EP1202021B1 - Vorrichtung zur Justierung eines Lasersendungskanals mit einem passiven Beobachtungskanal - Google Patents

Vorrichtung zur Justierung eines Lasersendungskanals mit einem passiven Beobachtungskanal Download PDF

Info

Publication number
EP1202021B1
EP1202021B1 EP01402722A EP01402722A EP1202021B1 EP 1202021 B1 EP1202021 B1 EP 1202021B1 EP 01402722 A EP01402722 A EP 01402722A EP 01402722 A EP01402722 A EP 01402722A EP 1202021 B1 EP1202021 B1 EP 1202021B1
Authority
EP
European Patent Office
Prior art keywords
detector
harmonization
laser
scene
det
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01402722A
Other languages
English (en)
French (fr)
Other versions
EP1202021A1 (de
Inventor
Christian c/o Thales Intellectual Propert Pepin
Francois-Xavier c/o Thales Intel. Prop. Doittau
Jean-Claude c/o Thales Intell Prop Fontanella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1202021A1 publication Critical patent/EP1202021A1/de
Application granted granted Critical
Publication of EP1202021B1 publication Critical patent/EP1202021B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking
    • F41G3/326Devices for testing or checking for checking the angle between the axis of the gun sighting device and an auxiliary measuring device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/14Indirect aiming means
    • F41G3/145Indirect aiming means using a target illuminator

