EP1215392A2 - Element und Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum - Google Patents

Element und Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum Download PDF

Info

Publication number
EP1215392A2
EP1215392A2 EP01127380A EP01127380A EP1215392A2 EP 1215392 A2 EP1215392 A2 EP 1215392A2 EP 01127380 A EP01127380 A EP 01127380A EP 01127380 A EP01127380 A EP 01127380A EP 1215392 A2 EP1215392 A2 EP 1215392A2
Authority
EP
European Patent Office
Prior art keywords
energy
electrode
coupling
electrode sections
end region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01127380A
Other languages
English (en)
French (fr)
Other versions
EP1215392A3 (de
Inventor
Jürgen Gloger
Manfred Prof. Dr. Weniger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1215392A2 publication Critical patent/EP1215392A2/de
Publication of EP1215392A3 publication Critical patent/EP1215392A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/02Arrangements having two or more sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/22Sparking plugs characterised by features of the electrodes or insulation having two or more electrodes embedded in insulation

Definitions

  • the present invention relates to an element for coupling energy into a certain medium filled space, for example in the form of a spark plug for Ignition of an air-fuel mixture located in a combustion chamber of an internal combustion engine. Furthermore, the present invention relates to a device for Energy coupling into a room filled with a certain medium with several such elements, in particular a device for coupling energy into a an air-fuel mixture-filled combustion chamber of an internal combustion engine to the air-fuel mixture to ignite.
  • DE 196 36 712 A1 describes a possibility for improving the ignition behavior proposed, wherein a plurality of ignition electrodes simultaneously in the combustion chamber to be arranged and to be supplied with the ignition voltage. That way Several flame cores are formed at the same time, so that an ignition zone is larger Expansion can be generated, which ensures reliable ignition of problematic air-fuel mixtures should allow.
  • a problem associated with this ignition system is however, the high design effort to provide suitable spark plugs and the required space on the internal combustion engine itself.
  • Ignition methods for the ignition of air-fuel mixtures have therefore been used Internal combustion engines proposed, with the help of plasma discharges thermal Energy introduced into the combustion chamber of the respective internal combustion engine or is coupled in to ignite the air-fuel mixture.
  • Plasma is ignited by an electrode protruding into the combustion chamber
  • Combustion chamber located air-fuel mixture ignites that the air-fuel mixture through a high frequency field of sufficient energy to a reactive Temperature is brought up by the air-fuel mixture through the by the electrode in the combustion chamber coupled high-frequency field in the electrically conductive plasma state brought.
  • Such a device based on plasma discharge or plasma ignition is known for example from EP 0 211 133 B1.
  • the electrode is a spark plug, which protrudes into the combustion chamber of an internal combustion engine, directly with one over one Circuit breaker clocked high frequency generator connected.
  • the one from that High frequency generator generates high frequency power / high frequency energy in one of emitted by the electrode into the combustion chamber of the respective internal combustion engine High-frequency field for plasma ignition of the air-fuel mixture contained therein radiated.
  • Electrode emitted radio frequency field to regulate to a high voltage in such a way that at the electrode in the air-fuel mixture, a plurality of high-resistance at the same time Form plasma threads of short duration.
  • a number becomes short-term and intense producing plasma threads, which lead to short-term, intensive discharges of the Lead to plasma and cause a lot of flame nuclei in the air-fuel mixture, whereby a particularly good ignition behavior of the air-fuel mixture is achieved leaves.
  • the geometry of the electrode is to be evaluated such that field strength increases of the high-frequency field emitted by the electrode, which are used for Form the short-term plasma threads in the air-fuel mixture.
  • the ignition systems described above have in common that to ignite the in the Air-fuel mixture located in each combustion chamber is relatively high Energy consumption of the corresponding ignitor is required. By at the Discharges occurring at certain points also lead to a relatively strong discharge Wear of the electrode, which is also referred to as electrode erosion.
  • the present invention is therefore based on the object, for example in the form a spark plug designed element for coupling energy into one with a certain medium, for example an air-fuel mixture, filled space To provide the most effective coupling of the electrode of the Elements supplied energy in the corresponding room while protecting the Electrode allows.
  • the present invention is preferred for coupling energy into the combustion chamber an internal combustion engine, for example a gasoline engine with direct injection, is suitable for using an air / fuel mixture in the combustion chamber
  • the present invention goes without saying to ignite plasma discharge basically also applicable to spark plugs, which according to the principle of Spark discharge work.
  • the present invention is not limited to that Energy coupling into the combustion chamber of an internal combustion engine is limited, but can also to other possible areas of application in which energy is coupled into one space filled with a certain medium is required.
  • Figure 1 shows a combustion chamber of an internal combustion engine with multiple spark plugs according to a first embodiment of the present invention
  • FIG. 2 shows an enlarged illustration of the spark plug shown in FIG. 1, and
  • Figure 3 shows an arrangement of two spark plugs according to a second Embodiment of the present invention.
  • the combustion chamber or cylinder 1 of an internal combustion engine for example of a gasoline engine with direct injection
