EP1210173A1 - Procede d'activation d'un catalyseur de reformage - Google Patents
Procede d'activation d'un catalyseur de reformageInfo
- Publication number
- EP1210173A1 EP1210173A1 EP00943280A EP00943280A EP1210173A1 EP 1210173 A1 EP1210173 A1 EP 1210173A1 EP 00943280 A EP00943280 A EP 00943280A EP 00943280 A EP00943280 A EP 00943280A EP 1210173 A1 EP1210173 A1 EP 1210173A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- chlorine
- reforming
- process according
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
- C10G35/085—Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
- C10G35/09—Bimetallic catalysts in which at least one of the metals is a platinum group metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/128—Halogens; Compounds thereof with iron group metals or platinum group metals
- B01J27/13—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/22—Halogenating
- B01J37/24—Chlorinating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/10—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
- B01J38/18—Treating with free oxygen-containing gas with subsequent reactive gas treating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
- B01J38/20—Plural distinct oxidation stages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/42—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using halogen-containing material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
- C10G35/085—Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
Definitions
- This invention relates to the regeneration and activation of reforming catalyst and the use of such activated catalyst in the reforming of hydrocarbons.
- Catalytic reforming is a well established industrial process employed by the petroleum industry for improving the octane quality of naphthas or straight run gasolines.
- a multi-functional catalyst is employed which typically contains a metal hydrogenation-dehydrogenation (hydrogen transfer) component or components, substantially atomically dispersed upon the surface of a porous inorganic oxide support, notably alumina.
- hydrogen transfer metal hydrogenation-dehydrogenation
- platinum has been widely commercially used as the metallic hydrogen transfer component of reforming catalysts, and platinum-on- alumina catalysts have been commercially employed in refineries.
- additional metallic components such as rhenium, iridium, ruthenium, tin, palladium, germanium and the like, have been added to platinum as promoters to further improve the activity, selectivity, or both, of the basic platinum catalyst.
- a series of reactors constitute the heart of the reforming unit.
- Each reforming reactor is generally provided with a fixed bed or beds of the catalyst which receive upflow or downflow feed.
- Each reactor is provided with a heater because the reactions which take place therein are endothermic.
- a naphtha feed with hydrogen or hydrogen recycle gas is passed through a preheat furnace, then downward through a reactor, and then in sequence through subsequent interstage heaters and reactors of the series.
- the product of the last reactor is separated into a liquid fraction and a vaporous effluent.
- the vaporous effluent a gas rich in hydrogen, is used as hydrogen recycle gas in the reforming process.
- the activity of the reforming catalyst gradually declines due to the build-up of coke, and the temperature of the process is gradually . raised to compensate for the activity loss caused by the coke deposits.
- economics dictate the necessity of regenerating the catalyst.
- the initial phase of catalyst regeneration is accomplished by burning the coke off the catalyst under controlled conditions.
- Catalyst regeneration is then completed through a sequence of activation steps wherein the agglomerated metal hydrogenation-dehydrogenation components are atomically redispersed.
- Such activation generally is achieved by treating the catalyst with hydrogen to effect reduction of the platinum oxide, and such other oxides as may be present in the catalyst system, followed by a chloride treatment of the reduced catalyst system prior to placing it back into use.
- the present invention provides a process for the regeneration and activation of a platinum reforming catalyst.
- the invention also provides an improved system for the activation of a platinum reforming catalyst whereby the catalyst activity is increased.
- the invention also provides a process for the activation of a platinum reforming catalyst which, when the activated catalyst is used in the reforming of a reformer feed, the cracking of such feed is decreased while the octane number of the reformer product is increased.
- an improved reforming catalyst is obtained when the catalyst, during reduction with hydrogen, is simultaneously contacted with hydrogen and a nonmetallic chlorine-containing compound in a reactor of a series of multiple reactors, and thereafter a hydrogen purge is maintained for a sufficient amount of time to expose the reforming catalyst to about 100 to about 50,000 cubic feet of hydrogen per cubic foot of catalyst prior to bringing the system to reforming conditions.
