EP1197825B1 - Integrated circuit with parts supplied with a different supply voltage - Google Patents

Integrated circuit with parts supplied with a different supply voltage Download PDF

Info

Publication number
EP1197825B1
EP1197825B1 EP01121398A EP01121398A EP1197825B1 EP 1197825 B1 EP1197825 B1 EP 1197825B1 EP 01121398 A EP01121398 A EP 01121398A EP 01121398 A EP01121398 A EP 01121398A EP 1197825 B1 EP1197825 B1 EP 1197825B1
Authority
EP
European Patent Office
Prior art keywords
supply voltage
voltage
circuit
mosfet
potential divider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01121398A
Other languages
German (de)
French (fr)
Other versions
EP1197825A3 (en
EP1197825A2 (en
Inventor
Paul Zehnich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dialog Semiconductor GmbH
Original Assignee
Dialog Semiconductor GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dialog Semiconductor GmbH filed Critical Dialog Semiconductor GmbH
Publication of EP1197825A2 publication Critical patent/EP1197825A2/en
Publication of EP1197825A3 publication Critical patent/EP1197825A3/en
Application granted granted Critical
Publication of EP1197825B1 publication Critical patent/EP1197825B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/465Internal voltage generators for integrated circuits, e.g. step down generators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/247Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the supply voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to an integrated circuit (IC) having first circuit parts whose supply voltage is equal to the external supply voltage of the IC and with second circuit parts whose supply voltage is smaller than the external supply voltage and as an internal supply voltage derived from the former.
  • IC integrated circuit
  • first circuit parts consist of large structures which are usually arranged in the periphery and work with the external power supply of normally 5V.
  • second circuit parts are primarily logic circuits which, for reasons of higher signal processing speed and lower power dissipation, have a low internal supply voltage of e.g. 3 V work.
  • This internal supply voltage is generated by a controller that does not appear to the outside.
  • the latter comprises a reference element, e.g. a Zener diode or a bandgap structure, a negative feedback, compensated variable gain amplifier and external support capacitors is therefore relatively expensive and provides the internal supply voltage after switching on the external supply voltage with a delay caused by the external backup capacitors.
  • the US-A-5 818 212 shows a circuit that provides an internal voltage that is largely independent of temperature and manufacturing variations.
  • the circuit includes a constant voltage source that provides a reference voltage to the first input of a differential amplifier. Its second input receives a voltage proportional to the internal voltage.
  • the output of the differential amplifier controls an impedance converter.
  • the invention is based on the object, an integrated To provide circuit of the introductory genus, which provides with less effort to be integrated circuit structures and without external components, the internal supply voltage almost instantaneously after the application of the external supply voltage.
  • an internal supply voltage supplying, active voltage divider comprising a first resistance voltage divider between the supply voltage terminal and the reference potential, a connected to the tap of the first resistor voltage divider impedance converter and a circuit for load-dependent control of the partial voltage at the midpoint of the first resistance voltage divider comprises.
  • the impedance converter can, as is known, be a lying between the supply voltage terminal and an internal supply voltage point of the second circuit parts drain-source path of a first MOSFET whose gate is connected to the center of the first resistance voltage divider (claim 2).
  • the circuit for load-dependent control of the partial voltage at the midpoint of the first resistance voltage divider can in particular be a drain-source path lying between the supply voltage connection and the internal supply voltage point a second MOSFET whose gate is connected to the center of a second resistor voltage divider between the supply voltage terminal and the reference potential, with a lying in the drain branch of the second MOSFET third MOSFET, with a fourth, lying between the supply voltage terminal and the tap of the first resistive voltage divider a MOSFET Current mirror circuit forms (claim 3).
  • the drawing shows in simplified form the circuit diagram of that part of an integrated circuit which serves to obtain an internal supply voltage according to the present proposal.
  • the lying on a reference potential, integrated circuit receives via a pad terminal, the usual external supply voltage of + 5 V and includes not shown first circuit parts whose supply voltage is equal to this external supply voltage.
  • the integrated circuit further comprises second circuit parts symbolized by the block labeled "Logic" which, to achieve a higher signal processing speed and to save power dissipation with an internal supply voltage of e.g. +3 V work.
  • this internal supply voltage is the circuit shown in detail. It comprises a first resistance voltage divider R1, R2 between the supply voltage terminal Pad and the reference potential.
  • the center X of this first resistive voltage divider R1, R2 is connected to the gate of a first MOSFET structure T1 whose drain / source path between the pad and the supply voltage point of the second circuit part labeled "logic".
  • T1 acts as an impedance converter.
  • the voltage at tap X may be at 4.2V when the gate / source voltage V THN is about 1.2V to drop 2V across the drain / source path. With increasing power consumption of the second circuit parts of this voltage drop increases.
  • the drain / source path of a second MOSFET structure T1 ' which gate with a tap X' of a second resistance voltage divider R1 ', R2' between the supply voltage terminal Pad and the Reference potential is connected.
  • the drain branch of the second MOSFET T1 ' is the source / drain path of a third MOSFET structure T2' whose gate is connected on the one hand to the drain of the second MOSFET T1 and on the other hand to the gate of a fourth MOSFET structure T2 whose drain / Source path is parallel to the partial resistance R1 of the first resistance voltage divider R1, R2.
  • the gate / source voltage V THp is about 0.9 V for the example case considered here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Logic Circuits (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

