EP1196965B1 - Helical antenna - Google Patents

Helical antenna Download PDF

Info

Publication number
EP1196965B1
EP1196965B1 EP00947810A EP00947810A EP1196965B1 EP 1196965 B1 EP1196965 B1 EP 1196965B1 EP 00947810 A EP00947810 A EP 00947810A EP 00947810 A EP00947810 A EP 00947810A EP 1196965 B1 EP1196965 B1 EP 1196965B1
Authority
EP
European Patent Office
Prior art keywords
spiral
spiral antenna
coplanar line
antenna
reference potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00947810A
Other languages
German (de)
French (fr)
Other versions
EP1196965A1 (en
Inventor
Thomas Wixforth
Eberhard Gschwendtner
Jean Parlebas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1196965A1 publication Critical patent/EP1196965A1/en
Application granted granted Critical
Publication of EP1196965B1 publication Critical patent/EP1196965B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas

Definitions

  • the invention is based on a spiral antenna according to the species of the main claim.
  • DE 37 39 205 A shows a four-armed spiral antenna whose spiral arms on two separate coaxial lines for feeding and / or receiving Signals are connected.
  • US Pat. No. 3,019,439 shows a four-armed spiral antenna whose arms are attached to a common coaxial line are connected.
  • the spiral antenna according to the invention with the features of Main claim has the advantage that the Spiral arms at their respective inner Spiralarmende to a Coplanar line for feeding and / or receiving Signals are connected.
  • the Coplanar line can be used on feed networks to adjust the Phase angles at the feed points of the spiral antenna or for symmetrization or asymmetry of the dispensed fed electric field and thus Effort can be saved.
  • Another advantage is that the spiral antenna by using the coplanar line both in one first mode for generating an omnidirectional Abstrahl characterizing as well as in a second mode
  • the coplanar line and the spiral antenna on different substrates can be applied.
  • the transition from the Coplanar to the spiral antenna is independent of one possible jump of the dielectric constant. So that can a low-permeability carrier material for the spiral antenna be selected, whereby a good radiation is achieved.
  • a high-permeability carrier material for the Coplanar line can be selected, thereby reducing the Length of coplanar allows and parasitic Radiation from the coplanar line is suppressed, so that the coplanar line from the radiation field of the spiral antenna can be made independently.
  • coplanar line At least partially designed as a taper .. On this Way is not an additional network for customizing the Impedance of the coplanar line to the input impedance of the Spiral antenna required.
  • FIG. 1 shows a three-dimensional view a spiral antenna with a coplanar line.
  • Figure 2 a Top view of a tapered coplanar line
  • Figure 3 a Top view of a spiral antenna with current vectors for an omnidirectional radiation mode
  • Figure 4 a Spiral antenna with current vectors for a radiation mode with Directional radiation
  • Figure 5 with a three symmetrical electric field distribution
  • Figure 6 a Dreitor with asymmetric electric field distribution.
  • Fig. 1, 1 denotes a spiral antenna having a first spiral arm 11, a second spiral arm 12, a third Sprialarm 13 and a fourth spiral arm 14 includes.
  • the first spiral arm 11 a first inner Spiralarmende 5, the second spiral arm 12th a second inner Spiralarmende 6, the third spiral arm 13th a third inner Spiralarmende 7 and the fourth spiral arm 14, a fourth inner Spiralarmende 8 on.
  • the third inner Spiralarmende 7 is due to the perspective Representation not visible in Figure 1, but is in the Top view according to Figure 3 and Figure 4 shown.
  • the four Spiral arms 11, 12, 13, 14 are guided approximately parallel.
  • FIG. 1 denotes a coplanar line with a first inner conductor 21, a first one Reference potential area 22 and a second Reference potential surface 23.
  • the four spiral arms 11, 12, 13, 14 are made of electrically conductive material and on a first carrier material 45 applied.
  • the spiral arms 11, 12, 13, 14 may be made of a metal, for example be formed.
  • the first inner conductor 21, the first Reference potential area 22 and the second Reference potential area 23 are also made of electrical conductive material formed and on a second Carrier material 50 applied.
  • the first carrier material 45 and the second carrier material 50 may be the act same carrier material.
  • the first substrate 45 may be different from the second substrate 50 be.
  • first inner Spiralarmende 5 Via an electrically conductive first bridge 40, the for example, applied to the first substrate 45 is the first inner Spiralarmende 5 with the third inner Spiralarmende 7 electrically connected.
  • first inner Spiralarmende 5 and the third inner Spiralarmende 7 there are the first inner Spiralarmende 5 and the third inner Spiralarmende 7 according to Figure 3 and Figure 4 each other across from.
