EP1216207A1 - Composition utile pour le conditionnement des boues issues du traitement de milieux aqueux et ses applications - Google Patents

Composition utile pour le conditionnement des boues issues du traitement de milieux aqueux et ses applications

Info

Publication number
EP1216207A1
EP1216207A1 EP00964332A EP00964332A EP1216207A1 EP 1216207 A1 EP1216207 A1 EP 1216207A1 EP 00964332 A EP00964332 A EP 00964332A EP 00964332 A EP00964332 A EP 00964332A EP 1216207 A1 EP1216207 A1 EP 1216207A1
Authority
EP
European Patent Office
Prior art keywords
composition according
cationic
emulsion
mineral cation
polyelectrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00964332A
Other languages
German (de)
English (en)
Inventor
Yvette Pescher
Bruno Bavouzet
Michèle RAFFARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1216207A1 publication Critical patent/EP1216207A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge

Definitions

  • the present invention relates to a new composition which can be used in particular for the treatment of aqueous media such as waste or urban or industrial water and more particularly the conditioning of sludge prior to their dewatering operation.
  • sludge The treatment of waste water, urban or industrial, in particular by biological means, in the purification stations, leads to the production of sludge.
  • This sludge generally undergoes a mechanical dewatering operation (in particular filtration, centrifugation), before being transported to a landfill, agricultural spreading or incineration site.
  • the sludge to be treated consists mainly of water in which biomass is dispersed at a rate of 12 to 40 g / l.
  • the treatments therefore aim to concentrate the dry matter as much as possible and to remove the water.
  • the object of the present invention is precisely to propose a new composition which can be used effectively in the conditioning of this type of sludge, making it possible in particular to increase their dryness, that is to say to increase the dry extracts obtained during the subsequent operation. dehydration.
  • the drainability necessary for the evacuation of the water is generally obtained by adding to them in sequence a inorganic salt, a cationic polymer and then optionally a polymer anionic.
  • the sludge treatment methods currently available are therefore different depending on the water / biomass separation technique used. On the other hand, they generally require the successive addition of several reagents. It is indeed difficult to formulate in a single composition and at significant concentrations, an organic salt of the aluminum polychloride type and a cationic polyelectrolyte.
  • Aluminum is a complexing certain polyelectrolytes, their mixtures lead from a certain concentration in these compounds, to the formation of gels which are of course detrimental in terms of fluidity to the corresponding mixtures.
  • the object of the present invention is precisely to propose a universal composition, that is to say which can be used indifferently for the treatment of sludge according to one or the other of the techniques mentioned above.
  • the claimed composition has the advantage of combining, in the form of a mixture, an inorganic cation of charge greater than or equal to 2 and a cationic polyelectrolyte while not being subject to the gelling phenomenon discussed above.
  • the main object of the present invention is a composition useful for conditioning sludge obtained by mixing at least one reverse emulsion containing at least one cationic polyelectrolyte with a reverse emulsion or an aqueous solution containing at least one inorganic filler cation. greater than or equal to two.
  • composition useful for conditioning sludge characterized in that it is in the form of an emulsion comprising in aqueous phase (s) and separately at least one mineral cation of charge greater than or equal to 2 and a cationic polyelectrolyte.
  • said composition is in the form of a reverse water-in-oil emulsion in which said mineral cation and said cationic polyelectrolyte are distributed in separate water droplets in the oily phase.
  • This type of composition is generally obtained by mixing, with stirring, a reverse emulsion containing said mineral cation with a reverse emulsion containing said cationic polyelectrolyte.
  • said composition is in the form of a double water / oil / water emulsion in which the mineral cation is present at the level of the aqueous continuous phase and the cationic polyelectrolyte is distributed at least in part in water droplets constituting the second aqueous phase dispersed in the oily phase.
  • This second type of emulsion can be obtained by mixing an inverse emulsion of the cationic polyelectrolyte with an aqueous solution of the mineral cation.
  • compositions are particularly advantageous insofar as they prove effective for all of the sludge treatment techniques, namely belt filtration and / or centrifugation or filtration on a press.
  • composition obtained by mixing the two inverse emulsions, namely that of the mineral cation and that of the cationic polyelectrolyte. Indeed, these two compounds are then distributed at the level of the emulsion in separate water droplets and are therefore effectively isolated from one another.
  • the mineral cation has a charge greater than or equal to 2. It is usually chosen from Mg 2+ , Al 3+ , Fe 3+ , La 3+ , Zr 4 * and their polymerized forms when they exist. Very preferably, the cation is Al 3+ or one of its polymerized forms.
  • This mineral cation is present in the form of a water-soluble salt.
  • soluble salts chlorides, nitrates, sulfates and acetates can be used.
  • a soluble salt is used, free of the nitrogen element, which makes it possible to overcome any problems linked to its presence.
  • a chloride is used.
  • the cation is preferably an aluminum chloride or one of its polymerized forms and more preferably poly aluminum chloride.
  • the amount of mineral cation used is preferably between 0.05 and 2 moles, in particular between 0.49 and 1.8 moles per kg of the composition.
  • the pH of the solution or emulsion is adjusted so as to prevent precipitation of the mineral salt in the continuous aqueous phase. This adjustment falls within the competence of man and art.
  • the cationic polyelectrolyte it is preferably of high molecular weight, that is to say of molecular weight greater than 1.10 6 .
  • the polyelectrolytes preferably have a molecular weight from 1.10 e to approximately 20.10 e , more preferably from 1.10 e to approximately 10.10 6 .
  • the cationic polyelectrolyte can be linear or branched and is preferably in a branched form. It was indeed noted that the ramifications had a beneficial effect on the kinetics of coagulation and flocculation.
  • Polyacrylamides polyethylene oxides, polyvinylpyrrolidones, as well as polymers of natural origin such as starch and its derivatives or gum such as guar gum, are particularly suitable as cationic polyelectrolyte, insofar as they are cationic.
  • the polyelectrolyte is a polyacrylamide.
  • the polyacrylamide can be cationic up to 100% filler and is preferably cationic between about 0.1 and 15% filler.
  • Cationic polyacrylamides include copolymers of polyacrylamide with cationic monomers or polyacrylamides modified according to the Mannich reaction.
  • cationic polyacrylamide copolymers include acrylamide / halide copolymers, preferably diallyldialkylammonium chloride, diaminoalkylmethacrylate / acrylamide copolymers and dialkylaminoalkylmethacrylate / acrylamide copolymers, the C 6 to C 6 alkyl group.
  • the cationic polyelectrolyte is a polyacrylamide copolymer, and preferably the polyacrylamide / diallyldimethylammonium chloride copolymer with a molecular weight of the order of 3.10 6 . It is more preferably combined with a polychloride of aluminum in the claimed composition.
  • the amount of cationic polyelectrolyte present in the claimed composition is preferably at most 10% by weight, in particular between 0.3% and 8% by weight of said composition.
  • the reverse emulsion of the cationic polyelectrolyte for example in the case of a high molecular weight polyacrylamide and the aqueous solution or the reverse emulsion of the mineral cation, for example in the case of polychloride of aluminum, are used. works in such a way that the molar ratio (mineral cation of charge greater than or equal to 2) / (cationic polyéectrolyte) is between 1.10 2 and 8.10 e in particular between 1.10 3 and 8.10 e .