The device has first parts whose supply voltage is the same as the external voltage supply and second parts with a lower supply voltage derived from the first. The internal supply voltage is provided by an active potential divider with a first resistive potential divider between the supply voltage and reference potential, an impedance converter and a circuit for load-dependent control of the resistive potential divider tapping voltage. The device has first parts whose supply voltage is the same as the external voltage supply and second parts with a lower supply voltage derived from the first supply voltage. The internal supply voltage is provided by an active potential divider containing a first resistive potential divider (R1, R2) between the supply voltage connection (Pad) and a reference potential, an impedance converter (T1) and a circuit for load-dependent control of the divided voltage at the tapping (X) of the first resistive potential divider.

Description

Die Erfindung betrifft eine integrierte Schaltung (IC) mit ersten Schaltungsteilen, deren Versorgungsspannung gleich der äußeren Versorgungsspannung des ICs ist und mit zweiten Schaltungsteilen, deren Versorgungsspannung kleiner als die äußere Versorgungsspannung und als interne Versorgungsspannung von ersterer abgeleitet ist.The invention relates to an integrated circuit (IC) having first circuit parts whose supply voltage is equal to the external supply voltage of the IC and with second circuit parts whose supply voltage is smaller than the external supply voltage and as an internal supply voltage derived from the former.

Derartige integrierte Schaltungen sind bekannt. Diejenigen Schaltungsteile, die vorstehend als erste Schaltungsteile bezeichnet wurden, bestehen aus großen Strukturen, die gewöhnlich in der Peripherie angeordnet sind und mit der äußeren Spannungsversorgung von normalerweise 5V arbeiten. Diejenigen Schaltungsteile, die vorstehend als zweite Schaltungsteile bezeichnet sind, sind in erster Linie Logikschaltungen, die aus Gründen der höheren Signalverarbeitungsgeschwindigkeit und der niedrigeren Verlustleistung mit einer niedrigen internen Versorgungsspannung von z.B. 3 V arbeiten. Diese interne Versorgungsspannung wird von einem nach außen nicht in Erscheinung tretenden Regler erzeugt. Letzterer umfaßt ein Referenzelement, z.B. eine Zenerdiode oder eine Bandgapstruktur, einen gegengekoppelten, kompensierten Regelverstärker und externe Stützkondensatoren, ist also relativ aufwendig und stellt die interne Versorgungsspannung nach dem Einschalten der äußeren Versorgungsspannung mit einer durch die externen Stützkondensatoren bedingten Verzögerung zur Verfügung.Such integrated circuits are known. Those circuit parts referred to above as first circuit parts consist of large structures which are usually arranged in the periphery and work with the external power supply of normally 5V. Those circuit parts referred to above as second circuit parts are primarily logic circuits which, for reasons of higher signal processing speed and lower power dissipation, have a low internal supply voltage of e.g. 3 V work. This internal supply voltage is generated by a controller that does not appear to the outside. The latter comprises a reference element, e.g. a Zener diode or a bandgap structure, a negative feedback, compensated variable gain amplifier and external support capacitors is therefore relatively expensive and provides the internal supply voltage after switching on the external supply voltage with a delay caused by the external backup capacitors.