  • second inner Spiralarmende 6 and the fourth inner Spiralarmende 8 are shown in FIG 3 and FIG 4 facing each other, but without an electric conductive bridge to be interconnected.
  • the Feeding the spiral arms 11, 12, 13, 14 with from the Spiral antenna 1 signals to be radiated via the corresponding inner Spiralarmenden 5, 6, 7, 8 and the Coplanar line 2. According to FIG.
  • the coplanar line is the second arranged perpendicular to the plane of the spiral antenna 1 and in the center of the spiral antenna 1 out. This is the first one Inner conductor 21 electrically conductive with the first bridge 40th connected.
  • the first reference potential area 22 is electrical conductively connected to the second inner Spiralarmende 6.
  • the second reference potential area 23 is electrically conductive connected to the fourth inner Spiralarmende 8.
  • the Coplanar line 2 is used to feed the spiral antenna 1 with can be radiated from the spiral antenna 1 signals and can additionally or alternatively also for the reception of signals be used by the spiral antenna 1.
  • the spiral antenna 1 is called self-complementary, when her spiral arms 11, 12, 13, 14 at a rotation of 45 ° be fully mapped to the areas that precede the Rotation the free spaces between the spiral arms 11, 12, 13, 14 formed. Accordingly, in such a rotation the existing free spaces before the rotation completely Areas shown before the rotation of the spiral arms 11, 12, 13, 14 formed.
  • the axis of rotation goes in both cases through the center of the spiral antenna 1, perpendicular to the plane of the Spiral antenna 1, and is referred to below as the central axis designated.
  • the width of the spiral arms 11, 12, 13, 14 chosen so is that the spiral is self-complementary, then yields an input impedance at the inner Spiralarmenden 5, 6, 7, 8 from 94 ⁇ .
  • the input impedance increases with thinner expectant spiral arms and sink with wider spiral arms, each in proportion to the width of the spaces between the Spiral arms 11, 12, 13, 14.
  • the adaptation of this impedance the conventionally required impedance of 50 ⁇ requires one Impedance transformation, for example, by taping the coplanar line 2 can be achieved.
  • FIG. 2 the coplanar line 2 again shown alone, where same reference numerals same elements as in Fig. 1st mark.
  • Figure 1 and Figure 2 widen the first inner conductor 21, the first reference potential surface 22 and the second reference potential area 23 starting from the Connections to the spiral antenna 1 towards a in Figure 1 and Figure 2, not shown food and / or Receiving network on the spiral antenna 1 facing away Page of the coplanar line 2.
  • the distribution is according to Figure 1 and Figure 2 linear, so that a linear Taptation the coplanar line 2 results. It can, however provided a non-linear tapering of the coplanar line be, for example, an exponential taping.
  • the length, on which the coplanar line 2 is tapped, must at least a quarter of the wavelength of the average operating frequency the spiral antenna 1 amount.
  • the spiral antenna 1 Via the coplanar line 2, the spiral antenna 1 on be fed in a simple way for emitting signals, where two different emission characteristics are generated can be.
  • this is an omnidirectional one Radiation characteristic with a zero point perpendicular to Spiral antenna plane 1.
  • the omnidirectional radiation pattern is particularly advantageous for the mobile Use with terrestrial radio services. To change this is a radiation characteristic with a Main beam direction perpendicular to the plane of the spiral antenna 1, using circular polarization for the Use with satellite-based navigation u. Communication services is particularly suitable.
  • the Spiral antenna 1 can thus be a first or omnidirectional mode with an omnidirectional radiation characteristic and a second or zenith mode with a Radiation characteristic, the main beam direction perpendicular to the plane of the spiral antenna 1 and in hereinafter referred to as zenith radiation realize.
  • the first spiral arm 11 and the third spiral arm 13 are fed in phase.
  • the second spiral arm 12 and the fourth spiral arm 14 are fed in-phase, but out of phase with respect to the first spiral arm 11 and the third spiral arm 13.
  • the current vectors of adjacent spiral arms at their inner spiral arm ends are in each case opposite in phase, ie phase-shifted by 180 °.
  • the spiral antenna 1 radiates from where currents in adjacent spiral arms are in phase. Due to the different path lengths of the spiral arms from a first fixed angle ⁇ o to a second fixed angle ⁇ 1 , the phase difference between the waves running in adjacent spiral arms changes.
  • the two fixed angles ⁇ o , ⁇ 1 are defined in a cylindrical coordinate system whose central axis runs perpendicularly through the center of the spiral antenna 1.
