbeitsmediums (31) der Turbomaschine eine Leckageströmung (33) abzweigt und in den Radialspalt (24) strömt, bei welchem Verfahren ein dem Radialspalt (24) benachbartes Statorteil (20) mit einem ersten Kühlfluid (29) beaufschlagt wird, dadurch gekennzeichnet, dass die Hauptströmung (32) des Arbeitsmediums (31) stromab der Abzweigung der Leckageströmung (33) in einen Diffusor (15) eingeleitet wird, und das erste Kühlfluid (29) bevor es das dem Radialspalt (24) benachbarte Statorteil (20) beaufschlagt zur indirekten Kühlung des Diffusor (15) und einer Diffusorplatte (19) verwendet wird, wobei als erstes Kühlfluid (29) Wasser eingesetzt wird, und dass ein zweites Kühlfluid (41) in den Radialspalt (24) eingeleitet wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zufuhr des zweiten Kühlfluides (41) teilweise abgestellt wird und als zweites Kühlfluid vorzugsweise Luft verwendet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste Kühlfluid (29) in eine im Statorteil (20) ausgebildete Ausnehmung (26) oder in einen am Statorteil (20) angeordneten Hohlraum (38) eingeleitet wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als erstes Kühlfluid (29) Frischwasser von ausserhalb eines aus einer Brennkraftmaschine (1), eines Ladeluftkühlers (8) und eines Abgasturboladers (2) bestehenden Systems verwendet wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in einem aus einer Brennkraftmaschine (1) einem Ladeluftkühler (8) und einem Abgasturbolader (2) bestehenden System vorhandenes Wasser als erstes Kühlfluid (29) verwendet wird.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass in einem Kühlwasserkreislauf (9) des Ladeluftkühlers (8) vorhandenes Kühlwasser als erstes Kühlfluid (29) verwendet und letzteres stromauf des Ladeluftkühlers (8) abgezweigt wird.
- Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bei welcher ein feststehendes Statorteil (20) den Radialspalt (24) zum Rotor (11) begrenzend angeordnet ist, dadurch gekennzeichnet, dass im Inneren des Statorteils (20) zumindest eine Ausnehmung (26) ausgebildet oder am Statorteil (20) zumindest ein Hohlraum (38) angeordnet und die Ausnehmung (26) oder der Hohlraum (38) sowohl mit einer Zufuhrleitung (27) als auch mit einer Abfuhrleitung (28) für ein Kühlfluid (29) verbunden ist, und dass zumindest ein Zuführkanal (40) sowie eine Abführeinrichtung (42) für ein zweites Kühlfluid (41) am Radialspalt (24) angeordnet sind.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass im Statorteil (20) zumindest ein eingegossenes Rohr (30) angeordnet ist
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass im Statorteil (20) zumindest eine Nut (35) angeordnet und in jeder Nut (35) zumindest ein Rohr (36) eingelegt und vergossen ist.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das feststehende Statorteil (20) als Teil eines Verdichtergehäuses (10) eines Radialverdichters (3) ausgebildet ist, welches den Radialspalt (24) zu einem rotierenden Verdichterrad (11) eines Abgasturboladers (2) begrenzt.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CH1999/000497 WO2001029426A1 (de) | 1999-10-20 | 1999-10-20 | Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1222400A1 EP1222400A1 (de) | 2002-07-17 |
EP1222400B1 true EP1222400B1 (de) | 2005-12-28 |
Family
ID=4551727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99947181A Expired - Lifetime EP1222400B1 (de) | 1999-10-20 | 1999-10-20 | Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1222400B1 (de) |
JP (1) | JP2003525377A (de) |
KR (1) | KR100607424B1 (de) |
CN (1) | CN1191433C (de) |
AU (1) | AU6075899A (de) |
DE (1) | DE59913001D1 (de) |
