EP1202614B1 - Elektrode mit hartgelötetem Abscheider - Google Patents

Elektrode mit hartgelötetem Abscheider Download PDF

Info

Publication number
EP1202614B1
EP1202614B1 EP01308236A EP01308236A EP1202614B1 EP 1202614 B1 EP1202614 B1 EP 1202614B1 EP 01308236 A EP01308236 A EP 01308236A EP 01308236 A EP01308236 A EP 01308236A EP 1202614 B1 EP1202614 B1 EP 1202614B1
Authority
EP
European Patent Office
Prior art keywords
separator
emissive element
emissive
cavity
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01308236A
Other languages
English (en)
French (fr)
Other versions
EP1202614A3 (de
EP1202614A2 (de
Inventor
Ding Quian
Tommie Zack Turner
Rue Allen Lynch
Larry Wade Stokes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESAB Group Inc
Original Assignee
ESAB Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/835,698 external-priority patent/US6452130B1/en
Application filed by ESAB Group Inc filed Critical ESAB Group Inc
Publication of EP1202614A2 publication Critical patent/EP1202614A2/de
Publication of EP1202614A3 publication Critical patent/EP1202614A3/de
Application granted granted Critical
Publication of EP1202614B1 publication Critical patent/EP1202614B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3442Cathodes with inserted tip