  • the phase difference of 180 ° between adjacent spiral arms at the feed points or at the inner spiral arm ends in the center of the spiral antenna is reduced to 0 ° at a first radius r 1 .
  • Equal phase between adjacent spiral arms can be achieved with a path difference of a wavelength ⁇ or a multiple of the wavelength ⁇ between points symmetrical to the central axis of the spiral antenna 1 opposite points of these spiral arms, since currents at such point symmetrically opposite points regardless of their distance from the center of the spiral antenna 1 in directed opposite directions in space.
  • This path difference corresponds to the distance to be traveled between the opposite points on the adjacent spiral arms.
  • the currents are then directed as shown in Figure 3 in opposite directions in space.
  • said path difference corresponds to the wavelength ⁇ .
  • the propagation speed of the wave on the spiral antenna 1 is indicated by c.
  • the spiral antenna 1 radiates in omnidirectional mode only above the first lower limit frequency f min1 . Due to the fact that currents are directed at point-symmetrically opposite points in opposite spatial directions, the radiation contributions of these currents perpendicular to the plane of the spiral antenna 1 cancel each other and constructively overlap in directions parallel to the plane of the spiral antenna 1. Thus, the omnidirectional radiation mode is achieved.
  • the second spiral arm 12 and the fourth spiral arm 14 are fed with a 180 ° phase difference, while the first spiral arm 11 and the third spiral arm 13 are connected via the first bridge 40 to the first inner conductor 21 of the coplanar line 2 , lie at a fixed zero potential in the middle between the potentials on the second spiral arm 12 and the fourth spiral arm 14.
  • the emission region can be determined in zenith mode. Radiation also occurs in zenith mode where currents in adjacent spiral arms are in phase, even though they are separated by a de-energized further spiral arm. The currents in adjacent spiral arms 12, 14 separated by only the first spiral arm 11 or the third spiral arm 13 are then in phase when the path difference on the second spiral arm 12 and on the fourth spiral arm 14, respectively, is between point symmetrical points ⁇ / 2 or odd Multiple of it amounts.
  • a spiral antenna in shape an Archimedean spiral According to Figures 3 and 4, a spiral antenna in shape an Archimedean spiral.
  • the shape of the Spiral antenna 1, however, is not purely Archimedean Spirals limited.
  • the spiral structure can, for example also logarithmic-periodic.
  • Fig. 5 denotes 55 a so-called three-port with a first goal 60, a second goal 65 and a third goal 70:
  • the three-port 55 comprises a third carrier material 75, the same or different from the first carrier material 45 or to the second carrier material 50 may be.
  • This third carrier material 75 is a second inner conductor 30 and arranged perpendicular thereto a third inner conductor 31, wherein the second inner conductor 30 and the third inner conductor 31 are galvanically separated from each other and thus not in electrically conductive contact each other.
  • the three-goal 55 further includes a third reference potential area 35 and a fourth reference potential area 36.
  • the second Inner conductor 30, the third inner conductor 31, the third Reference potential area 35 and the fourth Reference potential surface 36 are electrically conductive, for example, metallic, formed.
  • the second Inner conductor 30 and the third inner conductor 31 are through the third substrate 75 electrically from the third Reference potential area 35 and the fourth Reference potential surface 36 in the form of the respective Inner conductor 30, 31 surrounding slot isolated.
  • the second Inner conductor 30 divides the Dreittors 55 in a left and a right half up. In the left half runs the third Inner conductor 31 perpendicular to the second inner conductor 30.
  • Die third reference potential area 35 is exclusively in the left half of the three-door 55th
  • the fourth Reference potential area 36 is located exclusively in the right half of the three-goal 55th
  • the first goal 60 of the Dreitors 55 is facing away from the spiral antenna 1 end of Coplanar line 2 connected
  • the second Inner conductor 30 is connected to the first inner conductor 21.
  • the third reference potential area 35 is with the second Reference potential surface 23 connected to the first port 60.
  • the fourth reference potential area 36 is at the first gate 60 with the first reference potential surface 22 connected.
  • the three-port 55 includes the second gate 65, that also out the first inner conductor 30, the third reference potential surface 35 and the fourth reference potential surface 36 is formed and for feeding signals for the omnidirectional Fashion serves.
  • the third gate 70 is formed by the third inner conductor 31 and the third reference potential area 35 and serves to feed in signals for radiation in Zenit mode.
