EP1207345A2 - Device for controlling the air-fuel ratio for an oil or gas burner - Google Patents
Device for controlling the air-fuel ratio for an oil or gas burner Download PDFInfo
- Publication number
- EP1207345A2 EP1207345A2 EP01126118A EP01126118A EP1207345A2 EP 1207345 A2 EP1207345 A2 EP 1207345A2 EP 01126118 A EP01126118 A EP 01126118A EP 01126118 A EP01126118 A EP 01126118A EP 1207345 A2 EP1207345 A2 EP 1207345A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- control device
- signal
- evaluation circuit
- flame
- combustion air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/02—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
- F23N5/08—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
- F23N5/082—Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
Definitions
- the invention relates to a control device for setting a fuel-combustion air mixture for a burner operated with oil or gas the preamble of claim 1.
- From DE 198 09 653 C1 is a flame monitor for bluish burning Flames of an oil or gas burner known to the flame radiation sensing photo sensor, one that rises sharply from ultraviolet to infrared Has sensitivity, and includes a downstream evaluation circuit, the the fuel supply switches off when the radiation is in the range from 200 to 500 nm fails or the increase in the detected radiation intensity above 500 nm Migration from the blue area shows.
- the signal of the Two-channel photo sensor on the one hand, for ultraviolet radiation up to 500 nm and on the other hand, regarding visible and infrared radiation.
- the object of the invention is a control device according to the preamble of claim 1, which allows changes in flame radiation interpret correctly and regulate accordingly.
- Fig. 1 shows a diagram relating to different sizes, plotted compared to the lambda value.
- FIG. 2 schematically shows a circuit diagram for a control device.
- Fig. 3 shows diagrammatically the formation of measured values for the Flickering frequency of the flame radiation.
- a flame from an oil or gas burner burns optimally when a little stoichiometric excess of air is present, i.e. the lambda value is slightly larger than one. If the lambda value continues to increase, the Intensity of the flame radiation too, which also happens when the lambda value falls below one. With a lambda value greater than one shift at Increasing the proportion of combustion air increases the optical frequencies of the Flame radiation to larger values, with a lambda value less than one the optical shifts when the proportion of combustion air is reduced Frequencies of flame radiation at smaller values. In the latter case it increases however, the soot development then also strongly increases (cf. diagram of FIG.
- the photo sensor When using a photo sensor that detects the flame radiation, the has a sensitivity that rises sharply from ultraviolet to infrared, and a downstream evaluation circuit that generates a signal that the over a predetermined time integrated signal of the photosensor with respect to the radiation in the range of longer wavelengths, approximately> 500 nm, one can do that Apply generated signal to Lambda. You then get one burner-specific curve B according to the diagram of FIG. 1.
- curve B has a lambda value of about 1 has a minimum and from there to both higher and lower ones Lambda values increases. This leads to the fact that a distinction criterion for The two branches of the curve must be provided if you make mistakes in regulating want to avoid the fuel-combustion air mixture. A soot measurement is however, this is far too complex.
- the flicker frequency of the Use flame radiation for this purpose as it is ⁇ 1 in the range for Lambda lower frequencies and for lambda> 1 in the range of higher frequencies.
- the Evaluation circuit the signal of the photo sensor with respect to flicker frequency and / or Analyzes the amplitude of the detected flame radiation and determines the Emigration of the flame radiation at a flickering frequency below one predetermined value, a signal for increasing the combustion air content of the Fuel-combustion air mixture and when exceeding one predetermined second value a signal for lowering the Combustion air portion of the fuel-combustion air mixture generated.
- the flickering frequency of the flame from the signal of the Photo sensor determined and then when the emigration of the flame radiation is determined when the value falls below a predetermined first value Combustion air percentage and thus the lambda value increased, and when exceeded a predetermined second value, the combustion air content is reduced.
- the the first and second predetermined values may be the same or an interval define in which no change in the combustion air proportion is made. In this way, a lambda value can be slightly larger than one for an optimal one Stop combustion and regulate it to this value carry out without an excessive construction effort would be necessary.