  • an injection nozzle 3 for supplying an air-fuel mixture in Direction of arrow is provided in the upper part of the Combustion chamber 1
  • a piston 2 is vertical in the combustion chamber 1 slidably mounted, which for compressing the supplied via the injection nozzle 3 Air-fuel mixture is used to ignite the air-fuel mixture facilitate.
  • spark plugs 8 are shown in FIG. 1, which are in the combustion chamber 1 protrude.
  • the spark plugs 8 comprise an electrode 9, which is used to couple a ignition energy used to ignite the supplied air / fuel mixture is provided.
  • Electrodes 9 of the spark plugs 8 a high-frequency energy of a high-frequency generator 4 supplied so that from the electrodes 9 based on the supplied radio frequency energy a corresponding high-frequency field is emitted into the combustion chamber 1 in order to Air-fuel mixture injected between the electrodes 9 by means of plasma discharge ignite.
  • the high-frequency generator 4 generates a high-frequency power signal generated with a frequency of preferably several kHz, which is initially from a Amplifier 5 amplifies and via a transformer 6 the electrodes 9 of the two spark plugs 8 is supplied. With the help of the transformer or transformer 6 it is ensured that none galvanic contact between the electrodes 9 and the amplifier 5 or High-frequency generator 4 is required, but that of the high-frequency generator generated radio frequency energy is galvanically decoupled, i.e. contactless on the Electrodes 9 transferred so that a contamination-proof coupling of the High frequency or ignition energy is guaranteed. This is particularly advantageous because because in conventional ignition devices with a direct contact between the in the Electrodes projecting into the combustion chamber and the high-frequency generator the contact points are susceptible to contamination and thus for the ignition of the in the combustion chamber existing fuel-air mixture represent a source of error.
  • the spark plug 8 shown in FIG. 1 is shown enlarged in FIG. 2.
  • the electrode 9 in the longitudinal direction through the Spark plug 8 extending electrode portion 12, the upper end as a connection serves to supply the high-frequency energy generated by the high-frequency generator 4.
  • the end region of the electrode 9 protruding into the combustion chamber 1 comprises several elongated and comb-like electrode sections 10, each with the in Longitudinal direction of the spark plug 8 extending electrode section 12 are connected and to Coupling the ignition energy in the combustion chamber 1 serve.
  • the electrode sections 10 run in different Transverse planes to the longitudinal axis of the spark plug 8 or to the electrode section 12 to one another parallel.
  • the electrode sections 10 are located in the combustion chamber 1 protruding outer surface of the spark plug 8 essentially in the circumferential direction designed semi-circular (of course, the electrode sections 10 can each can also be circular along the entire circumference of the spark plug 8).
  • the spark plugs 8 are to be arranged as shown in FIG. 1 in such a way that they are at the lower end of the spark plugs 8 formed electrode sections 10 are facing each other.
  • At Application of the high-frequency energy generated by the high-frequency generator 4 are on this way between the individual electrode sections 10 of the electrode 9 of the two Spark plugs 8 distribute occurring, high-frequency discharges with a large surface generated, which thus form a "discharge curtain" 7 and an energy-saving and reliable ignition of the "discharge curtain” or "plasma curtain” extending injection jet of the air-fuel mixture enables.
  • insulating coatings 11 for example made of a ceramic material, isolated from each other.
  • FIG. 3 shows two spark plugs 8 according to a second exemplary embodiment of the presented present invention.
  • this is Embodiment the spark plug or the electrode 9 on the in the combustion chamber 1st protruding end region bent transversely to the longitudinal axis of the respective spark plug 8, where as in the previously described embodiment again several elongated Electrode sections 10 are provided which are connected to the spark plug 8 in the longitudinal direction extending electrode section 12 are connected and for coupling the Ignition energy supplied to the electrode section 12 serve in the combustion chamber 1.
  • the single ones Electrode sections 10 are in turn insulated from one another by insulating layers 11.
  • the Electrode sections 10 run analogously to the previously described embodiment essentially semicircular around the corresponding end region of the respective Spark plug 8 around.
  • the two spark plugs 8 are to be arranged in the combustion chamber 1 in such a way that the Electrode sections 10 of the two spark plugs 8, as shown in FIG. 3, face each other are.
  • the direction of the injection jet is again indicated by an arrow.
  • the generation of several is distributed with the help of this arrangement Discharges occurring, which form a "discharge curtain" 7, between the Electrode sections 10 of the two spark plugs 8 generated, so that a large volume Ignition of the supplied between the electrode sections 10 of the two spark plugs 8 Air-fuel mixture is possible.
  • This arrangement also does not occur a punctual discharge between the two spark plugs 8, but it occurs a large number of discharges, with which the area on which the ignition energy is applied to the Air-fuel mixture supplied acts in a significantly increased manner and thus the Ignition of the air-fuel mixture can be facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Zur möglichst effektiven Einkopplung von Energie in einen mit einem bestimmten Medium gefüllten Raum, insbesondere zur Entzündung eines in dem Brennraum (1) eines Verbrennungsmotors befindlichen Luft-Kraftstoff-Gemisches, wird die Verwendung einer vorzugsweise in Form einer Zündkerze ausgebildeten Anordnung (8) vorgeschlagen, welche zur Energieeinkopplung eine Elektrode (9) aufweist, die an ihrem in den Raum (1) hineinragenden Ende mehrere länglich ausgebildete Elektrodenabschnitte (10) umfasst, um somit bei Betreiben mit Hochfrequenzenergie mehrere verteilt auftretende Entladungen zur großvolumigen Entzündung des in dem Brennraum (1) befindlichen Luft-Kraftstoff-Gemisches zu erzeugen. <IMAGE>

