EP1213363B1 - Method for making wear resistant surface layers on articles of precipitation hardenable metallic material - Google Patents

Method for making wear resistant surface layers on articles of precipitation hardenable metallic material Download PDF

Info

Publication number
EP1213363B1
EP1213363B1 EP00126449A EP00126449A EP1213363B1 EP 1213363 B1 EP1213363 B1 EP 1213363B1 EP 00126449 A EP00126449 A EP 00126449A EP 00126449 A EP00126449 A EP 00126449A EP 1213363 B1 EP1213363 B1 EP 1213363B1
Authority
EP
European Patent Office
Prior art keywords
temperature
spa
age
heat treatment
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00126449A
Other languages
German (de)
French (fr)
Other versions
EP1213363A1 (en
Inventor
Berndt Brenner
Frank Tietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE10030433A priority Critical patent/DE10030433C2/en
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority to EP00126449A priority patent/EP1213363B1/en
Priority to AT00126449T priority patent/ATE299954T1/en
Priority to ES00126449T priority patent/ES2249224T3/en
Priority to DE50010769T priority patent/DE50010769D1/en
Priority to US09/736,443 priority patent/US6511559B2/en
Publication of EP1213363A1 publication Critical patent/EP1213363A1/en
Application granted granted Critical
Publication of EP1213363B1 publication Critical patent/EP1213363B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/902Metal treatment having portions of differing metallurgical properties or characteristics

Definitions

  • the invention relates to the surface hardening of machine components.
  • the invention for increasing the wear resistance of components made of stainless, precipitation-hardenable martensitic steels, such. Turbine blades, pump shafts, heavy-duty bolts from the aerospace industry, parts from the shipbuilding industry or special ones Tools usable.
  • Another field of application are wear-stressed components high-strength, precipitation-hardenable metallic materials, which in the presence of high Toughness requirements can not be used in the fully cured state.
  • Edge zones of wear-resistant but also fatigue-stressed components are subject during their use significantly different loads than the component core. This fact is known accounted for in the marginal zone by thermal, physical, chemical, mechanical, thermochemical or thermomechanical processes a harder, wear-resistant or fatigue-resistant structure is produced as in the core, its structure so is adjusted that it primarily the present strength and toughness requirements enough.
  • Blades of low pressure stages in steam turbines are subject during their use extremely high quasi-static (centrifugal force, blade twisting), cyclic (periodic Vapor pressure, blade vibrations) and tribological (drop impact) Stresses.
  • quasi-static centrifugal force, blade twisting
  • cyclic periodic Vapor pressure, blade vibrations
  • tribological drop impact
  • Martensithärtende 13% chromium steels are able to meet these complex requirements.
  • This will be the blade material in the tempered, highly tempered condition (fulfillment of the requirements of Toughness, stress corrosion cracking resistance, vibration crack corrosion resistance, sufficient static and cyclic load capacity; Hardness about 250-350 HV) and the Environment of the leading edge z.
  • the heat treatment usually comprises at least one solution annealing at 1030-1080 ° C. (annealing time about 1 h) and the actual aging treatment in the temperature range between 480 ° C. and 620 ° C. (time 1-4 h).
  • the achievable mechanical properties hardness, yield value R p0.2 and tensile strength R m reach their maximum at the lower limit of the conventionally possible tempering temperature of 480 ° C and decrease sharply with increasing aging temperature (see also drawing 1). So falls z.
  • the hardness of 425 HV to 285 HV the hardness of 1170 to 750 MPa and the tensile strength of 1310 to 930 MPa.
  • the aging temperature must be set so high that the 0.2% flow limit and the tensile strength fall below values of about 1040 and 1000 MPa, respectively. This means that the high hardness-supplying lower range of possible tempering temperatures can not be used (see drawing 1).
  • the shortcoming of this conventional heat treatment process is therefore that the resistance to drop impact wear is too low.
  • the cause lies in that the hardness at 340 - 370 HV near the surface is too small.
  • a treatment method comprising only the surface layer for the separate microstructure adjustment in the edge layer and the component core of precipitation hardenable steels by a Surface layer heat treatment is given in SU-A-1447878.
  • the steel sheet is a conventional treatment cycle consisting of hardening, cold forming and Precipitation hardening subjected.
  • the structure consists mainly of precipitation-hardened martensite and minor proportions of austenite.
  • by a very short-term laser edge-layer annealing allows partial re-conversion of the martensite soft and ductile austenite erzi via. This soft, mostly austenitic surface layer has a reduced risk of cracking in the spring load.
  • the object of the invention is to provide a new and effective heat treatment process, which allows components of precipitation-hardenable materials with much more wear-resistant To provide edge layers without a deterioration of the remaining mechanical Use properties of the component to accept.
  • the invention has for its object to provide a heat treatment process, it regardless of structure and the mechanical properties of the component interior and without influence, higher surface hardening up to one of the tribological load to get dependent, sufficiently large depth with sufficient toughness, that too mold complicate parts can be used and in which the aging temperature Hardening possibilities of conventionalzeitanssglimmed state better uses.
  • the above object is achieved with a method for producing wear-resistant edge layers of precipitation-hardenable materials such as in Claims 1 to 14 shown solved.
  • the method is based on a function optimization by a separate adjustment of the structure in the component interior and the edge layer.
  • a thorough solution annealing and precipitation heat treatment are carried out in such a way that the structural state in the component interior and the resulting core strength and toughness best correspond to the later mechanical and, in particular, cyclic loading conditions.
  • the surface layer solution annealing according to the invention then takes place in a strongly inhomogeneous temperature field, followed by an inventively modified aging treatment of the entire component in a homogeneous or nearly homogeneous temperature field.
  • the requirements for depth, width, position and course of the wear protection zone resulting from the analysis of the tribological and / or cyclic load distribution correspond to the desired geometry of the solution annealing zone.
  • the solution annealing zone is produced by a boundary layer heating method with sufficient power density.
  • the depth t H of the target solution annealing zone is set by the local absorbed energy density and the local energy exposure time. The energy density and the duration of energy action also determine the resulting heating rate and the temperature gradient
  • the cooling rate according to the invention prevents grain coarsening during cooling and uncontrolled
  • Precipitation hardening The specification of an unusually high value for the maximum peak temperature T max s sa makes use of the knowledge that the hardness of the surface layer, as the primary, the wear resistance of the relevant types of wear determining characteristic increases or only slightly decreases with the peak temperature. As a result, a dissolution state of the precipitates can be achieved even at greater depths of the short-time solution annealing zone, which guarantees a greater hardening depth or a shallower hardness drop. Particularly high resistance to abrasion can be achieved if, as stated in claim 3, the parameters of the final aging heat treatment are selected so that the peak hardness of the precipitation hardness is achieved.
  • a specific embodiment of the invention for the class of martensitic precipitation hardenable steels provides claim 4. By selecting the values according to the invention for the peak temperature T max s sa, the temperature T spa and the time ⁇ t spa a significantly higher surface layer hardness is achieved.
  • An advantage of the method embodiment according to claim 10 is that thus the residual stress state the precipitation hardened surface layer can be improved and a larger one Number of germs for the formation of fine precipitates is present.
  • the execution of the mechanical deformation as a shot peening treatment, as in claim 13 can be particularly advantageous for the optimization of the edge layer properties of very complicated shaped or very locally treated components, such.
  • the heat treatment according to the invention can be applied to precipitation-hardenable steels various applications (stainless and acid-resistant steels, special steels, maraging steels) deploy.
  • Such steels are z.
  • a drop impact loaded end runner made of steel N700 should be provided with a wear-resistant leading edge.
  • the expected erosion zone width is 11 mm.
  • the erosion intensity is greatest at the leading edge and decreases rapidly within the erosion zone width in the direction of the blade leading edge.
  • the maximum hardening depth t H of the edge layer in the vicinity of the leading edge 1.3 mm is desired, wherein the hardening depth can decrease in accordance with the decrease in erosion intensity with increasing distance to the leading edge.
  • the material N700 has the following chemical composition: carbon ⁇ 0.04%; Silicon: 0.25%; Manganese: 0.40%; Chromium: 15.40%; Nickel: 4.40%; Copper: 3.30%; Niobium: 0.30% (in each case in percent by weight).
  • the following mechanical properties are set by a conventional heat treatment: 0.2% flow limit R p0.2 : 930 - 1000 MPa, tensile strength R m ⁇ 1040 MPa (see dashed lines in Fig. 1).
  • the cooling takes place in air.
  • the resulting microhardness is 353 HV 0.05 and is the same in the component core as in the surface layer. This level of hardness is not sufficient for the required drop impact wear resistance, but has sufficient toughness for very high cyclic loads.
  • the heat treatment according to the invention for producing wear-resistant surface layers is done as follows:
  • T csa2 and holding times ⁇ t csa2 of the conventional reference solution annealing treatment would have been T csa2 ⁇ 1050 ° C and ⁇ t csa2 ⁇ 1 h.
  • T csa 2 + 300 K T max ssa .
  • the heating takes place in a conventional heat treatment furnace with nitrogen as protective gas.
  • Fig. 2 shows the achieved surface hardness HV 0.05 and the hardness-depth curve.
  • the surface hardness reaches 477 HV 0.05 . That is a hardness increase of 124 HV 0.05 .
  • the hardening depth up to the ultimate hardness 353 HV is 1.5 mm.
  • the achieved compressive residual stress state in the hardened zone reduces the stress and vibration cracking susceptibility of the cured structure.
  • the dependence of the microhardness HV 0.05 of the edge layer according to the invention on the removal temperature is shown in FIG. 1 in a comparative manner. It can be seen that the microhardness values in the aging temperature range 460 ° C. ⁇ T spa ⁇ 510 ° C. are significantly higher than those of the conventional heat treatment.