  • composition comprising polychloride of aluminum and a copolymer acrylamide / diallyldialkylammonium chloride of high molecular weight
  • a weight ratio polychloride of aluminum / polyacrylamide ranging between 0,1 and 15 and more particularly between 0.1 and 10.
  • compositions containing the mineral cation and the cationic polyelectrolyte distributed in separate water droplets in the oily continuous phase are particularly advantageous for the formulation of a composition concentrated in these two compounds. This is how this mode of formulation will be favored for compositions containing a polyacrylamide concentration of the order of 4 to 10% by weight relative to the composition.
  • the claimed composition can be stabilized in the form of an emulsion using surfactant (s).
  • surfactants are generally introduced at the level of the reverse emulsion (s) constituting said composition.
  • the surfactant present in the oily phase of the emulsion is preferably a surfactant which naturally remains inert with respect to the mineral cation.
  • the liposoluble surfactants which can be used in the emulsion according to the invention, can be chosen from liposoluble lecithins, esters of sorbitan and of fatty acids, of polyalkylenes dipolyhydroxystea spleens, fatty acids, monoglycerides, polygiycerol esters and lactic and tartaric acid esters.
  • water-soluble lecithins may be cited, sucrose esters, fatty acid esters (including Tweens ®), polyoxyethylene alkylamides, triglyceride sulphates, alkyl sulphates (including dodecyl sodium sulfate SDS), alkyl ether sulfates, alkyl sulfonates, alkylamine salts, fatty amines, lipoamino acids, modified polyesters and polymeric silica-born surfactants.
  • the amounts of surfactants are adjusted so as to stabilize the formulation (reverse or double emulsion) of the composition.
  • the claimed composition can be prepared either by mixing the two reverse emulsions containing the mineral cation and the polyelectrolyte respectively or by adding the reverse emulsion containing the polyelectrolyte in an aqueous solution of the polyelectrolyte.
  • the mixtures are generally carried out at room temperature and with sufficient mechanical stirring to lead to an emulsion stabilized over time.
  • hydrophobic materials such as in particular rosin esters, lanolin, petrolatum, waxes, polybutadienes of low molecular weights natural animal, vegetable or mineral oils and their mixtures.
  • compositions find a particularly advantageous application in the chemical conditioning of sludge, in particular of sludge from sewage treatment plants or waste or urban or industrial: its incorporation in sludge, which can be subjected before treatment anaerobic digestion, allows to structure them in such a way that the water contained in these sludges is better exuded during the dehydration operation which follows.
  • the efficiency of the mechanical dehydration operation such as filtration or centrifugation can thus be improved, the volumes produced after this dehydration being reduced by obtaining a filtration cake of high dryness.
  • the amount of composition used during the conditioning of a sludge is such that it generally corresponds between 0.05 to 3 times, preferably between 0.1 to 2 times, the amount of theoretical cationic charge necessary to neutralize the amount of anionic charge of the sludge to be treated; in other words, the quantity of composition claimed is such that it has, in absolute value, a cationicity generally equal to 0.05 to 3 times, preferably between 0.1 to 2 times, the anionicity of the mud treat.
  • the claimed compositions are diluted before use.
  • This dilution is more particularly necessary for the composition in the form of a reverse emulsion obtained by mixing the reverse emulsion of the mineral cation and that of the polyelectrolyte to transform it into a direct emulsion.
  • This phase inversion can also be carried out by adding an adequate surfactant.
  • this dilution operation is on the other hand optional.
  • Figure 1 Representation for composition A as well as for its constituents added separately, of the evolution of the volume drained after 2 minutes depending on the conditioning dose.
  • Figure 2 Representation for composition B as well as for its constituents added separately, of the evolution of the drained volume after 2 minutes depending on the conditioning dose.
  • Figure 3 Representation of the t / v monitoring graph as a function of v for composition A and its constituents added separately.
  • Figure 4 Representation of the t / v monitoring graph as a function of v for composition B and its constituents added separately.
  • PAM cationic polyacrylamide
  • PAC poly aluminum chloride
  • PAM emulsion Reverse emulsion of acrylamide / diallyldimalkylammonium chloride copolymer with a molecular weight of approximately 3.10 6 in powder form.
  • Alkamuls S80 ® sorbitan oleate from HLB 4.3 (Rhodia)
  • Span 85 ® sorbitan trioleate from HLB 1, 7 (Sigma-AIdrich)
  • Alkamuls T20 ® sorbitan monolaurate of 20OE HLB 16.6 (Rhodia)
  • Alkamuls T85 ® sorbitan trioleate of 20OE HLB 11 (Rhodia)
  • a reverse emulsion is produced in a water / vaseline mixture 1 g / 47.4 g using 1.6 g of a monolaurate / sorbitan oleate S20 mixture. / S80 88% / 12% (i.e. the required HLB of 8 for petroleum jelly).
  • a fluid reverse emulsion comprising by weight: 16.1% in PAC, 3.8% in PAM, 42.8% in water, 35.7% in oil and at least 1.6% in surfactant.
  • the two compounds are therefore effectively separated within the reverse emulsion, thus preserving the latter a satisfactory fluidity.
  • This emulsion is prepared by mixing an aqueous solution of polychloride of aluminum (commercial solution Aquarhône 18 ® ) and an inverse emulsion of PAM.
  • the reverse PAM emulsion is prepared according to the protocol described above in example 1. It is then added with stirring to the Aquarhône 18 ® . Two mixtures A and B are thus obtained at different PAC / PAM ratios.
  • B mixture a 2% commercial PAM emulsion is mixed with an Aquarhône 18 ® solution , to obtain a 20% mixture in commercial Aquarhône 18 ® and 1.6% in PAM emulsion, i.e. weight ratio of active ingredients.
  • PAC / PAM 8.75.
  • mixtures A and B are evaluated in drainability tests and piston filter and compared with that obtained with sludges in which have been incorporated in a separate and sequenced manner, Aquarhône 18 ® and the PAM emulsion, in identical quantities to those present in the respective mixtures.
  • This test is carried out on 200 g of biological sludge from an urban wastewater treatment plant having a dry matter of 6.35% including 37.2% of mineral matter.
  • the latter is added to 200 g of mud with mechanical stirring with a pale lacerator at 700 rpm in a beaker, the mixture is then transferred to a filter and the quantity of d is evaluated. water that percolated over time.
  • the whole is transferred twice from one beaker to another and then stirred for 15 seconds at 700 rpm. It is then deposited on a filter and the quantity of percolated water is measured.
  • B is diluted to 1/3, which means that the Aquarhône 18 ® content goes from 20.0% to 6.67% and that in PAM emulsion from 1.6% to 0.53%.
  • mixtures A and B prove to be much less viscous than the 0.56% PAM solution.
  • the conditioning dose is determined by measuring the capillary suction time (CST) at different doses.
  • Two doses for packaging are used: the dose at the minimum CST time and the dose with a slight overdose.
  • the doses used are: - 3g of A at 1/6 for 50g of mud, and - 3.5g of A at 1/6 for 50g of mud.
  • the doses at A are determined by measurements of CST at different doses. They are listed in Table II below.
  • the doses used are 2 g of 1/3 B for 50 g of mud and 3 g of 1/3 B for 50 g of mud.
  • FIGS. 3 and 4 The results obtained with emulsion A and its control mixture as well as emulsion B and its control mixture are respectively presented in FIGS. 3 and 4.
  • the graphs for monitoring t / v as a function of v are represented. for the two mixtures and their constituents added separately. It appears that it is in terms of dryness or in terms of filtration behavior that the fact of adding the products constituting the mixtures separately reduces the effectiveness of the packaging. The specific resistances are indeed higher and the dryness lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