Description

Die vorliegende Erfindung betrifft ein Element zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum, beispielsweise in Form einer Zündkerze zum Entzünden eines in einem Brennraum eines Verbrennungsmotors befindlichen Luft-Kraftstoff-Gemisches. Des Weiteren betrifft die vorliegende Erfindung eine Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum mit mehreren derartigen Elementen, insbesondere eine Vorrichtung zur Energieeinkopplung in einen mit einem Luft-Kraftstoff-Gemisch gefüllten Brennraum eines Verbrennungsmotors, um das Luft-Kraftstoff-Gemisch zu entzünden.
Zur Entzündung von Luft-Kraftstoff-Gemischen in Verbrennungsmotoren, beispielsweise in Ottomotoren, werden fast ausschließlich Zündanlagen mit konventionellen Zündkerzen verwendet. Bei derartigen Zündanlagen erzeugt die von der Zündkerze bereitgestellte Zündenergie, welche im Brennraum des entsprechenden Verbrennungsmotors freigesetzt wird, eine Funkenentladung zwischen eng benachbarten Elektroden von Zündkerzen, wobei als Nachteil relativ hohe Wärmeverluste an den Zündkerzenelektroden auftreten. Die Übertragung der Zündenergie auf das Luft-Kraftstoff-Gemisch erfolgt durch direkten Kontakt des Zündfunkens mit dem Luft-Kraftstoff-Gemisch, wodurch eine Ausbildung von Flammenkernen nur in direkter Umgebung der Elektroden der Zündkerzen stattfindet. Zudem kann durch den Kontakt mit den relativ kalten Zündkerzenelektroden eine partielle Auslöschung des Flammenkerns erfolgen. Derartige als Quenchverluste bezeichnete Verluste lassen sich bei konventionellen Zündanlagen nicht vermeiden.
Es wurde in der DE 196 36 712 A1 eine Möglichkeit zur Verbesserung des Zündverhaltens vorgeschlagen, wobei eine Mehrzahl von Zündelektroden gleichzeitig im Brennraum anzuordnen und mit der Zündspannung zu beaufschlagen sind. Auf diese Weise werden gleichzeitig mehrere Flammenkerne ausgebildet, so dass eine Zündzone größerer Ausdehnung erzeugt werden kann, welche eine sichere Zündung auch problematischer Luft-Kraftstoff-Gemische erlauben soll. Ein mit diesem Zündsystem verbundenes Problem ist jedoch der hohe konstruktive Aufwand zur Bereitstellung geeigneter Zündkerzen sowie der benötigte Bauraum am Verbrennungsmotor selbst.
Es wurden daher Zündverfahren für die Zündung von Luft-Kraftstoff-Gemischen bei Verbrennungsmotoren vorgeschlagen, wobei mit Hilfe von Plasmaentladungen thermische Energie in den Brennraum des jeweiligen Verbrennungsmotors eingebracht bzw. eingekoppelt wird, um das Luft-Kraftstoff-Gemisch zu entzünden. Bei derartigen Plasmazündungen wird durch eine in den Brennraum hineinragende Elektrode das in dem Brennraum befindliche Luft-Kraftstoff-Gemisch dadurch entzündet, dass das Luft-Kraftstoff-Gemisch durch ein Hochfrequenzfeld ausreichender Energie auf eine reaktionsfähige Temperatur gebracht wird, indem das Luft-Kraftstoff-Gemisch durch das von der Elektrode in den Brennraum eingekoppelte Hochfrequenzfeld in den elektrisch leitfähigen Plasmazustand gebracht wird.
Eine derartige auf Plasmaentladung bzw. Plasmazündung basierende Vorrichtung ist beispielsweise aus der EP 0 211 133 B1 bekannt. Dabei ist die Elektrode einer Zündkerze, welche in den Brennraum eines Verbrennungsmotors hineinragt, direkt mit einem über einen Leistungschalter getakteten Hochfrequenzgenerator verbunden. Die von dem Hochfrequenzgenerator erzeugte Hochfrequenzleistung/Hochfrequenzenergie wird in ein von der Elektrode in den Brennraum des jeweiligen Verbrennungsmotors abgestrahltes Hochfrequenzfeld zur Plasmazündung des darin befindlichen Luft-Kraftstoff-Gemisches abgestrahlt.
Darüber hinaus wurde in der DE 197 47 701 A1 der Anmelderin vorgeschlagen, das von der Elektrode abgestrahlte Hochfrequenzfeld derart auf eine hohe Spannung zu regeln, dass sich an der Elektrode in dem Luft-Kraftstoff-Gemisch gleichzeitig eine Mehrzahl hochohmiger Plasmafäden kurzer Dauer ausbilden. Im Gegensatz zu herkömmlichen Verfahren zur Zündung mittels Plasmen, die im Wesentlichen durch länger brennende, stationäre Plasmen erzeugt werden, wird durch diese Vorgehensweise eine Anzahl sich kurzzeitig und intensiv ausbildender Plasmafäden erzeugt, welche zu kurzzeitigen, intensiven Entladungen des Plasmas führen und viele Flammenkerne in dem Luft-Kraftstoff-Gemisch hervorrufen, wodurch sich ein besonders gutes Zündverhalten des Luft-Kraftstoff-Gemisches erreichen lässt. Hierzu ist die Geometrie der Elektrode derart zu werten, dass Feldstärkeüberhöhungen des von der Elektrode abgestrahlten Hochfrequenzfelds hervorgerufen werden, welche zur Bildung der kurzzeitigen Plasmafäden in dem Luft-Kraftstoff-Gemisch führen.