Abstract

Production of wear-resistant edge layers on workpieces comprises subjecting a component which has been solution annealed conventionally at a temperature Tcsa1 and heat treated conventionally at a temperature Tcpa1 to renewed short term solution annealing of the edge layer at a temperature of Tsaa Tcsa1 and a holding time of delta tssa 12 seconds; and further heat treating the inside of the component and the edge layer at a temperature of Tspa Tcpa1.

Description

Die Erfindung bezieht sich auf die Randschichthärtung von Maschinenbauteilen. Objekte, bei denen ihre Anwendung möglich und zweckmäßig ist, sind stark verschleiß- oder ermüdungsbeanspruchte Bauteile, die wegen hoher Anforderungen an die Werkstofffestigkeit bei gleichzeitig hoher Zähigkeit aus ausscheidungshärtbaren Werkstoffen gefertigt sind. Besonders vorteilhaft ist die Erfindung für die Erhöhung der Verschleißbeständigkeit von Bauteilen aus nichtrostenden, ausscheidungshärtbaren martensitischen Stählen, wie z. B. Turbinenschaufeln, Pumpenwellen, hochbelastete Bolzen aus der Luftfahrtindustrie, Teilen aus der Schiffbauindustrie oder speziellen Werkzeugen nutzbar. Ein weiteres Einsatzfeld sind verschleißbeanspruchte Bauteile aus hochfesten, ausscheidungshärtbaren metallischen Werkstoffen, die beim Vorliegen hoher Zähigkeitsanforderungen nicht im vollausgehärteten Zustand eingesetzt werden können.The invention relates to the surface hardening of machine components. Objects, at their use is possible and expedient, are heavily worn or fatigue-stressed Components that due to high demands on the material strength at the same time high toughness are made of precipitation hardenable materials. Is particularly advantageous the invention for increasing the wear resistance of components made of stainless, precipitation-hardenable martensitic steels, such. Turbine blades, pump shafts, heavy-duty bolts from the aerospace industry, parts from the shipbuilding industry or special ones Tools usable. Another field of application are wear-stressed components high-strength, precipitation-hardenable metallic materials, which in the presence of high Toughness requirements can not be used in the fully cured state.

Randzonen von verschleiß- aber auch ermüdungsbeanspruchten Bauteilen unterliegen während ihres Einsatzes deutlich anderen Belastungen als der Bauteilkern. Dieser Tatsache wird bekanntermaßen dadurch Rechnung getragen, dass in der Randzone durch thermische, physikalische, chemische, mechanische, thermochemische oder thermomechanische Verfahren ein härteres, verschleiß- oder ermüdungsbeständigeres Gefüge erzeugt wird als im Kern, dessen Gefüge so eingestellt wird, dass es vorrangig den vorliegenden Festigkeits- und Zähigkeitsanforderungen genügt.Edge zones of wear-resistant but also fatigue-stressed components are subject during their use significantly different loads than the component core. This fact is known accounted for in the marginal zone by thermal, physical, chemical, mechanical, thermochemical or thermomechanical processes a harder, wear-resistant or fatigue-resistant structure is produced as in the core, its structure so is adjusted that it primarily the present strength and toughness requirements enough.

Ohne Einschränkung der Allgemeinheit soll dieser Hintergrund der Erfindung an einem prototypisch herausgegriffenen, charakteristischen Bauteil näher erläutert werden. Without limiting the generality of this background of the invention to a prototypically selected, characteristic component will be explained in more detail.

Laufschaufeln von Niederdruck-Stufen in Dampfturbinen unterliegen während ihres Einsatzes extrem hohen quasistatischen (Fliehkraft, Schaufelverwindung), zyklischen (periodische Dampfdruckbeaufschlagung, Schaufelschwingungen) und tribologischen (Tropfenschlag) Beanspruchungen. Insbesondere führt der ständige Aufprall von auskondensierten Wassertröpfchen zu einem erosiven Verschleiß in der Umgebung der Schaufeleintrittskante. Martensithärtende 13 %-Chromstähle sind in der Lage, diesen komplexen Beanspruchungen zu genügen. Dazu wird der Schaufelwerkstoff im vergüteten, hochangelassenen Zustand (Erfüllung der Anforderungen an Zähigkeit, Spannungsrisskorrosionsbeständigkeit, Schwingungsrisskorrosionsbeständigkeit, ausreichende statische und zyklische Belastbarkeit; Härte etwa 250 - 350 HV) eingesetzt und die Umgebung der Eintrittskante z. B. mittels einer Flammen-, Induktions- oder Laserstrahlhärtung kurzzeitgehärtet (sehr hohe Tropfenschlagverschleißbeständigkeit, Härte etwa 390-680 HV). Zunehmende Anforderungen an die statische und zyklische Belastbarkeit sowie die Beständigkeiten gegenüber Spannungs- bzw. Schwingungsrisskorrosion führen neuerdings zum Einsatz von nichtrostenden, ausscheidungshärtbaren martensitischen Stählen. Im Gegensatz zu den Vergütungsstählen kommt bei diesen der größte Anteil des Festigkeits- und Zähigkeitszuwachses nicht durch die Martensitbildung sondern durch eine gezielte Ausscheidungswärmebehandlung zustande.Blades of low pressure stages in steam turbines are subject during their use extremely high quasi-static (centrifugal force, blade twisting), cyclic (periodic Vapor pressure, blade vibrations) and tribological (drop impact) Stresses. In particular, the constant impact of condensed water droplets to erosive wear in the vicinity of the blade leading edge. Martensithärtende 13% chromium steels are able to meet these complex requirements. This will be the blade material in the tempered, highly tempered condition (fulfillment of the requirements of Toughness, stress corrosion cracking resistance, vibration crack corrosion resistance, sufficient static and cyclic load capacity; Hardness about 250-350 HV) and the Environment of the leading edge z. B. by means of a flame, induction or laser beam hardening short-time hardened (very high drop impact wear resistance, hardness about 390-680 HV). Increasing demands on the static and cyclic load capacity and the Resistances to stress or vibration cracking corrosion are now leading to Use of stainless, precipitation-hardenable martensitic steels. In contrast to The tempering steels comes with these the largest share of strength and Toughness increase not by the Martensitbildung but by a purposeful Ausscheidungswärmebehandlung.