La présente invention concerne une composition utile pour le conditionnement des boues obtenue par mélange d'au moins une émulsion inverse contenant au moins un polyélectrolyte cationique avec une émulsion inverse ou une solution aqueuse contenant au moins un cation minéral de charge supérieure ou égale à deux. Elle a également pour objet les applications correspondantes.

Description

COMPOSITION UTILE POUR LE CONDITIONNEMENT DES BOUES ISSUES DU TRAITEMENT DE
MILIEUX AQUEUX ET SES APPLICATIONS.
La présente invention concerne une nouvelle composition utilisable notamment pour le traitement des milieux aqueux comme les eaux résiduaires ou urbaines ou industrielles et plus particulièrement le conditionnement de boues préalablement à leur opération de déshydratation.
Le traitement des eaux résiduaires, urbaines ou industrielles, en particulier par voie biologique, dans -les stations d'épuration, conduit à la production de boues. Ces boues subissent généralement une opération de déshydratation mécanique (en particulier filtration, centrifugation), avant d'être transportées vers un site de décharge, d'épandage agricole ou d'incinération.
Les boues à traiter sont constituées majoritairement d'eau dans laquelle est dispersée de la biomasse à raison de 12 à 40 g/l. Les traitements visent donc à concentrer au maximum la matière sèche et à éliminer l'eau. La présente invention a précisément pour objet de proposer une nouvelle composition utilisable efficacement dans le conditionnement de ce type de boues permettant notamment d'augmenter leur siccité, c'est-à-dire d'accroître les extraits secs obtenus lors de l'opération subséquente de déshydratation.
Lorsque les boues sont destinées à un filtre presse, on ajoute classiquement aux boues à traiter un sel inorganique associé le cas échéant à un électrolyte, couramment la chaux.
En revanche, lorsque les boues sont destinées à être traitées sur filtre à bande ou par centrifugeuse, la drainabilité nécessaire à l'évacuation de l'eau est obtenue généralement en leur ajoutant de manière séquencée un sel inorganique, un polymère cationique puis éventuellement un polymère anionique.
Les méthodes de traitement des boues actuellement disponibles sont donc distinctes selon la technique de séparation eau/biomasse retenue. D'autre part, elles nécessitent généralement l'ajout successif de plusieurs réactifs. Il s'avère en effet difficile de formuler dans une unique composition et à des concentrations significatives, un sel organique de type polychlorure d'aluminium et un polyelectrolyte cationique. L'aluminium étant un complexant de certains polyélectrolytes, leurs mélanges mènent à partir d'une certaine concentration en ces composés, à la formation de gels qui sont bien entendu préjudiciables en terme de fluidité aux mélanges correspondants.
La présente invention a précisément pour objet de proposer une composition universelle c'est à dire pouvant être utilisée de manière indifférente pour le traitement des boues selon l'une ou l'autre des techniques évoquées ci- dessus.
Par ailleurs, la composition revendiquée présente l'avantage de réunir sous forme d'un mélange, -un cation minéral de charge supérieure ou égale à 2 et un polyelectrolyte cationique tout en n'étant pas sujette au phénomène de gélification discuté précédemment.
Plus précisément, la présente invention a pour objet principal une composition utile pour le conditionnement des boues obtenue par mélange d'au moins une emulsion inverse contenant au moins un polyelectrolyte cationique avec une emulsion inverse ou une solution aqueuse contenant au moins un cation minéral de charge supérieure ou égale à deux.
Elle s'étend ainsi à une composition utile pour le conditionnement des boues, caractérisée en ce qu'elle se présente sous la forme d'une emulsion comprenant en phase(s) aqueuse(s) et de manière séparée au moins un cation minéral de charge supérieure ou égale à 2 et un polyelectrolyte cationique. Selon un premier mode de réalisation, ladite composition se présente sous la forme d'une emulsion inverse eau dans huile dans laquelle ledit cation minéral et ledit polyelectrolyte cationique sont répartis dans des gouttelettes d'eau distinctes dans la phase huileuse.
Ce type de composition est généralement obtenu en mélangeant sous agitation une emulsion inverse contenant ledit cation minéral avec une emulsion inverse contenant ledit polyelectrolyte cationique.
Selon un second mode de réalisation, ladite composition se présente sous la forme d'une emulsion double eau/huile/eau dans laquelle le cation minéral est présent au niveau de la phase continue aqueuse et le polyelectrolyte cationique est réparti au moins en partie dans des gouttelettes d'eau constituant la seconde phase aqueuse dispersée dans la phase huileuse. Ce second type d'émulsion peut être obtenu par mélange d'une emulsion inverse du polyelectrolyte cationique avec une solution aqueuse du cation minéral.
Les compositions revendiquées sont particulièrement avantageuses dans la mesure où elles s'avèrent efficaces pour l'ensemble des techniques de traitement des boues à savoir filtration à bande et/ou centrifugation ou filtration sur presse.
Par ailleurs, en permettant l'isolement du cation minéral du polyelectrolyte cationique, elles rendent possible la formulation de ces réactifs en concentrations plus importantes. Grâce à cette formulation en emulsion, le risque de gélification se trouve significativement réduit.
Convient tout particulièrement à la formulation d'une composition concentrée, la composition obtenue par mélange des deux émuisions inverses à savoir celle du cation minéral et celle du polyelectrolyte cationique. En effet, ces deux composés se trouvent alors répartis au niveau de l'émulsion dans des gouttelettes d'eau distinctes et sont donc efficacement isolés l'un de l'autre.
Le cation minéral présente une charge supérieure ou égale à 2. Il est habituellement choisi parmi Mg2+, Al3+, Fe3+, La3+, Zr4* et leurs formes polymérisées lorsqu'elles existent. De manière très préférée, le cation est Al3+ ou une de ses formes polymérisées.
Ce cation minéral est présent sous forme d'un sel hydrosoluble. A titre de sels solubles, on peut utiliser les chlorures, les nitrates, les sulfates et les acétates.