Den zuvor beschriebenen Zündsystemen ist gemeinsam, dass zum Entzünden des in dem jeweiligen Brennraum befindlichen Luft-Kraftstoff-Gemisches jeweils ein relativ hoher Energieverbrauch des entsprechenden Zündgeräts erforderlich ist. Durch die an der Elektrode punktuell auftretenden Entladungen kommt es zudem zu einer relativ starken Abnutzung der Elektrode, welche auch als Elektrodenabbrand bezeichnet wird.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein beispielsweise in Form einer Zündkerze ausgestaltetes Element zur Energieeinkopplung in einen mit einem bestimmten Medium, beispielsweise einem Luft-Kraftstoff-Gemisch, gefüllten Raum bereitzustellen, welches eine möglichst effektive Einkopplung der der Elektrode des Elements zugeführten Energie in den entsprechenden Raum bei gleichzeitiger Schonung der Elektrode ermöglicht.
Diese Aufgabe wird erfindungsgemäß durch ein Element mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche definieren jeweils bevorzugte und vorteilhafte Ausführungsformen der vorliegenden Erfindung.
Erfindungsgemäß wird vorgeschlagen, das vorzugsweise in Form einer Zündkerze ausgestaltete Element mit mehreren in dem jeweiligen Raum anzuordnenden länglichen Elektrodenabschnitten auszugestalten, so dass die Energieeinkopplung nicht punktuell, sondern linien- oder flächenartig erfolgt.
Bei Anwendung der auf dem Prinzip einer Plasmaentladung beruhenden Energieeinkopplung, bei welcher der Elektrode eine Hochfrequenzenergie zuzuführen ist, kann auf diese Weise ein "Vorhang" aus hochfrequenten Entladungen mit großer Oberfläche und hoher Energie erzeugt werden, so dass bei Anwendung der vorliegenden Erfindung in Form einer Zündkerze zum Entzünden eines in einem Brennraum eines Verbrennungsmotors, beispielsweise eines Ottomotors mit Direkteinspritzung, befindlichen Luft-Kraftstoff-Gemisches durch die verteilten Entladungen eine großvolumige Zündung ohne Auftreten eines direkten Überschlags großer Stromstärke möglich ist. Der Energieverbrauch des zum Zünden des Luft-Kraftstoff-Gemisches verwendeten Zündgeräts kann gering gehalten werden, wobei eine gute elektromagnetische Verträglichkeit des gesamten Zündsystems gewährleistet ist. Der in den Brennraum gerichtete Einspritzstrahl des Luft-Kraftstoff-Gemisches kann durch den zuvor beschriebenen "Vorhang" aus hochfrequenten Entladungen direkt und zuverlässig entzündet werden.
Darüber hinaus wird durch die Tatsache, dass keine punktuelle Energieeinkopplung bzw. Entladung auftritt, Elektrodenabbrand vermieden und die Lebensdauer der Elektrode verlängert.
Obwohl sich die vorliegende Erfindung bevorzugt zur Energieeinkopplung in den Brennraum eines Verbrennungsmotors, beispielsweise eines Ottomotors mit direkter Einspritzung, eignet, um ein in dem Brennraum befindliches Luft-Kraftstoff-Gemisch mittels Plasmaentladung zu entzünden, ist die vorliegende Erfindung selbstverständlich grundsätzlich auch auf Zündkerzen anwendbar, welche gemäß dem Prinzip der Funkenentladung arbeiten. Darüber hinaus ist die vorliegende Erfindung nicht auf die Energieeinkopplung in den Brennraum eines Verbrennungsmotors beschränkt, sondern kann auch auf andere mögliche Anwendungsgebiete, bei denen eine Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum erforderlich ist, angewendet werden.
Die vorliegende Erfindung wird nachfolgend näher unter Bezugnahme auf die beigefügte Zeichnung anhand bevorzugter Ausführungsbeispiele beschrieben.
Figur 1 zeigt einen Brennraum eines Verbrennungsmotors mit mehreren Zündkerzen gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung,
Figur 2 zeigt eine vergrößerte Darstellung der in Figur 1 gezeigten Zündkerze, und
Figur 3 zeigt eine Anordnung von zwei Zündkerzen gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung.
In Figur 1 ist der Brennraum bzw. Zylinder 1 eines Verbrennungsmotors, beispielsweise eines Ottomotors mit Direkteinspritzung, dargestellt, wobei im oberen Bereich des Brennraums 1 eine Einspritzdüse 3 zum Zuführen eines Luft-Kraftstoff-Gemisches in Pfeilrichtung vorgesehen ist. Des weiteren ist in dem Brennraum 1 ein Kolben 2 vertikal verschiebbar gelagert, welcher zum Komprimieren des über die Einspritzdüse 3 zugeführten Luft-Kraftstoff-Gemisches dient, um das Entzünden des Luft-Kraftstoff-Gemisches zu erleichtern.
Des weiteren sind in Figur 1 zwei Zündkerzen 8 dargestellt, welche in den Brennraum 1 hineinragen. Die Zündkerzen 8 umfassen eine Elektrode 9, welche zur Einkopplung einer zum Entzünden des zugeführten Luft-Kraftstoff-Gemisches dienenden Zündenergie vorgesehen ist. Zu diesem Zweck wird bei dem dargestellten Ausführungsbeispiel den Elektroden 9 der Zündkerzen 8 eine Hochfrequenzenergie eines Hochfrequenzgenerators 4 zugeführt, so dass von den Elektroden 9 auf Grundlage der zugeführten Hochfrequenzenergie ein entsprechendes Hochfrequenzfeld in den Brennraum 1 abgestrahlt wird, um das zwischen den Elektroden 9 eingespritzte Luft-Kraftstoff-Gemisch mittels Plasmaentladung zu entzünden. Dabei wird von dem Hochfrequenzgenerator 4 ein Hochfrequenzleistungssignal mit einer Frequenz von vorzugsweise mehreren kHz erzeugt, welches zunächst von einem Verstärker 5 verstärkt und über einen