Definitions

  • the invention relates to a device for the harmonization between a laser emission path and a passive path of observation. harmonization consists in making the optical axes of these paths parallel so that they have a common line of sight.
  • the invention applies in particular to target designation systems comprising a telemetry laser path or of illumination and a passive way of observation with an imaging detector to visualize and continue the target. It also applies to active / passive imaging systems having a laser emission path scanning and a passive imaging path. More generally, it applies to any system for which it is necessary to harmonize the transmission channel laser and the passive way of observation.
  • the target designation by laser is advantageously carried out thanks to a 'pod' (this term meaning nacelle in Anglo-Saxon language) arranged in external carriage of the aircraft.
  • a 'pod' this term meaning nacelle in Anglo-Saxon language
  • he can have an observation channel including a visible imaging detector and / or an infrared detection imaging detector, in band II or III, to locate the target, as well as a laser path, whose optical axis can be separated or confused with that of the observation channel, emitting for example in the near infrared and 'locked' on the way observation.
  • This lock assumes the perfect 'alignment' between the two pathways, ie the perfect parallelism of their optical axes or not), then defining the same line of sight.
  • This harmonization must can be controlled during a mission.
  • the harmonization between the illumination laser and the line of sight of the imaging detector can be realized in different ways and in particular, when the detector has a spectral band compatible with the length of the laser, by re-injecting some of the energy emitted by the laser into the entrance pupil of the imaging detector.
  • the position of the image of the spot laser thus obtained with respect to the center of the field of the imaging detector indicate the harmonization error.
  • the means used to perform reinjection returns the light according to the incident direction, for example using a corner cube mirror.
  • Figure 1 illustrates in a simplified diagram an example of harmonization device according to the prior art.
  • the axis observation path optical ⁇ i (in solid line in FIG. 1) comprises in this example a afocal afocal device, an OBJ focusing objective to form the image of a scene on a DET imaging detector, for example a Silicon detector operating in the visible and near infrared.
  • the way ⁇ l axis laser (short and long alternating dotted line) includes a laser LAS of illumination emitting in the near infrared.
  • An MEL mixer whose the transmission and the reflection are adapted to the wavelength of the laser while transmitting the maximum of the flux emitted by the scene, allows superimpose the two lanes.
  • the harmonization scheme includes in this example a cube corner CCB and a set of mirrors 11, 12 placed on the track laser, upstream of the mixer MEL, one of the two mirrors being movable in rotation (mirror 11).
  • the mirror 11 is oriented so as to send to the cube corner CCB the laser pulse that is is thus reinjected into the imaging pathway ⁇ i (optical path indicated in dashed line in Figure 1).
  • a shutter (not shown) for cutting the flow coming from the scene, is closed during the phase of harmonization and the image of the laser pulse on the imaging detector can be visualized in order to determine the harmonization defects corresponding to the deviations angle between the line of sight of the detector and the position of the the laser image.
  • this harmonization scheme presents a number of number of disadvantages that lead to modest performance.
  • cube corner imperfections related to defects in realization lead to harmonization errors.
  • corner of cube is placed in front of the pupil common to the laser pathways and of observation, as is the case in Figure 1, it can not cover part of this pupil (for reasons of congestion), an image of the laser pulse on the relatively dimension detector significant and limited harmonization accuracy.
  • the of laser energy is not uniform throughout the pupil, the fact of not covering the entire pupil can lead to harmonization errors.
  • the effect of aberrations degrades the image and may induce a positional error of his barycentre.
  • the present invention proposes a very harmonizing device precise does not have the disadvantages of the prior art. It consists of visualize using the same imaging detector used to image the scene, the image of the laser pulse retroreflected by the scene itself and no longer by a cube corner. To do this, the invention uses a detector specific that can operate in two modes, an imaging mode classic and a harmonization mode in which the flow from the retroreflected laser pulse can be detected in the streaming stream by the scene.
  • the device according to the invention makes it possible to harmonize in a real situation, since the laser spot imaged on the detector is the same as that which will follow, for example, a laser guided weapon. It also allows to avoid the use of a mixer whose specifications are between the laser path and the observation path.
  • FIG. 2 represents, to illustrate the invention, the overall architecture of an optronic imaging and target tracking equipment in the Air / Ground configuration, equipped with a harmonization device according to an exemplary embodiment.
  • the different subsystems shown in the figure are mounted in a rigid support structure (optical bench equipped not shown) which is itself installed inside an envelope carried by an aircraft.
  • the equipment comprises a transmission channel (of optical axis ⁇ l) of a laser pulse emitted by a laser transmitter LAS whose wavelength is compatible with the target illumination function to be performed, with its optical COL collimation to obtain a low divergence beam in the ⁇ l direction.
  • the laser emission path is distinct from the imaging path, which makes it possible to limit the backscattered laser flux in the imaging path. But it is possible to design a system in which the emission laser pulses are injected into the imaging path, at the afocal portion of the optics of the imaging path.