En général, on utilise un sel soluble, exempt de l'élément azote, ce qui permet de s'affranchir des problèmes éventuels liés à sa présence. De manière très préférée, on emploie un chlorure. Le cation est de préférence un chlorure d'aluminium ou une de ses formes polymérisées et plus préférentiellement du polychlorure d'aluminium.
La quantité de cation minéral mise en œuvre est de préférence comprise entre 0,05 et 2 moles, en particulier entre 0,49 et 1 ,8 moles par kg de la composition. Le pH de la solution ou emulsion est ajusté de manière à prévenir la précipitation du sel minéral dans la phase aqueuse continue. Cet ajustement relève des compétences de l'homme et de l'art.
En ce qui concerne le polyelectrolyte cationique, il est de préférence de haut poids moléculaire, c'est à dire de poids moléculaire supérieur à 1.106.
Les polyélectrolytes ont de préférence un poids moléculaire de 1.10e à environ 20.10e, plus préférentiellement de 1.10e à environ 10.106.
Le polyelectrolyte cationique peut être linéaire ou ramifié et est de préférence sous une forme ramifiée. Il a en effet été noté que les ramifications avaient un effet bénéfique sur les cinétiques de coagulation et de floculation.
Conviennent tout particulièrement comme polyelectrolyte cationique les polyacrylamides, oxydes de polyethylènes, polyvinylpyrrolidones, ainsi que les polymères d'origine naturelle tel l'amidon et ses dérivés ou gomme telle la gomme guar, dans la mesure où ils sont cationiques. De manière préférée, le polyelectrolyte est un polyacrylamide.
Le polyacrylamide peut être cationique jusqu'à 100 % en charge et est de préférence cationique entre environ 0,1 et 15 % en charge.
Les polyacrylamides cationiques comprennent les copolymères de polyacrylamide avec des monomères cationiques ou les polyacrylamides modifiés selon la réaction de Mannich.
Les exemples de copolymères polyacrylamides cationiques incluent les copolymères acrylamide/ halogénure de préférence chlorure de diallyldialkylammonium, les copolymères diaminoalkylméthacrylate/acrylamide et les copolymères dialkylaminoalkylméthacrylates/acrylamides, le groupement alkyle étant en C, à C6.
De manière avantageuse, le polyelectrolyte cationique est un copolymère polyacrylamide, et de préférence, le copolymère polyacrylamide/chlorure de diallyldiméthylammonium de poids moléculaire de l'ordre de 3.106. Il est plus préférentiellement associé à un polychlorure d'aluminium dans la composition revendiquée.
La quantité en polyelectrolyte cationique présente dans la composition revendiquée est de préférence d'au plus 10% en poids, en particulier comprise entre 0,3% et 8% en poids de ladite composition. Généralement, l'émulsion inverse du polyelectrolyte cationique, par exemple dans le cas d'un polyacrylamide de haut poids moléculaire et la solution aqueuse ou l'émulsion inverse du cation minéral, par exemple dans le cas du polychlorure d'aluminium, sont mises en œuvre de telle manière que le rapport molaire (cation minéral de charge supérieure ou égale à 2)/(polyéiectrolyte cationique) soit compris entre 1.102 et 8.10e en particulier entre 1.103 et 8.10e. Dans le cas particulier d'une composition comprenant du polychlorure d'aluminium et un copolymère acrylamide/chlorure de diallyldialkylammonium de haut poids moléculaire, on utilise de préférence un rapport pondéral polychlorure d'aluminium/polyacrylamide compris entre 0,1 et 15 et plus particulièrement entre 0,1 et 10.
Comme évoqué précédemment les compositions revendiquées contenant le cation minéral et le polyelectrolyte cationique répartis dans des gouttelettes d'eau distinctes dans la phase continue huileuse sont particulièrement intéressantes pour la formulation d'une composition concentrée en ces deux composés. C'est ainsi que l'on privilégiera ce mode de formulation pour des compositions contenant une concentration en polyacrylamide de l'ordre de 4 à 10% en poids par rapport à la composition.
Si nécessaire la composition revendiquée peut être stabilisée sous la forme d'une emulsion à l'aide de tensio-actif(s). Les tensio-actifs sont généralement introduits au niveau de la ou des émulsion(s) inverse(s) constituant ladite composition.
En ce qui concerne le tensio-actif présent dans la phase huileuse de l'émulsion, il s'agit de préférence d'un agent de surface qui demeure bien entendu inerte vis à vis du cation minéral.
Les agents de surface liposolubles, susceptibles d'être mis en œuvre dans l'émulsion selon l'invention, peuvent être choisis parmi les lécithines liposolubles, les esters de sorbitanne et d'acides gras, de polyalkylènes dipolyhydroxystéa rates, les acides gras, les monoglycérides, les esters de polygiycérol et les esters d'acide lactique et tartrique.
A titre illustratif des agents de surface hydrosolubles, on peut notamment citer les lécithines hydrosolubles, esters de sucrose, esters d'acide gras (dont les Tweens®), alkylamides polyoxyéthylénés, triglycérides sulfates, alkyles sulfates (dont le dodécyle sulfate de sodium SDS), alkyles éther sulfates, alkyles sulfonates, sels d'alkylamines, aminés grasses, lipoamino-acides, polyesters modifiés et tensioactifs polymériques silice-nés.
Les quantités en tensio-actifs sont ajustées de manière à stabiliser la formulation (emulsion inverse ou double) de la composition.
La composition revendiquée peut être préparée soit par mélange des deux émulsions inverses contenant respectivement le cation minéral et le polyelectrolyte soit par ajout de l'émulsion inverse contenant le polyelectrolyte dans une solution aqueuse du polyelectrolyte. Les mélanges sont effectués généralement à température ambiante et sous une agitation mécanique suffisante pour conduire à une emulsion stabilisée dans le temps.
A titre illustratif des composés susceptibles d'être utilisés à titre de phase huileuse selon l'invention, on peut tout particulièrement citer des matériaux hydrophobes comme notamment les esters de colophane, la lanoline, la vaseline, les cires, les polybutadiènes de faibles masses moléculaires les huiles naturelles animales, végétales ou minérales et leurs mélanges.