Definitions

  • the present invention relates to plasma arc torches and, more particularly, to an electrode for supporting an electric arc in a plasma arc torch.
  • Plasma arc torches are commonly used for the working of metals, including cutting, welding, surface treatment, melting, and annealing. Such torches include an electrode which supports an arc which extends from the electrode to the workpiece in the transferred arc mode of operation. It is also conventional to surround the arc with a swirling vortex flow of gas, and in some torch designs it is conventional to also envelope the gas and arc with a swirling jet of water.
  • the electrode used in conventional torches of the described type typically comprises an elongate tubular member composed of a material of high thermal conductivity, such as copper or a copper alloy.
  • the forward or discharge end of the tubular electrode includes a bottom end wall having an emissive element embedded therein which supports the arc.
  • the element is composed of a material which has a relatively low work function, which is defined in the art as the potential step, measured in electron volts (ev), which permits thermionic emission from the surface of a metal at a given temperature. In view of its low work function, the element is thus capable of readily emitting electrons when an electrical potential is applied thereto.
  • Commonly used emissive materials include hafnium, zirconium, tungsten, and their alloys.
  • the emissive element is typically surrounded by a relatively non-emissive separator, which acts to prevent the arc from migrating from the emissive element to the copper holder.
  • a problem associated with torches of the type described above is the short service life of the electrode, particularly when the torch is used with an oxidizing gas, such as oxygen or air. More particularly, the gas tends to rapidly oxidize the copper of the electrode that surrounds the emissive element, and as the copper oxidizes, its work function decreases. As a result, a point is reached at which the oxidized copper surrounding the emissive element begins to support the arc, rather than the element. When this happens, the copper oxide and the supporting copper melt, resulting in early destruction and failure of the electrode.
  • an oxidizing gas such as oxygen or air. More particularly, the gas tends to rapidly oxidize the copper of the electrode that surrounds the emissive element, and as the copper oxidizes, its work function decreases. As a result, a point is reached at which the oxidized copper surrounding the emissive element begins to support the arc, rather than the element. When this happens, the copper oxide and the supporting copper melt, resulting in early destruction and failure of
  • the assignee of the present application has previously developed an electrode with significantly improved service life, as described in U.S. Patent No. 5,023,425 , and a method for making such an electrode, as described in U.S. Patent No. 5,097,111 .
  • the '425 patent discloses an electrode comprising a metallic tubular holder supporting an emissive element at a front end thereof, and having a relatively non-emissive separator or sleeve surrounding the emissive element and interposed between the emissive element and the metallic holder. The sleeve thereby separates the emissive element from the holder.
  • the '425 patent describes the sleeve as preferably being composed of silver, which has a high resistance to formation of an oxide. The silver and any oxide thereof which does form are poor emitters, and thus the arc will continue to emit from the emissive element rather than from the sleeve or the metallic holder. Service life is thereby significantly extended.
  • the '111 patent discloses a method for making an electrode which includes the step of forming a single cavity in the front face of a cylindrical blank of copper or copper alloy, the cavity including an annular outer end portion for receiving a non-emissive member.
  • a metal blank of relatively non-emissive material preferably silver, is formed to substantially fit within the cavity.
  • the non-emissive blank is then metallurgically bonded into the cavity by first inserting a disk of silver brazing material into the cavity, then inserting the non-emissive blank.
  • the assembly is then heated to a temperature only sufficient to melt the brazing material, and during the heating process the non-emissive blank is pressed into the cavity, which causes the brazing material to flow upwardly and cover the entirety of the interface between the non-emissive blank and the cavity.
  • the assembly is then cooled, resulting in the brazing material metallurgically bonding the element into the non-emissive blank.
  • the non-emissive blank is axially drilled and a cylindrical emissive element is force-fitted into the resulting opening.
  • the front face of the assembly is machined to provide a smooth outer surface, which includes a circular outer end face of the emissive element, a surrounding annular ring of the non-emissive blank, and an outer ring of the metal of the holder.
  • the torches described by the '425 and '111 patents define a rear cavity that extends forwardly towards the front end of the holder such that the emissive element, non-emissive separator, and a portion of the metallic holder form a cylindrical post extending into the rear cavity.
  • a cooling medium such as water, is circulated in the rear cavity and about the cylindrical post so that heat is transferred from the arc to the cooling water and out of the torch. More specifically, heat is transferred from the arc through the emissive element, non-emissive separator, the copper holder, and any layers of brazing material therebetween to the cooling water.
  • FIG. 10 One particular design defines a rear cavity wherein the cylindrical post includes no portion of the copper holder so that the silver separator is exposed directly to the rear cavity and cooling water circulated therein.
  • Figure 10 shown in both the '425 and '111 patents discloses a plasma arc torch wherein the holder 16b has a through bore in the lower wall, and the non-emissive insert 32b extends through the bore and is exposed so as to directly contact the cooling water in the rear cavity of the holder.
  • This design is advantageous for two reasons: first, silver has a greater thermal conductivity than copper, which increases the heat transfer between the arc and the cooling water; second, the interface between the silver separator and the copper holder is eliminated, which further improves heat transfer.
  • the torch shown in Figure 10 of the '425 and '111 patents is not easily formed in that, in addition to the rear cavity being formed in the holder, the lower wall of the holder is bored out and the non-emissive separator is press fit therein.
  • one method described by the '425 and '111 patents provides boring or drilling out a portion of the non-emissive blank, which is typically silver, along a central axis so that the emissive element or insert can be press-fitted therein. While providing a close-fitting relationship between the emissive element and the non-emissive separator, this method disadvantageously results in a loss of silver drilled from the separator to accommodate the emissive element.
  • Another method used in forming conventional torches provides securing the emissive element in the non-emissive blank or separator by way of brazing.