- the catalyst to be activated has become deactivated through employment in the reforming of a hydrocarbon, and the deactivated catalyst is pretreated prior to activation, said process comprising: (aa) purging the multiple reaction zone system with nitrogen; (bb) subjecting the deactivated catalyst to an oxidative burning off at a temperature and for a time sufficient to remove substantially all carbonaceous deposits thereon; (cc) subjecting the substantially-carbon- free catalyst to an oxygen treatment for a period of time sufficient to effect the oxidation of metals contained in the substantially-carbon-free catalyst; (dd) purging the resulting oxidized catalyst of molecular oxygen; (ee) cooling the resulting purged catalyst; (a) reducing the catalyst by contacting with hydrogen which is introduced into a reaction zone of the multiple reaction zone system; (b) simultaneously with step (a) contacting the catalyst with a nonmetallic chlorine-containing compound by introducing the chlorine-containing compound into a reactor of the multiple reaction zone system; and (e
- a treatment of the catalyst beds of a reforming system which employs a series of reactors, generally three or four, which can contain varying catalyst compositions in each of the reactors.
- the individual reactors of the series can contain a platinum- alumina catalyst system either alone or in combination with an additional metallic compound such as rhenium, iridium, ruthenium, tin, palladium, germanium, and the like. It is presently preferred, in carrying out the regeneration and activation processes of this invention that a platinum-rhenium-alumina catalyst system be utilized in each reactor of the series.
- Preferred nonmetallic organic chlorides include, for example, tetrachloroethylene, hexachloroethane, carbon tetrachloride, 1-chlorobutane, 1 -chloro-2-methyl propane, 2-chloro-2-methyl propane, tertiary butyl chloride, propylene dichloride, perchloroethylene, and mixtures of two or more thereof.
- the presently most preferred non-metallic chloride is perchloro- ethylene.
- the quantity of chlorine-containing compound employed during the chloride treatment must be sufficient to provide in the catalyst system from about 0.05 to about 0.3 weight percent chlorine based on the weight of the catalyst (about 0.0005 to about 0.003 pounds of chlorine per pound of catalyst), preferably from about 0.1 to about 0.2 weight percent chlorine (about 0.001 to about 0.002 pounds of chlorine per pound catalyst).
- the temperature employed during chloride treatment must be sufficient so as to effect decomposition of the chlorine-containing compound.
- the chloride treatment can be performed at a temperature of from about 500°F to about 1,500°F, preferably from about 700°F to about 1,200°F, and most preferably from about or 900°F to about 940°F, and a pressure in the range of about 0 to about 600 psig, preferably about 50 to about 300 psig.
- the chloride treatment must occur simultaneously with, and under the same conditions as, reduction of the catalyst with hydrogen.
- the quantity of hydrogen within the system during chloride treatment must be equal to the stoichiometric amount required to form hydrogen chloride with the chlorine obtained from the chlorine-containing compound.
- the amount of hydrogen employed during the purging process can be from about 100 to about .50,000, preferably from about 500 to about 30,000, and most preferably 1,000 to 10,000 cubic feet of hydrogen per cubic foot of catalyst.
- the hydrogen purge can be conducted at a temperature from about 500°F to about 1,500°F, preferably about 800°F to 1,100°F, and most preferably from 900°F to 940°F, and a pressure in the range of about 0 to about 600 psig, preferably about 50 to about 300 psig.
- the invention is directed to a method for regenerating and activating a reforming catalyst containing platinum metals that has become deactivated through a series of reforming-regeneration cycles.
- This method comprises first purging the deactivated catalyst with an inert gas, such as nitrogen. Then subjecting the deactivated catalyst to an oxidative burn off at a temperature and period of time sufficient to remove substantially all carbonaceous deposits therefrom. Quite commonly this oxidative burn-off is accomplished in two phases, the first of which is principally a carbon burn-off phase, while the second phase can be termed an afterburn.
- the substantially-carbon-free catalyst is subjected to an oxygen treatment with a gas containing at least about 5 percent by volume of molecular oxygen at a temperature in the range of from about 800°F to about 1,150°F, preferably from about 900°F to about 940°F.
- a gas containing at least about 5 percent by volume of molecular oxygen at a temperature in the range of from about 800°F to about 1,150°F, preferably from about 900°F to about 940°F.
- any suitable oxygen-containing gas can be employed including, for example, air or air diluted with an inert gas such a nitrogen.
- the oxygen-containing gas will be comprised of from about 5 to about 15 percent by volume of molecular oxygen.
- the duration of the oxygen treatment can be quite brief or can be extended for a period of a few days. Generally, such treatment is for a period of from about 4 hours to 36 hours.
- the catalyst is purged of molecular oxygen.
- the purging can be conducted by any of the techniques well known in the art such as, for example, by flowing an inert gas such as nitrogen through the catalyst.
