EP1222400B1 - Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten - Google Patents

Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten Download PDF

Info

Publication number
EP1222400B1
EP1222400B1 EP99947181A EP99947181A EP1222400B1 EP 1222400 B1 EP1222400 B1 EP 1222400B1 EP 99947181 A EP99947181 A EP 99947181A EP 99947181 A EP99947181 A EP 99947181A EP 1222400 B1 EP1222400 B1 EP 1222400B1
Authority
EP
European Patent Office
Prior art keywords
cooling
cooling fluid
stator part
radial gap
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99947181A
Other languages
English (en)
French (fr)
Other versions
EP1222400A1 (de
Inventor
Dirk Wunderwald
Mihajlo-Rüdiger BOTHIEN
Ulf Christian MÜLLER
Joachim Bremer
Jürg Greber
Helmut Gieszauf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Publication of EP1222400A1 publication Critical patent/EP1222400A1/de
Application granted granted Critical
Publication of EP1222400B1 publication Critical patent/EP1222400B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors

Definitions

  • the invention relates to a method and a device for indirect cooling the flow formed in between rotors and stators of turbomachinery Radial gaps, according to the preamble of claim 1 and the preamble of claim 7, but in particular for the indirect cooling of the flow in the radial gap between the compressor wheel and the housing of a centrifugal compressor.
  • a simply constructed centrifugal compressor without one formed in the separation gap Sealing geometry is known from DE 195 48 852 A1. Also, it ensures the result resulting from flow shear layers on the rear wall of the compressor wheel Frictional heat for heating the compressor wheel and thus for a reduction of its life.
  • the invention seeks to avoid all these disadvantages. It's up to you underlying, with respect to its cooling effect improved cooling method the flow formed in between rotors and stators of turbomachinery To create radial gaps. In addition, a simple, inexpensive and robust device for implementing the method can be specified.
  • this is achieved by using a method according to The preamble of claim 1, water as a cooling fluid for the radial gap adjacent stator part is used.
  • the water used as a cooling medium has a slightly higher density than the known lubricating oils and about twice as large specific heat capacity. Since the dissipated via a cooling medium heat flow proportional The product of density and specific heat capacity is obtained when used of water a distinct advantage over oil cooling. At the same Mass flow and the same temperature of the water can thus from the through the radial gap flowing medium on the stator part to be cooled a greater amount of heat to be withdrawn. The cooling effect on the at the radial gap adjacent areas of the rotor is therefore also larger. In reverse is used to derive the same amount of heat to the lubricating oil a smaller mass flow of cooling water needed, whereby the supply and discharge device can be dimensioned correspondingly smaller for the cooling medium.
  • At least one inside the radial gap adjacent stator Recess formed or disposed on the stator at least one cavity.
  • the recess or the cavity is both with a supply line and connected to a discharge line for the cooling fluid. About these lines is the cooling fluid introduced or discharged again.
  • the cooling fluid introduced or discharged again.
  • the rotor side Wall thickness which should be kept as low as possible, can through the the radial gap immediately adjacent water flow in the interior of the stator an improved cooling effect can be achieved.
  • the recess formed in the stator of the cavity described on the stator so can with equally good cooling effect a simpler and more cost-effective production will be realized.
  • a charge air cooler and an exhaust gas turbocharger existing system will either fresh water from outside the Systems or advantageously used in the system existing water as cooling fluid. In the latter case, this can be found in a cooling water circuit of the intercooler cooling water used, which branched off upstream of the intercooler becomes.
  • the stationary stator part is a housing part of a radial compressor, which is the radial gap to the rotor, i. to the rotating compressor wheel an exhaust gas turbocharger limited.
  • a tube cast in the latter is formed, whereby a simple and robust cooling device is created.
  • Alternatively is arranged in the stator at least one groove, wherein in each groove at least one inserted as a recess serving pipe and shed.
  • a stator with at least one corresponding, cast-in core is removed to form the recess.
  • An additional benefit is achieved by removing the cooling fluid prior to water cooling of the radial gap adjacent stator for indirect cooling of the Main flow of the working medium downstream of the diversion of the leakage flow receiving diffuser and the diffuser delimiting the bearing housing Diffuser plate is used. This can also be done in this downstream Effective cooling of the material of the turbomachine can be achieved. In addition, the heat flow from the diffuser to the radial gap is adjacent Stator part reduced.
  • a second cooling fluid is used and introduced into the radial gap, preferably using air comes. Due to the double cooling of the radial gap, the temperature of the thermally heavily loaded rotor are further lowered. These are at the radial gap at least one feed channel and a discharge device for the second Cooling fluid arranged.