Übertrager 6 den Elektroden 9 der beiden Zündkerzen 8 zugeführt wird. Mit Hilfe des Übertragers bzw. Transformators 6 ist sichergestellt, dass kein galvanischer Kontakt zwischen den Elektroden 9 und dem Verstärker 5 bzw. dem Hochfrequenzgenerator 4 erforderlich ist, sondern die von dem Hochfrequenzgenerator erzeugte Hochfrequenzenergie wird galvanisch entkoppelt, d.h. kontaktlos, auf die Elektroden 9 übertragen, so dass eine verschmutzungssichere Einkopplung der Hochfrequenz- bzw. Zündenergie gewährleistet ist. Dies ist insbesondere deshalb vorteilhaft, da bei herkömmlichen Zündvorrichtungen mit einem direkten Kontakt zwischen den in den Brennraum hineinragenden Elektroden und dem Hochfrequenzgenerator die Kontaktstellen gegenüber Verschmutzung anfällig sind und somit für die Zündung des in dem Brennraum befindlichen Krafstoff-Luft-Gemisches eine Fehlerquelle darstellen.
Die in Figur 1 gezeigte Zündkerze 8 ist in Figur 2 vergrößert dargestellt. Wie insbesondere aus Figur 2 ersichtlich ist, weist die Elektrode 9 einen sich in Längsrichtung durch die Zündkerze 8 erstreckenden Elektrodenabschnitt 12 auf, dessen oberes Ende als Anschluss zum Zuführen der von dem Hochfrequenzgenerator 4 erzeugten Hochfrequenzenergie dient. Der in den Brennraum 1 hineinragende Endbereich der Elektrode 9 umfasst mehrere längliche und kammartig verlaufende Elektrodenabschnitte 10, welche jeweils mit dem in Längsrichtung der Zündkerze 8 verlaufenden Elektrodenabschnitt 12 verbunden sind und zur Einkopplung der Zündenergie in den Brennraum 1 dienen. Bei dem in Figur 1 und Figur 2 dargestellten Ausführungsbeispiel verlaufen die Elektrodenabschnitte 10 in verschiedenen Querebenen zur Längsache der Zündkerze 8 bzw. zum Elektrodenabschnitt 12 zueinander parallel. Zudem sind die Elektrodenabschnitte 10 auf der in den Brennraum 1 hineinragenden Außenfläche der Zündkerze 8 in Umfangsrichtung im Wesentlichen halbkreisförmig ausgestaltet (selbst-verständlich können die Elektrodenabschnitte 10 jeweils auch kreisförmig entlang des vollständigen Umfangs der Zündkerze 8 ausgebildet sein).
Die Zündkerzen 8 sind wie in Figur 1 gezeigt derart anzuordnen, dass die am unteren Ende der Zündkerzen 8 ausgebildeten Elektrodenabschnitte 10 einander zugewandt sind. Bei Anlegen der von dem Hochfrequenzgenerator 4 erzeugten Hochfrequenzenergie werden auf diese Weise zwischen den einzelnen Elektrodenabschnitten 10 der Elektrode 9 der beiden Zündkerzen 8 verteilt auftretende, hochfrequente Entladungen mit großer Oberfläche erzeugt, welche somit einen "Entladungsvorhang" 7 bilden und ein energiesparendes und zuverlässiges Zünden des durch diesen "Entladungs-vorhang" bzw. "Plasmavorhang" verlaufenden Einspritzstrahl des Luft-Kraftstoff-Gemisches ermöglicht.
Zur Vermeidung von Funkenschlägen zwischen benachbarten Elektrodenabschnitten 10 sind diese durch Isolierbeschichtungen 11, beispielsweise aus einem keramischen Material, gegeneinander isoliert.
In Figur 3 sind zwei Zündkerzen 8 gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung dargestellt. Wie aus Figur 3 ersichtlich ist, ist bei diesem Ausführungsbeispiel die Zündkerze bzw. die Elektrode 9 an dem in den Brennraum 1 hineinragenden Endbereich quer zur Längsachse der jeweiligen Zündkerze 8 gebogen, wobei wie bei dem zuvor beschriebenen Ausführungsbeispiel wiederum mehrere längliche Elektrodenabschnitte 10 vorgesehen sind, welche mit dem in Längsrichtung der Zündkerze 8 verlaufenden Elektrodenabschnitt 12 verbunden sind und zur Einkopplung der dem Elektrodenabschnitt 12 zugeführten Zündenergie in den Brennraum 1 dienen. Die einzelnen Elektrodenabschnitte 10 sind wiederum durch Isolierschichten 11 gegeneinander isoliert. Die Elektrodenabschnitte 10 verlaufen analog zu dem zuvor beschriebenen Ausführungsbeispiel im Wesentlichen halbkreisförmig um den entsprechenden Endbereich der jeweiligen Zündkerze 8 herum.
Die beiden Zündkerzen 8 sind in dem Brennraum 1 derart anzuordnen, dass die Elektrodenabschnitte 10 der beiden Zündkerzen 8 wie in Figur 3 gezeigt einander zugewandt sind. Die Richtung des Einspritzstrahls ist wiederum mit einem Pfeil angedeutet. Wie aus Figur 3 ersichtlich ist, wird auch mit Hilfe dieser Anordnung die Erzeugung mehrerer verteilt auftretender Entladungen, welche einen "Entladungsvorhang" 7 bilden, zwischen den Elektrodenabschnitten 10 der beiden Zündkerzen 8 erzeugt, so dass eine großvolumige Zündung des zwischen den Elektrodenabschnitten 10 der beiden Zündkerzen 8 zugeführten Luft-Kraftstoff-Gemisches möglich ist. Auch bei dieser Anordnung kommt es somit nicht zu einer punktuell auftretenden Entladung zwischen den beiden Zündkerzen 8, sondern es tritt eine Vielzahl von Entladungen auf, womit die Fläche, an welcher die Zündenergie auf das in Pfeilrichtung zugeführte Luft-Kraftstoff-Gemisch wirkt, deutlich erhöht und somit die Entzündung des Luft-Kraftstoff-Gemisches erleichtert werden kann.