- the catalyst After being purged of molecular oxygen, or simultaneously therewith, the catalyst is cooled to a temperature in the range of about 600°F to about 1,000°F, preferably about 800°F to about 840°F.
- the catalyst After the catalyst has been freed of molecular oxygen and cooled, it is then activated in substantially the same manner as described previously. As described in detail above, activation is accomplished by simultaneously contacting the catalyst with hydrogen and a chlorine-containing compound, and thereafter purging the catalyst with hydrogen.
- EXAMPLE I This example demonstrates activation of a reforming catalyst by reducing the catalyst with hydrogen while contacting the catalyst with a chlorine- containing compound.
- the catalyst system was activated at 940°F by introducing hydrogen at 200 psig while adding perchloroethane at 32 microliters/hr for 15 minutes to give 0.2 weight percent chloride on the catalyst. Thereafter, a liquid naphtha feed having 23% paraffins, 30% iso- paraffins, 8% aromatics and 39% naphthenes was introduced into the reactor at a liquid- volume hourly space velocity of 2.0 hr "1 .
- the reaction pressure was about 200 psig.
- the reaction temperature was about 860°F.
- the liquid naphtha had an initial boiling point of 177°F and an end point of 258°F and an average molecular weight of 99.8.
- the liquid naphtha feed was added in an amount such that the hydrogen to hydrocarbon ratio was 4.0.
- Perchloroethane was then added to this system in an amount of 1.3 ppm to the hydrocarbon feed.
- the initial feed had a C5+ content of 100%, a Research Octane Number (RON) value of 62 and a relative octane number of 100%.
- This example demonstrates activation of a catalyst in the manner shown in Example I, except after the hydrogen reduction and chloride treatment the catalyst was purged with hydrogen.
- the hydrogen purge at a rate of 1.3 SCF per hour, was carried out for a period of 2.0 to 7 hours at about 940°F and 200 psig following the activation of the catalyst system with perchloroethylene addition and prior to the introduction of the naphtha feed to the system.
- the above data demonstrates that the use of a hydrogen purge at a rate of 1.3 SCF of hydrogen per hour for a period up to about 2.5 hours (a time sufficient to provide 4,600 cubic feet of hydrogen per cubic foot of catalyst) after activation of the catalyst system by the addition of chlorine and prior to the introduction of a naphtha feed results in a reforming system which has reduced cracking of product while achieving an increase in RON values.
- the data further demonstrates that purge times which expose the catalyst to either too much or too little hydrogen produce a less favorable result.
- This example demonstrates activation of a catalyst in the manner shown in Example III, except after the hydrogen reduction and chloride treatment the catalyst was purged with hydrogen.
- the hydrogen purge at a rate of 1.3 SCF per hour, was carried out for a period of 0.5 to 22 hours at about 940°F and 200 psig following the activation of the catalyst system with perchloroethylene addition and prior to the introduction of the naphtha feed to the system.
- the above data demonstrates that the use of a hydrogen purge at a rate of 1.3 SCF of hydrogen per hour for a period of 0.5 hours (a time sufficient to provide 920 cubic feet of hydrogen per cubic foot of catalyst) after activation of the catalyst system by the addition of chlorine and prior to the introduction of a naphtha feed results in a reforming system which has reduced cracking while achieving an increase in RON values.