  • FIG. 2 it is a 'Cassegrain' type optical, made by means of two mirrors M1, M2.
  • a dichroic mirror M3 separates the observation path into an infrared path, of axis ⁇ i IR and a visible / near infrared path of axis ⁇ i VIS .
  • These two paths are respectively equipped with a DET IR sensitive imaging detector in the infrared and a DET VIS sensitive imaging detector in the visible and near infrared range, in which the optical focusing OPT form the image of the scene in each of the spectral bands.
  • the opto-mechanical assembly is mounted and adjusted at the factory so that the axes ⁇ l and ⁇ i are parallel.
  • this parallelism does not generally remain valid with sufficient accuracy in operational use, given the environmental constraints borne by the equipment, which induce axis movements, especially at the laser level. It is therefore necessary to harmonize in flight.
  • the device for the harmonization between the ⁇ l axis laser pathway and the ⁇ i axis observation pathway comprises a rapid laser pulse detector DET IMP , which makes it possible to determine the instant of arrival of the laser pulse retroreflected by the scene on the detector (s) of the observation channel and delivering a signal S.
  • the fast detector DET IMP is positioned in a focal plane of the OPT multispectral optics through a mirror M 4 taking part of the flow on the visible-near-infrared path. It further comprises a harmonization detector forming one of the imaging detectors (in the example of FIG.
  • the harmonization detector controlled by the control means MCD, can operate in two modes, a conventional imaging mode and a harmonization mode in which the flow from the laser pulse retroreflected by the scene can be detected. in the continuous stream diffused by the scene, thus making it possible to detect harmonization defects.
  • the harmonization detector includes a set of photosensitive zones in the spectral band of the laser resignation.
  • the MCD means control the harmonization detector in imaging mode or in harmonization mode. They receive the S signal issued by the rapid detector, and allow, in harmonization mode, the operation of the harmonization detector according to two phases. In first phase of waiting, the electrical charges resulting from the conversion photons received by the photosensitive zones are integrated so almost continuous with a sufficiently short integration time for enable detection of the flux from a retroreflected laser pulse by the scene in the continuous stream broadcast by the scene.
  • a second reading phase triggered by the signal S received from the fast detector at moment of detection of a retroreflected laser pulse by the scene, the integrated charges at the moment of detection of said pulse are set in sequence in order to detect in the image thus obtained the position of the corresponding laser spot. Examples of detectors applicable to harmonization device according to the invention will be described in more detail in the following.
  • optical filtering means FLT IMP and FLT HAR whose transmissions are centered on the spectral band of the emission laser, are respectively positioned in front of the pulse detector DET IMP and, during the harmonization phase, in front of the Harmonization detector (DET VIS in the example of Figure 2), to improve the detectivity of these detectors at the wavelength of the laser.
  • the filtering means FLT IMP are fixed, while the filtering means FLT HAR are advantageously removable in order to be removed in conventional imaging mode, outside the periods of operation in harmonization mode.
  • the harmonization device further comprises calculating means MCL making it possible to calculate, from the position of the laser spot in the image, the harmonization defects between the axis ⁇ i of the channel of FIG. observation and that ⁇ l of the laser emission path, these defects corresponding to angular deviations ⁇ x, ⁇ y between the center of the image and the position of the laser spot, image of the laser pulse retroreflected by the scene through the OPT optical focusing.
  • FIG. 3A thus illustrates, by an example, the position of the IML laser spot in the image, and the deviations ⁇ x, ⁇ y between the IML laser spot and the center of the IMC image corresponding to the ⁇ i axis of the line of sight of the harmonization detector.
  • the center of the IMC image corresponds to the tracking center and the correction of the harmonization error then consists, for example, in electronically moving the automatic tracking center of the opposite value of the measured difference.
  • the filtering means FLT HAR are removed and the point of the target on which the imaging detector is hung is then merged, as shown in FIG. 3B, with the IML impact point of the laser pulse.
  • the harmonization device thus makes it possible very precise alignment between the line of sight of the laser and the reference center of the imaging detector of the observation channel because it directly uses the image of the laser spot formed on the observed scene, this which allows to have the best possible resolution. It allows to obtain a very precise harmonization between the illumination laser and the position of the point pursued automatically on the scene, allowing for a very large impact accuracy of the ammunition in case of laser guided weapon fire, or a very high accuracy of location for equipment observation or surveillance.
  • the use of multispectral optics common to the two near-infrared and infrared channels allows the equipment to have this very precise harmonization capability both in operation. by day in night operation. Indeed, the harmonization device can operate by day, even very brightly, thanks to the use of the specific harmonization detector, and it can also operate at night.
  • the harmonization detector near infrared imaging detector in the example of FIG. 2 is used during the harmonization phase to locate the laser spot on the stage, as described previously, while the infrared detector performs for example the pursuit of the target continuously, without being disturbed by the harmonization phase.
  • the correction is applied automatically to the position of the tracking center of the infrared detector DET IR , making it possible to carry out the harmonization permanently, at each shot.