Claims (11)

  1. Element (8) zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum (1),
    mit einer Elektrode (9), welche einen Anschluss (12) zur Zufuhr der von einer Energiequelle (4) erzeugten Energie und einen in dem Raum (1) anzuordnenden Endbereich zur Einkopplung der Energie in den Raum (1) aufweist,
    dadurch gekennzeichnet, dass der Endbereich der Elektrode (9) mehrere längliche und voneinander beabstandete Elektrodenabschnitte (10), welche jeweils mit dem Anschluss (11) der Elektrode (9) gekoppelt sind, zur Einkopplung der Energie in den Raum (1) aufweist.
  2. Element nach Anspruch 1, dadurch gekennzeichnet, dass die länglichen Elektrodenabschnitte (10) durch eine Isolationsschicht (11) gegeneinander isoliert sind.
  3. Element nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die länglichen Elektrodenabschnitte (10) derart miteinander verbunden sind, dass sie eine durch die Elektrodenabschnitte (10) gebildete Fläche zur Einkopplung der Energie in den Raum (1) bilden.
  4. Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die länglichen Elektrodenabschnitte (10) zueinander im Wesentlichen parallel verlaufen.
  5. Element nach Anspruch 4, dadurch gekennzeichnet, dass die länglichen Elektrodenabschnitte (10) jeweils im Wesentlichen quer zur Längsrichtung des Elements (8) verlaufen.
  6. Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Endbereich der Elektrode (9) gebogen ist.
  7. Element nach Anspruch 6, dadurch gekennzeichnet, dass der Endbereich im Wesentlichen quer zur Längsachse des Elements (8) gebogen verläuft.
  8. Element nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Element (8) in Form einer Zündkerze zum Entzünden eines in einem Brennraum (1) eines Verbrennungsmotors befindlichen Luft-Kraftstoff-Gemisches ausgestaltet ist.
  9. Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum (1),
    mit mindestens zwei Elementen (8) nach einem der vorhergehenden Ansprüche, wobei die Elemente (8) in dem Raum (1) derart angeordnet sind, dass die im Endbereich der Elektroden (9) vorgesehenen länglichen Elektrodenabschnitte (10) der beiden Elemente (8) einander zugewandt sind.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Elektroden (9) der beiden Elemente (8) mit einem zur Erzeugung von Hochfrequenzenergie vorgesehenen Hochfrequenzgenerator (4) verbunden sind, um über die im Endbereich der Elektroden (9) der beiden Elemente 8 vorgesehenen länglichen Elektrodenabschnitte (10) ein der zugeführten Hochfrequenzenergie entsprechendes Hochfrequenzfeld in den Raum (1) abzustrahlen.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Elektroden (9) der beiden Elemente (8) über einen Übertrager (6) mit dem Hochfrequenzgenerator (4) verbunden sind.
EP01127380A 2000-12-12 2001-11-22 Element und Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum Withdrawn EP1215392A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000161673 DE10061673A1 (de) 2000-12-12 2000-12-12 Element und Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum
DE10061673 2000-12-12