- the data further illustrates that purge times which expose the catalyst to either too much or too little hydrogen, produce less favorable results.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US343947 | 1999-06-30 | ||
US09/343,947 US6294492B1 (en) | 1999-06-30 | 1999-06-30 | Catalytic reforming catalyst activation |
PCT/US2000/017907 WO2001000319A1 (fr) | 1999-06-30 | 2000-06-29 | Procede d'activation d'un catalyseur de reformage |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1210173A1 true EP1210173A1 (fr) | 2002-06-05 |
EP1210173A4 EP1210173A4 (fr) | 2005-07-20 |
Family
ID=23348351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00943280A Withdrawn EP1210173A4 (fr) | 1999-06-30 | 2000-06-29 | Procede d'activation d'un catalyseur de reformage |
Country Status (12)
Country | Link |
---|---|
US (3) | US6294492B1 (fr) |
EP (1) | EP1210173A4 (fr) |
JP (1) | JP2003503176A (fr) |
KR (1) | KR20020040681A (fr) |
CN (1) | CN1129471C (fr) |
AU (1) | AU753571B2 (fr) |
CA (1) | CA2369166A1 (fr) |
GB (1) | GB2369788B (fr) |
MX (1) | MXPA01013224A (fr) |
NO (1) | NO20016275L (fr) |
WO (1) | WO2001000319A1 (fr) |
ZA (1) | ZA200110225B (fr) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6291381B1 (en) * | 1999-06-30 | 2001-09-18 | Phillips Petroleum Company | Catalytic reforming catalyst activation |
US6610196B1 (en) * | 1999-11-24 | 2003-08-26 | Conocophillips Company | Catalytic reforming process |
US6478952B1 (en) * | 2000-07-19 | 2002-11-12 | Phillips Petroleum Company | Catalytic reforming process including the addition of organic aluminum halide |
DE10060099A1 (de) * | 2000-12-04 | 2002-06-06 | Basf Ag | Regenerierung eines Dehydrierkatalysators |
WO2003000415A1 (fr) | 2001-06-22 | 2003-01-03 | Phillips Petroleum Company | Activation d'un catalyseur de reformage catalytique |
US20040116759A1 (en) * | 2002-12-13 | 2004-06-17 | Randolph Bruce B. | Oligomerization of hydrocarbons |
MX325549B (es) * | 2006-06-14 | 2014-11-24 | Du Pont | Sustrato recubierto que tiene resistencia mejorada contra ralladuras y desgaste. |
US9132416B1 (en) | 2007-11-29 | 2015-09-15 | U.S. Department Of Energy | Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels |
US8372770B2 (en) * | 2008-12-11 | 2013-02-12 | Chevron U.S.A. Inc. | Reformer regeneration process |
US8664145B2 (en) * | 2008-12-23 | 2014-03-04 | Chevron Phillips Chemical Company Lp | Methods of preparing an aromatization catalyst |
US8912108B2 (en) | 2012-03-05 | 2014-12-16 | Chevron Phillips Chemical Company Lp | Methods of regenerating aromatization catalysts |
US8716161B2 (en) | 2012-03-05 | 2014-05-06 | Chevron Phillips Chemical Company | Methods of regenerating aromatization catalysts |
US8815201B2 (en) | 2012-05-22 | 2014-08-26 | Chevron U.S.A. Inc. | Process for regenerating a reforming catalyst |
KR101885247B1 (ko) | 2012-07-26 | 2018-08-03 | 삼성전자주식회사 | Co2 개질용 촉매, 그 제조 방법, 및 co2 개질 방법 |
US9387467B2 (en) | 2012-09-26 | 2016-07-12 | Chevron Phillips Chemical Company Lp | Aromatization catalysts with high surface area and pore volume |
CN103252259A (zh) * | 2013-05-31 | 2013-08-21 | 中山大学 | 一种铂废催化剂回收利用方法 |
EP3255796B1 (fr) * | 2016-06-08 | 2020-01-08 | NXP USA, Inc. | Procédé et appareil pour générer un signal de commande de pompe de charge |
CN110860199A (zh) * | 2019-12-19 | 2020-03-06 | 大连福佳·大化石油化工有限公司 | 重整催化剂还原尾气净化回收系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3322689A (en) * | 1964-08-10 | 1967-05-30 | Gulf Research Development Co | Isomerization catalysts and method of preparation |
US3673109A (en) * | 1969-04-08 | 1972-06-27 | Inst De Cercetari Pentru Prelu | Process for the reactivation of platinum-on-alumina catalysts |
US4359400A (en) * | 1981-01-27 | 1982-11-16 | Mobil Oil Corporation | Catalyst regeneration procedure |
US4406775A (en) * | 1982-02-01 | 1983-09-27 | Exxon Research And Engineering Co. | Catalyst regeneration process |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2785138A (en) | 1952-12-01 | 1957-03-12 | Houdry Process Corp | Preparation and regeneration of supported noble metal catalysts |