  • the infrared tracking By day, in order not to disturb the pursuit of the target, it is also possible to carry out the infrared tracking, with perhaps a slightly less good resolution, while the near infrared detector is used to perform the harmonization .
  • the harmonization phase it is possible to return to near-infrared tracking by operating the harmonization detector in conventional imaging mode, in order to possibly benefit from the best resolution inherent to this spectral band.
  • harmonization detectors which, together with the pulse detector, allow the operation of the device according to the invention.
  • a prime example is to use as a detector of harmonization an imaging detector with integration and transfer type CCD (initials of "Charge Coupled Device” in English terminology), precisely located in the focal plane of the focus lens of the observation path, and comprising a set of photosensitive zones in silicon (or “pixels” according to Anglo-Saxon terminology), organized in a generally square matrix, typically 100x100 pixels.
  • CCD integration and transfer type
  • pixels photosensitive zones in silicon
  • Use of a photosensitive material in the visible and near infrared spectrum, by example Silicon is particularly suitable for the detection of a laser emitting in the near infrared, like the Nd: YAG laser, at 1.06 ⁇ m.
  • the CCD detector is controlled by the means of MCD command so as to operate in a mode of conventional CCD operation when the harmonization detector is in imaging mode and according to a mode called "treadmill" when the detector is in harmonization mode.
  • mode imaging the CCD detector acquires the scene (conversion of photons received in charge then integration into potential wells of charges released proportionally to the illumination received for a period of time predetermined integration, typically of the order of 20 msec), then the loads are transferred in column and sampled by multiplexing line to line to form sequential signals that form the signal of visualization (reading phase of the image), and this, during the acquisition of the next image.
  • a sensitivity calculation shows that in the absence of noise due at the back of the stage, the system detects laser pulses with good performance.
  • the contribution of solar irradiance significantly disrupts the signal, even after filtering around the wavelength of the laser, because the time of integration of the image is long before the duration of the pulse.
  • the "treadmill" mode described in patent FR 2 740 558 in the name of the applicant, allows the detection of the flow from the laser pulse retroreflected by the scene into the continuous flow broadcast by the scene.
  • Figure 4 shows a diagram of a mode of operation of a CCD detector in treadmill mode.
  • it is a so-called frame transfer detection array, which conventionally comprises an image zone 40 and a memory zone 41.
  • the image zone consists of 4x4 photosensitive zones (or pixels ) Pi and the memory area forms a CCD multiplexing circuit, composed of elementary memories Mi, realized in integrated CMOS circuitry.
  • the detector further comprises an output register R and an amplification stage A. It is controlled by the control means MCD of the device according to the invention, connected to the rapid pulse detector DET IMP .
  • the treadmill mode operation applied to a frame transfer CCD matrix is divided into two phases: a detection waiting phase and a reading phase after detection.
  • the signal S delivered by the fast detector DET IMP is zero, reflecting the absence of pulse.
  • the CCD is in continuous transfer at high speed, which results in a very short integration time (typically 250 ⁇ sec) compared to the integration time in imaging mode. Thanks to the high rate of vertical transfer, the acquisition of the background signal is reduced to a minimum time, hence the minimum associated noise, allowing the detection of very low level pulse.
  • the transfer of lines at high speed is then continued until the image zone is brought into the memory zone, then the memory zone is read at a normal cadence, the reading phase comprising the transfer of charges to the multiplexing circuit integrated in the detector and to the output register R to form, after amplification by the amplification stage A, corresponding to a visualization signal SV to the desired video standard.
  • the calculation means MCL of the device according to the invention which can be made by a processor common to the MCD control means, allow to calculate, from the position of the pixel (s) illuminated in the image by the laser pulse, harmonization defects corresponding to the angular differences between the axis of the line of sight of the Harmonization detector and the axis of the laser emission path.
  • the frame transfer detector can be substituted, as illustrated in FIG. 4, with a so-called "full frame array” detector, in which the pixels occupy almost the entire surface of the array and in which the transfer takes place. is said per line, the charges of the same line being simultaneously transferred line by line.
  • the operation in treadmill mode comprises a first waiting phase during which the transfer is at a high rate, then a reading phase after a pulse has been detected by the fast detector DET IMP .
  • a detector can be adapted to the device according to the invention. It is a matrix of photo-detectors, each photo-detector being connected to a read circuit of the MCD control means of the matrix by an input circuit which ensures for the photodetector that him is coupled, the functions of polarization and integration of the photoelectric signal, the reading circuit allowing the multiplexing of the signals issued for forming a video signal.
  • this matrix described in patent FR 2 762 082 in the name of the applicant, it is possible to detect a laser pulse short in the continuous stream broadcast by the scene.
  • the matrix of photo-detectors is adapted to form the device harmonization detector according to the invention can operate in a conventional imaging mode and according to a harmonization mode.