- the diagram of FIG. 1 also contains a curve C, the "zero crossings", referred to here as pulsation (Hz) of the signal amplified by an amplifier 1 of the photodetector 2 which detects the flame radiation is plotted opposite Lambda affects. These zero crossings per unit of time essentially correspond the flicker frequency of the flame radiation. These zero crossings are from the Evaluation circuit generated by the DC component of the signal of the Cut off the photo sensor and lay the zero line for the AC component the noise component of the signal is suppressed, i.e. that the dominant Amplitudes remain. The resulting AC signal becomes such amplified, amplifier 3 that as a result of cutting off the upper and lower Sections result in essentially rectangular pulses with varying pulse widths.
- Hz pulsation
- a comparator 4 is expediently used either downstream counter, a shift register and evaluation or one Microprocessor 5 is used, which performs the functions of these components.
- Low frequencies of approximately ⁇ 30 Hz can be made in advance by means of a high-pass filter 6 be cut off so that they are not included in the evaluation.
- the limit for a shutdown is relatively small and periods can occur within the predetermined time in which there is no zero crossing is determined
- an optical filter in front of the photosensor use that is essentially absorbing in a wavelength range, which corresponds to the radiation from glowing furnace walls (greater than about 900 nm), thus a flickering that can be generated in the absence of flame by the fact that Air is swirled by a fan in the oven, not with the actual one Flickering of a flame is mistaken.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Combustion (AREA)
- Regulation And Control Of Combustion (AREA)
Abstract
Description
Die Erfindung betrifft eine Regeleinrichtung zum Einstellen eines Brennstoff-Verbrennungsluft-Gemisches
für einen mit Öl oder Gas betriebenen Brenner nach
dem Oberbegriff des Anspruchs 1.The invention relates to a control device for setting a fuel-combustion air mixture
for a burner operated with oil or gas
the preamble of
Aus DE 197 46 786 C2 ist ein Flammenwächter für bläulich brennenden Flammen eines Öl- oder Gasbrenners bekannt, bei dem ein Halbleiterdetektor mit einer spektralen Empfindlichkeit im nahen Ultraviolett mit einer nachgeschalteten Auswerteschaltung verwendet wird, die einen Regler für das Brennstoff-Verbrennungsluft-Verhältnis entsprechend der spektralen Verteilung der Flammenstrahlung beeinflußt. Dies kann aber beim Auswandern der Flammenstrahlung zu größeren Wellenlängen, dem "Gelbbereich" hin zu Problemen derart führen, daß trotz Erhöhung des Verbrennungsluftanteils das Auswandern zunimmt und daraufhin die Brennstoffzufuhr abgeschaltet wird. From DE 197 46 786 C2 is a flame monitor for bluish burning Flames of an oil or gas burner known in which a semiconductor detector a spectral sensitivity in the near ultraviolet with a downstream one Evaluation circuit is used, which is a controller for the fuel-combustion air ratio according to the spectral distribution of the Flame radiation affected. But this can happen when emigrating Flame radiation to longer wavelengths, the "yellow area" to problems lead in such a way that emigration despite increasing the proportion of combustion air increases and then the fuel supply is switched off.
Aus DE 198 09 653 C1 ist ein Flammenwächter für bläulich brennende Flammen eines Öl- oder Gasbrenners bekannt, der einen die Flammenstrahlung erfassenden Fotosensor, der eine von Ultraviolett zu Infrarot stark ansteigende Empfindlichkeit aufweist, und eine nachgeschaltete Auswerteschaltung umfaßt, die die Brennstoffzufuhr abschaltet, wenn die Strahlung im Bereich von 200 bis 500 nm ausfällt oder die Zunahme der erfaßten Strahlungsintensität oberhalb 500 nm ein Abwandern aus dem blauen Bereich erkennen läßt. Hierbei wird das Signal des Fotosensor zweikanalig, zum einen betreffend Ultraviolettstrahlung bis 500 nm und zum anderen betreffend sichtbare und infrarote Strahlung, ausgewertet.From DE 198 09 653 C1 is a flame monitor for bluish burning Flames of an oil or gas burner known to the flame radiation sensing photo sensor, one that rises sharply from ultraviolet to infrared Has sensitivity, and includes a downstream evaluation circuit, the the fuel supply switches off when the radiation is in the range from 200 to 500 nm fails or the increase in the detected radiation intensity above 500 nm Migration from the blue area shows. Here the signal of the Two-channel photo sensor, on the one hand, for ultraviolet radiation up to 500 nm and on the other hand, regarding visible and infrared radiation.