Les compositions revendiquées trouvent une application particulièrement intéressante dans le conditionnement chimique des boues, notamment de boues issues des stations d'épuration des eaux usées ou résiduaires ou urbaines ou industrielles : son incorporation dans les boues, que l'on peut soumettre préalablement à un traitement de digestion anaérobie, permet de les structurer de telle manière que l'eau contenue dans ces boues est mieux exsudée iors de l'opération de déshydratation qui suit. L'efficacité de l'opération de déshydratation mécanique comme la filtration ou la centrifugation peut ainsi être améliorée, les volumes produits après cette déshydratation étant réduits par l'obtention d'un gâteau de filtration de siccité élevée.
La quantité en composition utilisée lors du conditionnement d'une boue est telle qu'elle correspond en général entre 0,05 à 3 fois, de préférence entre 0,1 à 2 fois, la quantité de charge cationique théorique nécessaire pour neutraliser la quantité de charge anionique de la boue à traiter ; en d'autres termes, la quantité en composition revendiquée est telle qu'elle présente en valeur absolue une cationicité égale en général à 0,05 à 3 fois, de préférence comprise entre 0,1 à 2 fois, l'anionicité de la boue à traiter. Généralement, les compositions revendiquées sont diluées avant utilisation. Cette dilution est plus particulièrement nécessaire pour la composition se présentant sous la forme d'une emulsion inverse obtenue par mélange de l'émulsion inverse du cation minéral et celle du polyelectrolyte pour la transformer en emulsion directe. Cette inversion de phase peut également être réalisée par ajout d'un tensio-actif adéquat. Dans le cas où les compositions se présentent sous la forme d'émulsions doubles, cette opération de dilution est en revanche facultative.
Les exemples et figures qui suivent sont présentés à titre illustratif et non limitatif de l'invention.
FIGURES
Figure 1 : Représentation pour la composition A ainsi que pour ses constituants ajoutés séparément, de l'évolution du volume drainé au bout de 2 minutes en fonction de la dose de conditionnement.
Figure 2 : Représentation pour la composition B ainsi que pour ses constituants ajoutés séparément, de l'évolution du volume drainé au bout de 2 minutes en fonction de la dose de conditionnement.
Figure 3 : Représentation du graphe de suivi de t/v en fonction de v pour la composition A et ses constituants ajoutés séparément.
Figure 4 : Représentation du graphe de suivi de t/v en fonction de v pour la composition B et ses constituants ajoutés séparément.
Abréviations : PAM = polyacrylamide cationique PAC = polychlorure d'aluminium
Matériel
Emulsion inverse de copolymère acrylamide/chlorure de diallyldimalkylammonium de poids moléculaire d'environ 3.10e, à 50% en poids dites ci-après « emulsion de PAM ». Copolymère acrylamide/chlorure de diallyidimethylammonium de poids moléculaire d'environ 3.106 sous forme de poudre.
Aquarhône 18® (solution de polychlorure d'aluminium commercialisé par Rhodia contenant 4,56 moles d'aluminium par kg - E.S = 38,2%) Vaseline (Sté Prolabo)
Alkamuls S80® : oléate de sorbitan de HLB 4,3 (Rhodia)
Alkamuls S20® : monolaurate de sorbitan de HLB 8,6 (Rhodia)
Span 85® : trioléate de sorbitan de HLB 1 ,7 (Sigma-AIdrich)
Alkamuls T20® : monolaurate de sorbitan de 20OE HLB 16,6 (Rhodia) Alkamuls T85® : trioléate de sorbitan 20OE HLB 11 (Rhodia)
Esters phosphate éthoxylés PA35 (Rhodia)
EXEMPLE 1 :
Obtention d'une emulsion inverse de PAM. Chlorure de diallyidimethylammonium de poids moléculaire d'environ
3.106.
A partir de 50 g de copolymère polyacrylamide cationique sous forme d'une poudre, on réalise une emulsion inverse dans un mélange eau/vaseline 1 g/47,4 g en utilisant 1 ,6 g d'un mélange monolaurate / oléate de sorbitan S20/S80 88%/12% (soit la HLB requise de 8 pour la vaseline).
EXEMPLE 2 :
Obtention d'une emulsion inverse de PAC. a) on dilue une solution, Aquarhône 18®, avec de l'eau (20g d'eau pour 50g d'Aqua 18). b) on additionne de 5% en tensioactif S80® l'huile de vaseline (soit 2g de S80 pour 38g de vaseline).
Après un passage de b) pendant 30s à l'utraturax 8000tr/min, on verse progressivement a) dans b) pendant environ 5 minutes toujours à la même vitesse. On ajoute une minute à la vitesse 9500tr/min.
Après une semaine de stockage à 45°C, ces émulsions, dont la taille est inférieure à 5μm, sédimentent légèrement (apparition d'un petit surnageant huile). Le tout se remet toutefois assez aisément en solution par simple agitation manuelle.
EXEMPLE 3 : Obtention d'une emulsion inverse PAC-PAM.
On mélange à l'uitraturax, 92,35g de l'émulsion de PAC préparée selon l'exemple 2 et 7,6g de l'émulsion de PAM préparée selon l'exemple 1.
On obtient alors une emulsion inverse fluide comprenant en poids : 16,1 % en PAC, 3,8% en PAM, 42,8% en eau, 35,7% en huile et au moins 1 ,6% en tensioactif.
Les différents essais réalisés montrent que le mélange à l'uitraturax des deux émulsions inverses obtenues selon les exemples précédents, permet d'obtenir une emulsion inverse PAC-PAM dont le comportement en stabilité est similaire aux émulsions inverses de PAC seul. L'inversion d'une emulsion PAC-PAM conservée 13 jours puis réhomogénéisée est obtenue après l'ajout d'un tensioactif tel que le monolaurate de sorbitan 20OE Alkamuls (T20®) dans l'eau. Dès que cette emulsion se retrouve directe, la viscosité du système augmente fortement et témoigne de la formation du gel polyacrylamide Al3+. Cette observation va dans le sens d'une diffusion limitée de PAM ou de PAC entre les gouttes d'eau pendant la durée de stockage.
Les deux composés sont donc efficacement séparés au sein de l'émulsion inverse, préservant ainsi à celle-ci une fluidité satisfaisante.
EXEMPLE 4
Préparation d'une emulsion double à base de PAC et PAM.
Cette emulsion est préparée en mélangeant une solution aqueuse de polychlorure d'aluminium (solution commerciale Aquarhône 18®) et une emulsion inverse de PAM. L'émulsion inverse de PAM est préparée selon le protocole décrit précédemment en exemple 1. Elle est ensuite ajoutée sous agitation à l' Aquarhône 18®. Deux mélanges A et B sont ainsi obtenus à des rapports PAC/PAM différents.
- pour un mélange dit A : on mélange une emulsion de PAM à 4% commerciale et une solution Aquarhône 18®, de manière à obtenir un mélange à 18,2 % en Aquarhône 18® commercial et 3,27 % en emulsion PAM soit un rapport pondéral en matières actives PAC/PAM de 3,9.