BE536508A (fr) | 1954-03-15 | |||
US2980631A (en) | 1954-12-30 | 1961-04-18 | Houdry Process Corp | Regeneration of noble metal catalysts |
US3637524A (en) * | 1968-07-11 | 1972-01-25 | Atlantic Richfield Co | Halide addition and distribution in the reactivation of platinum group catalysts |
US3622520A (en) * | 1969-07-23 | 1971-11-23 | Universal Oil Prod Co | Regeneration of a coke-deactivated catalyst comprising a combination of platinum, rhenium, halogen and sulfur with an alumina carrier material |
US3625860A (en) | 1969-08-27 | 1971-12-07 | Gulf Research Development Co | Process for reactivating a reforming catalyst |
US3654182A (en) * | 1969-11-26 | 1972-04-04 | Universal Oil Prod Co | Regeneration of a coke-deactivated catalyst comprising a combination of platinum germanium and halogen with a porous carrier material |
US3937660A (en) * | 1972-04-28 | 1976-02-10 | Exxon Research & Engineering Company | Regeneration procedure for iridium-containing catalyst |
US3793183A (en) * | 1972-12-11 | 1974-02-19 | Standard Oil Co | Method for starting up a reforming process employing a catalyst containing a group viii metal, rhenium, and selenium |
GB1436622A (en) * | 1973-06-21 | 1976-05-19 | British Petroleum Co | Regeneration of zeolite catalysts |
US3950270A (en) * | 1973-08-16 | 1976-04-13 | Exxon Research And Engineering Company | Promoted platinum-iridium-containing reforming catalysts |
US3943052A (en) * | 1973-08-16 | 1976-03-09 | Exxon Research & Engineering Co. | Regeneration procedure |
US3939061A (en) * | 1973-08-16 | 1976-02-17 | Exxon Research And Engineering Company | Process for reactivation of iridium-containing catalysts |
JPS58149987A (ja) * | 1982-03-02 | 1983-09-06 | Sumitomo Chem Co Ltd | 炭化水素類の選択的水素添加の方法 |
US4377495A (en) * | 1982-03-11 | 1983-03-22 | Engelhard Corporation | Regeneration of sulfur-contaminated platinum-alumina catalyst |
US5776849A (en) * | 1983-11-10 | 1998-07-07 | Exxon Research & Engineering Company | Regeneration of severely deactivated reforming catalysts |
US5756414A (en) * | 1983-11-10 | 1998-05-26 | Exxon Research And Engineering Company | Method of regenerating deactivated catalyst |
US4578370A (en) * | 1985-04-25 | 1986-03-25 | Uop Inc. | Gas circulation method for moving bed catalyst regeneration zones |
US4891346A (en) * | 1986-02-25 | 1990-01-02 | The Dow Chemical Company | Redispersal of Ru, Os, Rh and Pd catalysts and processes therewith |
US4810683A (en) * | 1988-01-25 | 1989-03-07 | Uop Inc. | Regeneration of a platinum-containing zeolite |
US4890346A (en) * | 1988-01-25 | 1990-01-02 | Judith Rist | Infant crib enclosure |
US4872970A (en) * | 1988-09-23 | 1989-10-10 | Exxon Research And Engineering Company | Reactivation of iridium-containing catalysts |
US5155075A (en) * | 1991-03-01 | 1992-10-13 | Chevron Research And Technology Company | Low temperature regeneration of coke deactivated reforming catalysts |
US5707921A (en) * | 1995-09-15 | 1998-01-13 | Phillips Petroleum Company | Method of preparing isomerization catalyst composition |
FR2743079B1 (fr) * | 1995-12-27 | 1998-02-06 | Inst Francais Du Petrole | Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz |
FR2743080B1 (fr) * | 1995-12-27 | 1998-02-06 | Inst Francais Du Petrole | Procede de reduction selective de la teneur en benzene et en composes insatures legers d'une coupe d'hydrocarbures |
FR2743081B1 (fr) * | 1995-12-27 | 1998-01-30 | Inst Francais Du Petrole | Procede de reduction selective de la teneur en benzene et en composes insatures legers d'une coupe d'hydrocarbures |
US6291381B1 (en) * | 1999-06-30 | 2001-09-18 | Phillips Petroleum Company | Catalytic reforming catalyst activation |
WO2003000415A1 (fr) * | 2001-06-22 | 2003-01-03 | Phillips Petroleum Company | Activation d'un catalyseur de reformage catalytique |
-
1999
- 1999-06-30 US US09/343,947 patent/US6294492B1/en not_active Expired - Fee Related
-
2000
- 2000-06-29 EP EP00943280A patent/EP1210173A4/fr not_active Withdrawn
- 2000-06-29 MX MXPA01013224A patent/MXPA01013224A/es unknown