Publications (2)

Publication Number Publication Date
EP1215392A2 true EP1215392A2 (de) 2002-06-19
EP1215392A3 EP1215392A3 (de) 2003-03-19

Family

ID=7666707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01127380A Withdrawn EP1215392A3 (de) 2000-12-12 2001-11-22 Element und Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum

Country Status (2)

Country Link
EP (1) EP1215392A3 (de)
DE (1) DE10061673A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046814B3 (de) * 2004-09-27 2006-03-09 Siemens Ag Verfahren und Vorrichtung zur Beeinflussung von Verbrennungsvorgängen, insbesondere zum Betrieb einer Gasturbine
WO2008017572A1 (de) * 2006-08-08 2008-02-14 Siemens Aktiengesellschaft Hochfrequenz-zündvorrichtung für eine hochfrequenz-plasmazündung
DE102009046092A1 (de) 2009-10-28 2011-05-05 Ford Global Technologies, LLC, Dearborn Stufenkerze

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10356916B3 (de) 2003-12-01 2005-06-23 Volker Gallatz Verfahren zum Zünden der Verbrennung eines Kraftstoffes in einem Verbrennungsraum eines Motors, zugehörige Vorrichtung und Motor
CN102230456B (zh) * 2011-06-22 2013-05-08 江苏大学 大气呼吸式激光发动机装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211133B1 (de) 1985-07-27 1990-05-02 Bernd Holz Verfahren zur Einbringung thermischer Energie in einen mit einem Medium gefüllten Raum und Einrichtung hierzu
DE19636712A1 (de) 1995-09-14 1997-03-20 Caterpillar Inc Funkenzündsystem eines Verbrennungsmotors
DE19747701A1 (de) 1997-10-29 1999-05-12 Volkswagen Ag Plasmastrahl-Zündung für Verbrennungskraftmaschinen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1461300A (en) * 1921-05-16 1923-07-10 Standard Dev Co Spark plug
GB1529361A (en) * 1975-02-17 1978-10-18 Secr Defence Stripline antenna arrays
DE3145169A1 (de) * 1981-11-13 1983-05-26 Marcel 68390 Sausheim-Battenheim Blanchard "anordnung zur erzielung von hochspannung"
US4557229A (en) * 1982-06-07 1985-12-10 Nippondenso Co., Ltd. Ignition apparatus for internal combustion engines
US5007389A (en) * 1987-12-17 1991-04-16 Ryohei Kashiwara Ignition plug for internal combustion engines and a process for igniting gas mixture by the use thereof
US4805570A (en) * 1987-12-23 1989-02-21 Brunswick Corporation Multipoint spark ignition system
US5563469A (en) * 1989-12-27 1996-10-08 Nippondenso Co., Ltd. Spark plug for internal combustion engine
JPH04206488A (ja) * 1990-11-30 1992-07-28 Ryohei Kashiwabara 点火栓用の速燃焼装置
DE4240104A1 (de) * 1992-11-28 1994-06-01 Battelle Institut E V Vorrichtung zum Erwärmen/Trocknen mit Mikrowellen
DE4313172A1 (de) * 1993-04-22 1994-10-27 Bosch Gmbh Robert Zündanlage für Brennkraftmaschinen mit Doppelzündung
DE19520260B4 (de) * 1994-10-19 2005-07-21 Haug Gmbh & Co. Kg. Vorrichtung zum Aufbringen unipolarer elektrischer Ladungen
DE19516817C1 (de) * 1995-05-08 1996-06-27 Univ Karlsruhe Zyklon mit Sprühelektrode
DE19747700C2 (de) * 1997-10-29 2000-06-29 Volkswagen Ag Zündeinrichtung mit einer Zündelektrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0211133B1 (de) 1985-07-27 1990-05-02 Bernd Holz Verfahren zur Einbringung thermischer Energie in einen mit einem Medium gefüllten Raum und Einrichtung hierzu
DE19636712A1 (de) 1995-09-14 1997-03-20 Caterpillar Inc Funkenzündsystem eines Verbrennungsmotors
DE19747701A1 (de) 1997-10-29 1999-05-12 Volkswagen Ag Plasmastrahl-Zündung für Verbrennungskraftmaschinen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046814B3 (de) * 2004-09-27 2006-03-09 Siemens Ag Verfahren und Vorrichtung zur Beeinflussung von Verbrennungsvorgängen, insbesondere zum Betrieb einer Gasturbine
WO2008017572A1 (de) * 2006-08-08 2008-02-14 Siemens Aktiengesellschaft Hochfrequenz-zündvorrichtung für eine hochfrequenz-plasmazündung
DE102009046092A1 (de) 2009-10-28 2011-05-05 Ford Global Technologies, LLC, Dearborn Stufenkerze