  • the operation of the photodetector array comprises, as previously, two phases, a detection waiting phase, during which the photoelectric signal generated by each photodetector is continuously integrated, and a phase of detection. reading of the image, after detection by the rapid detector DET IMP of the laser pulse retroreflected by the scene.
  • the waiting phase comprises for each photodetector a succession of very short integration cycles (of the order of one microsecond). During each integration cycle, the photodetector integrates only an infinitesimal amount of charge that is transferred to a buffer memory and held until the end of the next cycle and then discarded without prior reading if no signal from the fast detector is not detected.
  • the DCM control means When a laser pulse is detected by the fast detector, the DCM control means trigger in each photodetector the summation of the signal being integrated with the contents of the associated memory cell, thereby preventing any loss of information.
  • Each memory cell then contains a negligible signal from the back of the scene, with the exception of that associated with the photodetector having received the laser pulse and for which the background signal is dominated by the detected signal coming from the pulse.
  • the MCD control means then trigger the second phase corresponding to the reading, at a normal rate (typically a few milliseconds) of the contents of the memories, delivering an image from which the position of the laser spot on the harmonization detector can be known. formed of the matrix of photo-detectors.
  • the calculation means MCL then make it possible to evaluate the harmonization defects.
  • the MCD control means In imaging mode, the MCD control means generate a much longer integration time for each photodetector (from the order of the millisecond, for example), then trigger the reading phase, thus allowing to obtain a normal image of the scene.
  • the matrix of detectors is more complex, and more expensive, at implement that the "treadmill" detector because each photo-detector has its own circuit for integrating loads (circuit input).
  • it has several different CCD detector advantages.
  • the choice of photo-detectors, preferably of the type photo-voltaic allows to adapt to other laser wavelengths resignation.
  • the sensors made on InGaAs, InSb or HgCdTe will be privileged and may, depending on their nature and depending on the desired performance, work strongly, little or no cooled.
  • HgCdTe or AsGa multiwell quantum well detectors strongly cooled, will be preferred.
  • the material chosen for the detector is compatible with imaging in the infrared band, it is not necessary to add a second infrared imaging detector, as this is the case in the example of Figure 2, unless we want a total simultaneity between harmonization and imaging modes.
  • the use of a photodetector matrix as harmonization detector allows also, in harmonization mode, to limit the photodetectors used to those located near the center of the detector field (windowing of the matrix centered on the line of sight of the observation channel).
  • harmonization detectors described above are preferred examples for the implementation of the harmonization system according to the invention, it is not limited to these examples.
  • Other detectors imagery are possible if, in addition to their imaging function, they can, in a particular mode of operation, and associated with a fast pulse detector, detect a laser pulse in a flow of continuous background, in order to proceed with the harmonization between the emission laser and the way of observation in real conditions, ie thanks to the impulse laser retroreflected by the scene itself.
  • the detection surface of the fast detector DET IMP can be reduced with respect to the total field of the image, by centering it on the axis of the line of sight of the signal path. 'observation. Indeed, the probability of detection of the retroreflected impulse by the scene during the harmonization procedure is maximum in the central part of the field.
  • the sensitive area of the detector By reducing the sensitive area of the detector, its detectivity is increased, which further improves the performance of the harmonization device.
  • the harmonization device further comprises electronic means for high-pass filtering of the signal delivered by the pulse detector DET IMP , making it possible to cut off the signal corresponding to the luminous flux generated by the backscattering on the atmosphere of the emitted laser pulse.
  • a laser pulse is emitted to the scene and the stream retroreflected by the scene is detected as described above, in order to calculate possible harmonization errors.
  • the function of the pulse detector is to detect the moment of arrival of the retroreflected pulse on the harmonization detector in order to trigger the reading phase of the image on which the laser impact appears.
  • FIG. 5 thus represents, in one example, the shape of the signal delivered by the fast detector as a function of time. The origin of the times corresponds to the moment of emission of the laser pulse.
  • the signal S 1 corresponding to the flux backscattered by the atmosphere extends for a predetermined time T 1 , the duration of which is correlated with the distance over which the laser pulse can be backscattered towards the equipment.
  • This time which may be a few tens of microseconds, is significantly greater than the time T 2 of the signal S 2 corresponding to the duration of the pulse retroreflected by the scene.
  • the electronic filtering means of the device according to the invention thus make it possible to cut the low frequency spurious signal S 1 and to keep only the useful signal S 2 corresponding to the pulse retroreflected by the scene.
  • Another way to overcome this is to provide at the output of the rapid detector DET IMP electronic means for inhibiting the signal delivered by the pulse detector for a predetermined time after the emission of a laser pulse, and corresponding to the luminous flux generated by the backscattering on the atmosphere of the emitted laser pulse.
  • This inhibition time during which the delivered signal will not be taken into account by the MCD control means, may be a few tens of microseconds for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Studio Devices (AREA)