Dazu enthalten diese Stähle neben 10 bis 20 Gew. % Chrom und 2-11 Gew. % Nickel normalerweise Kupfer (1-5 Gew. %) und Aluminium, Titan oder Niob als Ausscheidungsbildner. Ein typischer Vertreter dieser Stahlklasse im Turbinenbau ist der Stahl X5CrNiCuNb16-4. Die Wärmebehandlung umfasst üblicherweise mindestens eine Lösungsglühung bei 1030 - 1080 °C (Glühzeit ca. 1 h) und die eigentliche Auslagerungsbehandlung im Temperaturbereich zwischen 480 °C und 620 °C (Zeit 1-4 h). Die erreichbaren mechanischen Kennwerte Härte, Fließgrenze Rp0,2 und Zugfestigkeit Rm erreichen dabei an der Untergrenze der konventionell möglichen Anlasstemperatur von 480 °C ihr Maximum und nehmen mit zunehmender Auslagerungstemperatur stark ab (siehe auch Zeichnung 1). So fällt z. B. im Temperaturbereich von 480 bis 620 °C die Härte von 425 HV auf 285 HV, die Fließgrenze von 1170 auf 750 MPa und die Zugfestigkeit von 1310 auf 930 MPa. Wegen der erforderlichen Zähigkeitswerte, zyklischen Belastbarkeiten und insbesondere Spannungs- und Schwingungsrisskorrosionsbeständigkeiten muss die Auslagerungstemperatur jedoch so hoch gewählt werden, dass die 0,2 %-Fließgrenze und die Zugfestigkeit Werte von etwa 1040 bzw. 1000 MPa unterschreiten. Das heißt, dass der hohe Härten liefernde untere Bereich der möglichen Anlasstemperaturen nicht genutzt werden kann (siehe Zeichnung 1).These steels contain besides 10 to 20 wt.% Chromium and 2-11 wt.% Nickel usually copper (1-5 wt.%) And aluminum, titanium or niobium as precipitating agent. A typical representative of this steel class in turbine construction is the steel X5CrNiCuNb16-4. The heat treatment usually comprises at least one solution annealing at 1030-1080 ° C. (annealing time about 1 h) and the actual aging treatment in the temperature range between 480 ° C. and 620 ° C. (time 1-4 h). The achievable mechanical properties hardness, yield value R p0.2 and tensile strength R m reach their maximum at the lower limit of the conventionally possible tempering temperature of 480 ° C and decrease sharply with increasing aging temperature (see also drawing 1). So falls z. For example, in the temperature range from 480 to 620 ° C the hardness of 425 HV to 285 HV, the yield strength of 1170 to 750 MPa and the tensile strength of 1310 to 930 MPa. However, because of the required toughness values, cyclic load capacities and in particular stress and vibration crack corrosion resistances, the aging temperature must be set so high that the 0.2% flow limit and the tensile strength fall below values of about 1040 and 1000 MPa, respectively. This means that the high hardness-supplying lower range of possible tempering temperatures can not be used (see drawing 1).

Der Mangel dieses konventionellen Wärmebehandlungsverfahrens besteht dem zufolge darin, dass die Beständigkeit gegenüber dem Tropfenschlagverschleiß zu gering ist. Die Ursache dafür liegt darin, dass die Härte mit 340 - 370 HV in Oberflächennähe zu klein ist.The shortcoming of this conventional heat treatment process is therefore that the resistance to drop impact wear is too low. The cause lies in that the hardness at 340 - 370 HV near the surface is too small.

Es ist bekannt, dass die Oberflächenhärte von ausscheidungshärtbaren Stählen durch ein Plasmanitrieren bis auf etwa 1000 HV gesteigert werden kann [z. B. Prospektblatt der Firma Böhler Edelstahl GmbH (Kapfenberg/Österreich) zum Stahl N700]. Der Mangel dieses Verfahrens besteht jedoch darin, dass auch damit keine verbesserte Tropfenschlagbeständigkeit erreicht wird. Die Ursache des Mangels resultiert u. a. daraus, dass die erreichbare Nitriertiefe mit etwa 0,15 mm viel zu gering ist.It is known that the surface hardness of precipitation hardenable steels by plasma nitriding can be increased up to about 1000 HV [z. B. Leaflet of Böhler Edelstahl GmbH (Kapfenberg / Austria) to steel N700]. The lack of this procedure exists however, in that even with it no improved drop impact resistance is achieved. The Cause of the defect results u. a. from that the achievable nitration depth with approximately 0,15 mm much is too low.

Auch andere Randschichtveredlungsverfahren sind nicht geeignet, da sie unzulässig stark in die notwendige Auslagerungsbehandlung eingreifen oder der erreichbare Härtezuwachs bzw. die Härtetiefe zu gering sind.Other surface finishing methods are not suitable because they are inadmissibly strong in the necessary Auslagerungsbehandlung intervene or the achievable hardness increase or the Hardness depth are too low.

Zur Verbesserung des Werkstoffzustandes selbst ist ein Verfahren bekannt geworden, bei dem durch die Kopplung einer Kurzzeitlösungsglühung mit einer konventionellen Auslagerungsbehandlung ein Gefüge mit höherer 0,2 %-Fließspannung und Zugfestigkeit erreicht wird [siehe E. E. Denhard, Jr.: "Precipitation-hardenable stainless steel method and product", US-PS 3,660,176]. Dazu wird das gesamte Halbzeug innerhalb einer Zeit von 1 bis 15 s durch direkten Stromdurchgang einer durchgreifenden Kurzzeiterwärmung in einem Temperaturbereich zwischen 816 °C und 1149 °C der Lösungsglühbehandlung unterworfen und abgeschreckt. Anschließend erfolgt eine konventionelle Auslagerungsbehandlung im konventionell üblichen Temperaturbereich. Damit gelingt es, bei einer Lösungsglühtemperatur von 1149 °C, einer Lösungsglühzeit von 2 s, einer Auslagerungstemperatur von 482 °C und einer Auslagerungszeit von 1 h, die 0,2 %-Fließgrenze von 1328 MPa auf 1695 MPa und die Zugfestigkeit von 1378 MPa auf 1700 MPa zu steigern. Die erreichbare Härte wird nicht angegeben.To improve the state of the material itself, a process has become known in which a structure with a higher 0.2% flow stress and tensile strength is achieved by coupling a short-time solution annealing with a conventional aging treatment [see EE Denhard, Jr .: "Precipitation-hardenable stainless steel method and product ", US Pat. No. 3,660,176]. For this purpose, the entire semi-finished product is subjected to the solution annealing treatment within a time of 1 to 15 s by direct current passage of a thorough short-term heating in a temperature range between 816 ° C and 1149 ° C and quenched. This is followed by a conventional aging treatment in the conventional conventional temperature range. With a solution annealing temperature of 1149 ° C., a solution annealing time of 2 s, an aging temperature of 482 ° C. and an aging time of 1 h, it is possible to achieve the 0.2% flow limit of 1328 MPa to 1695 MPa and the tensile strength of 1378 MPa to increase to 1700 MPa. The achievable hardness is not specified.

Der Mangel dieses Verfahrens liegt darin, dass es nicht geeignet ist, an formkomplizierten Bauteilen wie Turbinenschaufeln eingesetzt zu werden. Die Ursache dieses Mangels resultiert in der Geometriegebundenheit der verwendeten Erwärmungsverfahren wie konduktive oder induktive Erwärmung.The shortcoming of this method is that it is not suitable for shape-complicated Components such as turbine blades to be used. The cause of this defect results in Geometry bond of the heating methods used such as conductive or inductive heating.

Ein weiterer wesentlicher Mangel besteht in der Tatsache, dass die Zähigkeit und Dauerschwingfestigkeit und insbesondere die Spannungsriss- und Schwingungsrisskorrosionsbeständigkeit einer solcher Art behandelten Turbinenschaufel zu gering wären. Die Ursache dafür liegt in der viel zu großen Härte im Schaufelblatt. Wenn die Turbinenschaufel dagegen bei höheren Temperaturen angelassen würde, wäre die Härte im Bereich der Schaufeleintrittskante zu gering. Das heißt, dass es mit diesem Verfahren zur Verbesserung des Werkstoffzustandes selbst nicht möglich ist, den unterschiedlichen Anforderungen, die an die Randschicht und das Bauteilinnere gestellt werden, gleichzeitig gerecht zu werden.Another significant defect is the fact that toughness and fatigue strength and in particular the stress crack and vibration crack corrosion resistance of a turbine blade treated in this way would be too small. The cause lies in the deal too great hardness in the blade. When the turbine blade, however, at higher temperatures tempered, the hardness in the blade leading edge would be too low. It means that it is not possible with this method to improve the state of the material itself, the different requirements placed on the surface layer and the component interior, at the same time.