WO (1) | WO2001029426A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024679A1 (de) | 2009-06-12 | 2010-12-23 | Man Diesel & Turbo Se | Verdichterlaufrad und damit ausgerüsteter Radialverdichter |
DE102010037356B4 (de) * | 2010-09-06 | 2013-09-05 | Kompressorenbau Bannewitz Gmbh | Verdichterradkühlung |
US10598084B2 (en) | 2018-03-14 | 2020-03-24 | Borgwarner Inc. | Cooling and lubrication system for a turbocharger |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100923186B1 (ko) * | 2005-08-05 | 2009-10-22 | 가부시키가이샤 아이에이치아이 | 전동기 부착 과급기 |
DE102006048784A1 (de) * | 2006-10-12 | 2008-04-17 | Man Diesel Se | Verdichter für einen Turbolader sowie Verfahren zu dessen Kühlung |
JP2008223673A (ja) * | 2007-03-14 | 2008-09-25 | Ihi Corp | ターボチャージャ |
DE102007025133A1 (de) * | 2007-05-30 | 2008-12-04 | Mahle International Gmbh | Ladeeinrichtung |
JP5700999B2 (ja) * | 2010-10-06 | 2015-04-15 | 三菱重工業株式会社 | 遠心圧縮機 |
DE102010042104A1 (de) | 2010-10-07 | 2012-04-26 | Bayerische Motoren Werke Aktiengesellschaft | Abgasturbolader |
FR2966529B1 (fr) * | 2010-10-21 | 2014-04-25 | Turbomeca | Procede d’attache de couvercle de compresseur centrifuge de turbomachine, couvercle de compresseur de mise en oeuvre et assemblage de compresseur muni d’un tel couvercle |
ITCO20110036A1 (it) | 2011-09-07 | 2013-03-08 | Nuovo Pignone Spa | Guarnizione per una macchina rotante |
GB2499627A (en) * | 2012-02-23 | 2013-08-28 | Napier Turbochargers Ltd | Turbocharger casing |
CN105143636B (zh) * | 2013-02-21 | 2018-01-09 | 丰田自动车株式会社 | 具备窜缸混合气环流装置的内燃机的增压器的冷却装置 |
DE102013203455A1 (de) * | 2013-02-28 | 2014-08-28 | Abb Turbo Systems Ag | Zwischenwand zur Abdichtung des Rückraums eines Radialverdichters |
ITFI20130237A1 (it) * | 2013-10-14 | 2015-04-15 | Nuovo Pignone Srl | "sealing clearance control in turbomachines" |
CN104833691B (zh) * | 2015-05-08 | 2017-10-24 | 湖北航天技术研究院总体设计所 | 一种优化舵轴热环境的试验方法及试验设备 |
CN106286338A (zh) * | 2015-06-02 | 2017-01-04 | 上海优耐特斯压缩机有限公司 | 对采用高速电机的离心压缩机泄漏空气进行冷却的结构 |
JP6246847B2 (ja) * | 2016-02-22 | 2017-12-13 | 三菱重工業株式会社 | インペラ背面冷却構造及び過給機 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE403277C (de) * | 1924-09-30 | Bbc Brown Boveri & Cie | Vorrichtung zur Kuehlung von Kreiselverdichtern | |
GB191114702A (en) * | 1910-06-22 | 1912-07-22 | Hugo Junkers | Improvements in or relating to Centrifugal or Turbo-compressors. |
US2384251A (en) * | 1943-01-14 | 1945-09-04 | Wright Aeronautical Corp | Liquid cooled supercharger |
US3966351A (en) * | 1974-05-15 | 1976-06-29 | Robert Stanley Sproule | Drag reduction system in shrouded turbo machine |
US4704075A (en) | 1986-01-24 | 1987-11-03 | Johnston Andrew E | Turbocharger water-cooled bearing housing |
JP2934530B2 (ja) * | 1991-06-14 | 1999-08-16 | 三菱重工業株式会社 | 遠心圧縮機 |
DE19548852A1 (de) | 1995-12-27 | 1997-07-03 | Asea Brown Boveri | Radialverdichter für Abgasturbolader |
DE19652754A1 (de) | 1996-12-18 | 1998-06-25 | Asea Brown Boveri | Abgasturbolader |
-
1999
- 1999-10-20 JP JP2001531987A patent/JP2003525377A/ja active Pending
- 1999-10-20 DE DE59913001T patent/DE59913001D1/de not_active Expired - Fee Related
- 1999-10-20 KR KR1020027003433A patent/KR100607424B1/ko not_active IP Right Cessation
- 1999-10-20 WO PCT/CH1999/000497 patent/WO2001029426A1/de active IP Right Grant
- 1999-10-20 CN CNB998169625A patent/CN1191433C/zh not_active Expired - Fee Related
- 1999-10-20 AU AU60758/99A patent/AU6075899A/en not_active Abandoned
- 1999-10-20 EP EP99947181A patent/EP1222400B1/de not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024679A1 (de) | 2009-06-12 | 2010-12-23 | Man Diesel & Turbo Se | Verdichterlaufrad und damit ausgerüsteter Radialverdichter |