- pour un mélange dit B : on mélange une emulsion de PAM à 2% commerciale avec d'une solution d'Aquarhône 18®, pour obtenir un mélange à 20 % en Aquarhône 18® commercial et 1 ,6 % en emulsion PAM soit un rapport pondéral en matières actives. PAC/PAM de 8,75.
L'efficacité des mélanges A et B est évaluée en tests de drainabilité et filtre piston et comparée à celle obtenue avec des boues dans lesquelles ont été incorporées de manière séparée et séquencée, de l' Aquarhône 18® et l'émulsion de PAM, en quantités identiques à celles présentes dans les mélanges respectifs.
EXEMPLE 5.
Test de drainabilité.
Il s'agit d'un test qui permet d'identifier la composition convenant tout particulièrement à la déshydratation des boues sur filtre à bande et/ou centrifugeuse.
Ce test est réalisé sur 200 g de boue biologique de station d'épuration urbaine possédant une matière sèche de 6,35 % dont 37,2 % de matières minérales.
a) Avec le mélange A et son témoin (ajout séparé et séquence des deux constituants).
Lors des essais, A est dilué au 1/6, ce qui fait que la teneur en Aquarhône 18® passe de 18,2 à 3,03 % et en emulsion de PAM de 3,27 à 0,545%. En conséquence, les quantités respectives des constituants témoins, c'est-à-dire ajoutés séparément, sont appréciées comme suit : à 10g de A au 1 /6 (soit 1 ,67g de A pur) correspond 0,303g d'Aquarhône 18® commercial et 9,7g d'émulsion PAM.
Dans le cas du test de drainabilité avec l'émulsion A, cette dernière est ajoutée à 200 g de boue sous agitation mécanique avec une pâle lacératrice à 700 rpm dans un bêcher, le mélange est ensuite transvasé dans un filtre et on évalue la quantité d'eau qui a percolé en fonction du temps.
Dans le cas du test de drainabilité témoin, on procède à l'ajout séquence des deux produits selon le protocole suivant :
200 g de boue sont agités à 700 rpm. On y ajoute I' Aquarhône E 18® et on laisse l' agitation se poursuivre 1 0 secondes. La boue pré-conditionnée est ensuite versée dans un bêcher où l'on a pesé au préalable l'émulsion de PAM.
L'ensemble est transvasé deux fois d' un bêcher à un autre puis porté sous agitation 15 secondes à 700 rpm. Il est ensuite déposé sur un filtre et la quantité d'eau percolée est mesurée.
Les résultats obtenus avec A et le témoin sont présentés sous forme de graphes en figure 1 .
b Mélange B et mélange témoin.
Lors des essais, B est dilué au 1/3, ce qui fait que la teneur en Aquarhône 18® passe de 20,0% à 6,67% et celle en emulsion de PAM de 1 ,6% à 0,53%.
C'est ainsi que 10g de B au 1 /6 (soit 3,33g de B pur) correspond à 0,667g d' Aquarhône 18® commercial et 9,33g d'émulsion de PAM à 0,57%. L'addition de l'émulsion B et celle de ses deux constituants, de manière séparée dans l'essai témoin, est réalisée selon les protocoles décrits pour l' essai précédent.
Les résultats obtenus avec B et son témoin sont présentés sous forme de graphe en figure 2.
L'ensemble des graphes en figures 1 et 2 donne pour les mélanges A et B ainsi que pour leurs constituants ajoutés séparément, le volume drainé au bout de 2 minutes en fonction de la dose de conditionnement. On note que les conditionnements réalisés par ajout de l'Aquarhône 18® puis de l'émulsion de PAM donnent des volumes drainés plus faibles que dans le cas des conditionnements réalisés à partir des mélanges A et B. En conséquence, l'utilisation des mélanges permet une économie en produit de 20 à 40 % par rapport aux constituants ajoutés séparément, tout en préservant une efficacité optimale.
Par ailleurs, les mélanges A et B s'avèrent nettement moins visqueux que la solution de PAM à 0,56%.
EXEMPLE 6
Evaluation sur filtre piston.
Il s'agit d'un test permettant d'identifier les compositions convenant plus particulièrement à la déshydratation des boues sur filtre presse. Ce test est réalisé avec les conditions de filtration suivantes :
On filtre 100g de boue conditionnée sur un filtre piston à 2.105 Pascal pendant 10 minutes afin de tracer le graphe temps/volume (T/V) en fonction du volume qui permet de mettre en évidence le comportement à la filtration. Il est ensuite opéré une filtration à 1.10e Pascal pendant 5 minutes afin d'estimer l'influence des différents conditionnement sur la siccité limite obtenue.
La dose de conditionnement est déterminée par mesure du temps de succion capillaire (CST) à différentes doses.
Deux doses pour les conditionnements sont retenues : la dose au temps de CST minimum et la dose avec un léger surdosage.
a) Mélange A et son témoin Résultats avec A dilué au 1/6.
On détermine les doses de conditionnement par mesure du CST. En tableau I ci-après sont présentées les données obtenues. TABLEAU
Les doses retenues sont : - 3g de A au 1/6 pour 50g de boue, et - 3,5g de A au 1/6 pour 50g de boue.
Le test de filtration est ensuite réalisé sur filtre piston selon le protocole décrit précédemment. Les résultats obtenus sont présentés sous forme de graphe en figure 3.
Sur cette figure 3, sont également présentés sous forme de graphe, les résultats obtenus pour une boue traitée successivement avec les deux constituants de A ajoutés séparément.
Les doses en ces constituants sont calculées de la même façon que pour le test de drainabilité présenté en exemple V.
b) Mélange B et son témoin
De la même façon que pour le mélange B, les doses en A sont déterminées par mesures de CST à différentes doses. Elles figurent dans le tableau II ci-après.
TABLEAU 11
Les doses retenues sont 2 g de B au 1/3 pour 50g de boue et 3 g de B au 1/3 pour 50 g de boue.
On procède ensuite à des essais de filtration sur le filtre piston selon le protocole décrit précédemment.
Les résultats obtenus avec l'émulsion A et son mélange témoin de même que l'émulsion B et son mélange témoin sont respectivement présentés en figures 3 et 4. Sur ces figures, sont représentés les graphes de suivi de t/v en fonction de v pour les deux mélanges et leurs constituants ajoutés séparément. Il apparaît que ce soit en terme de siccité ou en terme de comportement à la filtration que le fait d'ajouter les produits constituant les mélanges séparément diminue l'efficacité du conditionnement. Les résistances spécifiques sont en effet plus élevées et les siccités plus faibles.