  • FIG. 1 shows, in a schematic illustration, one with a diesel engine trained internal combustion engine 1 cooperating exhaust gas turbocharger 2.
  • the latter consists of a centrifugal compressor 3 and an exhaust gas turbine 4, which have a common shaft 5.
  • the centrifugal compressor 3 is via a charge air line 6 and the exhaust gas turbine 4 via an exhaust pipe 7 with the internal combustion engine 1 connected.
  • a charge air cooler 8 is arranged in the charge air line 6, i. between the centrifugal compressor 3 and the internal combustion engine 1.
  • the intercooler 8 has a cooling water circuit 9 with a not shown Supply and removal.
  • the centrifugal compressor 3 is equipped with a compressor housing 10 in which designed as a compressor wheel and connected to the shaft 5 rotor 11 is arranged is.
  • the compressor wheel 11 has one with a plurality of blades 12 occupied hub 13. Between the hub 13 and the compressor housing 10th a flow channel 14 is formed. Downstream of the blades 12 connects the flow channel 14 a radially arranged, bladed diffuser 15, which in turn opens into a spiral 16 of the centrifugal compressor 3.
  • the compressor housing 10 consists mainly of an air inlet housing 17, a Air outlet housing 18, a diffuser plate 19 and as an intermediate wall to a Bearing housing 21 of the exhaust gas turbocharger 2 formed stator 20 (FIG. 2).
  • the hub 13 has on the turbine side a rear wall 22 and a mounting sleeve 23 for the shaft 5 on.
  • the fastening sleeve 23 is from the intermediate wall 20th received the compressor housing 10.
  • another suitable Compressor wheel shaft connection can be selected.
  • a bladed diffuser possible.
  • a separating gap which is formed as a radial gap 24 in a centrifugal compressor 3 is.
  • the radial gap 24 takes a the compressor housing 10 opposite the bearing housing 21 sealing labyrinth seal 25.
  • a circumferential recess 26 is formed and with both a supply and with a discharge line 27, 28 for a Cooling fluid 29 connected (Fig. 2, Fig. 3).
  • the intermediate wall 20 is the compressor wheel side the recess 26 formed as thin as possible. This is in the production the intermediate wall 20 a thin-walled and closed at both ends Poured tube 30 whose interior forms the recess 26 (Fig. 2).
  • the compressor wheel 11 sucks as a working medium 31 ambient air, as a main flow 32 through the flow channel 14 and the diffuser 15 enters the spiral 16, there further compressed and finally via the charge air line 6 for charging with the exhaust gas turbocharger 2 connected internal combustion engine 1 is used. But before that happens in the intercooler 8 a corresponding cooling of the heated during the compression process Working medium 31.
  • cooling fluid 29 After the cooling process is the now heated cooling fluid 29 via the discharge line 28 downstream of the intercooler 8 fed back into the cooling water circuit 9 (Fig. 1).
  • intercooler 8 and Exhaust gas turbocharger 2 existing cooling water and fresh water from outside supplied to the system as cooling fluid 29 (not shown).
  • a third embodiment 20 is a groove in the intermediate wall 35 trained.
  • two tubes 36 are inserted and potted, wherein the two tubes 36 have a connecting line 37. Again form the Interiors of the tubes 36, the recess 26 (Fig. 4).
  • the groove 35 are arranged only a single tube 36.
  • two or more grooves 35 are formed, which also can accommodate more than two tubes 36 (not shown).
  • a cavity 38 which on the turbine side is completed by a cover 39 (Fig. 5).
  • the cavity 38 with a supply and with a discharge line 27, 28 connected for the cooling fluid 29.
  • the lid 39 and thus also the cavity 38 can with the same function of course arranged on the compressor side of the intermediate wall 21 be (not shown).
  • the intermediate wall 20 is radially outward formed extended so that they are essential areas of the diffuser 15th covered.
  • the intermediate wall 20 has a corresponding outer ring 43 on.
  • a circumferential cavity 44 is formed in the interior of the outer ring 43.
  • the supply line 27 for the cooling fluid 29 engages the outer ring 43 and opens into the cavity 44, which other end with the recess 26th the intermediate wall 20 is connected (Fig. 6).
  • the cooling fluid 29, starting from the supply line 27 first introduced into the cavity 44 of the outer ring 43, where it is the indirect Cooling of the diffuser 15 and the diffuser plate 19 is used. Only then does the Introduction of the cooling fluid 29 in the recess 26 of the intermediate wall 20. There the indirect cooling of the leakage flow 33, which has already been described above, takes place. The recirculation of the cooling fluid 29 into the cooling water circuit 9 also becomes realized via the discharge line 28.
  • the intermediate wall 20, as in the US 4815184, also directly into the Pass over diffuser plate 19 and with the recess 26 of the intermediate wall 20 connected cavity 44 may be disposed in the diffuser plate 19 (not shown).
  • a direct cooling of the leakage flow 33 is provided.
  • feed channels 40 for a second cooling fluid 41 both the Bearing housing 21 and the diffuser plate 19 arranged penetrating (Fig. 7).
  • the feed channels 40 are downstream of the intercooler 8 with the charge air line 6 connected, so that is used as the second cooling fluid 41 cooled charge air (Fig. 1).
  • the second Cooling fluid 41 Due to the tangential introduction of the second cooling fluid 41 is a pure film cooling realized the entire rear wall 22 of the compressor 11.