Also Published As

Publication number Publication date
DE10061673A1 (de) 2002-06-13
EP1215392A3 (de) 2003-03-19

Similar Documents

Publication Publication Date Title
EP1053399B1 (de) Zündvorrichtung für hochfrequenz-zündung
DE112015000466B4 (de) Zünder und verfahren zur erzeugung einer plasmaentladungsstrahlung
DE102014111897B4 (de) Zündeinrichtung zum Zünden von Brennstoff-Luft-Gemischen in einer Brennkammer eines Verbrennungsmotors durch eine Korona-Entladung
DE102010045175B4 (de) Zünder zum Zünden eines Brennstoff-Luft-Gemisches mittels einer HF-Korona-Entladung und Motor mit solchen Zündern
DE19747700C2 (de) Zündeinrichtung mit einer Zündelektrode
DE2256177A1 (de) Zuendeinrichtung, insbesondere fuer brennkraftmaschinen
DE4410254A1 (de) Serieller Lichtbogenplasmainjektor
WO2006061314A1 (de) Hochfrequenz-plasmazündvorrichtung für verbrennungskraftmaschinen, insbesondere für direkt einspritzende otto-motoren
DE2436896A1 (de) Zuendkerze
EP0118789A1 (de) Zündkerze für Brennkraftmaschinen
EP2310643A1 (de) Verfahren zum betrieb einer vorrichtung aufweisend zumindest einen elektrisch beheizbaren wabenkörper
DE112011103445B4 (de) Zündanlage mit wahlweiser Luftfunken-Zündung und Teilentladungs-Zündung in Abhängigkeit der Motorlast
EP1778971A1 (de) Plasma-zünd-verfahren und -vorrichtung zur zündung von kraftstoff/luft-gemischen in verbrennungskraftmaschinen
EP1215392A2 (de) Element und Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum
DE19802745C2 (de) Mikrowellentechnische Zünd- und Verbrennungsunterstützungs-Einrichtung für einen Kraftstoffmotor
DE2758734A1 (de) Verfahren zur verminderung der schadstofferzeugung durch eine brennkraftmaschine und brennkraftmaschine zu seiner durchfuehrung
DE2739413A1 (de) Zuendkerze
DE10239409B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE19747701C2 (de) Plasmastrahl-Zündung für Verbrennungskraftmaschinen
EP0475288B1 (de) Plasmastrahl-Zündsystem
DE102005037420A1 (de) Verfahren zum Betrieb eines Zündsystems zur Selbstreinigung von Zündkerzen
DE2543125A1 (de) Verfahren und vorrichtung zum zuenden von kraftstoff/luft-gemischen in ottomotoren
DE10061672A1 (de) Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum
WO2008017600A1 (de) Hochfrequenz-zündvorrichtung
DE102014110432B4 (de) Verfahren zum Zünden eines Brennstoff-Luftgemisches, Zündsystem und Glühkerze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 03H 1/00 B

Ipc: 7H 01T 13/46 B

Ipc: 7H 01T 13/50 B

Ipc: 7F 02P 23/04 B

Ipc: 7H 01T 13/22 B

Ipc: 7F 02P 15/02 B

Ipc: 7F 02P 15/08 B

Ipc: 7F 02P 9/00 A

17P Request for examination filed

Effective date: 20030919

17Q First examination report despatched

Effective date: 20031022

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050801