  • metallic bridge 32 are the third Reference potential area 35 and the fourth Reference potential surface 36 electrically conductive with each other connected.
  • metallic bridge 33 is the third Inner conductor 31 with the fourth reference potential surface 36th electrically connected.
  • the second bridge 32 is included from the third bridge 33 toward the second gate 65 back spaced.
  • the generation of the omnidirectional radiation characteristic is achieved in that the electric field distribution on the feeding coplanar line 2 is symmetrical. This corresponds to the so-called "odd mode".
  • This symmetrical electric field distribution is in a snapshot according to Figure 5 by arrows in through the third carrier material 75 formed slots between the third Reference potential area 35 or the fourth Reference potential surface 36 and the second inner conductor 30th shown.
  • the second bridge 32, the third Reference potential area 35 and the fourth Reference potential area 36 on both sides of the second Inner conductor 30 holds at the same potential, it acts not disturbing, because the "Odd Mode" the third Reference potential area 35 and the fourth Reference potential surface 36 from the outset to the same Potential to be laid.
  • the third Inner conductor 31 is thus of the second inner conductor 30th decoupled.
  • FIG. 6 outlines this field distribution as "Even-mode" is called, with appropriate arrows in the slots formed by the third substrate 75 between the third reference potential area 35 or the fourth reference potential surface 36 and the second inner conductor 30. Mark in FIG. 6 same reference numerals same elements as in FIG 5, since it is the same three-goal 55.
  • the Asymetric electric field distribution can be achieved by the described arrangement of the second inner conductor 30, the third inner conductor 31, the second bridge 32 and the third bridge 33 on the three-gate 55 are generated.
  • the generated at the third gate 70 "odd mode" creates a potential difference between the third Inner conductor 31 and the third reference potential surface 35th Die fourth reference potential area 36 is through the third bridge 33 at the same potential as the third inner conductor 31. This creates a potential difference between the third reference potential area 35 and the fourth Reference potential area 36.
  • This potential difference calls the "Even Mode", which is in both directions between the first port 60 and the second port 65 spreads.
  • the second bridge 32 is provided, which is the third Reference potential area 35 and the fourth Reference potential surface 36 holds at the same potential and so that the spread of "even mode" suppressed.
  • the third port 70 is from the second port 65 decoupled. Since the described operation both for the transmission as well as for the reception with the spiral antenna 1 is valid, at the second gate 65 and at the third gate 70 two decoupled signals are received from the different spatial directions on the spiral antenna. 1 to meet.
  • the generation of the omnidirectional mode with the described combined feed takes place frequency independent, while dependent on the position.der second bridge 32 on the generation of the zenith mode certain frequency bands is limited. It can over the Three-door 55 at the same time the omnidirectional fashion and the Zenith mode are fed. Also a simultaneous Receiving is in omnidirectional mode and zenith mode possible with the three-port 55 described. That too Simultaneous sending in one and receiving in the corresponding other fashion is possible with the three-port 55 described.
  • the lower cutoff frequency for the radiation from the Spiral antenna 1 in omnidirectional mode or in zenith mode is also due to the length of the taping on the Coplanar line 2 affected.
  • the lower Cutoff frequency can be lowered when the taping on the Coplanar 2 is extended.
  • the transition from the coplanar line 2 to the spiral antenna 1 is independent of the jump in the dielectric constant the carrier materials. It can be a mapremittives first carrier material 45 for the spiral antenna 1 be selected, whereby good radiation is achieved at simultaneous selection of a high-permeability second Support material 50 for the coplanar line 2, which is a Length reduction of the coplanar line 2 allows and parasitic radiation from the coplanar line 2 suppressed or the coplanar line 2 from the radiation field of Spiral antenna 1 makes independent.
  • the spiral antenna 1 is particularly for the flat installation suitable for the bodywork of a motor vehicle, especially in the roof or in the boot lid of the Motor vehicle, since this aerodynamic and aesthetic installation can be realized. In this way results in a simple, holeless assembly of Spiral antenna in the bodywork of the motor vehicle, thereby Corrosive foci in the body are avoided.