Die US-A-5 818 212 zeigt eine Schaltung, die eine interne Spannung liefert, die weitgehend unabhängig von temperatur-und fertigungsbedingten Schwankungen ist. Die Schaltung umfasst eine Konstantspannungsquelle, die eine Referenzspannung an den ersten Eingang eines Differenzverstärkers liefert. Dessen zweiter Eingang erhält eine der internen Spannung proportionale Spannung. Der Ausgang des Differenzverstärkers steuert einen Impedanzwandler.The US-A-5 818 212 shows a circuit that provides an internal voltage that is largely independent of temperature and manufacturing variations. The circuit includes a constant voltage source that provides a reference voltage to the first input of a differential amplifier. Its second input receives a voltage proportional to the internal voltage. The output of the differential amplifier controls an impedance converter.

Der Erfindung liegt die Aufgabe zugrunde, eine integrierte Schaltung der einleitend angegebenen Gattung zu schaffen, die mit geringerem Aufwand an zu integrierenden Schaltungsstrukturen und ohne externe Komponenten die interne Versorgungsspannung nahezu verzögerungsfrei nach dem Anlegen der äußeren Versorgungsspannung zur Verfügung stellt.The invention is based on the object, an integrated To provide circuit of the introductory genus, which provides with less effort to be integrated circuit structures and without external components, the internal supply voltage almost instantaneously after the application of the external supply voltage.

Diese Aufgabe ist bei einer integrierten Schaltung der im Oberbegriff des Anspruches 1 angegebenen Gattung erfindungsgemäß durch einen die interne Versorgungsspannung liefernden, aktiven Spannungsteiler gelöst, der einen ersten Widerstandsspannungsteiler zwischen dem Versorgungsspannungsanschluß und dem Bezugspotential, einen an den Abgriff des ersten Widerstandsspannungsteilers angeschlossener Impedanzwandler und eine Schaltung zur lastabhängigen Steuerung der Teilspannung am Mittelpunkt des ersten Widerstandsspannungsteilers umfaßt.This object is achieved in an integrated circuit of the type specified in the preamble of claim 1 according to the invention by an internal supply voltage supplying, active voltage divider comprising a first resistance voltage divider between the supply voltage terminal and the reference potential, a connected to the tap of the first resistor voltage divider impedance converter and a circuit for load-dependent control of the partial voltage at the midpoint of the first resistance voltage divider comprises.

Diesem Vorschlag liegt die Erkenntnis zugrunde, daß wegen der in der Regel auf etwa ± 10 % oder besser stabilisierten, äußeren Versorgungsspannung ein integrierter Regler zur Gewinnung der internen Versorgungsspannung nicht erforderlich ist sondern es völlig ausreicht, die interne Versorgungsspannung von der äußeren Versorgungsspannung abzuleiten und lastunabhängig in den Grenzen der Stabilisierung der äußeren Versorgungsspannung konstant zu halten.This proposal is based on the finding that because of the usually stabilized to about ± 10% or better, external supply voltage an integrated regulator for obtaining the internal supply voltage is not sufficient but it is sufficient to derive the internal supply voltage from the external supply voltage and load independent to be kept constant within the limits of stabilization of the external supply voltage.

Der Impedanzwandler kann, wie an sich bekannt, eine zwischen dem Versorgungsspannungsanschluß und einem internen Versorgungsspannungspunkt der zweiten Schaltungsteile liegende Drain-Source-Strecke eines ersten MOSFET sein, dessen Gate mit dem Mittelpunkt des ersten Widerstandsspannungsteilers verbunden ist (Anspruch 2).The impedance converter can, as is known, be a lying between the supply voltage terminal and an internal supply voltage point of the second circuit parts drain-source path of a first MOSFET whose gate is connected to the center of the first resistance voltage divider (claim 2).