Claims

REVENDICATIONS
1. Composition utile pour le conditionnement des boues obtenue par mélange d'au moins une emulsion inverse contenant au moins un polyelectrolyte cationique avec une emulsion inverse ou une solution aqueuse contenant au moins un cation minéral de charge supérieure ou égale à deux.
2. Composition utile pour le conditionnement des boues, caractérisée en ce qu'elle se présente sous la forme d'une emulsion comprenant en phase(s) aqueuse(s) et de manière séparée au moins un cation minéral de charge supérieure ou égale à 2 et un polyelectrolyte cationique.
3. Composition selon la revendication 1 ou 2 caractérisée en ce qu'elle se présente sous la forme d'une emulsion inverse eau dans huile dans laquelle ledit cation minéral et ledit polyelectrolyte cationique sont répartis dans des gouttelettes d'eau distinctes, dans la phase huileuse.
4. Composition selon la revendication 1 ou 2, caractérisée en ce qu'elle se présente sous la forme d'une emulsion double eau/huile/eau dans laquelle le cation minéral est présent au niveau de la phase continue aqueuse et le polyelectrolyte cationique est réparti au moins en partie dans des gouttelettes d'eau constituant la seconde phase aqueuse dispersée dans la phase huileuse.
5. Composition selon l'une des revendications précédentes, caractérisée en ce que le cation minéral est choisi parmi Mg2\ La3+, Fe3+, Al3+, Zr4+ et leurs formes polymérisées lorsqu'elles existent.
6. Composition selon la revendication 5, caractérisée en ce que ledit cation minéral est Al3+ ou une de ses formes polymérisées.
7. Composition selon l'une des revendications précédentes caractérisée en ce que le cation minéral se présente sous la forme d'un sel hydrosoluble de préférence choisi parmi les chlorures, les nitrates, les sulfates et les acétates.
8. Composition selon l'une des revendications précédentes, caractérisée en ce que le cation minéral est un chlorure d'aluminium ou une de ses formes polymérisées.
9. Composition selon l'une des revendications précédentes, caractérisée en ce que le cation minéral est mis en œuvre à raison de 0,05 à 2 moles, en particulier entre 0,49 et 1,8 moles par kg de ladite composition.
10. Composition selon l'une des revendications précédentes, caractérisée en ce que le polyelectrolyte cationique est de poids moléculaire supérieur e 1.10e.
11. Composition selon l'une des revendications précédentes, caractérisée en ce que -le polyelectrolyte cationique est choisi parmi les polyacrylamides, oxydes de polyethylènes, polyvinylpyrrolidones, ainsi que les polymères d'origine naturelle cationiques.
12. Composition selon l'une des revendications précédentes, caractérisée en ce que ledit polyelectrolyte cationique est un polyacrylamide possédant entre 0,1 % et 15% en charge cationique.
13. Composition selon l'une des revendications précédentes, caractérisée en ce que le polyelectrolyte cationique est choisi parmi les copolymères de polyacrylamide avec des monomères cationiques ou les polyacrylamides modifiés selon la réaction de Mannich.
14. Composition selon l'une des revendications précédentes, caractérisée en ce que ledit polyelectrolyte est un copolymère polyacrylamide cationique choisi parmi les copolymères acrylamides/ halogénure de préférence chlorure de diallyldialkylammonium, les copolymères diaminoalkylméthacrylate/acrylamides et les copolymères diaikylaminoalkylméthacrylates/acrylamides.
15. Composition selon l'une des revendications précédentes, caractérisée en ce que le polyelectrolyte cationique est mis en œuvre à raison d'au plus 10% et de préférence entre 0,3% et 8% en poids de ladite composition.
16. Composition selon l'une des revendications précédentes, caractérisée en ce que le cation minéral est un polychlorure d'aluminium et le polyelectrolyte cationique est un copolymère acrylamide/chlorure de diallyldiméthyllammonium de PM de l'ordre de 3.10e.
17. Composition selon l'une des revendications précédentes, caractérisée en ce que le cation minéral et le polyelectrolyte sont mis en œuvre de telle manière que le rapport molaire cation minéral/polyélectrolyte cationique soit compris entre 1.102 et 8.10e, en particulier entre 1.103 et 8.10e.
18. Composition selon la revendication 17, caractérisée en ce que lorsque le cation minéral est le polychlorure d'aluminium et le polyelectrolyte, un copolymère acrylamide/chlorure de diallyldiméthyllammonium, le rapport pondéral cation minéral/polyélectrolyte cationique est compris entre 0,1 et 15 et plus particulièrement entre 0,1 et 10.
19. Application d'une composition selon l'une des revendications 1 à 18 pour le traitement des milieux aqueux, en particulier des eaux résiduaires, urbaines ou industrielles.
20. Application d'une composition selon l'une des revendications 1 à 18 pour le traitement des boues biologiques issues de l'épuration d'eaux usées ou résiduaires, en vue de leur déshydratation.
EP00964332A 1999-09-20 2000-09-20 Composition utile pour le conditionnement des boues issues du traitement de milieux aqueux et ses applications Withdrawn EP1216207A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9911747 1999-09-20
FR9911747A FR2798652B1 (fr) 1999-09-20 1999-09-20 Composition utile pour le conditionnement des boues issues du traitement de milieux acqueux et ses applications
PCT/FR2000/002610 WO2001021532A1 (fr) 1999-09-20 2000-09-20 Composition utile pour le conditionnement des boues issues du traitement de milieux aqueux et ses applications