  • the second Cooling fluid 41 replaces the hot leakage flow 33, so that at the Rear wall 22 of the compressor wheel 11 forming boundary layer already from the beginning is mainly formed by the cooled charge air.
  • This combination of indirect and direct cooling has a special one Cooling effect, because the two cooling options complement each other in their effect and thus for a very high temperature reduction in the compressor 11th to care.
  • other cooling media 41 may be used as the second cooling fluid 41 be, with an external supply of compressed air is possible (not shown).
  • FIG. 1 additionally shows the arrangement of a control valve 45 in the feed channel 40 for the second cooling fluid 41.
  • the quantitative Supply of the second cooling fluid 41 are regulated, so that an adjustment the cooling effect on the expected conditions or on the current temperature conditions during operation of the exhaust gas turbocharger 2 allows becomes.
  • the control valve 45 also by hand as well as not shown Measuring and control unit are operated.
  • questionable quantities are the temperature of the charge air after the intercooler 8 or the Temperature of the intermediate wall 20 itself.
  • the supply of the second cooling fluid 41 not only partially but also completely prevented become. In the latter case, then only indirect cooling, i. a water cooling takes place.
  • cooling configurations described above can be arbitrary be combined with each other, regardless of whether in the radial gap 24, a labyrinth seal 25 is arranged or not.
  • partition wall cooling alone is from the outset any increase in the compressor thrust and the air leakage into the bearing housing 21 of the exhaust gas turbocharger 2 avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten, gemäss dem Oberbegriff des Anspruchs 1 und dem Oberbegriff des Anspruchs 7, insbesondere jedoch zur indirekten Kühlung der Strömung im Radialspalt zwischen dem Verdichterrad und dem Gehäuse eines Radialverdichters.
Stand der Technik
Zur Abdichtung rotierender Systeme sind im Turbomaschinenbau berührungsfreie Dichtungen, insbesondere Labyrinthdichtungen weit verbreitet. Im fluiddurchströmten Trennspalt zwischen rotierenden und stehenden Teilen tritt infolge der sich ausbildenden Strömungsgrenzschichten eine hohe Reibleistung auf. Dies führt zu einer Erwärmung des Fluids im Trennspalt und damit auch zur Erwärmung der den Trennspalt umgebenden Bauteile. Die hohen Materialtemperaturen haben eine Reduktion der Lebensdauer der entsprechenden Bauteile zur Folge.
Ein einfach aufgebauter Radialverdichter ohne eine im Trennspalt ausgebildete Dichtgeometrie ist aus der DE 195 48 852 A1 bekannt. Auch dabei sorgt die infolge von Strömungsscherschichten an der Rückwand des Verdichterrades entstehende Reibungswärme für eine Erwärmung des Verdichterrades und damit für eine Reduktion seiner Lebensdauer.
Aus der EP 0 518 027 B1 ist eine Luftkühlung für Radialverdichter mit einer Dichtgeometrie auf der Rückseite des Verdichterrades bekannt. Dazu ist zwischen den einzelnen Dichtelementen ein zusätzlicher Ringraum auf der Gehäusewandseite des Radialverdichters ausgebildet. In diesen Ringraum wird ein kaltes Gas eingeführt, welches einen höheren als den am Austritt des Verdichterrades herrschenden Druck aufweist. Die zugeführte Luft wirkt als Prallkühlung. Dabei teilt sie sich im Dichtungsbereich und strömt hauptsächlich radial nach innen sowie nach aussen. Dadurch soll ausserdem eine Sperrwirkung gegen die Durchströmung des Trennspaltes mit heisser Verdichterluft vom Austritt des Verdichterrades erzielt werden. Die auf diese Weise eingeblasene Luft sorgt jedoch für eine Schuberhöhung und für zusätzliche Reibungsverluste in den Strömungsgrenzschichten.
Neben dieser direkten Kühlung ist aus der DE 196 52 754 A1 auch eine indirekte Kühlung der Rückwand des Verdichterrades bzw. des durch den Trennspalt strömenden Mediums bekannt. Dazu ist am oder im an der Rückwand stehenden und mit dieser den Trennspalt bildenden Gehäuseteil eine mit dem Schmierölsystem des Turboladers verbundene Zuführ- und Verteileinrichtung angeordnet. Als Kühlmedium dient das zur Lagerschmierung eingesetzte Öl, wozu der Schmierölkreislauf des Turboladers angezapft wird. Ein Nachteil dieser Kühlung ist der relativ hohe Ölbedarf und die vom Ölkühler zusätzlich abzuführende Wärmemenge. Dies führt zu einem vergrösserten Bauvolumen des Kühlers. Zudem besteht bei einer Havarie mit Beschädigung der entsprechenden Bauteile eine erhöhte Verpuffungsgefahr.
Mit der US 4815184 ist auch eine Wasserkühlung des Lagergehäuses eines Turboladers bekannt. Diese Kühlung dient jedoch der Beseitigung der Verkokungsgefahr des nach dem Abstellen des Turboladers in dessen Lagergehäuse verbleibenden Schmieröls. Im Gegensatz zu den oben beschriebenen Lösungen des Standes der Technik ist somit die Zufuhr des Kühlmediums nicht während des Dauerbetriebes sondern vielmehr beim Abschalten des Turboladers erforderlich. Daher vermag diese Art der Kühlung des Lagergehäuses keine Hinweise auf eine indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten zu geben. Ausserdem beschäftigt sich diese Lösung ausdrücklich nicht mit der Kühlung der Zwischenwand.
Aus der US 2,384,251 ist eine indirekte Kühlung des Diffusors bekannt, bei der ein Kühlmedium durch einen den Diffusor umgebenden Ringraum gepumpt wird. Auch dieses Dokument beschäftigt sich nicht mit der Kühlung der Zwischenwand und liefert keinen Hinweis auf eine indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten.