Die Schaltung zur lastabhängigen Steuerung der Teilspannung an dem Mittelpunkt des ersten Widerstandsspannungsteilers kann insbesondere eine zwischen dem Versorgungsspannungsanschluß und dem internene Versorgungsspannungspunkt liegende Drain-Source-Strecke eines zweiten MOSFET sein, dessen Gate mit dem Mittelpunkt eines zweiten Widerstandsspannungsteilers zwischen dem Versorgungsspannungsanschluß und dem Bezugspotential verbunden ist, mit einem im Drainzweig des zweiten MOSFET liegenden dritten MOSFET, der mit einem vierten, zwischen dem Versorgungsspannungsanschluß und dem Abgriff des ersten Widerstandsspannungsteilers liegenden MOSFET eine Stromspiegelschaltung bildet (Anspruch 3).The circuit for load-dependent control of the partial voltage at the midpoint of the first resistance voltage divider can in particular be a drain-source path lying between the supply voltage connection and the internal supply voltage point a second MOSFET whose gate is connected to the center of a second resistor voltage divider between the supply voltage terminal and the reference potential, with a lying in the drain branch of the second MOSFET third MOSFET, with a fourth, lying between the supply voltage terminal and the tap of the first resistive voltage divider a MOSFET Current mirror circuit forms (claim 3).

Die Zeichnung zeigt vereinfacht das Schaltbild desjenigen Teils einer integrierten Schaltung, der zur Gewinnung einer internen Versorgungsspannung nachdem vorliegenden Vorschlag dient.The drawing shows in simplified form the circuit diagram of that part of an integrated circuit which serves to obtain an internal supply voltage according to the present proposal.

Die auf einem Bezugspotential liegende, integrierte Schaltung erhält über einen Anschluß Pad die übliche äußere Versorgungsspannung von + 5 V und umfaßt nicht dargestellte erste Schaltungsteile, deren Versorgungsspannung gleich dieser äußeren Versorgungsspannung ist. Die integrierte Schaltung umfaßt des weiteren durch den mit "Logik" bezeichneten Block symbolisierte zweite Schaltungsteile, die zur Erzielung einer höheren Signalverarbeitungsgeschwindigkeit und zur Einsparung von Verlustleistung mit einer internen Versorgungsspannung von z.B. +3 V arbeiten.The lying on a reference potential, integrated circuit receives via a pad terminal, the usual external supply voltage of + 5 V and includes not shown first circuit parts whose supply voltage is equal to this external supply voltage. The integrated circuit further comprises second circuit parts symbolized by the block labeled "Logic" which, to achieve a higher signal processing speed and to save power dissipation with an internal supply voltage of e.g. +3 V work.