Aufgabe der Erfindung ist es, eine Regeleinrichtung nach dem Oberbegriff
des Anspruchs 1 zu schaffen, die es ermöglicht, Änderungen der Flammenstrahlung
richtig zu interpretieren und dementsprechend zu regeln.The object of the invention is a control device according to the preamble
of
Diese Aufgabe wird entsprechend dem kennzeichnenden Teil des Anspruchs
1 gelöst.This task is according to the characterizing part of the
Weitere Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung und den Unteransprüchen zu entnehmen.Further refinements of the invention are as follows Description and the dependent claims.
Die Erfindung wird nachstehend anhand von beigefügten Abbildungen näher erläutert.The invention will now be described with reference to the attached figures explained.
Fig. 1 zeigt ein Diagramm betreffend verschiedener Größen, aufgetragen gegenüber dem Lambda-Wert.Fig. 1 shows a diagram relating to different sizes, plotted compared to the lambda value.
Fig. 2 zeigt schematisch ein Schaltkreisdiagramm für eine Regeleinrichtung.2 schematically shows a circuit diagram for a control device.
Fig. 3 zeigt diagrammartig die Bildung von Meßwerten für die Flackerfrequenz der Flammenstrahlung.Fig. 3 shows diagrammatically the formation of measured values for the Flickering frequency of the flame radiation.
Eine Flamme eines Öl- oder Gasbrenners brennt dann optimal, wenn ein geringer stöchiometrischer Luftüberschuß vorhanden, d.h. der Lambda-Wert geringfügig größer als eins ist. Steigt der Lambda-Wert weiter an, so nimmt die Intensität der Flammenstrahlung zu, was aber auch geschieht, wenn der Lambda-Wert unter eins abfällt. Bei einem Lambda-Wert größer eins verschieben sich bei Erhöhung des Verbrennungsluftanteils die optischen Frequenzen der Flammenstrahlung zu größeren Werten, bei einem Lambda-Wert kleiner eins verschieben sich bei Erniedrigung des Verbrennungsluftanteils die optischen Frequenzen der Flammenstrahlung zu kleineren Werten. In letzterem Fall steigt allerdings dann auch die Rußentwicklung stark an (vgl. Diagramm von Fig. 1, in dem Kurve A Meßwerte bezüglich der Rußentwicklung, in Bacharach angegeben, gegenüber dem Lambda-Wert aufgetragen zeigt), weshalb in diesem Fall dann, wenn über die Regelung die Rückführung des Brennstoff-Verbrennungsluftgemisches in den optimalen Bereich nicht in vorbestimmter Zeit erreicht wird, die Brennstoffzufuhr zweckmäßigerweise zu unterbrechen ist.A flame from an oil or gas burner burns optimally when a little stoichiometric excess of air is present, i.e. the lambda value is slightly larger than one. If the lambda value continues to increase, the Intensity of the flame radiation too, which also happens when the lambda value falls below one. With a lambda value greater than one shift at Increasing the proportion of combustion air increases the optical frequencies of the Flame radiation to larger values, with a lambda value less than one the optical shifts when the proportion of combustion air is reduced Frequencies of flame radiation at smaller values. In the latter case it increases however, the soot development then also strongly increases (cf. diagram of FIG. 1, in curve A, measured values relating to soot development, given in Bacharach, versus the lambda value), which is why in this case if the regulation of the return of the fuel-combustion air mixture in the optimal range not in a predetermined time is reached, the fuel supply is advantageously to be interrupted.
Bei Verwendung eines die Flammenstrahlung erfassenden Fotosensors, der eine vom Ultraviolett zu Infrarot stark ansteigende Empfindlichkeit aufweist, und einer nachgeschalteten Auswerteschaltung, die ein Signal erzeugt, das dem über eine vorbestimmte Zeit integrierten Signal des Fotosensors bezüglich der Strahlung im Bereich größerer Wellenlängen, etwa >500 nm, entspricht, kann man das so erzeugte Signal gegenüber Lambda auftragen. Man erhält dann eine brennerspezifische Kurve B gemäß dem Diagramm von Fig. 1.When using a photo sensor that detects the flame radiation, the has a sensitivity that rises sharply from ultraviolet to infrared, and a downstream evaluation circuit that generates a signal that the over a predetermined time integrated signal of the photosensor with respect to the radiation in the range of longer wavelengths, approximately> 500 nm, one can do that Apply generated signal to Lambda. You then get one burner-specific curve B according to the diagram of FIG. 1.