Ein weiterer Mangel ist durch den Sachverhalt gegeben, dass eine konventionelle Durchführung der Ausscheidungshärtung das Aufhärtungsvermögen des kurzzeitlösungsgeglühten Zustandes nicht vollständig nutzen kann. Die Ursache dafür liegt in zwei Tatsachen begründet: Zum Einen darin, dass höher aufhärtende, den ganzen Bauteilquerschnitt erfassende Gefügezustände wegen zu geringer Zähigkeiten nicht genutzt werden können und zum Anderen darin, dass die neuen metallphysikalischen Freiräume, die eine Kurzzeitlösungsglühung für die nachfolgende Ausscheidungshärtung bietet, bisher nicht bekannt waren.Another shortcoming is given by the fact that a conventional implementation the precipitation hardening the hardening ability of the short-time solution-annealed state can not fully use. The cause lies in two facts: On the one hand in that higher-hardening, the whole component cross section detecting structural conditions due Too little tenacity can not be used and, secondly, that the new ones metal-physical clearances that provide a short-term solution annealing for the subsequent Ausscheidungshärtung offers, were previously unknown.

Ein nur die Randschicht umfassendes Behandlungsverfahren zur getrennten Gefügeeinstellung in der Randschicht und dem Bauteilkern an ausscheidungshärtbaren Stählen durch eine Randschichtwärmebehandlung wird in SU-A-1447878 angegeben. Zur Herstellung von Federelementen aus austenitisch-martensitischem Stahlblech, wird das Stahlblech einem konventionellen Behandlungszyklus, bestehend aus Härten, Kaltumformen und Ausscheidungshärtung unterworfen. Das Gefüge besteht danach vorwiegend aus ausscheidungsgehärtetem Martensit sowie geringen Anteilen Austenit. Anschließend wird durch eine sehr kurzzeitige Laserrandschichtglühung eine teilweise Rückumwandlung des Martensits zu weichem und duktilerem Austenit erziehlt. Diese weiche, mehrheitlich austenitische Randschicht weist eine verringerte Gefahr der Rissbildung bei der Federbelastung auf.A treatment method comprising only the surface layer for the separate microstructure adjustment in the edge layer and the component core of precipitation hardenable steels by a Surface layer heat treatment is given in SU-A-1447878. For production of Austenitic-martensitic steel sheet spring elements, the steel sheet is a conventional treatment cycle consisting of hardening, cold forming and Precipitation hardening subjected. The structure consists mainly of precipitation-hardened martensite and minor proportions of austenite. Subsequently, by a very short-term laser edge-layer annealing allows partial re-conversion of the martensite soft and ductile austenite erziehlt. This soft, mostly austenitic surface layer has a reduced risk of cracking in the spring load.

Als mangelhaft für den angestrebten Anwendungszweck erweist sich jedoch die Laserrandschichtglühung verringerte Randschichthärte.As deficient for the intended application, however, proves the Laser edge layer annealing reduced surface hardness.

Das Ziel der Erfindung ist es, eine neues und effektives Wärmebehandlungsverfahren anzugeben, das es gestattet, Bauteile aus ausscheidungshärtbaren Werkstoffen mit deutlich verschleißbeständigeren Randschichten zu versehen ohne eine Verschlechterung der übrigen mechanischen Gebrauchseigenschaften des Bauteiles hinnehmen zu müssen.The object of the invention is to provide a new and effective heat treatment process, which allows components of precipitation-hardenable materials with much more wear-resistant To provide edge layers without a deterioration of the remaining mechanical Use properties of the component to accept.

Der Erfindung liegt die Aufgabe zugrunde, ein Wärmebehandlungsverfahren anzugeben, das es gestattet, unabhängig von Gefüge und den mechanischen Eigenschaften des Bauteilinneren und ohne Einfluss darauf höhere Randschichthärten bis in eine von der tribologischen Belastung abhängende, ausreichend große Tiefe bei ausreichender Zähigkeit zu erhalten, das auch an formkomplizierten Teilen einsetzbar ist und bei dem die Auslagerungstemperatur die Härtungsmöglichkeiten des kurzzeitlösungsgeglühten Zustandes besser nutzt.The invention has for its object to provide a heat treatment process, it regardless of structure and the mechanical properties of the component interior and without influence, higher surface hardening up to one of the tribological load to get dependent, sufficiently large depth with sufficient toughness, that too mold complicate parts can be used and in which the aging temperature Hardening possibilities of kurzzeitlösungsglimmed state better uses.

Erfindungsgemäß wird die oben genannte Aufgabe mit einem Verfahren zur Erzeugung verschleißbeständiger Randschichten an ausscheidungshärtbaren Werkstoffen wie in den Ansprüchen 1 bis 14 dargestellt gelöst.According to the invention, the above object is achieved with a method for producing wear-resistant edge layers of precipitation-hardenable materials such as in Claims 1 to 14 shown solved.

Wie in Anspruch 1 und/oder 2 beschrieben wird, geht das Verfahren von einer Funktionsoptimierung durch eine getrennte Einstellung des Gefüges im Bauteilinneren und der Randschicht aus. Als erster Schritt wird erfindungsgemäß eine durchgreifende Lösungsglühung und Ausscheidungswärmebehandlung so durchgeführt, dass der Gefügezustand im Bauteilinneren und die daraus resultierende Kernfestigkeit und -zähigkeit den späteren mechanischen und insbesondere zyklischen Belastungsbedingungen am besten entspricht. Anschließend erfolgt die erfindungsgemäße Randschichtlösungsglühung in einem stark inhomogenen Temperaturfeld, gefolgt von einer erfindungsgemäß modifizierten Auslagerungsbehandlung des gesamten Bauteils in einem homogenen oder nahezu homogenen Temperaturfeld. Die sich aus der Analyse der tribologischen und/oder zyklischen Belastungsverteilung ergebenden Anforderungen an Tiefe, Breite, Lage und Verlauf der Verschleißschutzzone entsprechen dabei der anzustrebenden Geometrie der Lösungsglühzone. Die Lösungsglühzone wird durch ein Randschichterwärmungsverfahren mit ausreichender Leistungsdichte erzeugt. Die Tiefe tH der angestrebten Lösungsglühzone wird durch die lokale absorbierte Energiedichte und die lokale Energieeinwirkungsdauer eingestellt. Die Energiedichte und die Energieeinwirkungsdauer bestimmen auch die resultierende Aufheizgeschwindigkeit

Figure 00060001
und den Temperaturgradienten
Figure 00060002
As described in claim 1 and / or 2, the method is based on a function optimization by a separate adjustment of the structure in the component interior and the edge layer. As a first step, according to the invention, a thorough solution annealing and precipitation heat treatment are carried out in such a way that the structural state in the component interior and the resulting core strength and toughness best correspond to the later mechanical and, in particular, cyclic loading conditions. The surface layer solution annealing according to the invention then takes place in a strongly inhomogeneous temperature field, followed by an inventively modified aging treatment of the entire component in a homogeneous or nearly homogeneous temperature field. The requirements for depth, width, position and course of the wear protection zone resulting from the analysis of the tribological and / or cyclic load distribution correspond to the desired geometry of the solution annealing zone. The solution annealing zone is produced by a boundary layer heating method with sufficient power density. The depth t H of the target solution annealing zone is set by the local absorbed energy density and the local energy exposure time. The energy density and the duration of energy action also determine the resulting heating rate
Figure 00060001
and the temperature gradient
Figure 00060002

Die Wahl der beiden Parameter ebenso wie der Haltezeit Δts sa und der Spitzentemperatur Tmax s sa des Kurzzeit-Lösungsglühens im angegebenen Wertebereich sichert eine ausreichend schnelle Auflösung der Ausscheidungen ohne Gefahr einer Kornvergröberung. In Abhängigkeit von der Spitzentemperatur Tmax s sa und dem Ausgangsgefüge und der chemischen Zusammensetzung des Werkstoffes verhindert die erfindungsgemäße Abkühlgeschwindigkeit