  • the temperature of the silver alloy brazing material must be above its melting point, and thus the temperature of the silver or silver alloy separator is raised almost to its melting point, which can soften the separator material. If this approach were tried in connection with the embodiment of Figure 10 of the '425 patent or 111 patent, however, the softened silver separator may be unable to adequately radially restrain the emissive element when inserted into the silver separator, which could result in the emissive element being "off-center" relative to the central longitudinal axis of the electrode.
  • the present invention was developed to improve upon conventional electrodes and methods of making electrodes, and more particularly electrodes and methods of making electrodes disclosed in the above-referenced '425 and '111 patents. It has been discovered that the difficulties of the electrodes described above, namely the loss of silver from the relatively non-emissive separator and the positioning of the emissive element along the central longitudinal axis of the electrode, can be overcome by positioning the emissive element in the metallic holder before the separator is installed.
  • the present invention provides a method of fabricating an electrode adapted for supporting an arc in a plasma torch, comprising the steps of:
  • the present invention provides an electrode adapted for supporting an electric arc In a plasma arc torch, comprising:
  • the present invention provides a plasma arc torch, comprising:
  • the present invention provides an electrode and method of making an electrode having an emissive element and a generally non-emissive separator disposed in a front cavity defined by the metallic holder, whereby a brazing material is disposed therebetween such that the emissive element's position along the central longitudinal axis is not affected by the brazing process.
  • the present invention provides an electrode and method for making an electrode wherein the metallic holder also defines a rear cavity that is sized so that a portion of the separator is exposed to the rear cavity, which thereby improves heat transfer between an arc and a cooling fluid circulated in the rear cavity.
  • an electrode for supporting an arc in a plasma arc torch comprises a metallic holder having a front end and rear end, the front end defining a front cavity.
  • a generally non-emissive separator is positioned in the front cavity and includes an inner peripheral wall.
  • An emissive element is also positioned in the front cavity and includes an outer peripheral wall that is only partially surrounded by the inner peripheral wall of the separator.
  • part of the brazing material is disposed between the emissive element and the separator, and also between the separator and the metallic holder.
  • the brazing layer has a melting temperature no greater than the melting temperature of the separator.
  • the separator which surrounds the emissive element is preferably composed of a metallic material, such as silver, which has a high resistance to the formation of an oxide. This serves to increase the service life of the electrode, since the silver and any oxide which does form are very poor emitters. As a result, the arc will continue to emit from the emissive element, rather than from the metallic holder or the separator, which increases the service life of the electrode.
  • the rear end of the metallic holder defines a rear cavity that extends towards the front end of the holder to expose the separator.
  • the rear cavity can be formed by trepanning or other types of machining, and the exposed separator provides an improved medium for heat transfer from the arc to the cavity, particularly if a cooling medium, such as water, is circulated in the cavity while the torch is in operation.
  • the present invention also includes a method fabricating the above-described electrode which comprises the steps of forming a front cavity in a generally planar front face of a metallic blank and fixedly securing an emissive element in the front cavity.
  • a relatively non-emissive separator is then positioned in the front cavity of the metallic holder such that the separator is interposed between and separates the metallic holder from the emissive element at the front face of the holder.
  • the separator has a tubular shape and sized such that the separator and the emissive element have a close-fitting relationship.
  • the emissive element and separator can be brazed together using a brazing material, such as silver.
  • the front face of the metallic holder is then finished to form a substantially planar surface which includes the metallic holder, the emissive element, and the separator.
  • a rear cavity is formed in the rear face of the metallic holder such that the separator is exposed to the cavity.
  • the metallic holder is trepanned or machined to remove a portion of the holder to thereby expose the separator, which improves the heat transfer from the arc to the cavity. Water or other cooling medium can be circulated within the cavity to further conduct and remove heat from the electrode.
  • the electrode of the present invention provides an electrode and method of making an electrode having improved heat transfer properties over conventional plasma arc torches.
  • the position of the emissive element is not affected by a subsequent brazing process.
  • the front end of the holder is not required to be bored out and the silver separator press fitted therein.
  • the torch 10 includes a nozzle assembly 12 and a tubular electrode 14.
  • the electrode 14 preferably is made of copper or a copper alloy, and is composed of an upper tubular member 15 and a lower cup-shaped member or holder 16.
  • the upper tubular member 15 is of elongate open tubular construction and defines the longitudinal axis of the torch 10.
  • the upper tubular member 15 includes an internally threaded lower end portion 17.
  • the holder 16 is also of tubular construction, and includes a lower front end and an upper rear end.
  • a transverse end wall 18 closes the front end of the holder 16, and the transverse end wall 18 defines an outer front face 20 ( Figure 2 ).
  • the rear end of the holder 16 is externally threaded and is threadedly joined to the lower end portion 17 of the upper tubular member 15.
  • the holder 16 is open at the rear end 19 thereof such that the holder is of cup-shaped configuration and defines an internal cavity 22.
  • the internal cavity 22 has a surface 31 that includes a cylindrical post 23 extending into the internal cavity along the longitudinal axis.
  • the cylindrical post 23 is formed to have improved heat transfer properties compared to conventional designs, as discussed below.
  • Two coaxial cavities 24, 25 are formed in the front face 20 of the end wall 18 and extend rearwardly along the longitudinal axis and into a portion of the holder 16.
  • the cavities 24, 25 are generally cylindrical, wherein the first cavity 24 has a diameter less than the second cavity 25.
  • the cavities 24, 25 include inner side surfaces 27a, 27b, respectively.
  • An emissive element or insert 28 is mounted in the small cavity 24 and is disposed coaxially along the longitudinal axis.
  • the emissive element 28 has a circular outer end face 29 lying in the plane of the front face 20 of the holder 16.
  • the emissive element 28 also includes a generally circular inner end face 30 which is disposed in the small cavity 24 and is opposite the outer end face 29.