Description

Stand der TechnikState of the art

Die Erfindung geht von einer Spiralantenne nach der Gattung des Hauptanspruchs aus.The invention is based on a spiral antenna according to the species of the main claim.

Aus dem Buch "Four-Arm Spiral Antennas" von R.G. Corzine, J.A. Moskos, Artech House, 1990 sind bereits vierarmige Spiral- antennen bekannt.From the book "Four-Arm Spiral Antennas" by R.G. Corzine, YES. Moskos, Artech House, 1990 are already four-armed Spiral antennas known.

Die DE 37 39 205 A zeigt eine vierarmige Spiralantenne, deren Spiralarme an zwei voneinander getrennte Koaxialleitungen zur Speisung und/oder zum Empfang von Signalen angeschlossen sind.DE 37 39 205 A shows a four-armed spiral antenna whose spiral arms on two separate coaxial lines for feeding and / or receiving Signals are connected.

Li M.-Y. et al "Broadband coplanar waveguide-coplanar strip-fed spiral antenna", Electronics Letters, GB, IEE Tevenage, Bd. 31, Nr. 1, 5. Januar 1995, Seiten 4-5, ISSN: 0013-5194; XCP000504141 zeigt eine zweiarmige Spiralantenne, die über einen mit Koplanarleitungen ausgestalteten Balun an eine Koaxialleitung angeschlossen sind.Li M.-Y. et al "Broadband coplanar waveguide-coplanar strip-fed spiral antenna", Electronics Letters, GB, IEE Tevenage, Vol. 31, No. 1, 5 January 1995, pages 4-5, ISSN: 0013-5194; XCP000504141 shows a two-armed spiral antenna, which has a with Coplanar lines configured balun are connected to a coaxial line.

Das US-Patent 3 019 439 zeigt eine vierarmige Spiralantenne, deren Arme an eine gemeinsame Koaxialleitung angeschlossen sind.US Pat. No. 3,019,439 shows a four-armed spiral antenna whose arms are attached to a common coaxial line are connected.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Spiralantenne mit den Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß die Spiralarme an ihrem jeweiligen inneren Spiralarmende an eine Koplanarleitung zur Speisung und /oder zum Empfang von Signalen angeschlossen sind. Durch Verwendung der Koplanarleitung kann auf Speisenetzwerke zur Einstellung der Phasenlagen an den Einspeisepunkten der Spiralantenne beziehungsweise zur Symmetrierung oder Asymmetrierung des einzuspeisenden elektrischen Feldes verzichtet und damit Aufwand eingespart werden.The spiral antenna according to the invention with the features of Main claim has the advantage that the Spiral arms at their respective inner Spiralarmende to a Coplanar line for feeding and / or receiving Signals are connected. By using the Coplanar line can be used on feed networks to adjust the Phase angles at the feed points of the spiral antenna or for symmetrization or asymmetry of the dispensed fed electric field and thus Effort can be saved.