Figure 00060003
eine Kornvergröberung während der Abkühlung und eine unkontrollierteThe choice of the two parameters as well as the holding time Δt s sa and the peak temperature T max s sa of the short-term solution annealing in the specified value range ensures a sufficiently fast dissolution of the precipitates without risk of grain coarsening. Depending on the peak temperature T max s sa and the initial structure and the chemical composition of the material, the cooling rate according to the invention prevents
Figure 00060003
grain coarsening during cooling and uncontrolled

Ausscheidungshärtung. Die Angabe eines ungewöhnlich hohen Wertes für die maximale Spitzentemperatur Tmax s sa macht von der Erkenntnis Gebrauch, dass die Härte der Randschicht, als der vorrangigen, die Verschleißbeständigkeit bei zutreffenden Verschleißarten bestimmenden Kenngröße, mit der Spitzentemperatur zunimmt oder nur wenig abfällt. Dadurch kann auch in größeren Tiefen der Kurzzeit-Lösungsglühzone ein Auflösungszustand der Ausscheidungen erreicht werden, der eine größere Einhärtetiefe oder einen flacheren Härteabfall garantiert. Besonders hohe Verscheißbeständigkeiten können erreicht werden, wenn wie in Anspruch 3 formuliert, die Parameter der abschließenden Auslagerungswärmebehandlung so gewählt werden, dass die Peakhärte der Ausscheidungshärte erreicht wird. Eine spezifische Ausgestaltung der Erfindung für die Klasse der martensitischen ausscheidungshärtbaren Stähle sieht Anspruch 4 vor. Durch die Wahl der erfindungsgemäßen Werte für die Spitzentemperatur Tmax s sa,, die Temperatur Tspa und der Zeit Δtspa wird eine deutlich höhere Randschichthärte erreicht.Precipitation hardening. The specification of an unusually high value for the maximum peak temperature T max s sa makes use of the knowledge that the hardness of the surface layer, as the primary, the wear resistance of the relevant types of wear determining characteristic increases or only slightly decreases with the peak temperature. As a result, a dissolution state of the precipitates can be achieved even at greater depths of the short-time solution annealing zone, which guarantees a greater hardening depth or a shallower hardness drop. Particularly high resistance to abrasion can be achieved if, as stated in claim 3, the parameters of the final aging heat treatment are selected so that the peak hardness of the precipitation hardness is achieved. A specific embodiment of the invention for the class of martensitic precipitation hardenable steels provides claim 4. By selecting the values according to the invention for the peak temperature T max s sa, the temperature T spa and the time Δt spa a significantly higher surface layer hardness is achieved.

Vorteilhaft bei der Verfahrensausgestaltung nach Anspruch 10 ist, dass damit der Eigenspannungszustand der ausscheidungsgehärteten Randschicht verbessert werden kann und eine größere Anzahl von Keimen für die Bildung von feinen Ausscheidungen vorhanden ist.An advantage of the method embodiment according to claim 10 is that thus the residual stress state the precipitation hardened surface layer can be improved and a larger one Number of germs for the formation of fine precipitates is present.

Besonders vorteilhaft lassen sich die Prozessschritte Kurzeit-Lösungsglühen, mechanische Verformung und Auslagerungswärmebehandlung bei der Weiterverarbeitung von Halbzeugen, wie in Anspruch 11 und 12 angegeben, kombinieren.The process steps short-time solution annealing, mechanical Deformation and aging heat treatment in the further processing of semi-finished products, such as in claim 11 and 12, combine.

Die Ausführung der mechanischen Verformung als Kugelstrahlbehandlung, so wie in Anspruch 13 angegeben, lässt sich besonders vorteilhaft für die Optimierung der Randschichteigenschaften von sehr kompliziert geformten oder sehr lokal behandelten Bauteilen, wie z. B. Turbinenschaufeln einsetzen.The execution of the mechanical deformation as a shot peening treatment, as in claim 13 can be particularly advantageous for the optimization of the edge layer properties of very complicated shaped or very locally treated components, such. B. turbine blades deploy.

Die erfindungsgemäße Wärmebehandlung lässt sich bei ausscheidungshärtbaren Stählen verschiedener Anwendungszwecke (rost- und säurebeständige Stähle, Sonderstähle, Maraging-Stähle) einsetzen. Solche Stähle sind z. B.: X5CrNiCuNb16-4 (1.4542); X2NiCoMo18-8-5 (1.6359); X2NiCoMo18-12 (1.6355); X1CrNiCoMo13-8-5 (1.6960); 17-7 PH; 17-4 PH; 15-5 PH; 17-7 B; PH 13-8Mo; PH 12-9Mo usw..The heat treatment according to the invention can be applied to precipitation-hardenable steels various applications (stainless and acid-resistant steels, special steels, maraging steels) deploy. Such steels are z. For example: X5CrNiCuNb16-4 (1.4542); X2NiCoMo18-8-5 (1.6359); X2NiCoMo18-12 (1.6355); X1CrNiCoMo13-8-5 (1.6960); 17-7 PH; 17-4 PH; 15-5 PH; 17-7 B; PH 13-8Mo; PH 12-9Mo etc ..

Ohne Einschränkung der Allgemeinheit wird die Erfindung nachstehend am Beispiel eines kompliziert geformten, hochbelasteten Bauteils aus dem Stahl X5CrNiCuNb16-4 erläutert: Without limiting the generality, the invention will be described below using the example of complicated formed, highly stressed component made of steel X5CrNiCuNb16-4:

Beispiel:Example:

Eine Tropfenschlag belastete Endstufenlaufschaufel aus dem Stahl N700 (Werksbezeichnung der Böhler Edelstahl GmbH Kapfenberg, Österreich) soll mit einer verschleißbeständigen Eintrittskante versehen werden. Die erwartete Erosionszonenbreite beträgt 11 mm. Die Erosionsintensität ist an der Eintrittskante am größten und nimmt innerhalb der Erosionszonenbreite in Richtung Schaufelaustrittskante rasch ab. Als maximale Einhärtetiefe tH der Randschicht sind in der Nähe der Eintrittskante 1,3 mm erwünscht, wobei die Einhärtetiefe entsprechend der Abnahme der Erosionsintensität mit zunehmendem Abstand zur Eintrittskante abfallen kann.A drop impact loaded end runner made of steel N700 (factory designation of Böhler Edelstahl GmbH Kapfenberg, Austria) should be provided with a wear-resistant leading edge. The expected erosion zone width is 11 mm. The erosion intensity is greatest at the leading edge and decreases rapidly within the erosion zone width in the direction of the blade leading edge. The maximum hardening depth t H of the edge layer in the vicinity of the leading edge 1.3 mm is desired, wherein the hardening depth can decrease in accordance with the decrease in erosion intensity with increasing distance to the leading edge.

Der Werkstoff N700 hat die folgende chemische Soll-Zusammensetzung: Kohlenstoff ≤ 0,04 %; Silizium: 0,25 %; Mangan:0,40 %; Chrom: 15,40 %; Nickel: 4,40 %; Kupfer: 3,30 %; Niob: 0,30 % (Angaben jeweils in Gewichtsprozent). Zur Gewährleistung der mechanischen und zyklischen Belastbarkeit der Turbinenschaufel infolge Fliehkraft- und Dampfkraftbeaufschlagung, Verwindung usw. werden durch eine konventionelle Wärmebehandlung folgende mechanische Kennwerte eingestellt: 0,2 % -Fließgrenze Rp0.2: 930 - 1000 MPa, Zugfestigkeit Rm ≤ 1040 MPa (siehe strichlierte Felder in Fig. 1). Dazu wird eine Lösungsglühbehandlung bei einer Temperatur von Tcsa1 = 1030 - 1060 °C für eine Zeit von Δt = 1 h vorgenommen. Die Auslagerungswärmebehandlung erfolgt bei einer Temperatur von Tcpa1 = 540 °C - 570 °C über eine Zeit von Δtcpa1 = 4 h. Die Abkühlung erfolgt an Luft. Die sich einstellende Mikrohärte beträgt 353 HV0,05 und ist im Bauteilkern genauso groß wie in der Randschicht. Dieses Härteniveau ist nicht ausreichend für die erforderliche Tropfenschlagverschleißbeständigkeit, weist aber hinreichende Zähigkeiten für sehr hohe zyklische Belastbarkeiten auf.The material N700 has the following chemical composition: carbon ≤ 0.04%; Silicon: 0.25%; Manganese: 0.40%; Chromium: 15.40%; Nickel: 4.40%; Copper: 3.30%; Niobium: 0.30% (in each case in percent by weight). To ensure the mechanical and cyclic load capacity of the turbine blade due to centrifugal and Dampfkraftbeaufschlagung, twisting, etc., the following mechanical properties are set by a conventional heat treatment: 0.2% flow limit R p0.2 : 930 - 1000 MPa, tensile strength R m ≤ 1040 MPa (see dashed lines in Fig. 1). For this, a solution annealing treatment is carried out at a temperature of T csa1 = 1030-1060 ° C. for a time of Δt = 1 h. The aging heat treatment is carried out at a temperature of T cpa1 = 540 ° C - 570 ° C over a time of Δt cpa1 = 4 h. The cooling takes place in air. The resulting microhardness is 353 HV 0.05 and is the same in the component core as in the surface layer. This level of hardness is not sufficient for the required drop impact wear resistance, but has sufficient toughness for very high cyclic loads.