  • the inner end face 30, however, can have other shapes, such as pointed, polygonal, or spherical, in order to assist in securing the emissive element to the small cavity 24, as discussed below.
  • the emissive element 28 is composed of a metallic material which has a relatively low work function, in a range of about 2.7 to 4.2 ev, so that it is adapted to readily emit electrons upon an electrical potential being applied thereto. Suitable examples of such materials are hafnium, zirconium, tungsten, and alloys thereof. According to one embodiment, the emissive element 28 is secured to the small cavity 24 by an interference fit, although other securing methods can also be used, such as pressing or crimping.
  • a relatively non-emissive separator 32 is positioned in the large cavity 25 coaxially about the emissive element 28.
  • the separator 32 has a peripheral wall 33 ( Figures 4-5 ) extending the length of the emissive element 28.
  • the peripheral wall 33 is illustrated as having a substantially constant outer diameter over the length of the separator, although it will be appreciated that other geometric configurations would be consistent with the scope of the invention, such as frustoconical.
  • the separator 32 also includes an outer end face 36 which is generally flush with the circular outer end face 29 of the emissive element 28, and is also generally flush with the front face 20 of the holder 16.
  • the separator 32 preferably has a radial thickness of at least about 0.25 mm (0.01 inch) at the outer end face 36 and along its entire length, and preferably the diameter of the emissive insert 28 is about 30-80 percent of the outer diameter of the end face 36 of the separator 32.
  • the emissive element 28 typically has a diameter of about 0.08" and a length of about 0.25", and the outer diameter of the separator 32 is about 0.25".
  • the separator 32 is composed of a metallic material having a work function that is greater than that of the material of the holder 16, and also greater than that of the material of the emissive element 28. More specifically, it is preferred that the separator be composed of a metallic material having a work function of at least about 4.3 ev. In a preferred embodiment, the separator 32 comprises silver as the primary material, although other metallic materials, such as gold, platinum, rhodium, iridium, palladium, nickel, and alloys thereof, may also be used.
  • the separator 32 is composed of a silver alloy material comprising silver alloyed with about 0.25 to 10 percent of an additional material selected from the group consisting of copper, aluminum, iron, lead, zinc, and alloys thereof.
  • the additional material may be in elemental or oxide form, and thus the term "copper” as used herein is intended to refer to both the elemental form as well as the oxide form, and similarly for the terms "aluminum” and the like.
  • the electrode 14 is mounted in a plasma torch body 38, which includes gas and liquid passageways 40 and 42, respectively.
  • the torch body 38 is surrounded by an outer insulated housing member 44.
  • a tube 46 is suspended within the central bore 48 of the electrode 14 for circulating a liquid cooling medium, such as water, through the electrode 14.
  • the tube 46 has an outer diameter smaller than the diameter of the bore 48 such that a space 49 exists between the tube 46 and the bore 48 to allow water to flow therein upon being discharged from the open lower end of the tube 46.
  • the water flows from a source (not shown) through the tube 46, inside the internal cavity 22 and the holder 16, and back through the space 49 to an opening 52 in the torch body 38 and to a drain hose (not shown).
  • the passageway 42 directs injection water into the nozzle assembly 12 where it is converted into a swirling vortex for surrounding the plasma arc, as further explained below.
  • the gas passageway 40 directs gas from a suitable source (not shown), through a gas baffle 54 of suitable high temperature material into a gas plenum chamber 56 via inlet holes 58.
  • the inlet holes 58 are arranged so as to cause the gas to enter in the plenum chamber 56 in a swirling fashion.
  • the gas flows out of the plenum chamber 56 through coaxial bores 60 and 62 of the nozzle assembly 12.
  • the electrode 14 retains the gas baffle 54.
  • a high-temperature plastic insulator body 55 electrically insulates the nozzle assembly 12 from the electrode 14.
  • the nozzle assembly 12 comprises an upper nozzle member 63 which defines the first bore 60, and a lower nozzle member 64 which defines the second bore 62.
  • the upper nozzle member 63 is preferably a metallic material
  • the lower nozzle member 64 is preferably a metallic or ceramic material.
  • the bore 60 of the upper nozzle member 63 is in axial alignment with the longitudinal axis of the torch electrode 14.
  • the lower nozzle member 64 is separated from the upper nozzle member 63 by a plastic spacer element 65 and a water swirl ring 66.
  • the space provided between the upper nozzle member 63 and the lower nozzle member 64 forms a water chamber 67.
  • the lower nozzle member 64 comprises a cylindrical body portion 70 which defines a forward or lower end portion and a rearward or upper end portion, with the bore 62 extending coaxially through the body portion 70.
  • An annular mounting flange 71 is positioned on the rearward end portion, and a frustoconical surface 72 is formed on the exterior of the forward end portion coaxial with the second bore 62.
  • the annular flange 71 is supported from below by an inwardly directed flange 73 at the lower end of the cup 74, with the cup 74 being detachably mounted by interconnecting threads to the outer housing member 44.
  • a gasket 75 is disposed between the two flanges 71 and 73.
  • the bore 62 in the lower nozzle member 64 is cylindrical, and is maintained in axial alignment with the bore 60 in the upper nozzle member 63 by a centering sleeve 78 of any suitable plastic material.
  • the injection ports 87 are tangentially disposed around the swirl ring 66, to impart a swirl component of velocity to the water flow in the water chamber 67.
  • a power supply (not shown) is connected to the torch electrode 14 in a series circuit relationship with a metal workpiece, which is usually grounded.
  • a plasma arc is established between the emissive element 28 of the electrode, which acts as the cathode terminal for the arc, and the workpiece, which is connected to the anode of the power supply and is positioned below the lower nozzle member 64.
  • the plasma arc is started in a conventional manner by momentarily establishing a pilot arc between the electrode 14 and the nozzle assembly 12, and the arc is then transferred to the workpiece through the bores 60 and 62.
  • FIG. 4 illustrates a preferred method of fabricating the electrode in accordance with the present invention.
  • a cylindrical blank 94 of copper or copper alloy is provided having a front face 95 and an opposite rear face 96.
  • a pair of generally cylindrical coaxial bores are then formed, such as by drilling, in the front face 95 so as to form the small cavity 24 and large cavity 25, as described above.
  • the emissive element 28 is then fixedly secured to the small cavity 24 by press-fitting the emissive element therein. Other methods of securing the emissive element into the small cavity 24 can also be used, such as crimping, radially compressing, or utilizing electromagnetic energy.