Darstellung der Erfindung
Die Erfindung versucht alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, ein bezüglich seiner Kühlwirkung verbessertes Verfahren zur Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten zu schaffen. Zudem soll eine einfache, kostengünstige und robuste Vorrichtung zur Umsetzung des Verfahrens angegeben werden.
Erfindungsgemäss wird dies dadurch erreicht, dass bei einem Verfahren gemäss dem Oberbegriff des Anspruchs 1, Wasser als Kühlfluid für das dem Radialspalt benachbarte Statorteil verwendet wird.
Das als Kühlmedium eingesetzte Wasser besitzt eine etwas höhere Dichte als die bekannten Schmieröle sowie eine etwa doppelt so grosse spezifische Wärmekapazität. Da der über ein Kühlmedium abzuführende Wärmestrom proportional dem Produkt aus Dichte und spezifischer Wärmekapazität ist, ergibt sich bei Verwendung von Wasser ein deutlicher Vorteil gegenüber einer Ölkühlung. Bei gleichem Massenstrom und gleicher Temperatur des Wassers kann somit aus dem durch den Radialspalt strömenden Medium über das zu kühlende Statorteil eine grössere Wärmemenge entzogen werden. Der Kühleffekt auf die an den Radialspalt angrenzenden Bereiche des Rotors ist daher ebenfalls grösser. Im Umkehrschluss wird zum Ableiten der gleichen Wärmemenge gegenüber dem Schmieröl ein kleinerer Massenstrom an Kühlwasser benötigt, wodurch die Zu- und Abfuhreinrichtung für das Kühlmedium entsprechend geringer dimensioniert sein kann.
Dazu ist im Inneren des dem Radialspalt benachbarten Statorteils zumindest eine Ausnehmung ausgebildet oder am Statorteil zumindest ein Hohlraum angeordnet. Die Ausnehmung bzw. der Hohlraum ist sowohl mit einer Zufuhrleitung als auch mit einer Abfuhrleitung für das Kühlfluid verbunden. Über diese Leitungen wird das Kühlfluid eingeleitet bzw. wieder abgeleitet. In Abhängigkeit von der rotorseitigen Wanddicke, welche möglichst gering gehalten werden soll, kann durch die dem Radialspalt unmittelbar benachbarte Wasserführung im Inneren des Statorteils eine verbesserte Kühlwirkung erzielt werden. Wird jedoch statt der Ausnehmung im Statorteil der beschriebene Hohlraum am Statorteil ausgebildet, so kann bei ebenfalls guter Kühlwirkung eine einfachere und kostengünstigere Herstellung realisiert werden.
In einem aus einer Brennkraftmaschine, einem Ladeluftkühler und einem Abgasturbolader bestehenden System wird entweder Frischwasser von ausserhalb des Systems oder vorteilhaft im System vorhandenes Wasser als Kühlfluid verwendet. Im letzteren Fall findet dazu das in einem Kühlwasserkreislauf des Ladeluftkühlers befindliche Kühlwasser Verwendung, welches stromauf des Ladeluftkühlers abgezweigt wird. Dabei ist das feststehende Statorteil ein Gehäuseteil eines Radialverdichters, welches den Radialspalt zum Rotor, d.h. zum rotierenden Verdichterrad eines Abgasturboladers begrenzt.
Als Ausnehmung des Statorteils ist ein in letzteres eingegossenes Rohr ausgebildet, wodurch eine einfache und robuste Kühlvorrichtung entsteht. Alternativ dazu ist im Statorteil zumindest eine Nut angeordnet, wobei in jeder Nut zumindest ein als Ausnehmung dienendes Rohr eingelegt und vergossen ist. Weitaus einfacher in der Fertigung ist natürlich ein Statorteil mit zumindest einem entsprechenden, eingegossenen Kern, welcher zur Bildung der Ausnehmung entfernt wird.
Ein zusätzlicher Vorteil wird erreicht, indem das Kühlfluid vor der Wasserkühlung des dem Radialspalt benachbarten Statorteils zur indirekten Kühlung des die Hauptströmung des Arbeitsmediums stromab der Abzweigung der Leckageströmung aufnehmenden Diffusors und der den Diffusor zum Lagergehäuse abgrenzenden Diffusorplatte verwendet wird. Damit kann auch in diesem nachgelagerten Bereich eine wirksame Kühlung des Materials der Turbomaschine erzielt werden. Ausserdem wird so der Wärmefluss vom Diffusor zum dem Radialspalt benachbarten Statorteil reduziert.
Besonders vorteilhaft wird neben der Wasserkühlung ein zweites Kühlfluid verwendet und in den Radialspalt eingeleitet, wobei vorzugsweise Luft zum Einsatz kommt. Aufgrund der zweifachen Kühlung des Radialspaltes kann die Temperatur des thermisch stark belasteten Rotors weiter gesenkt werden. Dazu sind am Radialspalt zumindest ein Zuführkanal sowie eine Abführeinrichtung für das zweite Kühlfluid angeordnet.
Indem die Zufuhr des zweiten Kühlfluides teilweise oder auch vollständig abgestellt wird, kann die Kühlwirkung auf einfache Weise den beim Betrieb der Turbomaschine zu erwartenden Bedingungen oder auch den aktuellen Temperaturverhältnissen angepasst werden.
Kurze Beschreibung der Zeichnung
In der Zeichnung sind mehrere Ausführungsbeispiete der Erfindung anhand eines mit einer Brennkraftmaschine verbundenen Abgasturboladers dargestellt.
Es zeigen:
Fig. 1
eine schematische Darstellung des mit der Brennkraftmaschine verbundene Abgasturboladers;
Fig. 2
einen Teillängsschnitt durch den Radialverdichter des Abgasturboladers;
Fig. 3
eine Darstellung gemäss Fig. 2, jedoch in einem zweiten Ausführungsbeispiel;
Fig. 4
eine Darstellung gemäss Fig. 2, jedoch in einem dritten Ausführungsbeispiel;
Fig. 5
eine Darstellung gemäss Fig. 2, jedoch in einem vierten Ausführungsbeispiel;
Fig. 6
eine Darstellung gemäss Fig. 2, jedoch in einem weiteren Ausführungsbeispiel;
Fig. 7