Ein weiterer Vorteil besteht darin, daß die Spiralantenne durch die Verwendung der Koplanarleitung sowohl in einem ersten Mode zur Erzeugung einer omnidirektionalen Abstrahlcharakteristik als auch in einem zweiten Mode zu Another advantage is that the spiral antenna by using the coplanar line both in one first mode for generating an omnidirectional Abstrahlcharakteristik as well as in a second mode

Erzeugung einer gerichteten Abstrahlcharakteristik senkrecht zur Spiralebene betrieben werden kann. Auf diese Weise läßt sich die Spiralantenne als Kombinationsantenne für verschiedene Funkdienste nutzen.Generation of a directional radiation characteristic vertically can be operated to the spiral plane. That way the spiral antenna as a combination antenna for use different radio services.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Spiralantenne möglich.By the measures listed in the dependent claims are advantageous developments and improvements in the Main claim specified spiral antenna possible.

Besonders vorteilhaft ist es, daß die Koplanarleitung und die Spiralantenne auf verschiedenen Trägermaterialien aufgebracht werden können. Der Übergang von der Koplanarleitung zur Spiralantenne ist unabhängig von einem eventuellen Sprung der Dielektrizitätskonstanten. Damit kann ein niederpermittives Trägermaterial für die Spiralantenne gewählt werden, womit eine gute Abstrahlung erreicht wird. Gleichzeitig kann ein hochpermittives Trägermaterial für die Koplanarleitung gewählt werden, wodurch eine Reduktion der Länge der Koplanarleitung ermöglicht und eine parasitäre Abstrahlung von der Koplanarleitung unterdrückt wird, so daß die Koplanarleitung vom Strahlungsfeld der Spiralantenne unabhängig gemacht werden kann.It is particularly advantageous that the coplanar line and the spiral antenna on different substrates can be applied. The transition from the Coplanar to the spiral antenna is independent of one possible jump of the dielectric constant. So that can a low-permeability carrier material for the spiral antenna be selected, whereby a good radiation is achieved. At the same time, a high-permeability carrier material for the Coplanar line can be selected, thereby reducing the Length of coplanar allows and parasitic Radiation from the coplanar line is suppressed, so that the coplanar line from the radiation field of the spiral antenna can be made independently.