  • the emissive element 28 extends outwardly from the small cavity 24 towards the front face 95 of the cylindrical blank 94 and defines an open space 97 between the emissive element and inner wall 27b of the large cavity 25.
  • a separator 32 is composed of a silver alloy material.
  • the silver alloy material comprises silver alloyed with about 0.25 to 10 percent of copper.
  • the separator 32 is configured and sized to substantially occupy the open space 97 defined by the inner wall 27b of the large cavity 25 and the emissive element 28.
  • the separator 32 may be shaped by machining or forming.
  • the separator 32 is inserted into the large cavity 25 such that the peripheral wall 33 of the separator slideably engages the inner wall 27b of the large cavity, and the cylindrical cavity 35 defined by the separator is disposed about the emissive element 28 to define an interface therebetween.
  • the separator 32 is disposed about the emissive element 28 in a close fitting or interference fit, although other methods of securing the separator to the emissive element can be used, as described below.
  • a tool 98 having a generally planar circular working surface 100 is placed with the working surface in contact with the end faces 29 and 36 of the emissive element 28 and separator 32, respectively.
  • the outer diameter of the working surface 100 is slightly smaller than the diameter of the large cavity 25 in the cylindrical blank 94.
  • the tool 98 is held with the working surface 100 generally coaxial with the longitudinal axis of the torch 10, and force is applied to the tool so as to impart axial compressive forces to the emissive element 28 and the separator 32 along the longitudinal axis.
  • the tool 98 may be positioned in contact with the emissive element 28 and separator 32 and then struck by a suitable device, such as the ram of a machine.
  • the separator 32 is metallurgically bonded to the emissive element 28.
  • the emissive element 28 is already secured to the small cavity 24 when the brazing step is performed (as discussed above) so that the emissive element remains centered along the longitudinal axis even if the separator is softened by the high temperatures associated with brazing.
  • the brazing process is preferably conducted by first inserting a ring 99 ( Figures 5 and 7 ) of silver brazing material about the emissive element 28 after the emissive element has been secured to the small cavity 24 such that the ring occupies a portion of the open space 97 between the emissive element and inner wall 27b of the large cavity 25.
  • the brazing material comprises an alloy composed mostly of silver with one or more other elements, such as nickel, lithium, and/or copper. Also, a small amount of flux may be included, so as to remove oxides from the surface of the copper.
  • the separator 32 is introduced after the ring 99 is inserted into the open space 97, and the resulting assembly is then heated to a temperature only sufficient to melt the brazing material, which has a melting temperature no greater than the separator 32.
  • the temperature does not have to be significantly lower than the melting temperature of the separator because the emissive element 28 is secured to the small cavity 24 as described above.
  • the separator 32 is pressed into the large cavity 25, which causes the melted brazing material to flow upwardly and cover the entirety of the interface between the separator and the emissive element 28 and between the peripheral wall 33 of the separator 32 and the inner wall 27b of the large cavity 25.
  • the brazing material Upon cooling, the brazing material provides a relatively thin coating which serves to bond the separator 32 to the emissive element 28, with the coating having a thickness on the order of between about 0.001 to 0.005 inches.
  • the brazing step can be performed by melting a disk of brazing material that is placed on the separator 32 and the emissive element 28 after the two have been pressed into the cavities. In this manner, capillary action pulls the brazing material between the separator 32 and emissive element 28 so that the a relatively thin coating is disposed therebetween as discussed above.
  • the rear face 96 of the cylindrical blank 94 is machined to form an open cup-shaped configuration shown in Figure 8 defining the cavity 22 therein.
  • the cavity 22 includes an internal annular recess 82 which defines the cylindrical post 23 and coaxially surrounds portions of the separator 32 and emissive element 28.
  • the internal annular recess 82 includes an internal surface 83 comprising a portion of the peripheral wall 33 of the separator 32.
  • the internal annular recess 82 is formed, such as by trepanning or other machining operation, so that a portion of the peripheral wall 33 of the separator 32 is directly exposed to the cavity 22.
  • the exposed separator 32 improves the heat transfer between the cooling medium circulated in the cavity 22 and the arc. Further, the brazing material surrounding the peripheral wall 33 of the separator 32 at the internal surface 83 of the annular recess 82 is preferably eliminated, thus further improving heat transfer.
  • the surface 31 of the internal cavity 22 includes the cylindrical post 23.
  • the surface 31 includes a cap-shaped portion 92 of the blank 94 disposed about the emissive element 28.
  • the portion 92 is tightly secured to the emissive element 28, although not directly attached to the remainder of the blank 94.
  • the portion 92 is formed by the trepanning operation for ease of manufacturing, since by leaving the portion 92 the post 23 has a uniform cylindrical shape.
  • the portion 92 can also be partially or completely machined away to expose the emissive element 28 to the cavity 22 (see Figure 10 ).
  • the external periphery of the cylindrical blank 94 is also shaped as desired, including formation of external threads 102 at the rear end 19 of the holder 16.
  • the front face 95 of the blank 94 and the end faces 29 and 36 of the emissive element 28 and separator 32, respectively, are machined so that they are substantially flat and flush with one another. Any brazing material present on the front face 95 and end faces 29 and 36 is also removed during this machining process.
  • Figure 9 depicts an end elevational view of the holder 16. It can be seen that the end face 36 of the separator 32 separates the end face 29 of the emissive element 28 from the front face 20 of the holder 16.
  • the end face 36 is annular having an inner perimeter 104 and an outer perimeter 106. Because the separator 32 is composed of the silver alloy material having a higher work function than that of the emissive element 28, the separator 32 serves to discourage the arc from detaching from the emissive element and becoming attached to the holder 16.
  • the present invention provides an electrode 14 for use in a plasma arc torch and a method of making an electrode wherein the emissive element 28 is secured along the longitudinal axis and thus prevented from moving while brazing the emissive element to the separator 32.
  • the separator 32 has a tubular shape, thus eliminating the need for drilling an opening in the separator, which results in a loss of silver.
  • separator and or emissive element can have other shapes and configurations, such as conical or rivet-shaped, without departing from the spirit and scope of the invention. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Arc Welding In General (AREA)
  • Plasma Technology (AREA)