Publications (1)

Publication Number Publication Date
EP1216207A1 true EP1216207A1 (fr) 2002-06-26

Family

ID=9550052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00964332A Withdrawn EP1216207A1 (fr) 1999-09-20 2000-09-20 Composition utile pour le conditionnement des boues issues du traitement de milieux aqueux et ses applications

Country Status (5)

Country Link
US (1) US6855268B1 (fr)
EP (1) EP1216207A1 (fr)
AU (1) AU7529200A (fr)
FR (1) FR2798652B1 (fr)
WO (1) WO2001021532A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209499A1 (en) * 2000-09-29 2003-11-13 Haase Richard A. Clarification of water and wastewater
FR2824551B1 (fr) * 2001-03-22 2004-04-09 Rhodia Chimie Sa Procede de conditionnement ou de deshydratation de boues issues de l'industrie papetiere ou agro-alimentaire
US7378023B2 (en) * 2006-09-13 2008-05-27 Nalco Company Method of improving membrane bioreactor performance
EP2611742A1 (fr) * 2010-09-02 2013-07-10 Akzo Nobel Chemicals International B.V. Composition, son utilisation, procédé de réduction du foisonnement des boues et/ou de formation de mousse et préparation de la composition
CN103011548A (zh) * 2012-12-27 2013-04-03 哈尔滨工业大学水资源国家工程研究中心有限公司 一种组合式调理污泥的调理剂及利用其进行污泥脱水的方法
CN106186606B (zh) * 2016-08-03 2017-04-12 联盛纸业(龙海)有限公司 一种涂布灰底白板纸浮选压滤污泥改性及回用生产方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606913A (en) * 1978-09-25 1986-08-19 Lever Brothers Company High internal phase emulsions
US4617362A (en) * 1984-12-31 1986-10-14 Allied Corporation Inverse emulsion polymers with improved incorporation of diallyldimethylammonium chloride
US5200086A (en) * 1991-08-20 1993-04-06 Nalco Chemical Company Emulsion destabilization and treatment
US5763530A (en) * 1993-11-24 1998-06-09 Cytec Technology Corp. Stable emulsion blends and methods for their use
JPH0859770A (ja) * 1994-08-15 1996-03-05 Dainippon Ink & Chem Inc ポリウレタンポリ尿素架橋微粒子分散体及びその製造方法
US5830388A (en) * 1995-08-11 1998-11-03 American Envirocare, Inc. Coagulating and flocculating agent and method for making it
US5906750A (en) * 1996-09-26 1999-05-25 Haase; Richard Alan Method for dewatering of sludge
US6120690A (en) * 1997-09-16 2000-09-19 Haase; Richard Alan Clarification of water and wastewater
US6168686B1 (en) * 1998-08-19 2001-01-02 Betzdearborn, Inc. Papermaking aid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0121532A1 *

Also Published As

Publication number Publication date
US6855268B1 (en) 2005-02-15
FR2798652A1 (fr) 2001-03-23
FR2798652B1 (fr) 2001-11-23
WO2001021532A1 (fr) 2001-03-29
AU7529200A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
EP0102269A1 (fr) Suspensions concentrées pompables de polymères hydrosolubles
EP2408718B1 (fr) Composition à base de chaux, leur procédé de fabrication et leur utilisation en traitement des eaux et boues
FR2870229A1 (fr) Composition stabilisee de coagulants et floculants, methode d'obtention et applications
EP2925681B1 (fr) Procede d'epaississement ou de deshydratation de boues
EP2681176B1 (fr) Produit destine a etre additionne a l'eau d'irrigation de cultures
FR2998290A1 (fr) Procede de potabilisation
EP0416969B1 (fr) Nouvelles émulsions eau dans huile et leur application à l'élimination du sulfure d'hydrogène
EP1216207A1 (fr) Composition utile pour le conditionnement des boues issues du traitement de milieux aqueux et ses applications
EP0130891B1 (fr) Compositions de biopolymères et leur procédé de préparation
FR2857365A1 (fr) Nouvelle composition amylacee cationique liquide et ses utilisations
CA2006795A1 (fr) Procede d'epuration des eaux au moyen d'un floculant polymere
EP1785400A1 (fr) Procédé de lestage de boues activées
BE1012467A3 (fr) Procede de conditionnement de boues.
EP3102544B1 (fr) Procede d'epaississement ou de deshydratation de boues
EP0000674B1 (fr) Procédé de cassage d'émulsions et moyens permettant de mettre en oeuvre ce procédé.
FR2540879A1 (fr) Suspensions concentrees de polymeres hydrosolubles
FR2978138A1 (fr) Procede de potabilisation
FR2601030A1 (fr) Compositions acides a hautes concentrations en matieres actives pour le traitement des eaux et/ou le nettoyage des installations les contenant
FR2824551A1 (fr) Procede de conditionnement ou de deshydratation de boues issues de l'industrie papetiere ou agro-alimentaire
WO2003037496A1 (fr) Emulsion a base de tensioactif et de polymere de charge opposee et procede de fabrication
FR2817489A1 (fr) Composition contenant de l'uree utilisable pour le conditionnement de boues
WO2005003041A2 (fr) Solutions stabilisees de polychlorure d'aluminium et de sel de fer pour le traitement d'effluents
JP2972871B2 (ja) 油中水滴型不溶性ミセルの乳化方法
FR3016877A1 (fr) Procede de traitement de l'eau
LU83961A1 (fr) Compositions et procede pour l'elimination de nappes d'huile a la surface des eaux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020315

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060617