- 2000-06-29 KR KR1020017016582A patent/KR20020040681A/ko not_active Application Discontinuation
- 2000-06-29 CA CA002369166A patent/CA2369166A1/fr not_active Abandoned
- 2000-06-29 GB GB0129843A patent/GB2369788B/en not_active Expired - Fee Related
- 2000-06-29 WO PCT/US2000/017907 patent/WO2001000319A1/fr not_active Application Discontinuation
- 2000-06-29 AU AU57776/00A patent/AU753571B2/en not_active Ceased
- 2000-06-29 CN CN00808892A patent/CN1129471C/zh not_active Expired - Fee Related
- 2000-06-29 JP JP2001506018A patent/JP2003503176A/ja active Pending
-
2001
- 2001-07-31 US US09/918,854 patent/US20020002111A1/en not_active Abandoned
- 2001-07-31 US US09/918,950 patent/US6472340B2/en not_active Expired - Fee Related
- 2001-12-12 ZA ZA200110225A patent/ZA200110225B/xx unknown
- 2001-12-20 NO NO20016275A patent/NO20016275L/no not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3322689A (en) * | 1964-08-10 | 1967-05-30 | Gulf Research Development Co | Isomerization catalysts and method of preparation |
US3673109A (en) * | 1969-04-08 | 1972-06-27 | Inst De Cercetari Pentru Prelu | Process for the reactivation of platinum-on-alumina catalysts |
US4359400A (en) * | 1981-01-27 | 1982-11-16 | Mobil Oil Corporation | Catalyst regeneration procedure |
US4406775A (en) * | 1982-02-01 | 1983-09-27 | Exxon Research And Engineering Co. | Catalyst regeneration process |
Non-Patent Citations (1)
Title |
---|
See also references of WO0100319A1 * |
Also Published As
Publication number | Publication date |
---|---|
NO20016275D0 (no) | 2001-12-20 |
US20020002111A1 (en) | 2002-01-03 |
KR20020040681A (ko) | 2002-05-30 |
GB2369788B (en) | 2003-11-05 |
NO20016275L (no) | 2002-02-04 |
MXPA01013224A (es) | 2002-06-04 |
US6472340B2 (en) | 2002-10-29 |
CA2369166A1 (fr) | 2001-01-04 |
GB0129843D0 (en) | 2002-01-30 |
GB2369788A (en) | 2002-06-12 |
AU5777600A (en) | 2001-01-31 |
AU753571B2 (en) | 2002-10-24 |
JP2003503176A (ja) | 2003-01-28 |
WO2001000319A1 (fr) | 2001-01-04 |
EP1210173A4 (fr) | 2005-07-20 |
CN1355728A (zh) | 2002-06-26 |
US6294492B1 (en) | 2001-09-25 |
US20010054572A1 (en) | 2001-12-27 |
ZA200110225B (en) | 2003-03-12 |
CN1129471C (zh) | 2003-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6410472B2 (en) | Catalytic reforming catalyst activation | |
US6294492B1 (en) | Catalytic reforming catalyst activation | |
US4354925A (en) | Catalytic reforming process | |
US3637524A (en) | Halide addition and distribution in the reactivation of platinum group catalysts | |
US4191633A (en) | Process for suppression of hydrogenolysis and C5+ liquid yield loss in a reforming unit | |
US4166024A (en) | Process for suppression of hydrogenolysis and C5+ liquid yield loss in a cyclic reforming unit | |
US3950270A (en) | Promoted platinum-iridium-containing reforming catalysts | |
US3278419A (en) | Platinum group hydroforming catalyst reactivation process | |
US6593264B2 (en) | Catalytic reforming catalyst activation | |
US4541915A (en) | Catalytic reforming process | |
EP0106531B1 (fr) | Procédé pour le reformage catalytique de naphte avec un catalyseur contenant du rhénium | |
US6610196B1 (en) | Catalytic reforming process | |
AU2001261692B2 (en) | Improved catalytic reforming process | |
US3781219A (en) | Halide addition and distribution in the reactivation of platinum-rhenium catalysts | |
US3776840A (en) | Regeneration of platinum-germanium reforming catalyst | |
AU2001261692A1 (en) | Improved catalytic reforming process | |
AU2001267007A1 (en) | Improved catalytic reforming process | |
JPH10316974A (ja) | 炭化水素の接触リフォーミング方法およびコーキングの抑制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020129 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONOCOPHILLIPS COMPANY |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20050602 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7B 01J 23/42 A Ipc: 7B 01J 38/42 B Ipc: 7C 10G 59/02 B Ipc: 7B 01J 37/24 B Ipc: 7B 01J 37/18 B Ipc: 7C 10G 35/085 B Ipc: 7B 01J 38/10 B |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050826 |