Zur Gewinnung dieser internen Versorgungsspannung dient die im einzelnen dargestellte Schaltung. Sie umfaßt einen ersten Widerstandsspannungsteiler R1, R2 zwischen dem Versorgungsspannungsanschluß Pad und dem Bezugspotential. Der Mittelpunkt X dieses ersten Widerstandsspannungsteilers R1, R2 ist mit dem Gate einer ersten MOSFET-Struktur T1 verbunden, deren Drain/ Source-Strecke zwischen Pad und dem Versorgungsspannungspunkt der mit "Logik" bezeichneten, zweiten Schaltungsteile liegt. Dabei wirkt T1 als Impedanzwandler. Bei einer internen Versorgungsspannung von 3 V und einer angenommenen Leistungsaufnahme der zweiten Schaltungsteile von z.B. 100 mW kann die Spannung am Abgriff X z.B. bei 4,2 V liegen, wenn die Gate/Source-Spannung VTHN etwa 1,2 V beträgt, damit über der Drain/Source-Strecke 2 V abfallen. Mit steigender Leistungsaufnahme der zweiten Schaltungsteile nimmt dieser Spannungsabfall zu. Zur Erkennung dieser Änderung der Belastungssituation liegt zwischen dem Versorgungsspannungsanschluß Pad und dem internen Versorgungsspannungspunkt die Drain/Source-Strecke einer zweiten MOSFET-Struktur T1', deren Gate mit einem Abgriff X' eines zweiten Widerstandsspannungsteilers R1', R2' zwischen dem Versorgungsspannungsanschluß Pad und dem Bezugspotential verbunden ist. Im Drain-Zweig des zweiten MOSFET T1' liegt die Source/Drain-Strecke einer dritten MOSFET-Struktur T2', deren Gate einerseits mit dem Drainanschluß des zweiten MOSFET T1 und andererseits mit dem Gate einer vierten MOSFET-Struktur T2 verbunden ist, deren Drain/ Source-Strecke parallel zu dem Teilwiderstand R1 des ersten Widerstandsspannungsteilers R1, R2 liegt. Die Gate/Source-Spannung VTHp liegt für den hier betrachteten Beispielsfall bei etwa 0,9 V. Mit dieser an sich bekannten Stromspiegelschaltung wird erreicht, daß die Span-nung am Mittelpunkt (X) des ersten Widerstandsspannungsteilers R1, R2 steigt, weil die Source/Drain-Strecke des vierten MOSFET T2 niederohmiger wird, wenn die interne Versorgungsspannung bei zunehmender Stromaufnahme der zweiten Schaltungsteile sinkt. Bei abnehmendem Leistungsverbrauch ergibt sich das umgekehrte Verhalten.To obtain this internal supply voltage is the circuit shown in detail. It comprises a first resistance voltage divider R1, R2 between the supply voltage terminal Pad and the reference potential. The center X of this first resistive voltage divider R1, R2 is connected to the gate of a first MOSFET structure T1 whose drain / source path between the pad and the supply voltage point of the second circuit part labeled "logic". In this case, T1 acts as an impedance converter. With an internal supply voltage of 3 V and an assumed power consumption of the second circuit parts of eg 100 mW For example, the voltage at tap X may be at 4.2V when the gate / source voltage V THN is about 1.2V to drop 2V across the drain / source path. With increasing power consumption of the second circuit parts of this voltage drop increases. To detect this change in the load situation is between the supply voltage terminal Pad and the internal supply voltage point, the drain / source path of a second MOSFET structure T1 'whose gate with a tap X' of a second resistance voltage divider R1 ', R2' between the supply voltage terminal Pad and the Reference potential is connected. In the drain branch of the second MOSFET T1 'is the source / drain path of a third MOSFET structure T2' whose gate is connected on the one hand to the drain of the second MOSFET T1 and on the other hand to the gate of a fourth MOSFET structure T2 whose drain / Source path is parallel to the partial resistance R1 of the first resistance voltage divider R1, R2. The gate / source voltage V THp is about 0.9 V for the example case considered here. With this current mirror circuit known per se , it is achieved that the voltage at the midpoint (X) of the first resistance voltage divider R1, R2 increases because the voltage rises Source / drain path of the fourth MOSFET T2 becomes lower impedance, when the internal supply voltage decreases with increasing current consumption of the second circuit parts. With decreasing power consumption results in the reverse behavior.

Claims (3)