Es hat sich herausgestellt, daß die Kurve B bei einem Lambda-Wert von etwa 1 ein Minimum aufweist und von dort sowohl zu höheren wie zu niedrigeren Lambda-Werten hin ansteigt. Dies führt dazu, daß ein Unterscheidungskriterium für die beiden Äste der Kurve vorgesehen werden muß, wenn man Fehler beim Regeln des Brennstoff-Verbrennungsluft-Gemisches vermeiden will. Eine Rußmessung ist hierzu allerdings viel zu aufwendig. Jedoch läßt sich die Flackerfrequenz der Flammenstrahlung zu diesem Zweck verwenden, da sie für Lambda < 1 im Bereich tiefer Frequenzen und für Lambda > 1 im Bereich höherer Frequenzen liegt.It has been found that curve B has a lambda value of about 1 has a minimum and from there to both higher and lower ones Lambda values increases. This leads to the fact that a distinction criterion for The two branches of the curve must be provided if you make mistakes in regulating want to avoid the fuel-combustion air mixture. A soot measurement is however, this is far too complex. However, the flicker frequency of the Use flame radiation for this purpose as it is <1 in the range for Lambda lower frequencies and for lambda> 1 in the range of higher frequencies.
Aus dieser Erkenntnis heraus ist daher vorgesehen, daß die Auswerteschaltung das Signal des Fotosensors bezüglich Flackerfrequenz und/oder Amplitude der erfaßten Flammenstrahlung auswertet und beim Feststellen des Auswanderns der Flammenstrahlung bei einer Flackerfrequenz unterhalb eines vorbestimmten Wertes ein Signal zum Erhöhen des Verbrennungsluftanteils des Brennstoff-Verbrennungsluft-Gemisches und beim Überschreiten eines vorbestimmten zweiten Wertes ein Signal zum Erniedrigen des Verbrennungsluftanteils des Brennstoff-Verbrennungsluft-Gemisches erzeugt.From this knowledge it is therefore provided that the Evaluation circuit the signal of the photo sensor with respect to flicker frequency and / or Analyzes the amplitude of the detected flame radiation and determines the Emigration of the flame radiation at a flickering frequency below one predetermined value, a signal for increasing the combustion air content of the Fuel-combustion air mixture and when exceeding one predetermined second value a signal for lowering the Combustion air portion of the fuel-combustion air mixture generated.
Hierbei läßt sich vorteilhaft, wie in DE 198 09 653 C1 beschrieben, ein Fotosensor verwenden, der eine von Ultraviolett zu Infrarot stark ansteigende Empfindlichkeit aufweist, wobei dessen Signal nur einkanalig ausgewertet werden muß. Man kann die Gesamtstrahlung oder auch die Signalanteile niedriger optischer Frequenz (sichtbare und infrarote Strahlung) auswerten, um das Auswandern der Flammenstrahlung festzustellen. Es lassen sich aber auch andere Fotosensoren zum selben Zweck einsetzen. So läßt sich etwa auch ein Fotodetektor verwenden, wie er in DE 197 46 786 C2 beschrieben ist, der eine Auswerteschaltung aufweist, die ein Ausgangssignal liefert, das für die spektrale Verteilung der Flammenstrahlung repräsentativ ist, um auf diese Weise das Auswandern der Flammenstrahlung festzustellen.This can be advantageous, as described in DE 198 09 653 C1 Use a photo sensor, the one that rises sharply from ultraviolet to infrared Has sensitivity, the signal of which is evaluated only in one channel got to. The total radiation or the signal components can be lower evaluate optical frequency (visible and infrared radiation) in order to Determine emigration of the flame radiation. But there are also others Use photo sensors for the same purpose. You can also do this Use photodetector as described in DE 197 46 786 C2, the one Has evaluation circuit that provides an output signal for the spectral Distribution of the flame radiation is representative in this way Determine emigration of the flame radiation.