eine Darstellung gemäss Fig. 2, jedoch in einem nächsten Ausführungsbeispiel.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Die Figur 1 zeigt in einer schematischen Darstellung einen mit einer als Dieselmotor ausgebildeten Brennkraftmaschine 1 zusammenwirkenden Abgasturbolader 2. Letzterer besteht aus einem Radialverdichter 3 und einer Abgasturbine 4, welche eine gemeinsame Welle 5 aufweisen. Der Radialverdichter 3 ist über eine Ladeluftleitung 6 und die Abgasturbine 4 über eine Abgasleitung 7 mit der Brennkraftmaschine 1 verbunden. In der Ladeluftleitung 6, d.h. zwischen dem Radialverdichter 3 und der Brennkraftmaschine 1, ist ein Ladeluftkühler 8 angeordnet. Der Ladeluftkühler 8 besitzt einen Kühlwasserkreislauf 9 mit einer nicht dargestellten Zu- bzw. Abfuhr.
Der Radialverdichter 3 ist mit einem Verdichtergehäuse 10 ausgestattet, in dem ein als Verdichterrad ausgebildeter und mit der Welle 5 verbundener Rotor 11 angeordnet ist. Das Verdichterrad 11 besitzt eine mit einer Vielzahl von Laufschaufeln 12 besetzte Nabe 13. Zwischen der Nabe 13 und dem Verdichtergehäuse 10 ist ein Strömungskanal 14 ausgebildet. Stromab der Laufschaufeln 12 schliesst an den Strömungskanal 14 ein radial angeordneter, beschaufelter Diffusor 15 an, welcher seinerseits in eine Spirale 16 des Radialverdichters 3 mündet. Das Verdichtergehäuse 10 besteht hauptsächlich aus einem Lufteintrittgehäuse 17, einem Luftaustrittgehäuse 18, einer Diffusorplatte 19 und einem als Zwischenwand zu einem Lagergehäuse 21 des Abgasturboladers 2 ausgebildeten Statorteil 20 (Fig. 2).
Die Nabe 13 weist turbinenseitig eine Rückwand 22 sowie eine Befestigungsmuffe 23 für die Welle 5 auf. Die Befestigungsmuffe 23 wird von der Zwischenwand 20 des Verdichtergehäuses 10 aufgenommen. Natürlich kann auch eine andere geeignete Verdichterrad-Wellen-Verbindung gewählt werden. Ebenso ist auch der Einsatz eines unbeschaufelten Diffusors möglich.
Zwischen dem rotierenden Verdichterrad 11, d.h. seiner Rückwand 22 und der feststehenden Zwischenwand 20 des Verdichtergehäuses 10 existiert zwangsläufig ein Trennspalt, welcher bei einem Radialverdichter 3 als Radialspalt 24 ausgebildet ist. Der Radialspalt 24 nimmt eine das Verdichtergehäuse 10 gegenüber dem Lagergehäuse 21 abdichtende Labyrinthdichtung 25 auf. In der Zwischenwand 20 des Verdichtergehäuses 10 ist eine umlaufende Ausnehmung 26 ausgebildet und sowohl mit einer Zufuhr- als auch mit einer Abfuhrleitung 27, 28 für ein Kühlfluid 29 verbunden (Fig. 2, Fig. 3). Um eine möglichst hohe Kühlwirkung beim benachbarten Verdichterrad 11 zu erzielen, ist die Zwischenwand 20 verdichterradseitig der Ausnehmung 26 möglichst dünn ausgebildet. Dazu wird bei der Herstellung der Zwischenwand 20 ein dünnwandiges und an beiden Enden verschlossenes Rohr 30 eingegossen, dessen Innenraum die Ausnehmung 26 bildet (Fig. 2).
Beim Betrieb des Abgasturboladers 2 saugt das Verdichterrad 11 als Arbeitsmedium 31 Umgebungsluft an, die als eine Hauptströmung 32 über den Strömungskanal 14 sowie den Diffusor 15 in die Spirale 16 gelangt, dort weiter verdichtet und schliesslich über die Ladeluftleitung 6 zur Aufladung der mit dem Abgasturbolader 2 verbundenen Brennkraftmaschine 1 eingesetzt wird. Zuvor erfolgt jedoch im Ladeluftkühler 8 eine entsprechende Abkühlung des beim Verdichtungsvorgang aufgeheizten Arbeitsmediums 31.
Auf ihrem Weg vom Strömungskanal 14 zum Diffusor 15 beaufschlagt die im Radialverdichter 3 erhitzte Hauptströmung 32 des Arbeitsmediums 31 als Leckageströmung 33 auch den Radialspalt 24, wodurch das Verdichterrad 11 zusätzlich erhitzt wird. Weil jedoch die Betriebstemperatur im äusseren Bereich des Verdichterrades 11 am grössten ist, tritt insbesondere dort eine grosse Materialbelastung auf. In die unmittelbar benachbart zu diesem kritischen Bereich angeordnete Ausnehmung 26 der Zwischenwand 20 wird als Kühlfluid 29 aus dem Kühlwasserkreislauf 9 des Ladeluftkühlers 8 abgezweigtes Kühlwasser eingeleitet. Es kommt somit zu einer indirekten Kühlung der im Radialspalt 24 befindlichen Leckageströmung 33 und damit auch des Verdichterrades 11. Dabei erfolgt die Abzweigung des Kühlfluids 29 stromauf des Ladeluftkühlers 8, so dass mit dem relativ kalten Kühlwasser eine effektive Kühlung erzielt werden kann. Nach dem Kühlvorgang wird das nunmehr erwärmte Kühlfluid 29 über die Abfuhrleitung 28 stromab des Ladeluftkühlers 8 in den Kühlwasserkreislauf 9 rückgespeist (Fig. 1). Natürlich kann statt dem im System von Brennkraftmaschine 1, Ladeluftkühler 8 und Abgasturbolader 2 vorhandenen Kühlwasser auch Frischwasser von ausserhalb des Systems als Kühlfluid 29 zugeführt werden (nicht dargestellt).
In einem zweiten Ausführungsbeispiel, bei dem der Radialspalt 24 nicht mittels einer Labyrinthdichtung 25, sondern mit einem zwischen der Befestigungsmuffe 23 und dem Zwischenwand 20 angeordneten Dichtungsring 34 abgedichtet ist, erfolgt die Ausbildung der Ausnehmung 26 durch einen in die Zwischenwand 20 eingegossenen Kern, welcher anschliessend wieder entfernt werden muss (Fig. 3).
Gemäss einem dritten Ausführungsbeispiel ist in der Zwischenwand 20 einen Nut 35 ausgebildet. In die Nut 35 sind zwei Rohre 36 eingelegt und vergossen, wobei die beiden Rohre 36 eine Verbindungsleitung 37 aufweisen. Wiederum bilden die Innenräume der Rohre 36 die Ausnehmung 26 (Fig. 4). Natürlich kann in der Nut 35 auch nur ein einziges Rohr 36 angeordnet werden. Ebenso können in der Zwischenwand 20 zwei oder mehrere Nuten 35 ausgebildet werden, welche auch mehr als zwei Rohre 36 aufnehmen können (nicht dargestellt).