Die erfindungsgemäße Wärmebehandlung zur Erzeugung verschleißbeständigerer Randschichten wird wie folgt vorgenommen:The heat treatment according to the invention for producing wear-resistant surface layers is done as follows:

Die Kurzzeit-Lösungsglühbehandlung wird mit einem CO2-Laser durchgeführt. Die Turbinenschaufel wird dazu in das Schaufelspannfutter einer 6-Achs-CNC-Maschine eingespannt und mit einer vom Abstand von der Schaufelspitze abhängigen Vorschubgeschwindigkeit unter dem Laserstrahl hinweg gefahren und dabei gleichzeitig gedreht. Das Laserstrahlformungssystem besteht aus einem off-axis-Parabolspiegel mit einer Brennweite f = 300 mm. Das lösungszuglühende Gebiet wird zur Absorptionserhöhung der CO2-Laserstrahlung mit einem Absorptionsmittel 100 µm dick bestrichen. Als Absorptionsmittel wird ein sogenannter Autofüller mit hohem Füllstoffanteil verwendet. Die Parameter der Laserstrahlbehandlung werden wie folgt gewählt:

  • Laserstrahlleistung am Auftreffort der Laserstrahlung: 2,75 kW;
  • absorbierte Laserstrahlleistung: 2,2 kW;
  • Vorschubgeschwindigkeit: 1000 mm/min ;
  • Strahlfleckdurchmesser: 11,9 mm;
  • resultierende mittlere Laserleistungsdichte: 2,0 kW/cm2.
The short-time solution annealing treatment is carried out with a CO 2 laser. For this purpose, the turbine blade is clamped in the blade chuck of a 6-axis CNC machine and driven under the laser beam at a feed rate which depends on the distance from the blade tip, and simultaneously rotated. The laser beam shaping system consists of an off-axis parabolic mirror with a focal length f = 300 mm. The solution-attracting area is coated to absorb absorption of CO 2 laser radiation with an absorbent 100 microns thick. The absorbent used is a so-called autofiller with a high proportion of filler. The parameters of the laser beam treatment are chosen as follows:
  • Laser beam power at the point of impact of the laser radiation: 2.75 kW;
  • absorbed laser beam power: 2.2 kW;
  • Feed rate: 1000 mm / min;
  • Beam spot diameter: 11.9 mm;
  • resulting average laser power density: 2.0 kW / cm 2 .

Aus diesem Satz von Bestrahlungsparametern ergeben sich folgende Parameter der KurzzeitLösungsglühung:

  • Aufheizgeschwindigkeit
    Figure 00090001
  • Temperaturgradient beim Aufheizen (in größerem Abstand zur Schaufelspitze)
    Figure 00090002
  • Spitzentemperatur Tmax s sa ≈ 1350 °C;
  • Haltezeit des Kurzzeit-Lösungsglühens Δts sa ≈ 0,7 s;
  • Abkühlgeschwindigkeit
    Figure 00090003
From this set of irradiation parameters, the following parameters of the short-term solution annealing result:
  • heating
    Figure 00090001
  • Temperature gradient during heating (at a greater distance to the blade tip)
    Figure 00090002
  • Peak temperature T max s sa ≈ 1350 ° C;
  • Holding time of the short-time solution annealing Δt s sa ≈ 0.7 s;
  • cooling
    Figure 00090003

Die Temperatur Tcsa2 und Haltezeiten Δtcsa2 der konventionellen Vergleichslösungsglühbehandlung hätten bei Tcsa2 ≈ 1050 °C und Δtcsa2 ≈ 1 h gelegen. Somit gilt: Tcsa2 + 300 K = Tmax ssa.The temperature T csa2 and holding times Δt csa2 of the conventional reference solution annealing treatment would have been T csa2 ≈ 1050 ° C and Δt csa2 ≈ 1 h. Thus: T csa 2 + 300 K = T max ssa .

Nach der Abkühlung herrschen im lösungsgeglühten Gebiet Zugeigenspannungen. Weiterhin muss das Absorptionsmittel entfernt werden. Die Entfernung des Absorptionsmittels erfolgt durch eine Kugelstrahlbehandlung. Diese sichert gleichzeitig den Abbau der Zugeigenspannungen und den Aufbau von Druckeigenspannungen, von denen ein Anteil auch nach der Auslagerungswärmebehandlung bestehen bleibt.After cooling, tensile residual stresses prevail in the solution-annealed area. Still must the absorbent is removed. The removal of the absorbent is carried out by a Shot peening. At the same time, this ensures the reduction of residual tensile stresses and the Build-up of residual compressive stresses, of which a proportion even after the Auslagerungswärmebehandlung persists.

Die anschließende Auslagerungswärmebehandlung erfolgt mit folgenden Parametern:

  • Auslagerungstemperatur Tspa ≈ 465 °C,
  • Auslagerungszeit Δtspa ≈ 4 h.
The subsequent aging heat treatment is carried out with the following parameters:
  • Aging temperature T spa ≈ 465 ° C,
  • Removal time Δt spa ≈ 4 h.

Die Temperaturen Tcpa2 und Haltezeiten Δtcpa2 der konventionellen Vergleichs-Auslagerungsglühbehandlung hätten bei Tcpa2 = 480 °C und Δtcpa2 = 1 h gelegen.
Somit gilt: Tspa + 15 K = Tcpa2; Δtspa = 4 * Δtcpa2.
Die Erwärmung erfolgt durchgreifend in einem konventionellen Wärmebehandlungsofen mit Stickstoff als Schutzgas.
The temperatures T cpa2 and holding times Δt cpa2 of the comparative comparative aging annealing treatment would have been at T cpa2 = 480 ° C and Δt cpa2 = 1 h.
Thus: T spa + 15 K = T cpa2 ; Δt spa = 4 * Δt cpa2 .
The heating takes place in a conventional heat treatment furnace with nitrogen as protective gas.

Fig. 2 zeigt die erreichte Randschichthärte HV0,05 und den Härte-Tiefen-Verlauf. Aufgetragen ist jeweils der gleitende Mittelwert aus 5 Mikrohärteeindrücken. Die Randschichthärte erreicht 477 HV0,05. Das ist eine Härtezuwachs von 124 HV0,05. Die Einhärtetiefe bis zur Grenzhärte 353 HV beträgt 1,5 mm. Damit ist eine deutlich verbesserte Verschleißbeständigkeit ohne eine wesentliche Zähigkeitseinbuße der Schaufel zu erwarten. Der erreichte Druckeigenspannungszustand in der aufgehärteten Zone verringert die Spannungs- und Schwingungsrisskorrosionsanfälligkeit des aufgehärteten Gefüges.
Die Abhängigkeit der Mikrohärte HV0,05 der erfindungsgemäß hergestellten Randschicht von derAuslagerungstemperatur ist in Fig. 1 vergleichend dargestellt. Es ist zu erkennen, dass die Mikrohärtewerte im Auslagerungstemperaturbereich 460 °C ≤ Tspa ≤ 510 °C deutlich über denen der konventionellen Wärmebehandlung liegen.
Fig. 2 shows the achieved surface hardness HV 0.05 and the hardness-depth curve. In each case, the moving average of 5 microhardness impressions is plotted. The surface hardness reaches 477 HV 0.05 . That is a hardness increase of 124 HV 0.05 . The hardening depth up to the ultimate hardness 353 HV is 1.5 mm. Thus, a significantly improved wear resistance without a significant toughness loss of the blade is to be expected. The achieved compressive residual stress state in the hardened zone reduces the stress and vibration cracking susceptibility of the cured structure.
The dependence of the microhardness HV 0.05 of the edge layer according to the invention on the removal temperature is shown in FIG. 1 in a comparative manner. It can be seen that the microhardness values in the aging temperature range 460 ° C. ≦ T spa ≦ 510 ° C. are significantly higher than those of the conventional heat treatment.