Hierbei wird die Flackerfrequenz der Flamme aus dem Signal des Fotosensors bestimmt und dann, wenn das Auswandern der Flammenstrahlung festgestellt wird, bei Unterschreiten eines vorbestimmten ersten Wertes der Verbrennungsluftanteil und damit der Lambda-Wert erhöht, und bei Überschreiten eines vorbestimmten zweiten Wertes der Verbrennungsluftanteil erniedrigt. Der erste und der zweite vorbestimmte Wert können gleich sein oder ein Intervall definieren, in dem keine Änderung des Verbrennungsluftanteils vorgenommen wird. Auf diese Weise läßt sich ein Lambda-Wert etwas größer als eins für eine optimale Verbrennung einstellen und eine diesbezügliche Regelung auf diesen Wert vornehmen, ohne daß ein übermäßiger baulicher Aufwand notwendig wäre.Here, the flickering frequency of the flame from the signal of the Photo sensor determined and then when the emigration of the flame radiation is determined when the value falls below a predetermined first value Combustion air percentage and thus the lambda value increased, and when exceeded a predetermined second value, the combustion air content is reduced. The the first and second predetermined values may be the same or an interval define in which no change in the combustion air proportion is made. In this way, a lambda value can be slightly larger than one for an optimal one Stop combustion and regulate it to this value carry out without an excessive construction effort would be necessary.
Das Diagramm von Fig. 1 enthält femer eine Kurve C, die "Nulldurchgänge",
hier als Pulsation (Hz) bezeichnet, des von einem Verstärker 1 verstärkten Signals
des die Flammenstrahlung erfassenden Fotodetektors 2 aufgetragen gegenüber
Lambda betrifft. Diese Nulldurchgänge pro Zeiteinheit entsprechen im wesentlichen
der Flackerfrequenz der Flammenstrahlung. Diese Nulldurchgänge werden von der
Auswerteschaltung erzeugt, indem der Gleichstromanteil des Signals des
Fotosensors abgeschnitten und die Nullinie für den Wechselstromanteil so gelegt
wird, daß der Rauschanteil des Signals unterdrückt wird, d.h. daß die dominanten
Amplituden übrig bleiben. Das sich ergebende Wechselspannungssignal wird derart
verstärkt, Verstärker 3, daß sich infolge Abschneidens der oberen und unteren
Abschnitte im wesentlichen Rechteckimpulse mit variierenden Pulsbreiten ergeben.
Man zählt dann entsprechend auf- und/oder absteigende Flanken dieser
Rechteckimpulse und damit Nulldurchgänge. Dies geschieht pro Zeiteinheit,
beispielsweise pro Sekunde. Wenn die Zahl der Nulldurchgänge pro Zeiteinheit
größer als ein vorbestimmter Grenzwert, beispielsweise 25, ist, geht man davon
aus, daß eine Flamme vorhanden ist. Ist die Zahl der Nulldurchgänge gleich dem
vorbestimmten Grenzwert oder darunter, geht man davon aus, daß keine Flamme
vorhanden ist, und ein Signal zur Unterbrechung der Brennstoffzufuhr kann
dementsprechend erzeugt. - Bei Auswertung der Nulldurchgänge läßt sich auf einen
speziellen Fotodetektor und die zweikanalige Auswertung seines Signals nach DE
198 09 653 C1 verzichten.The diagram of FIG. 1 also contains a curve C, the "zero crossings",
referred to here as pulsation (Hz) of the signal amplified by an
Zur Auswertung wird zweckmäßigerweise ein Komparator 4 entweder mit
nachgeschaltetem Zähler, einem Schieberegister und Auswertung oder ein
Mikroprozessor 5 verwendet, der die Funktionen dieser Komponenten wahrnimmt.
Niedrige Frequenzen etwa < 30 Hz können vorab mittels eines Hochpaßfilters 6
abgeschnitten werden, so daß sie nicht in die Auswertung eingehen.For evaluation, a
Da der Grenzwert für eine Abschaltung relativ klein ist und Perioden innerhalb der vorbestimmten Zeit auftreten können, in denen kein Nulldurchgang festgestellt wird, ist es zweckmäßig, die vorbestimmte Zeit in eine Vielzahl, beispielsweise sechs bis zehn Abschnitte zu unterteilen, in denen separat die Nulldurchgänge gezählt werden, die dann jeweils nach Ablauf eines Abschnittes für eine vorbestimmte Zeit addiert werden, um entsprechende Werte jeweils nach Ablauf eines derartiges Abschnitt für eine vorbestimmte Zeit mit dem Grenzwert vergleichen zu können. Dies ist in Fig. 3 schematisch dargestellt. Hierdurch lassen sich die bei Gas- und Ölbrennern geforderten Abschaltzeiten, bei einem Gasbrenner beispielsweise 1 sec, ohne weiteres einhalten. Bei der Erzeugung des jeweiligen Wertes für die Zahl der Nulldurchgänge fällt jeweils die Anzahl des zeitlich ersten Abschnittes weg und die Anzahl des zeitlich letzten Abschnittes kommt dazu, so daß der Wert nach jedem Abschnitt aktualisiert ist und mit dem Grenzwert verglichen werden kann. Hierzu benötigt man die oben erwähnte Schieberegisterfunktion.Because the limit for a shutdown is relatively small and periods can occur within the predetermined time in which there is no zero crossing is determined, it is expedient to divide the predetermined time into a plurality, to divide six to ten sections, for example, in which the Zero crossings are counted, which are then after each section for a predetermined time can be added to corresponding values after each Expiration of such a section for a predetermined time with the limit value to be able to compare. This is shown schematically in FIG. 3. Let her through the switch-off times required for gas and oil burners, at one For example, keep the gas burner for 1 sec. When generating the value for the number of zero crossings, the number of the first section in time and the number of the last section in time is added so that the value is updated after each section and with the Limit can be compared. For this you need the one mentioned above Shift register function.