  1. An integrated circuit (IC), comprising first circuit parts whose supply voltage is the same as the external supply voltage of the IC and second circuit parts whose supply voltage is lower than the external supply voltage and is derived from the former as internal supply voltage, characterized by an active potential divider which supplies the internal supply voltage, comprising the following:
    - a first resistive potential divider with two ohmic resistors (R1, R2) connected in series and a center point (X) between the supply voltage connection (Pad) and the reference potential;
    - an impedance converter (T1) connected to the center point (X) of the first resistive potential divider;
    - a circuit for load-dependent control so that voltage at the center point (X) of the first resistive potential divider (R1, R2) will rise when the internal supply voltage decreases.
  2. A circuit according to claim 1, characterized in that the impedance converter is a drain-source path of a first MOSFET (T1) disposed between the supply voltage connection (Pad) and in internal supply voltage point of the second circuit parts, with the gate of the MOSFET being connected with center point (X) of the first resistive potential divider (R1, R2).
  3. A circuit according to claim 1 or 2, characterized in that the circuit for controlling the divided voltage at the tapping (X) of the first resistive voltage divider (R1, R2), so that voltage at the center point (X) of the first resistive potential divider (R1, R2) will rise when the internal supply voltage decreases, comprises the following:
    - a drain-source path of a second MOSFET (T1') disposed between the supply voltage connection (Pad) and the internal supply voltage point, with the gate of the MOSFET being connected to a tapping (X') of a second resistive potential divider (R1', R2') between the supply voltage connection (Pad) and the reference potential;
    - a third MOSFET (T2') which is disposed in the drain branch of the second MOSFET (T1') which forms a current mirror circuit with a fourth MOSFET (T2) disposed between the supply voltage connection (Pad) and the tapping (X) of the first resistive potential divider (R1, R2).
EP01121398A 2000-10-12 2001-09-06 Integrated circuit with parts supplied with a different supply voltage Expired - Lifetime EP1197825B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10050561A DE10050561B4 (en) 2000-10-12 2000-10-12 Integrated circuit with circuit parts with different supply voltage
DE10050561 2000-10-12

Publications (3)

Publication Number Publication Date
EP1197825A2 EP1197825A2 (en) 2002-04-17
EP1197825A3 EP1197825A3 (en) 2004-07-07
EP1197825B1 true EP1197825B1 (en) 2009-05-27

Family

ID=7659544

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01121398A Expired - Lifetime EP1197825B1 (en) 2000-10-12 2001-09-06 Integrated circuit with parts supplied with a different supply voltage

Country Status (6)

Country Link
US (1) US6605833B2 (en)
EP (1) EP1197825B1 (en)
JP (1) JP2002185302A (en)
AT (1) ATE432491T1 (en)
DE (2) DE10050561B4 (en)
HK (1) HK1048671A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369762A1 (en) * 2002-05-29 2003-12-10 Dialog Semiconductor GmbH Active subscriber information module
US7602019B2 (en) * 2006-04-20 2009-10-13 Texas Instruments Incorporated Drive circuit and drain extended transistor for use therein

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2020437B (en) * 1978-04-14 1982-08-04 Seiko Instr & Electronics Voltage detecting circuit
US4672246A (en) * 1986-03-10 1987-06-09 Honeywell Inc. Low offset MOSFET transistor switch control
DE3706907C2 (en) * 1987-03-04 1996-09-12 Bosch Gmbh Robert Voltage regulator pre-stage with low voltage loss as well as voltage regulator with such a pre-stage
NL8900050A (en) * 1989-01-10 1990-08-01 Philips Nv DEVICE FOR MEASURING A CURRENT CURRENT OF AN INTEGRATED MONOLITIC DIGITAL CIRCUIT, INTEGRATED MONOLITIC DIGITAL CIRCUIT PROVIDED WITH SUCH A DEVICE AND TESTING EQUIPMENT PROVIDED WITH SUCH A DEVICE.
JP2883625B2 (en) * 1989-03-30 1999-04-19 株式会社東芝 MOS type charging circuit
JPH087636B2 (en) * 1990-01-18 1996-01-29 シャープ株式会社 Voltage drop circuit of semiconductor device
KR920010633A (en) * 1990-11-30 1992-06-26 김광호 Reference voltage generation circuit of semiconductor memory device
GB2262675A (en) * 1991-12-20 1993-06-23 Codex Corp Comparator start-up arrangement
US5589794A (en) * 1994-12-20 1996-12-31 Sgs-Thomson Microelectronics, Inc. Dynamically controlled voltage reference circuit
US5815040A (en) * 1996-12-30 1998-09-29 Anthony T. Barbetta Wide bandwidth, current sharing, MOSFET audio power amplifier with multiple feedback loops
US6097632A (en) * 1997-04-18 2000-08-01 Micron Technology, Inc. Source regulation circuit for an erase operation of flash memory
JP3087838B2 (en) * 1997-08-05 2000-09-11 日本電気株式会社 Constant voltage generator
US6160440A (en) * 1998-09-25 2000-12-12 Intel Corporation Scaleable charge pump for use with a low voltage power supply
JP2000331490A (en) * 1999-05-18 2000-11-30 Hitachi Ltd Semiconductor integrated circuit device
JP3278635B2 (en) * 1999-05-27 2002-04-30 沖電気工業株式会社 Semiconductor integrated circuit
US6304131B1 (en) * 2000-02-22 2001-10-16 Texas Instruments Incorporated High power supply ripple rejection internally compensated low drop-out voltage regulator using PMOS pass device