Aufstellung der verwendeten Abkürzungen und Symbole:

Figure 00110001
List of abbreviations and symbols used:
Figure 00110001

Claims (14)

  1. Process for producing wear resistant surface layers on components made of precipitation-hardenable metallic materials by means of a short-time solution anneal and a subsequent age-hardening heat treatment, the component
    a) being fully solution-annealed at a temperature Tcea1,
    b) being fully subjected to an age-hardening heat treatment at a temperature Tcpa1, the temperature Tcpa1 and the holding time Δtopa1 for the age-hardening heat treatment being set in such a way as to produce an over-aged state which is adapted to the mechanical loading on the component in terms of its mechanical characteristic variables 0.2% yield stress, tensile strength, ductility and hardness,
    c) is then subjected to a further short-time solution anneal, which affects only the surface layer of the component, at a temperature Tssa > Tcsa1 and with a holding time for the short-time solution anneal Δtssa < 12 s, and
    d) subsequently is exposed to a further age-hardening heat treatment, which encompasses both the interior of the component and the surface layer equally, at a temperature Tspa < Tcpa1.
  2. Process according to Claim 1, characterized in that
    a) the surface layer of the component is solution-annealed down to a depth tH, which corresponds to the desired hardness penetration depth, by means of a short-time introduction of energy starting from the component surface,
    b) the short-time introduction of energy starting from the component surface is realized by a high-energy surface-layer heating process,
    c) the heat-up rate
    Figure 00180001
    reaches values of
    Figure 00180002
    d) the temperature gradient
    Figure 00180003
    is selected to be in the range
    Figure 00180004
    e) with regard to the peak temperature Tmax ssa for the short-time solution-annealing treatment, the following relationship applies: Tcsa2 + 50 K ≤ Tmax ssa ≤ Tcsa2 + 400 K, where Tcsa2 is the conventional solution-annealing temperature of the corresponding material,
    f) the holding time for the short-time solution anneal Δtssa in the temperature range in which significant dissolution of the precipitations takes place is in the range from 10-1s ≤ Δtssa ≤ 12 s,
    g) the cooling rate
    Figure 00190001
    reaches maximum values in the cooling cycle of
    Figure 00190002
    h) the age-hardening heat treatment is carried out with a holding time Δtspa which is longer than the short-time solution-annealing treatment, Δtspa > Δtssh and with a significantly lower temperature gradient
    Figure 00190003
    i) the following relationship applies to the temperature Tspa of the age-hardening heat treatment Tspa ≤ Tcpa2 ≤ Tspa + 80 K, where Tcpa2 represents the lower limit of the conventional age-hardening temperature range,
    j) the holding time for the age-hardening heat treatment Δtspa is selected to be one and a half to sixteen times the holding time Δtcpa2 of the conventional age-hardening heat treatment.
  3. Process according to Claim 1 or 2, characterized in that the final age-hardening heat treatment is carried out at a temperature Tspa and with a holding time Δtspa which result in the desired hardness.
  4. Process according to at least one of Claims 1 to 3, characterized in that the surface layer modification of precipitation-hardenable martensitic steels with carbon contents of from 0.03 to 0.08% by weight, chromium contents of from 10 to 19% by weight, nickel contents of from 3.0 to 11.0% by weight, copper contents of from 1.0 to 5.0% by weight and niobium contents of from 0.15 to 0.45% by weight is carried out in such a way that
    a) the depth tH of the solution-annealed surface layer is 0.1 mm ≤ tH < 7 mm,
    b) the relationship 1080°C ≤ Tmax ssa ≤ 1350°C applies to the peak temperature Tmax ssa of the short-time solution-annealing treatment,
    c) the temperature Tspa of the age-hardening heat treatment is selected in the range from 445°C ≤ Tspa ≤ 500°C,
    d) the holding time for the age-hardening heat treatment Δtspa is set in the range from 1h ≤ Δtspa ≤ 8h.
  5. Process according to one of Claims 1 to 4, characterized in that the high-energy surface layer heating process is a laser beam heating step.
  6. Process according to one of Claims 1 to 4, characterized in that the high-energy surface layer heating process selected is an electron beam heating step.
  7. Process according to one of Claims 1 to 4, characterized in that the high-energy surface layer heating process used is an inductive surface layer heating step.
  8. Process according to at least one of Claims 1 to 7, characterized in that the cooling rate
    Figure 00200001
    is achieved by means of external cooling.
  9. Process according to at least one of Claims 1 to 7, characterized in that the cooling rate
    Figure 00200002
    is achieved by self-quenching.
  10. Process according to at least one of the preceding claims, characterized in that a mechanical deformation of the surface layer is carried out after the short-time solution annealing treatment and before the age-hardening heat treatment.
  11. Process according to Claim 10, characterized in that the component is a semi-finished product, and the semi-finished product acquires its final shape by being worked.
  12. Process according to Claims 10 and 11, characterized in that the short-time solution annealing treatment, the working and the age-hardening heat treatment are carried out as a continuous process.
  13. Process according to at least one of Claims 10 to 12, characterized in that the mechanical deformation of the surface layer is carried out by means of a shot peening treatment.
  14. Process according to at least one of Claims 1 to 13, characterized in that the temperature gradient
    Figure 00210001
    for large components is selected in the range from
    Figure 00210002
EP00126449A 1999-06-23 2000-12-07 Method for making wear resistant surface layers on articles of precipitation hardenable metallic material Expired - Lifetime EP1213363B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10030433A DE10030433C2 (en) 1999-06-23 2000-06-21 Process for the production of wear-resistant surface layers on precipitation hardenable materials
EP00126449A EP1213363B1 (en) 1999-06-23 2000-12-07 Method for making wear resistant surface layers on articles of precipitation hardenable metallic material
AT00126449T ATE299954T1 (en) 1999-06-23 2000-12-07 METHOD FOR PRODUCING WEAR-RESISTANT EDGE LAYERS ON COMPONENTS MADE OF PRECEPTION-HARDENING METALLIC MATERIAL
ES00126449T ES2249224T3 (en) 1999-06-23 2000-12-07 PROCEDURE FOR THE PRODUCTION OF MARGINAL LAYERS RESISTANT TO WEAR IN COMPONENTS OF TEMPERABLE METAL MATERIALS BY PRECIPITATION.
DE50010769T DE50010769D1 (en) 1999-06-23 2000-12-07 Method for producing wear-resistant edge layers on components made of precipitation-hardenable metallic material
US09/736,443 US6511559B2 (en) 1999-06-23 2000-12-15 Process for producing wear-resistant edge layers in precipitation-hardenable materials

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19928773 1999-06-23
DE10030433A DE10030433C2 (en) 1999-06-23 2000-06-21 Process for the production of wear-resistant surface layers on precipitation hardenable materials
EP00126449A EP1213363B1 (en) 1999-06-23 2000-12-07 Method for making wear resistant surface layers on articles of precipitation hardenable metallic material
US09/736,443 US6511559B2 (en) 1999-06-23 2000-12-15 Process for producing wear-resistant edge layers in precipitation-hardenable materials

Publications (2)

Publication Number Publication Date
EP1213363A1 EP1213363A1 (en) 2002-06-12
EP1213363B1 true EP1213363B1 (en) 2005-07-20

Family

ID=39682747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00126449A Expired - Lifetime EP1213363B1 (en) 1999-06-23 2000-12-07 Method for making wear resistant surface layers on articles of precipitation hardenable metallic material