Claims (11)

  1. Vorrichtung zur Harmonisierung zwischen einem Kanal zum Senden eines Laserimpulses zu einer Szene und einem passiven Beobachtungskanal der Szene, wobei der Beobachtungskanal insbesondere ein Fokussierobjektiv (OBJ, OPT) zum Formen des Bilds der Szene auf mindestens einem Bildgebungsdetektor (DETVIS, DETIR) aufweist, wobei die Vorrichtung dadurch gekennzeichnet ist, dass sie aufweist
    einen schnellen Laserimpuls-Detektor (DETIMP), der es ermöglicht, den Zeitpunkt der Ankunft des von der Szene auf den oder die Bildgebungsdetektor(en) retroreflektierten Laserimpulses zu bestimmen,
    einen Harmonisierungsdetektor (DETVIS), der einen der Bildgebungsdetektoren bildet und insbesondere eine Einheit von lichtempfindlichen Zonen im Spektralband des Sendelasers aufweist,
    Mittel (MCD) zum Steuern des Harmonisierungsdetektors im Bildgebungsmodus oder im Harmonisierungsmodus, die das vom schnellen Detektor gelieferte Signal (S) empfangen und im Harmonisierungsmodus den Betrieb des Harmonisierungsdetektors gemäß zwei Phasen ermöglichen,
    eine erste Wartephase, während der die von der Umwandlung der von den lichtempfindlichen Zonen empfangenen Photonen stammenden elektrischen Ladungen praktisch durchgehend mit einer ausreichend kurzen Integrationszeit integriert werden, um die Erfassung des von einem von der Szene retroreflektierten Laserimpuls stammenden Flusses im von der Szene gestreuten kontinuierlichen Fluss zu ermöglichen,
    eine zweite Lesephase, ausgelöst von dem vom schnellen Detektor zum Zeitpunkt der Erfassung eines von der Szene retroreflektierten Laserimpulses empfangenen Signal, was zur Sequentialisierung der integrierten Ladungen zum Zeitpunkt der Erfassung des Impulses führt, damit im so erhaltenen Bild die Position des entsprechenden Laserflecks erfasst wird,
    Rechenmittel (MCL), die es ermöglichen, ausgehend von der Position des Laserflecks im Bild die den Winkelabweichungen (δx, δy) zwischen der Achse (Δi) des Beobachtungskanals und derjenigen (Δl) des Lasersendekanals entsprechenden Harmonisierungsfehler zu berechnen.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sie außerdem optische Filterungsmittel (FLTIMP) der auf das Spektralband des Sendelasers zentrierten Übertragung aufweisen, die vor dem schnellen Impulsdetektor (DETIMP) positioniert sind.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der schnelle Detektor in der Nähe einer Fokalebene des Fokussierobjektivs des Beobachtungskanals positioniert ist und eine lichtempfindliche Fläche aufweist, deren Abmessung kleiner ist als das Gesamtfeld des Bilds, zentriert auf die Achse (Δi) des Beobachtungskanals.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass, wenn der Sendekanal eine Funktion der Entfernungsmessung aufweist, der schnelle Detektor auch der Laserempfänger zur Durchführung der Entfernungsmessung ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Harmonisierungsdetektor, der entweder im Harmonisierungsmodus oder im Bildgebungsmodus verwendet wird, außerdem entfernbare optische Filterungsmittel (FLTHAR) der auf das Spektralband des Sendelasers zentrierten Übertragung aufweist, die während der Harmonisierungsphase vor dem Matrixdetektor positioniert und während der Bildgebungsphase entfernt werden.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie außerdem elektronische Mittel zur Hochpass-Filterung des vom Impulsdetektor gelieferten Signals aufweist, die es ermöglichen, das dem von der Rückstreuung des gesendeten Laserimpulses in die Atmosphäre erzeugten Lichtfluss entsprechende Signal zu unterbrechen.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie außerdem elektronische Mittel zum Hemmen des vom Impulsdetektor gelieferten und dem von der Rückstreuung des gesendeten Laserimpulses in die Atmosphäre erzeugten Lichtfluss entsprechenden Signals während einer vorbestimmten Zeit nach dem Senden eines Laserimpulses aufweist.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Harmonisierungsdetektor ein CCD-Detektor ist, der während der Harmonisierungsphase im Förderbandmodus arbeitet, wobei die Steuermittel (MCD) den CCD-Detektor in der Wartephase im permanenten Transfer mit hoher Taktfolge arbeiten lassen.
  9. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Harmonisierungsdetektor von einer Matrix aus Photodetektoren gebildet wird, wobei jeder Photodetektor mit einer zu den Steuermitteln (MCD) gehörenden Leseschaltung über eine Eingangsschaltung verbunden ist, die für den mit ihr gekoppelten Photodetektor die Integration der Ladungen gewährleistet, wobei die Mittel (MCD) während der Wartephase für jeden Photodetektor eine Folge von sehr kurzen Integrationszyklen auslösen, während denen der Photodetektor eine Menge von unendlich kleinen Ladungen integriert, die ohne vorheriges Lesen zurückgewiesen wird, wenn kein vom schnellen Detektor (DETIMP) stammendes Signal erfasst wird.
  10. Optronisches System zur Verfolgung eines Ziels in einer Szene, das insbesondere einen Laser (LAS) zur Beleuchtung des Ziels durch das Aussenden von Impulsen und einen multispektralen Bildgenerator zur Verfolgung der Szene aufweist, der insbesondere einen für Infrarot empfindlichen Detektor (DETIR), einen für sichtbares Licht-nahes Infrarot (DETVIS) empfindlichen Detektor und eine multispektrale Optik (OPT) aufweist, um das Bild der Szene gleichzeitig auf jedem der Detektoren zu formen, wobei das System dadurch gekennzeichnet ist, dass es mit einer Vorrichtung zur Harmonisierung zwischen dem Laserkanal und dem Kanal des multispektralen Bildgenerators nach einem der vorhergehenden Ansprüche ausgestattet ist, wobei der Harmonisierungsdetektor der Vorrichtung der im sichtbaren Licht-nahen Infrarot-Bereich empfindliche Detektor (DETVIS) ist, und dadurch gekennzeichnet, dass im Harmonisierungsmodus nach jeder Aussendung eines Laserimpulses zum Ziel eine Korrektur der Harmonisierungsfehler an die Position des Verfolgungszentrums des Infrarot-Detektors (DETIR) angewendet wird.
  11. Optronisches System nach Anspruch 10, dadurch gekennzeichnet, dass es einen dichroitischen Spiegel (M3) aufweist, dass die multispektrale Optik vom katadioptrischen Typ ist und mit Hilfe von Spiegeln (M1, M2) hergestellt wird, die in Zusammenwirkung mit dem dichroitischen Spiegel das Abbilden der Szene auf jedem der Detektoren ermöglichen.
EP01402722A 2000-10-27 2001-10-19 Vorrichtung zur Justierung eines Lasersendungskanals mit einem passiven Beobachtungskanal Expired - Lifetime EP1202021B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0013849A FR2816118B1 (fr) 2000-10-27 2000-10-27 Dispositif pour l'harmonisation entre une voie d'emission laser et une voie passive d'observation
FR0013849 2000-10-27