Alternativ zur Ausnehmung 26 in der Zwischenwand 20 ist in einem vierten Ausführungsbeispiel an der Zwischenwand 20 ein Hohlraum 38 ausgebildet, welcher turbinenseitig von einem Deckel 39 abgeschlossen wird (Fig. 5). Wie die Ausnehmung 26 ist auch der Hohlraum 38 mit einer Zufuhr- und mit einer Abfuhrleitung 27, 28 für das Kühlfluid 29 verbunden. Mit dieser Variante lässt sich der zur Realisierung der Kühlung des Verdichterrades 11 erforderliche Herstellungsaufwand vorteilhaft verringern. Der Deckel 39 und damit auch der Hohlraum 38 können mit gleicher Funktion natürlich auch verdichterseitig der Zwischenwand 21 angeordnet sein (nicht dargestellt).
Bei den zuletzt genannten Ausführungsbeispielen erfolgt die indirekte Kühlung der im Radialspalt 24 befindlichen Leckageströmung 33 und damit auch des Verdichterrades 11 im wesentlichen analog zu dem im ersten Ausführungsbeispiel beschriebenen Vorgang.
In einem weiteren Ausführungsbeispiel ist die Zwischenwand 20 nach radial aussen verlängert ausgebildet, so dass sie wesentliche Bereiche des Diffusors 15 überdeckt. Dazu weist die Zwischenwand 20 einen entsprechenden Aussenring 43 auf. Im Inneren des Aussenringes 43 ist ein umlaufender Hohlraum 44 ausgebildet. Die Zufuhrleitung 27 für das Kühlfluid 29 greift am Aussenring 43 an und mündet in dessen Hohlraum 44, welcher anderenendes mit der Ausnehmung 26 der Zwischenwand 20 verbunden ist (Fig. 6).
Bei dieser Lösung wird das Kühlfluid 29 ausgehend von der Zufuhrleitung 27 zunächst in den Hohlraum 44 des Aussenringes 43 eingeleitet, wo es der indirekten Kühlung des Diffusors 15 bzw. der Diffusorplatte 19 dient. Erst danach erfolgt die Einleitung des Kühlfluides 29 in die Ausnehmung 26 der Zwischenwand 20. Dort erfolgt die bereits zuvor beschriebene indirekte Kühlung der Leckageströmung 33. Die Rezirkulation des Kühlfluides 29 in den Kühlwasserkreislauf 9 wird ebenfalls über die Abfuhrleitung 28 realisiert.
Natürlich kann die Zwischenwand 20, wie beim US 4815184, auch direkt in die Diffusorplatte 19 übergehen und der mit der Ausnehmung 26 der Zwischenwand 20 verbundene Hohlraum 44 in der Diffusorplatte 19 angeordnet sein (nicht dargestellt).
In einem nächsten Ausführungsbeispiel ist zusätzlich zur bisher beschriebenen indirekten Kühlung eine direkte Kühlung der Leckageströmung 33 vorgesehen. Dazu sind mehrere tangential zur Rückwand 22 des Verdichterrades 11 in den Radialspalt 24 mündende Zuführkanäle 40 für ein zweites Kühlfluid 41 sowohl das Lagergehäuse 21 als auch die Diffusorplatte 19 durchdringend angeordnet (Fig. 7). Die Zuführkanäle 40 sind stromab des Ladeluftkühlers 8 mit der Ladeluftleitung 6 verbunden, so dass als zweites Kühlfluid 41 gekühlte Ladeluft Verwendung findet (Fig. 1).
Durch die tangentiale Einleitung des zweiten Kühlfluids 41 wird eine reine Filmkühlung der gesamten Rückwand 22 des Verdichterrades 11 realisiert. Das zweite Kühlfluid 41 ersetzt die heisse Leckageströmung 33, so dass die sich an der Rückwand 22 des Verdichterrades 11 ausbildende Grenzschicht bereits von Beginn an vor allem durch die gekühlte Ladeluft gebildet wird. Die anschliessende Ableitung des zweiten Kühlfluids 41 erfolgt über eine in der Zwischenwand 20 des Verdichtergehäuses 10 angreifende, nicht weiter dargestellte Abführeinrichtung 42. Diese Kombination von indirekter und direkter Kühlung hat einen besonderen Kühleffekt zur Folge, weil sich die beiden Kühlmöglichkeiten in ihrer Wirkung ergänzen und somit für eine sehr hohe Temperaturreduktion im Verdichterrad 11 sorgen. Natürlich können als zweites Kühlfluid 41 auch andere Kühlmedien verwendet werden, wobei auch eine externe Zuführung von Pressluft möglich ist (nicht dargestellt).
Die Figur 1 zeigt zusätzlich auch die Anordnung eines Stellventils 45 im Zuführkanal 40 für das zweite Kühlfluid 41. Mit Hilfe dieses Stellventils 45 kann die mengenmässige Zufuhr des zweiten Kühlfluides 41 geregelt werden, so dass eine Anpassung der Kühlwirkung an die zu erwartenden Bedingungen oder auch an die aktuellen Temperaturverhältnisse beim Betrieb des Abgasturboladers 2 ermöglicht wird. Dabei kann das Stellventil 45 ebenso von Hand als auch über eine nicht dargestellte Mess- und Steuereinheit betätigt werden. lnfrage kommende Messgrössen sind die Temperatur der Ladeluft nach dem Ladeluftkühler 8 oder auch die Temperatur der Zwischenwand 20 selbst. Natürlich kann auf diese Weise die Zufuhr des zweiten Kühlfluides 41 nicht nur teilweise sondern auch vollständig unterbunden werden. Im letzteren Fall findet dann lediglich eine indirekte Kühlung, d.h. eine Wasserkühlung statt.
Selbstverständlich können die oben beschriebenen Kühlkonfigurationen beliebig miteinander kombiniert werden, unabhängig davon, ob im Radialspalt 24 eine Labyrinthdichtung 25 angeordnet ist oder nicht. Bei alleiniger Anwendung der Zwischenwandkühlung wird von vornherein jede Erhöhung des Verdichterschubes und der Luftleckagen in das Lagergehäuse 21 des Abgasturboladers 2 vermieden.
Bezugszeichenliste
1
Brennkraftmaschine
2
Abgasturbolader
3
Radialverdichter
4
Abgasturbine
5
Welle
6
Ladeluftleitung
7
Abgasleitung
8
Ladeluftkühler
9
Kühlwasserkreislauf
10
Verdichtergehäuse
11
Rotor, Verdichterrad
12
Laufschaufel
13
Nabe
14
Strömungskanal
15
Diffusor
16
Spirale
17
Lufteintrittgehäuse
18
Luftaustrittgehäuse
19
Diffusorplatte
20
Statorteil, Zwischenwand
21
Lagergehäuse
22
Rückwand
23
Befestigungsmuffe
24
Radialspalt, Trennspalt
25
Labyrinthdichtung
26
Ausnehmung
27
Zufuhrleitung
28
Abfuhrleitung
29
Kühlfluid
30
Rohr
31
Arbeitsmedium
32
Hauptströmung
33
Leckageströmung
34
Dichtungsring
35
Nut
36
Rohr
37
Verbindungsleitung
38
Hohlraum
39
Deckel
40
Zuführkanal
41
zweites Kühlfluid, Ladeluft
42
Abführeinrichtung
43
Aussenring
44
Hohlraum
45
Stellventil