Claims (35)

  1. Verfahren für das Fertigen einer Elektrode (14), die dafür eingerichtet ist, einen Lichtbogen in einem Plasmabrenner (10) zu unterhalten, wobei das Verfahren die folgenden Schritte umfasst:
    das Formen eines vorderen Hohlraumes (24, 25) in einer im Allgemeinen ebenen vorderen Fläche (20) eines metallischen Halters (16), wobei sich der vordere Hohlraum längs einer Achse, im Allgemeinen senkrecht zu der vorderen Fläche, erstreckt,
    das unbewegliche Befestigen eines Emissionselementes (28) an dem vorderen Hohlraum (24, 25) des metallischen Halters (16),
    das Anordnen eines verhältnismäßig emissionsfreien Trennstückes (32) in dem vorderen Hohlraum des metallischen Halters (16) derart, dass das Trennstück koaxial zwischen einem Abschnitt des metallischen Halters (16) und dem Emissionselement an der vorderen Fläche des Halters eingeschoben ist und dieselben trennt, und
    das Formen eines hinteren Hohlraums (22) in dem metallischen Halter derart, dass ein Abschnitt des Trennstückes (32) zu dem Hohlraum (22) freigelegt ist.
  2. Verfahren nach Anspruch 1, wobei das Trennstück (32) in dem vorderen Hohlraum (24, 25) des Halters (16) angeordnet ist derart, dass sich nur ein Abschnitt des Emissionselementes (28) in einer Berührung mit dem Trennstück (32) befindet.
  3. Verfahren nach Anspruch 1, wobei das Emissionselement (28) durch Presspassung unbeweglich an dem vorderen Hohlraum des Halters befestigt wird.
  4. Verfahren nach Anspruch 1, wobei das Anordnen des Trennstückes (32) das Anordnen eines Trennstückes (32), das eine röhrenförmige Gestalt hat, über dem Emissionselement (28) in einer eng passenden Beziehung umfasst.
  5. Verfahren nach Anspruch 1, wobei das Formen des vorderen (24, 25) und des hinteren (22) Hohlraumes das spanende Bearbeiten des metallischen Halters (16) umfasst.
  6. Verfahren nach Anspruch 1, wobei das Formen des hinteren Hohlraumes (22) das Freilegen des Emissionselementes (28) zu dem hinteren Hohlraum hin einschließt.
  7. Verfahren nach Anspruch 1, wobei der Schritt des Anordnens des verhältnismäßig emissionsfreien Trennstückes (32) in dem vorderen Hohlraum (24, 25) das Einsetzen des verhältnismäßig emissionsfreien Trennstückes (32) in den vorderen Hohlraum des metallischen Halters umfasst derart, dass sich nur ein Abschnitt des Emissionselementes (28) in einer Berührung mit dem Trennstück befindet, und ferner den Schritt des Einführens eines Hartlötmaterials (99) in den vorderen Hohlraum (24, 25) umfasst derart, dass sich etwas von dem Hartlötmaterial zwischen dem Emissionselement (28) und dem Trennstück (32) und ebenfalls zwischen dem Trennstück und dem metallischen Halter (16) befindet.
  8. Verfahren nach Anspruch 7, wobei das Hartlötmaterial (99) eingeführt wird durch das Einsetzen einer Scheibe aus Hartlötmaterial um das Emissionselement (28) in dem vorderen Hohlraum (24, 25), das Erhitzen des Hartlötmaterials, bis das Hartlötmaterial wenigstens teilweise fließfähig wird, und das Pressen des Trennstückes (32) in den vorderen Hohlraum.
  9. Verfahren nach Anspruch 7, wobei das Emissionselement (28) unbeweglich in dem vorderen Hohlraum (24, 25) befestigt wird, bevor das Trennstück (32) in den vorderen Hohlraum eingesetzt wird.
  10. Verfahren nach Anspruch 1, wobei die Schritte des unbeweglichen Befestigens des Emissionselementes (28) an dem vorderen Hohlraum (24, 25) und des Anordnens des Trennstückes (32) in dem vorderen Hohlraum Folgendes umfassen:
    das Formen einer Öffnung in einem vorderen Ende des metallischen Halters (16),
    das Befestigen des Emissionselementes (28) in der Öffnung des Halters derart, dass sich ein Abschnitt des Emissionselementes von dem Halter aus nach vorn erstreckt, und
    das Befestigen des verhältnismäßig emissionsfreien Trennstückes (32) um das Emissionselement (28) in einer Position derart, dass das emissionsfreie Trennstück und das Emissionselement zusammen wenigstens einen Teil einer vorderen Fläche (95) der Elektrode (14) für das Unterhalten eines Lichtbogens definieren.
  11. Verfahren nach Anspruch 10, wobei das Verfahren bewirkt, dass das Emissionselement (28) ebenfalls wenigstens teilweise zu dem hinteren Hohlraum (22) freigelegt wird.
  12. Verfahren nach Anspruch 1, wobei das Trennstück (32) eine Öffnung (35) in demselben definiert, die dafür bemessen ist, um das Emissionselement (28) zu passen, und
    wobei der metallische Halter (16) eine vordere Öffnung in demselben hat und das Verfahren den Schritt des Bindens des emissionsfreien Trennstückes (32) an den Halter (16) umfasst derart, dass sich das Emissionselement (28) von dem Trennstück (32) aus und in die Öffnung (24) des Halters erstreckt.
  13. Verfahren nach Anspruch 12, wobei das Verfahren bewirkt, dass das Emissionselement (28) ebenfalls wenigstens teilweise zu dem hinteren Hohlraum (22) freigelegt wird.
  14. Verfahren nach Anspruch 12, das ferner das Entfernen wenigstens eines Abschnitts des emissionsfreien Elementes (32) umfasst, um eine vordere Fläche (20) zu definieren, wo das Emissionselement (28) und das verhältnismäßig emissionsfreie Trennstück an der vorderen Fläche des verhältnismäßig emissionsfreien Trennstückes im Wesentlichen flach und bündig sind.
  15. Verfahren nach Anspruch 12, wobei der Bindungsschritt das thermische Binden des verhältnismäßig emissionsfreien Trennstückes (32) an den Halter (16) umfasst.
  16. Verfahren nach Anspruch 12, wobei der Bindungsschritt das Hartlöten des verhältnismäßig emissionsfreien Trennstückes an den Halter umfasst.
  17. Elektrode (14), die dafür eingerichtet ist, einen Lichtbogen in einem Plasmabrenner (10) zu unterhalten, wobei sie Folgendes umfasst:
    einen metallischen Halter (16), der ein vorderes Ende und ein hinteres Ende hat, wobei das vordere Ende einen vorderen Hohlraum (24, 25) definiert und das hintere Ende einen hinteren Hohlraum (22) definiert,
    ein verhältnismäßig emissionsfreies Trennstück (32), das in dem vorderen Hohlraum angeordnet ist, wobei das Trennstück eine äußere Umfangswand (33) hat, und
    ein Emissionselement (28), das ebenfalls in dem vorderen Hohlraum (24, 25), koaxial mit dem Trennstück (32), angeordnet ist, dadurch gekennzeichnet, dass das Emissionselement (28) eine äußere Umfangswand hat, die sich nur teilweise in einer Berührung mit dem Trennstück (32) befindet, und ein Abschnitt der äußeren Umfangswand (33) des Trennstückes (32) zu dem hinteren Hohlraum (22) freigelegt ist.