Ferner ist es zweckmäßig, vor dem Fotosensor ein optisches Filter zu verwenden, das im wesentlichen in einem Wellenlängenbereich absorbierend wirkt, der der Strahlung von glühenden Ofenwänden entspricht (größer etwa 900 nm), damit ein Flackern, das bei fehlender Flamme dadurch erzeugt werden kann, daß durch einen Ventilator im Ofen Luft verwirbelt wird, nicht mit dem tatsächlichen Flackern einer Flamme verwechselt wird.It is also advisable to add an optical filter in front of the photosensor use that is essentially absorbing in a wavelength range, which corresponds to the radiation from glowing furnace walls (greater than about 900 nm), thus a flickering that can be generated in the absence of flame by the fact that Air is swirled by a fan in the oven, not with the actual one Flickering of a flame is mistaken.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10055832A DE10055832C2 (en) | 2000-11-11 | 2000-11-11 | Control device for setting a fuel-combustion air mixture for a burner operated with oil or gas |
DE10055832 | 2000-11-11 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1207345A2 true EP1207345A2 (en) | 2002-05-22 |
EP1207345A3 EP1207345A3 (en) | 2004-04-28 |
EP1207345B1 EP1207345B1 (en) | 2006-08-02 |
Family
ID=7662878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01126118A Expired - Lifetime EP1207345B1 (en) | 2000-11-11 | 2001-11-03 | Device for controlling the air-fuel ratio for an oil or gas burner |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1207345B1 (en) |
AT (1) | ATE335170T1 (en) |
DE (2) | DE10055832C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1956292A1 (en) * | 2005-11-08 | 2008-08-13 | Kobelco Eco-Solutions Co., Ltd. | Secondary combustion method and unit in incineration system |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005008893B4 (en) * | 2005-02-26 | 2007-04-19 | Forschungszentrum Karlsruhe Gmbh | Method for increasing the throughput of through-put in rotary kilns |
DE102010044430A1 (en) | 2010-09-04 | 2012-03-08 | G I W E P Gesellschaft für industrielle Wärme, Energie- und Prozeßtechnik m.b.H | Method for monitoring gas-heated furnace by continuous comparative control of gas- and air volumes, involves determining comparison standards for gas- and air volumes using measured process values after start-up phase of furnace |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19809653C1 (en) | 1998-03-06 | 1999-09-16 | Giersch Gmbh | Flame monitor for blue flame for e.g. safe operation of burner |
DE19746786C2 (en) | 1997-10-23 | 2000-10-26 | Giersch Gmbh Oel Und Gasbrenne | Optical flame detector |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5037291A (en) * | 1990-07-25 | 1991-08-06 | Carrier Corporation | Method and apparatus for optimizing fuel-to-air ratio in the combustible gas supply of a radiant burner |
DE19650972C2 (en) * | 1996-12-09 | 2001-02-01 | Elbau Elektronik Bauelemente G | Method and arrangement for monitoring and regulating combustion processes |
-
2000
- 2000-11-11 DE DE10055832A patent/DE10055832C2/en not_active Expired - Lifetime
-
2001
- 2001-11-03 DE DE50110598T patent/DE50110598D1/en not_active Expired - Lifetime
- 2001-11-03 EP EP01126118A patent/EP1207345B1/en not_active Expired - Lifetime
- 2001-11-03 AT AT01126118T patent/ATE335170T1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19746786C2 (en) | 1997-10-23 | 2000-10-26 | Giersch Gmbh Oel Und Gasbrenne | Optical flame detector |
DE19809653C1 (en) | 1998-03-06 | 1999-09-16 | Giersch Gmbh | Flame monitor for blue flame for e.g. safe operation of burner |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1956292A1 (en) * | 2005-11-08 | 2008-08-13 | Kobelco Eco-Solutions Co., Ltd. | Secondary combustion method and unit in incineration system |
EP1956292A4 (en) * | 2005-11-08 | 2010-12-15 | Kobelco Eco Solutions Co Ltd | Secondary combustion method and unit in incineration system |
Also Published As
Publication number | Publication date |
---|---|
EP1207345B1 (en) | 2006-08-02 |
DE50110598D1 (en) | 2006-09-14 |
ATE335170T1 (en) | 2006-08-15 |
DE10055832C2 (en) | 2002-10-31 |
EP1207345A3 (en) | 2004-04-28 |
DE10055832A1 (en) | 2002-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10055831C2 (en) | Flame detector for an oil or gas burner | |