Country Status (5)

Country Link
US (1) US6511559B2 (en)
EP (1) EP1213363B1 (en)
AT (1) ATE299954T1 (en)
DE (2) DE10030433C2 (en)
ES (1) ES2249224T3 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018782A1 (en) * 2000-09-28 2006-01-26 Mikronite Technologies Group, Inc. Media mixture for improved residual compressive stress in a product
US20020078813A1 (en) * 2000-09-28 2002-06-27 Hoffman Steve E. Saw blade
US20050279430A1 (en) * 2001-09-27 2005-12-22 Mikronite Technologies Group, Inc. Sub-surface enhanced gear
US7273409B2 (en) * 2004-08-26 2007-09-25 Mikronite Technologies Group, Inc. Process for forming spherical components
DE102004058634A1 (en) * 2004-12-04 2006-06-08 Zf Friedrichshafen Ag Method for case hardening rotationally symmetrical completely or partially screw-like or toothed components comprises momentarily annealing the symmetrical completely or partially screw-like or toothed regions after hardening
US7448135B2 (en) * 2006-03-29 2008-11-11 The Gillette Company Multi-blade razors
US20070227008A1 (en) * 2006-03-29 2007-10-04 Andrew Zhuk Razors
US7882640B2 (en) * 2006-03-29 2011-02-08 The Gillette Company Razor blades and razors
US8011104B2 (en) 2006-04-10 2011-09-06 The Gillette Company Cutting members for shaving razors
US8499462B2 (en) 2006-04-10 2013-08-06 The Gillette Company Cutting members for shaving razors
DE102006050799A1 (en) * 2006-10-27 2008-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for surface hardening of complicated components
US7854809B2 (en) * 2007-04-10 2010-12-21 Siemens Energy, Inc. Heat treatment system for a composite turbine engine component
FR2921448A1 (en) 2007-09-24 2009-03-27 Snecma Sa METHOD FOR FORMING RELIEF RELIEFS OF LIMITED LAYER
US9248579B2 (en) * 2008-07-16 2016-02-02 The Gillette Company Razors and razor cartridges
US20100025500A1 (en) * 2008-07-31 2010-02-04 Caterpillar Inc. Materials for fuel injector components
JP2012077355A (en) * 2010-10-01 2012-04-19 Mitsubishi Heavy Ind Ltd Method for manufacturing structural member
DE102012018551A1 (en) * 2012-09-20 2014-03-20 Wika Alexander Wiegand Se & Co. Kg Stainless steel element, useful in pressure measurement system and as disk-shaped membrane, where element is made of an austenitic chrome-nickel steel and material edge zone of element has increased strength and hardness
US9708685B2 (en) 2013-11-25 2017-07-18 Magna International Inc. Structural component including a tempered transition zone
US20150217414A1 (en) * 2014-02-04 2015-08-06 Caterpillar Inc. Method of remanufacturing a component
DE102017209881A1 (en) * 2017-06-12 2018-12-13 Audi Ag Process for producing a hardened transmission component and forming tool with cooled die used therefor
CN108977626A (en) * 2018-08-22 2018-12-11 哈尔滨工程大学 The laser quenching on steam turbine blade surface and ageing treatment composite strengthening method
CN111893271B (en) * 2020-07-31 2022-04-22 山东金珠材料科技有限公司 Metal workpiece quenching equipment capable of rapidly extracting fog

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888373A (en) * 1956-09-11 1959-05-26 Thompson Ramo Wooldridge Inc Method for differentially age hardening austenitic steels and products produced thereby
GB1074576A (en) * 1963-09-24 1967-07-05 Int Nickel Ltd Heat treatment of steels
US3660176A (en) * 1970-02-10 1972-05-02 Armco Steel Corp Precipitation-hardenable stainless steel method and product
SU494412A1 (en) * 1973-08-21 1975-12-05 Курганский машиностроительный институт The method of processing the mating parts of martensitic-aging steels
SU1447878A1 (en) * 1987-04-22 1988-12-30 Сумской филиал Харьковского политехнического института им.В.И.Ленина Method of producing resilient elements
US5238510A (en) * 1990-08-10 1993-08-24 Bethlehem Steel Corporation Metal sheet and method for producing the same
DE29706372U1 (en) * 1997-04-10 1997-10-30 Biller Rudi Hard stainless steel self-drilling screw
DE29914269U1 (en) * 1999-08-19 1999-11-25 Friederich Heinrich High-strength, corrosion-resistant stainless steel rod

Also Published As

Publication number Publication date
DE50010769D1 (en) 2005-08-25
DE10030433A1 (en) 2001-05-03
ES2249224T3 (en) 2006-04-01
EP1213363A1 (en) 2002-06-12
ATE299954T1 (en) 2005-08-15
US20020074066A1 (en) 2002-06-20
US6511559B2 (en) 2003-01-28
DE10030433C2 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
EP1213363B1 (en) Method for making wear resistant surface layers on articles of precipitation hardenable metallic material
EP0652300B1 (en) Case nitriding for producing a high-strength austenitic skin in stainless steels
EP1769099B1 (en) Method for producing wear-resistant and fatigue-resistant edge layers from titanium alloys, and correspondingly produced components
EP2435589B1 (en) Method and apparatus for surface hardening a component, which is made of an intermetallic compound at least in the region of the surface to be hardened
DE2417179A1 (en) PROCESS FOR CARBONIZING HIGH-ALLOY STEELS
DE102006019567B3 (en) Method for producing formed steel components
DE19983148B3 (en) Spring surface treatment processes
DE19908407B4 (en) High-strength valve spring and method for its production
EP1831409B1 (en) Method for case hardening a component by means of oil jets and device for carrying out said method
DE102013010024A1 (en) Structural component for a motor vehicle and method for producing such a structural component
EP2623617A2 (en) Method for producing an armouring component and armouring component
DE3142270C2 (en) Process for improving the strength of workpiece surfaces
EP1476586B1 (en) Steel, solid wheel, and tire for rail vehicles and method for producing parts of this type
DE2165105C3 (en) Process for the production of ball head bolts
DE102020004685A1 (en) Process for producing a surface-treated solid component from a steel material and such a component
DE19652872A1 (en) Process for increasing the surface layer strength on surfaces of workpieces made of brittle hard materials
EP0947589B1 (en) Process for treating a steel workpiece
DE202020003311U1 (en) System for the production of a surface-treated solid component from a steel material and such component
AT411533B (en) Pelleting die for producing pellets is made from a martensitic rust-free knife steel having an alloy composition of carbon, chromium and nitrogen
DE102018207888A1 (en) Steel material and method for producing a steel material
DE102019007653A1 (en) Hot forming tool
DE3001503A1 (en) Hardening valve seats of austenitic steel combustion engine valves - by mechanical deformation pref. followed by pptn. hardening
EP3728656A1 (en) Method for producing metallic components having adapted component properties
EP0347409A1 (en) Method of producing parts, subject to high stresses, with wear-resistant surfaces
EP0507762A2 (en) Process for making a frog

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021008

AKX Designation fees paid

Designated state(s): AT DE ES FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

RTI1 Title (correction)

Free format text: METHOD FOR MAKING WEAR RESISTANT SURFACE LAYERS ON HARDENED AND SUBSEQUENTLY TEMPERED ARTICLES OF RUSTLESS, PRECIPITATION

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

17Q First examination report despatched

Effective date: 20040510

RTI1 Title (correction)

Free format text: METHOD FOR MAKING WEAR RESISTANT SURFACE LAYERS ON ARTICLES OF PRECIPITATION HARDENABLE METALLIC MATERIAL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050720

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PA ALDO ROEMPLER

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010769

Country of ref document: DE

Date of ref document: 20050825

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051020

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2249224

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060421

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND

Effective date: 20051231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191217

Year of fee payment: 20

Ref country code: SE

Payment date: 20191220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191216

Year of fee payment: 20

Ref country code: FR

Payment date: 20191219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20191213

Year of fee payment: 20

Ref country code: CH

Payment date: 20191220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191220

Year of fee payment: 20

Ref country code: ES

Payment date: 20200122

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50010769

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20201206

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 299954

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210729

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20201208