  18. Elektrode (14) nach Anspruch 17, die ferner Folgendes umfasst:
    ein Hartlötmaterial (99), das zwischen dem Emissionselement (28) und dem Trennstück (32) und zwischen dem Trennstück und dem metallischen Halter (16) angeordnet ist.
  19. Elektrode (14) nach Anspruch 18, wobei ein Abschnitt der äußeren Umfangswand des Emissionselementes (28) frei von jeglicher Berührung mit dem Hartlötmaterial (99) ist.
  20. Elektrode (14) nach Anspruch 18, wobei der vordere Hohlraum (24, 25) einen proximalen Abschnitt (24) und einen distalen Abschnitt (25) umfasst, wobei der proximale Abschnitt einen Durchmesser hat, der kleiner ist als der Durchmesser des distalen Abschnitts, wobei das Hartlötmaterial (99) nur in dem distalen Abschnitt des Hohlraums angeordnet ist.
  21. Elektrode (14) nach Anspruch 17 oder Anspruch 18, wobei das Trennstück (32) aufgebaut ist aus Silber, legiert mit einem zusätzlichen Material, ausgewählt aus der Gruppe, die als Kupfer, Aluminium, Eisen, Blei, Zink und Legierungen derselben besteht.
  22. Elektrode (14) nach Anspruch 17 oder Anspruch 18, wobei das Emissionselement (28) eine zylindrische Gestalt hat und das Trennstück (32) eine röhrenförmige Gestalt hat.
  23. Elektrode (14) nach Anspruch 17, wobei der vordere Hohlraum (24, 25) einen proximalen Abschnitt (24) und einen distalen Abschnitt (25) umfasst, wobei der proximale Abschnitt einen Durchmesser hat, der kleiner ist als der Durchmesser des distalen Abschnitts, wobei das Emissionselement (28) und der proximale Abschnitt (24) des vorderen Hohlraums eine Übermaßpassung zwischen denselben haben.
  24. Elektrode (14) nach Anspruch 17, wobei ein Abschnitt des Emissionselementes (28) zu dem hinteren Hohlraum (22) freigelegt ist.
  25. Elektrode (14) nach Anspruch 17 oder Anspruch 18, wobei das vordere Ende des Halters (16) eine vordere Öffnung (24) definiert,
    das Emissionselement (28) derart angeordnet ist, dass sich ein Abschnitt des Emissionselementes innerhalb der vorderen Öffnung (24) des Halters befindet, und
    das Trennstück (32) an dem Halter befestigt ist und einen Abschnitt des Emissionselementes in einer Position umschließt derart, dass das Trennstück (32) und das Emissionselement (28) zusammen wenigstens einen Teil einer vorderen Fläche (95) der Elektrode für das Unterhalten eines Lichtbogens definieren.
  26. Elektrode (14) nach Anspruch 25, wobei wenigstens ein Abschnitt des Emissionselementes (28) ebenfalls zu dem hinteren Hohlraum (22) freigelegt ist.
  27. Elektrode (14) nach Anspruch 17, wobei das Trennstück (32) eine Öffnung definiert, die wenigstens teilweise durch dasselbe hindurchgeht,
    wobei das Emissionselement (28) in der durch das Trennstück (32) definierten Öffnung angeordnet ist derart, dass das Emissionselement und das Trennstück zusammen wenigstens einen Teil einer vorderen Fläche (95) der Elektrode (14) für das Unterhalten eines Lichtbogens definieren.
  28. Elektrode (14) nach Anspruch 27, wobei das Trennstück (32) an den Halter hartgelötet ist.
  29. Elektrode (14) nach Anspruch 27, wobei das emissionsfreie Trennstück (32) aus Silber oder Legierungen desselben geformt ist und das Hartlötmaterial (99) aus Silber oder Legierungen desselben geformt ist und das emissionsfreie Trennstück und das Hartlötmaterial Schmelzpunkte haben, die annähernd die gleichen sind.
  30. Plasma-Lichtbogenbrenner (10), der Folgendes umfasst:
    eine Elektrode (14), die Folgendes einschließt:
    einen metallischen Halter (16), der ein vorderes Ende und ein hinteres Ende hat, wobei das vordere Ende einen vorderen Hohlraum (24, 25) definiert und das hintere Ende einen hinteren Hohlraum (22) definiert,
    ein verhältnismäßig emissionsfreies Trennstück (32), das in dem vorderen Hohlraum angeordnet ist, wobei das Trennstück eine äußere Umfangswand (33) hat, und
    ein Emissionselement (28), das ebenfalls in dem vorderen Hohlraum (24, 25), koaxial mit dem Trennstück (32), angeordnet ist,
    eine Düse (12), die angrenzend an das vordere Ende des Halters (16) angebracht ist und eine Strömungsbahn (60, 62) durch dieselbe hat, die mit der Längsachse ausgerichtet ist,
    eine Stromversorgung für das Erzeugen eines Lichtbogens, der sich von dem Emissionselement (28) der Elektrode durch die Düsenströmungsbahn und bis zu einem angrenzend an die Düse angeordneten Werkstück erstreckt, und
    eine Gasversorgung für das Erzeugen eines Gasstromes zwischen der Elektrode (10) und der Düse (12) und so, dass ein Plasmastrom nach außen durch die Düsenströmungsbahn (60, 62) und bis zu dem Werkstück erzeugt wird, dadurch gekennzeichnet, dass das Emissionselement (28) eine äußere Umfangswand hat, die sich nur teilweise in einer Berührung mit dem Trennstück (32) befindet, und der hintere Hohlraum (22) in dem hinteren Ende des metallischen Halters (16) wenigstens teilweise derart geformt ist, dass das Trennstück (32) wenigstens teilweise zu dem hinteren Hohlraum (22) freigelegt ist.
  31. 1 . Plasma-Lichtbogenbrenner (10) nach Anspruch 30, der ferner eine Hartlötlage (99) umfasst, die zwischen dem Emissionselement (28) und dem Trennstück (32) und zwischen dem Trennstück und dem metallischen Halter (16) angeordnet ist.
  32. Plasma-Lichtbogenbrenner (10) nach Anspruch 30, wobei ein Abschnitt des Emissionselementes (28), wobei sich der Abschnitt in einer Berührung mit dem metallischen Halter (16) befindet, frei von dem Hartlötmaterial (99) ist.
  33. Plasma-Lichtbogenbrenner (10) nach Anspruch 30, wobei das Trennstück (32) aufgebaut ist aus Silber, legiert mit einem zusätzlichen Material, ausgewählt aus der Gruppe, die als Kupfer, Aluminium, Eisen, Blei, Zink und Legierungen derselben besteht.
  34. Plasma-Lichtbogenbrenner (10) nach Anspruch 30, wobei das Emissionselement (28) und das Trennstück (32) bündig mit dem vorderen Ende des metallischen Halters (16) sind.
  35. Plasma-Lichtbogenbrenner (10) nach Anspruch 30, wobei der metallische Halter (16) wenigstens teilweise derart geformt ist, dass das Emissionselement (28) wenigstens teilweise zu dem hinteren Hohlraum (22) freigelegt ist.
EP01308236A 2000-10-24 2001-09-27 Elektrode mit hartgelötetem Abscheider Expired - Lifetime EP1202614B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US69496200A 2000-10-24 2000-10-24
US694962 2000-10-24
US09/835,698 US6452130B1 (en) 2000-10-24 2001-04-16 Electrode with brazed separator and method of making same
US835698 2001-04-16