DE102009024679B4 (de) * | 2009-06-12 | 2016-04-07 | Man Diesel & Turbo Se | Verdichterlaufrad und damit ausgerüsteter Radialverdichter |
DE102010037356B4 (de) * | 2010-09-06 | 2013-09-05 | Kompressorenbau Bannewitz Gmbh | Verdichterradkühlung |
US10598084B2 (en) | 2018-03-14 | 2020-03-24 | Borgwarner Inc. | Cooling and lubrication system for a turbocharger |
Also Published As
Publication number | Publication date |
---|---|
JP2003525377A (ja) | 2003-08-26 |
WO2001029426A1 (de) | 2001-04-26 |
CN1191433C (zh) | 2005-03-02 |
DE59913001D1 (de) | 2006-02-02 |
EP1222400A1 (de) | 2002-07-17 |
KR20020041438A (ko) | 2002-06-01 |
KR100607424B1 (ko) | 2006-08-01 |
AU6075899A (en) | 2001-04-30 |
CN1375042A (zh) | 2002-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1222400B1 (de) | Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten | |
DE19845375A1 (de) | Verfahren und Vorrichtung zur indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten | |
DE69407539T2 (de) | Turbomaschine mit System zur Heizung der Rotorscheiben in der Beschleunigungsphase | |
DE69503628T2 (de) | Leitschaufelkühlung mit doppelquelle | |
DE602004000527T2 (de) | Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk | |
EP1717419B1 (de) | Verfahren und Vorrichtung zur Einstellung eines Radialspaltes eines axial durchströmten Verdichters einer Strömungsmaschine | |
DE602004012209T2 (de) | Kühlkonfiguration für eine Turbinenschaufel | |
DE69636906T2 (de) | Turbolader mit eingebautem elektrischen hilfsmotor und kühleinrichtung dafür | |
DE60318792T2 (de) | Zapfluft-Gehäuse für einen Verdichter | |
DE60221558T2 (de) | Turbinenmotor mit luftgekühlter turbine | |
EP3059433B1 (de) | Gasturbinentriebwerk mit ölkühler in der triebwerksverkleidung | |
EP1736635B1 (de) | Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks | |
DE69936184T2 (de) | Abzapfringraum bei den Schaufelspitzen eines Gasturbinentriebwerks | |
DE69712831T2 (de) | Kühlgaskrümmer für Dichtungsspaltregelung einer Turbomaschine | |
EP2148977B1 (de) | Gasturbine | |
EP0961034B1 (de) | Radialverdichter | |
DE1475702A1 (de) | Labyrinthdichtung fuer Stroemungsmaschinen | |
DE2553193A1 (de) | Bohrungsschaufeleinrichtung fuer turbinenschaufeln mit bohrungseintrittskuehlung | |
WO2007051733A1 (de) | Dampfturbine | |
DE69302520T2 (de) | Hochdruckdampfturbinengehäuse | |
DE102019108588A1 (de) | Verbrennungsmotor | |
CH647844A5 (de) | Stroemungsmaschine mit einem im wesentlichen scheibenfoermigen laufrad. | |
EP1222399B1 (de) | Verfahren und vorrichtung zur kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten | |
DE19837430A1 (de) | Lader für Brennkraftmaschine | |
WO1998013584A1 (de) | Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020211 |
|
17Q | First examination report despatched |
Effective date: 20040226 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GIESZAUF, HELMUT Inventor name: GREBER, JUERG Inventor name: BREMER, JOACHIM Inventor name: MUELLER, ULF, CHRISTIAN Inventor name: BOTHIEN, MIHAJLO-RUEDIGER Inventor name: WUNDERWALD, DIRK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 59913001 Country of ref document: DE Date of ref document: 20060202 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060320 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060929 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081022 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081014 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20081021 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091102 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091020 |