Claims (10)

  1. Verfahren zur Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten, wobei von einer Hauptströmung (32) eines Arbeitsmediums (31) der Turbomaschine eine Leckageströmung (33) abzweigt und in den Radialspalt (24) strömt, bei welchem Verfahren ein dem Radialspalt (24) benachbartes Statorteil (20) mit einem ersten Kühlfluid (29) beaufschlagt wird, dadurch gekennzeichnet, dass die Hauptströmung (32) des Arbeitsmediums (31) stromab der Abzweigung der Leckageströmung (33) in einen Diffusor (15) eingeleitet wird, und das erste Kühlfluid (29) bevor es das dem Radialspalt (24) benachbarte Statorteil (20) beaufschlagt zur indirekten Kühlung des Diffusor (15) und einer Diffusorplatte (19) verwendet wird, wobei als erstes Kühlfluid (29) Wasser eingesetzt wird, und dass ein zweites Kühlfluid (41) in den Radialspalt (24) eingeleitet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zufuhr des zweiten Kühlfluides (41) teilweise abgestellt wird und als zweites Kühlfluid vorzugsweise Luft verwendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste Kühlfluid (29) in eine im Statorteil (20) ausgebildete Ausnehmung (26) oder in einen am Statorteil (20) angeordneten Hohlraum (38) eingeleitet wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als erstes Kühlfluid (29) Frischwasser von ausserhalb eines aus einer Brennkraftmaschine (1), eines Ladeluftkühlers (8) und eines Abgasturboladers (2) bestehenden Systems verwendet wird.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in einem aus einer Brennkraftmaschine (1) einem Ladeluftkühler (8) und einem Abgasturbolader (2) bestehenden System vorhandenes Wasser als erstes Kühlfluid (29) verwendet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass in einem Kühlwasserkreislauf (9) des Ladeluftkühlers (8) vorhandenes Kühlwasser als erstes Kühlfluid (29) verwendet und letzteres stromauf des Ladeluftkühlers (8) abgezweigt wird.
  7. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, bei welcher ein feststehendes Statorteil (20) den Radialspalt (24) zum Rotor (11) begrenzend angeordnet ist, dadurch gekennzeichnet, dass im Inneren des Statorteils (20) zumindest eine Ausnehmung (26) ausgebildet oder am Statorteil (20) zumindest ein Hohlraum (38) angeordnet und die Ausnehmung (26) oder der Hohlraum (38) sowohl mit einer Zufuhrleitung (27) als auch mit einer Abfuhrleitung (28) für ein Kühlfluid (29) verbunden ist, und dass zumindest ein Zuführkanal (40) sowie eine Abführeinrichtung (42) für ein zweites Kühlfluid (41) am Radialspalt (24) angeordnet sind.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass im Statorteil (20) zumindest ein eingegossenes Rohr (30) angeordnet ist
  9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass im Statorteil (20) zumindest eine Nut (35) angeordnet und in jeder Nut (35) zumindest ein Rohr (36) eingelegt und vergossen ist.
  10. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das feststehende Statorteil (20) als Teil eines Verdichtergehäuses (10) eines Radialverdichters (3) ausgebildet ist, welches den Radialspalt (24) zu einem rotierenden Verdichterrad (11) eines Abgasturboladers (2) begrenzt.
EP99947181A 1999-10-20 1999-10-20 Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten Expired - Lifetime EP1222400B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH1999/000497 WO2001029426A1 (de) 1999-10-20 1999-10-20 Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten

Publications (2)

Publication Number Publication Date
EP1222400A1 EP1222400A1 (de) 2002-07-17
EP1222400B1 true EP1222400B1 (de) 2005-12-28

Family

ID=4551727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947181A Expired - Lifetime EP1222400B1 (de) 1999-10-20 1999-10-20 Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten

Country Status (7)

Country Link
EP (1) EP1222400B1 (de)
JP (1) JP2003525377A (de)
KR (1) KR100607424B1 (de)
CN (1) CN1191433C (de)
AU (1) AU6075899A (de)
DE (1) DE59913001D1 (de)
WO (1) WO2001029426A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024679A1 (de) 2009-06-12 2010-12-23 Man Diesel & Turbo Se Verdichterlaufrad und damit ausgerüsteter Radialverdichter
DE102010037356B4 (de) * 2010-09-06 2013-09-05 Kompressorenbau Bannewitz Gmbh Verdichterradkühlung
US10598084B2 (en) 2018-03-14 2020-03-24 Borgwarner Inc. Cooling and lubrication system for a turbocharger

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100923186B1 (ko) * 2005-08-05 2009-10-22 가부시키가이샤 아이에이치아이 전동기 부착 과급기
DE102006048784A1 (de) * 2006-10-12 2008-04-17 Man Diesel Se Verdichter für einen Turbolader sowie Verfahren zu dessen Kühlung
JP2008223673A (ja) * 2007-03-14 2008-09-25 Ihi Corp ターボチャージャ
DE102007025133A1 (de) * 2007-05-30 2008-12-04 Mahle International Gmbh Ladeeinrichtung
JP5700999B2 (ja) * 2010-10-06 2015-04-15 三菱重工業株式会社 遠心圧縮機
DE102010042104A1 (de) 2010-10-07 2012-04-26 Bayerische Motoren Werke Aktiengesellschaft Abgasturbolader
FR2966529B1 (fr) * 2010-10-21 2014-04-25 Turbomeca Procede d’attache de couvercle de compresseur centrifuge de turbomachine, couvercle de compresseur de mise en oeuvre et assemblage de compresseur muni d’un tel couvercle
ITCO20110036A1 (it) 2011-09-07 2013-03-08 Nuovo Pignone Spa Guarnizione per una macchina rotante
GB2499627A (en) * 2012-02-23 2013-08-28 Napier Turbochargers Ltd Turbocharger casing
CN105143636B (zh) * 2013-02-21 2018-01-09 丰田自动车株式会社 具备窜缸混合气环流装置的内燃机的增压器的冷却装置
DE102013203455A1 (de) * 2013-02-28 2014-08-28 Abb Turbo Systems Ag Zwischenwand zur Abdichtung des Rückraums eines Radialverdichters
ITFI20130237A1 (it) * 2013-10-14 2015-04-15 Nuovo Pignone Srl "sealing clearance control in turbomachines"
CN104833691B (zh) * 2015-05-08 2017-10-24 湖北航天技术研究院总体设计所 一种优化舵轴热环境的试验方法及试验设备
CN106286338A (zh) * 2015-06-02 2017-01-04 上海优耐特斯压缩机有限公司 对采用高速电机的离心压缩机泄漏空气进行冷却的结构
JP6246847B2 (ja) * 2016-02-22 2017-12-13 三菱重工業株式会社 インペラ背面冷却構造及び過給機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE403277C (de) * 1924-09-30 Bbc Brown Boveri & Cie Vorrichtung zur Kuehlung von Kreiselverdichtern
GB191114702A (en) * 1910-06-22 1912-07-22 Hugo Junkers Improvements in or relating to Centrifugal or Turbo-compressors.
US2384251A (en) * 1943-01-14 1945-09-04 Wright Aeronautical Corp Liquid cooled supercharger
US3966351A (en) * 1974-05-15 1976-06-29 Robert Stanley Sproule Drag reduction system in shrouded turbo machine
US4704075A (en) 1986-01-24 1987-11-03 Johnston Andrew E Turbocharger water-cooled bearing housing
JP2934530B2 (ja) * 1991-06-14 1999-08-16 三菱重工業株式会社 遠心圧縮機
DE19548852A1 (de) 1995-12-27 1997-07-03 Asea Brown Boveri Radialverdichter für Abgasturbolader
DE19652754A1 (de) 1996-12-18 1998-06-25 Asea Brown Boveri Abgasturbolader

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009024679A1 (de) 2009-06-12 2010-12-23 Man Diesel & Turbo Se Verdichterlaufrad und damit ausgerüsteter Radialverdichter
DE102009024679B4 (de) * 2009-06-12 2016-04-07 Man Diesel & Turbo Se Verdichterlaufrad und damit ausgerüsteter Radialverdichter
DE102010037356B4 (de) * 2010-09-06 2013-09-05 Kompressorenbau Bannewitz Gmbh Verdichterradkühlung
US10598084B2 (en) 2018-03-14 2020-03-24 Borgwarner Inc. Cooling and lubrication system for a turbocharger

Also Published As

Publication number Publication date
JP2003525377A (ja) 2003-08-26
WO2001029426A1 (de) 2001-04-26
CN1191433C (zh) 2005-03-02
DE59913001D1 (de) 2006-02-02
EP1222400A1 (de) 2002-07-17
KR20020041438A (ko) 2002-06-01
KR100607424B1 (ko) 2006-08-01
AU6075899A (en) 2001-04-30
CN1375042A (zh) 2002-10-16

Similar Documents

Publication Publication Date Title
EP1222400B1 (de) Verfahren und vorrichtung zur indirekten kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten
DE19845375A1 (de) Verfahren und Vorrichtung zur indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten
DE69407539T2 (de) Turbomaschine mit System zur Heizung der Rotorscheiben in der Beschleunigungsphase
DE69503628T2 (de) Leitschaufelkühlung mit doppelquelle
DE602004000527T2 (de) Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk
EP1717419B1 (de) Verfahren und Vorrichtung zur Einstellung eines Radialspaltes eines axial durchströmten Verdichters einer Strömungsmaschine
DE602004012209T2 (de) Kühlkonfiguration für eine Turbinenschaufel
DE69636906T2 (de) Turbolader mit eingebautem elektrischen hilfsmotor und kühleinrichtung dafür
DE60318792T2 (de) Zapfluft-Gehäuse für einen Verdichter
DE60221558T2 (de) Turbinenmotor mit luftgekühlter turbine
EP3059433B1 (de) Gasturbinentriebwerk mit ölkühler in der triebwerksverkleidung
EP1736635B1 (de) Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
DE69936184T2 (de) Abzapfringraum bei den Schaufelspitzen eines Gasturbinentriebwerks
DE69712831T2 (de) Kühlgaskrümmer für Dichtungsspaltregelung einer Turbomaschine
EP2148977B1 (de) Gasturbine
EP0961034B1 (de) Radialverdichter
DE1475702A1 (de) Labyrinthdichtung fuer Stroemungsmaschinen
DE2553193A1 (de) Bohrungsschaufeleinrichtung fuer turbinenschaufeln mit bohrungseintrittskuehlung
WO2007051733A1 (de) Dampfturbine
DE69302520T2 (de) Hochdruckdampfturbinengehäuse
DE102019108588A1 (de) Verbrennungsmotor
CH647844A5 (de) Stroemungsmaschine mit einem im wesentlichen scheibenfoermigen laufrad.
EP1222399B1 (de) Verfahren und vorrichtung zur kühlung der strömung in zwischen rotoren und statoren von turbomaschinen ausgebildeten radialspalten
DE19837430A1 (de) Lader für Brennkraftmaschine
WO1998013584A1 (de) Kompensation des druckverlustes einer kühlluftführung in einer gasturbinenanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20020211

17Q First examination report despatched

Effective date: 20040226

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIESZAUF, HELMUT

Inventor name: GREBER, JUERG

Inventor name: BREMER, JOACHIM

Inventor name: MUELLER, ULF, CHRISTIAN

Inventor name: BOTHIEN, MIHAJLO-RUEDIGER

Inventor name: WUNDERWALD, DIRK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59913001

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060320

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081021

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091020