Publications (3)

Publication Number Publication Date
EP1202614A2 EP1202614A2 (de) 2002-05-02
EP1202614A3 EP1202614A3 (de) 2004-06-23
EP1202614B1 true EP1202614B1 (de) 2012-02-29

Family

ID=27105479

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01308236A Expired - Lifetime EP1202614B1 (de) 2000-10-24 2001-09-27 Elektrode mit hartgelötetem Abscheider

Country Status (5)

Country Link
EP (1) EP1202614B1 (de)
JP (1) JP3587812B2 (de)
AU (1) AU757838B2 (de)
CA (1) CA2357954C (de)
MX (1) MXPA01010771A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560732B2 (en) 2006-09-13 2017-01-31 Hypertherm, Inc. High access consumables for a plasma arc cutting system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841754B2 (en) 2001-03-09 2005-01-11 Hypertherm, Inc. Composite electrode for a plasma arc torch
US6483070B1 (en) * 2001-09-26 2002-11-19 The Esab Group, Inc. Electrode component thermal bonding
US8101882B2 (en) * 2005-09-07 2012-01-24 Hypertherm, Inc. Plasma torch electrode with improved insert configurations
US9662747B2 (en) 2006-09-13 2017-05-30 Hypertherm, Inc. Composite consumables for a plasma arc torch
US10098217B2 (en) 2012-07-19 2018-10-09 Hypertherm, Inc. Composite consumables for a plasma arc torch
US10194516B2 (en) 2006-09-13 2019-01-29 Hypertherm, Inc. High access consumables for a plasma arc cutting system
US9398679B2 (en) * 2014-05-19 2016-07-19 Lincoln Global, Inc. Air cooled plasma torch and components thereof
US9730307B2 (en) * 2014-08-21 2017-08-08 Lincoln Global, Inc. Multi-component electrode for a plasma cutting torch and torch including the same
DE102017112821A1 (de) * 2017-06-12 2018-12-13 Kjellberg-Stiftung Elektroden für gas- und flüssigkeitsgekühlte Plasmabrenner, Anordnung aus einer Elektrode und einem Kühlrohr, Gasführung, Plasmabrenner, Verfahren zur Gasführung in einem Plasmabrenner und Verfahren zum Betreiben eines Plasmabrenners
CZ307748B6 (cs) * 2017-11-10 2019-04-10 B&Bartoni spol. s r.o. Elektroda pro plazmový obloukový hořák a způsob její výroby

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2044232A5 (en) * 1969-05-13 1971-02-19 Inst Elektroswarki Patona Non-consumable electrode for arcing - processes
JPS60247491A (ja) * 1984-05-24 1985-12-07 Koike Sanso Kogyo Co Ltd 酸素プラズマ、エア−プラズマ切断用電極及び製造方法
US5097111A (en) * 1990-01-17 1992-03-17 Esab Welding Products, Inc. Electrode for plasma arc torch and method of fabricating same
US5023425A (en) * 1990-01-17 1991-06-11 Esab Welding Products, Inc. Electrode for plasma arc torch and method of fabricating same
US5767478A (en) * 1997-01-02 1998-06-16 American Torch Tip Company Electrode for plasma arc torch
US6130399A (en) * 1998-07-20 2000-10-10 Hypertherm, Inc. Electrode for a plasma arc torch having an improved insert configuration
US6020572A (en) * 1998-08-12 2000-02-01 The Esab Group, Inc. Electrode for plasma arc torch and method of making same
US6268583B1 (en) * 1999-05-21 2001-07-31 Komatsu Ltd. Plasma torch of high cooling performance and components therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9560732B2 (en) 2006-09-13 2017-01-31 Hypertherm, Inc. High access consumables for a plasma arc cutting system

Also Published As

Publication number Publication date
CA2357954A1 (en) 2002-04-24
EP1202614A3 (de) 2004-06-23
AU757838B2 (en) 2003-03-06
JP3587812B2 (ja) 2004-11-10
MXPA01010771A (es) 2003-05-19
JP2002192347A (ja) 2002-07-10
EP1202614A2 (de) 2002-05-02
CA2357954C (en) 2005-03-29
AU8155801A (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US6452130B1 (en) Electrode with brazed separator and method of making same
US6020572A (en) Electrode for plasma arc torch and method of making same
CA2022782C (en) Electrode for plasma arc torch
US5097111A (en) Electrode for plasma arc torch and method of fabricating same
CA2386663C (en) Process of forming an electrode
EP1202614B1 (de) Elektrode mit hartgelötetem Abscheider
EP1263268B1 (de) Kontakt-Übergangsverbindung einer Elektrode
US6528753B2 (en) Method of coating an emissive element
US6563075B1 (en) Method of forming an electrode
CA2364855C (en) Powderred metal emissive elements
CA2357808C (en) Electrode diffusion bonding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011018

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20081126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 547925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60146181

Country of ref document: DE

Effective date: 20120419

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2382730

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120613

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 547925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

26N No opposition filed

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60146181

Country of ref document: DE

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120927

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120927

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200928

Year of fee payment: 20

Ref country code: TR

Payment date: 20200909

Year of fee payment: 20

Ref country code: DE

Payment date: 20200929

Year of fee payment: 20

Ref country code: FR

Payment date: 20200925

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200923

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201001

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60146181

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210926

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210928

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522