Also Published As

Publication number Publication date
EP1197825A3 (en) 2004-07-07
US6605833B2 (en) 2003-08-12
DE10050561B4 (en) 2005-04-28
DE50114910D1 (en) 2009-07-09
EP1197825A2 (en) 2002-04-17
DE10050561A1 (en) 2002-05-16
US20020043670A1 (en) 2002-04-18
ATE432491T1 (en) 2009-06-15
JP2002185302A (en) 2002-06-28
HK1048671A1 (en) 2003-04-11

Similar Documents

Publication Publication Date Title
DE3341345C2 (en) Longitudinal voltage regulator
DE69434112T2 (en) Power supply apparatus
EP0421516B1 (en) Power supply arrangement with voltage regulation and current limiting
DE69802065T2 (en) HYBRID CONTROLLER
DE10110273C2 (en) Voltage generator with standby mode
DE19983230B4 (en) Dynamic setpoint switching
DE10249162A1 (en) Voltage regulator has transistor with main current path between input voltage connection and regulator output, amplifier, transconductance amplifier and resistance between amplifier inputs
DE102006007479B4 (en) Shunt regulator
EP0973084B1 (en) Integrated circuit with a voltage regulator
EP1197825B1 (en) Integrated circuit with parts supplied with a different supply voltage
EP0315830B1 (en) Power supply for an electronic device using a buffer capacitor
EP0049793A2 (en) Contactless electronic switching device
DE3230429A1 (en) ELECTRONIC IMPEDANCE CIRCUIT
DE3136300A1 (en) "DRIVING CIRCUIT FOR AN OSCILLATOR WITH LOW POWER CONSUMPTION"
DE19521663A1 (en) Integrated circuit with voltage regulation circuit
DE3405847C1 (en) Series regulator with a MOSFET power transistor
DE10319557B4 (en) Control unit for speed control by means of a control transistor of a fan assembly
DE102018116669B4 (en) Method for operating a low-drop voltage regulator without backup capacitor with a large voltage range
DE3931893A1 (en) Fold back-type current limit circuit - has series transistor with operational amplifier and transistor drive, and third transistor feed-forward
EP0698840B1 (en) Circuit arrangement for voltage limitation
EP1118928A1 (en) Circuit for controlling the power consumption of an integrated circuit
EP0008708B1 (en) Circuitry with dc converters connected in parallel
DE69713266T2 (en) OSCILLATOR WITH A STARTING SWITCH
DE102018116667B4 (en) Back-up capacitor-free low-drop voltage regulator with a large voltage range with a DIMOS and an NMOS transistor as load transistor and voltage regulator system
DE102019116700B4 (en) Back-up capacitor-free low-drop voltage regulator with a large voltage range with a DIMOS transistor and method for its operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040715

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20060703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50114910

Country of ref document: DE

Date of ref document: 20090709

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090927

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090827

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090907

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1048671

Country of ref document: HK

BERE Be: lapsed

Owner name: DIALOG SEMICONDUCTOR G.M.B.H.

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090828

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50114910

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121018

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150925

Year of fee payment: 15

Ref country code: GB

Payment date: 20150910

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114910

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160906

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401