DE4433425C2 (en) | Control device for setting a gas-combustion air mixture in a gas burner | |
DE19502901C2 (en) | Control device for a gas burner | |
DE2836895C2 (en) | Circuit arrangement for monitoring a gas flare | |
EP0806610B1 (en) | Method for operating a gas burner | |
EP0770824B1 (en) | Method and circuit for controlling a gas burner | |
EP0953805B1 (en) | Flame monitor | |
DE19539568C1 (en) | Gas burner regulation system | |
DE3728308C2 (en) | ||
DE2436695A1 (en) | METHOD AND DEVICE FOR FLAME DETECTION | |
DE10023273A1 (en) | Measuring device for a flame | |
DE2210354B2 (en) | Flame detector | |
DE2611763C2 (en) | Flame supervision circuit | |
DE2451449C2 (en) | Flame detector | |
DE10055832C2 (en) | Control device for setting a fuel-combustion air mixture for a burner operated with oil or gas | |
DE2413482C3 (en) | Device for monitoring a single burner flame in a combustion chamber having a plurality of burner flames | |
EP1002997B1 (en) | Method for controlling a fuel/air ratio of full premix gas burner | |
DE19650972C2 (en) | Method and arrangement for monitoring and regulating combustion processes | |
CH694379A5 (en) | Flame detector. | |
DE19746786C2 (en) | Optical flame detector | |
DE19632983C2 (en) | Control device for a gas burner | |
EP2105669B1 (en) | Flame monitoring and evaluation device | |
DE60014980T2 (en) | Flame monitoring in a burner | |
EP2154430B1 (en) | Control device for a gas burner, and use of the control device | |
DE2326067A1 (en) | METHOD AND DEVICE FOR FLAME MONITORING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040914 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060802 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060802 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060802 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060802 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50110598 Country of ref document: DE Date of ref document: 20060914 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DR. LUSUARDI AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061113 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20061020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061130 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061130 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070102 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070503 |
|
BERE | Be: lapsed |
Owner name: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN G Effective date: 20061130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060802 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50110598 Country of ref document: DE Representative=s name: SPARING - ROEHL - HENSELER, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50110598 Country of ref document: DE Owner name: BFI AUTOMATION MINDERMANN GMBH, DE Free format text: FORMER OWNER: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN GMBH, 40883 RATINGEN, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50110598 Country of ref document: DE Representative=s name: SPARING - ROEHL - HENSELER, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50110598 Country of ref document: DE Owner name: BFI AUTOMATION MINDERMANN GMBH, DE Free format text: FORMER OWNER: BFI AUTOMATION MINDERMANN GMBH, 40883 RATINGEN, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: BFI AUTOMATION MINDERMANN GMBH, DE Free format text: FORMER OWNER: BFI AUTOMATION DIPL.-ING. KURT-HENRY MINDERMANN GMBH, DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: BFI AUTOMATION MINDERMANN GMBH Effective date: 20151130 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RM Effective date: 20160527 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20201120 Year of fee payment: 20 Ref country code: GB Payment date: 20201120 Year of fee payment: 20 Ref country code: CH Payment date: 20201118 Year of fee payment: 20 Ref country code: IT Payment date: 20201124 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210128 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50110598 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20211102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20211102 |