Publications (2)

Publication Number Publication Date
EP1202021A1 EP1202021A1 (de) 2002-05-02
EP1202021B1 true EP1202021B1 (de) 2005-01-26

Family

ID=8855837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01402722A Expired - Lifetime EP1202021B1 (de) 2000-10-27 2001-10-19 Vorrichtung zur Justierung eines Lasersendungskanals mit einem passiven Beobachtungskanal

Country Status (4)

Country Link
EP (1) EP1202021B1 (de)
DE (1) DE60108587T2 (de)
ES (1) ES2234789T3 (de)
FR (1) FR2816118B1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013104308B4 (de) * 2013-04-29 2017-12-14 Jenoptik Advanced Systems Gmbh Justierverfahren und Justiervorrichtung zur parallelen Ausrichtung der Simulatorlinie eines Schusssimulators zur Visierlinie einer Schusswaffe
GB2590956B (en) * 2020-01-09 2022-06-29 Thales Holdings Uk Plc Guidance head and method
CN116519136B (zh) * 2023-07-03 2023-09-08 中国科学院合肥物质科学研究院 一种月球直射光谱辐照度仪同光轴装调系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661518B1 (fr) * 1985-12-13 1992-08-07 Thomson Trt Defense Procede d'harmonisation entre l'axe d'une lunette de visee et celui d'une camera thermique.
FR2652166B1 (fr) * 1989-09-19 1991-10-31 Thomson Csf Dispositif d'harmonisation automatique pour un systeme optronique.
FR2740558B1 (fr) * 1995-10-27 1997-11-28 Thomson Csf Procede de detection par designation laser et dispositif d'ecartometrie a detecteur matriciel correspondant
FR2784185B1 (fr) * 1998-10-06 2001-02-02 Thomson Csf Dispositif pour l'harmonisation entre une voie d'emission laser et une voie passive d'observation

Also Published As

Publication number Publication date
DE60108587D1 (de) 2005-03-03
FR2816118A1 (fr) 2002-05-03
FR2816118B1 (fr) 2003-01-31
EP1202021A1 (de) 2002-05-02
ES2234789T3 (es) 2005-07-01
DE60108587T2 (de) 2006-03-30

Similar Documents

Publication Publication Date Title
FR2869114A1 (fr) Altimetre laser et appareil de mesure de vitesse au sol combines.
CN102740012A (zh) 检测器像素信号读出电路及其成像方法
EP2173042B1 (de) Optische Sende-Empfangseinheit mit Kontrolle der Senderichtung
FR3106417A1 (fr) Dispositif d’imagerie lidar cohérent
FR2465188A1 (fr) Dispositif pour detecter un point chaud dans un paysage percu selon un rayonnement infrarouge et systeme de guidage d'un missile sur une cible, comportant un tel dispositif
EP0241374B1 (de) Optronische Abweichungsvorrichtung zur räumlichen und spektralen Erkennung von infraroten Lichtquellen
EP0920677B1 (de) Verfahren und vorrichtung zur lufterde erkennung für eine elektronische anlage
FR2740558A1 (fr) Procede de detection par designation laser et dispositif d'ecartometrie a detecteur matriciel correspondant
EP3415949B1 (de) Eingebautes beobachtungssystem, das einen lidar zum erhalten von 3d-bildern mit hoher auflösung umfasst
EP1202021B1 (de) Vorrichtung zur Justierung eines Lasersendungskanals mit einem passiven Beobachtungskanal
EP3489152B1 (de) Beobachtungsinstrument mit einem spiegel-autokollimator, der an einem sternsucher montiert ist
FR2724464A1 (fr) Dispositif embarquable de mesure de retrodiffusion de lumiere
EP2364455B1 (de) Entfernungsmesser
EP3671280B1 (de) Hochpräzises datierungssystem der passage eines objekts, insbesondere eines satelliten
EP3913395B1 (de) Verbesserter detektor mit umlenkelementen für kohärente bildgebung
EP2388646B1 (de) Verfahren zur Bilderfassung
FR2643723A1 (fr) Dispositif de determination de la direction du centre energetique d'un objet lumineux
FR2974899A1 (fr) Telescope multispectral a balayage comportant des moyens d'analyses de front d'onde
EP0493170B1 (de) Infrarotsensor mit hoher Erkennungsfähigkeit und Wärmebildkamera mit einem solchen Detektor
EP1440329B1 (de) Zielerfassungseinrichtung, flugzeug, zugeordnetes flugbahnschätzsystem und verteidigungssystem
FR2736731A1 (fr) Dispositif de detection d'organes optiques pointes sur le dispositif
Hawthorne et al. DMD as a pseudo-pixel array for long-range high-speed LIDAR
EP3913393A2 (de) Verbesserte detektionsvorrichtung und entsprechendes lidar-system
FR2818386A1 (fr) Dispositif pour l'alignement des voies d'emission et de reception d'un lidar spatial et lidar equipe d'un tel dispositif
WO2007045638A1 (fr) Dispositif optique multi-parametrable de double-balayage laser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021028

AKX Designation fees paid

Free format text: AT BE CH CY DE LI

RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60108587

Country of ref document: DE

Date of ref document: 20050303

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050311

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2234789

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051027

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20181011

Year of fee payment: 18

Ref country code: DE

Payment date: 20181009

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181102

Year of fee payment: 18

Ref country code: GB

Payment date: 20181008

Year of fee payment: 18

Ref country code: IT

Payment date: 20181018

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60108587

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191019

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191020

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529