Ein weiterer Vorteil besteht darin, daß die Koplanarleitung zumindest teilweise als Taper ausgebildet ist..Auf diese Weise ist kein zusätzliches Netzwerk zur Anpassung der Impedanz der Koplanarleitung an die Eingangsimpedanz der Spiralantenne erforderlich.Another advantage is that the coplanar line At least partially designed as a taper .. On this Way is not an additional network for customizing the Impedance of the coplanar line to the input impedance of the Spiral antenna required.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine dreidimensionale Ansicht einer Spiralantenne mit einer Koplanarleitung. Figur 2 eine Draufsicht auf eine getaperte Koplanarleitung, Figur 3 eine Draufsicht auf eine Spiralantenne mit Stromvektoren für einen omnidirektionalen Strahlungsmode, Figur 4 eine Spiralantenne mit Stromvektoren für einen Strahlungsmode mit gerichteter Abstrahlung, Figur 5 ein Dreitor mit symmetrischer elektrischer Feldverteilung und Figur 6 ein Dreitor mit asymmetrischer elektrischer Feldverteilung.An embodiment of the invention is in the drawing shown and in the following description in more detail explained. FIG. 1 shows a three-dimensional view a spiral antenna with a coplanar line. Figure 2 a Top view of a tapered coplanar line, Figure 3 a Top view of a spiral antenna with current vectors for an omnidirectional radiation mode, Figure 4 a Spiral antenna with current vectors for a radiation mode with Directional radiation, Figure 5 with a three symmetrical electric field distribution and Figure 6 a Dreitor with asymmetric electric field distribution.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In Figur 1 kennzeichnet 1 eine Spiralantenne, die einen ersten Spiralarm 11, einen zweiten Spiralarm 12, einen dritten Sprialarm 13 und einen vierten Spiralarm 14 umfaßt. Im Zentrum der Spiralantenne weist der erste Spiralarm 11 ein erstes inneres Spiralarmende 5, der zweite Spiralarm 12 ein zweites inneres Spiralarmende 6, der dritte Spiralarm 13 ein drittes inneres Spiralarmende 7 und der vierte Spiralarm 14 ein viertes inneres Spiralarmende 8 auf. Das dritte innere Spiralarmende 7 ist aufgrund der perspektivischen Darstellung in Figur 1 nicht erkennbar, ist jedoch in der Draufsicht gemäß Figur 3 und Figur 4 dargestellt. Die vier Spiralarme 11, 12, 13, 14 sind etwa parallel geführt. Weiterhin kennzeichnet in Figur 1, 2 eine Koplanarleitung mit einem ersten Innenleiter 21, einer ersten Bezugspotentialfläche 22 und einer zweiten Bezugspotentialfläche 23. Die vier Spiralarme 11, 12, 13, 14 sind aus elektrisch leitfähigem Material gebildet und auf einem ersten Trägermaterial 45 aufgebracht. Die Spiralarme 11, 12, 13, 14 können beispielsweise aus einem Metall gebildet sein. Der erste Innenleiter 21, die erste Bezugspotentialfläche 22 und die zweite Bezugspotentialfläche 23 sind ebenfalls aus elektrisch leitfähigem Material ausgebildet und auf einem zweiten Trägermaterial 50 aufgebracht. Bei dem ersten Trägermaterial 45 und dem zweiten Trägermaterial 50 kann es sich um das gleiche Trägermaterial handeln. Das erste Trägermaterial 45, kann jedoch vom zweiten Trägermaterial 50 auch verschieden sein. Über eine elektrisch leitfähige erste Brücke 40, die beispielsweise auf das erste Trägermaterial 45 aufgebracht ist, ist das erste innere Spiralarmende 5 mit dem dritten inneren Spiralarmende 7 elektrisch leitend verbunden. Dabei liegen das erste innere Spiralarmende 5 und das dritte innere Spiralarmende 7 gemäß Figur 3 und Figur 4 einander gegenüber. Auch das zweite innere Spiralarmende 6 und das vierte innere Spiralarmende 8 liegen gemäß Figur 3 und Figur 4 einander gegenüber, ohne jedoch durch eine elektrisch leitfähige Brücke miteinander verbunden zu sein. Die Speisung der Spiralarme 11, 12, 13, 14 mit von der Spiralantenne 1 abzustrahlenden Signalen erfolgt über die entsprechenden inneren Spiralarmenden 5, 6, 7, 8 und die Koplanarleitung 2. Gemäß Figur 1 ist die Koplanarleitung 2 senkrecht zur Ebene der Spiralantenne 1 angeordnet und in die Mitte der Spiralantenne 1 geführt. Dabei ist der erste Innenleiter 21 elektrisch leitend mit der ersten Brücke 40 verbunden. Die erste Bezugspotentialfläche 22 ist elektrisch leitend mit dem zweiten inneren Spiralarmende 6 verbunden. Die zweite Bezugspotentialfläche 23 ist elektrisch leitend mit dem vierten inneren Spiralarmende 8 verbunden. Die Koplanarleitung 2 dient zur Speisung der Spiralantenne 1 mit von der Spiralantenne 1 abzustrahlenden Signalen und kann zusätzlich oder alternativ auch zum Empfang von Signalen durch die Spiralantenne 1 verwendet werden.In Fig. 1, 1 denotes a spiral antenna having a first spiral arm 11, a second spiral arm 12, a third Sprialarm 13 and a fourth spiral arm 14 includes. In the center of the spiral antenna, the first spiral arm 11 a first inner Spiralarmende 5, the second spiral arm 12th a second inner Spiralarmende 6, the third spiral arm 13th a third inner Spiralarmende 7 and the fourth spiral arm 14, a fourth inner Spiralarmende 8 on. The third inner Spiralarmende 7 is due to the perspective Representation not visible in Figure 1, but is in the Top view according to Figure 3 and Figure 4 shown. The four Spiral arms 11, 12, 13, 14 are guided approximately parallel. Furthermore, in Figure 1, 2 denotes a coplanar line with a first inner conductor 21, a first one Reference potential area 22 and a second Reference potential surface 23. The four spiral arms 11, 12, 13, 14 are made of electrically conductive material and on a first carrier material 45 applied. The spiral arms 11, 12, 13, 14 may be made of a metal, for example be formed. The first inner conductor 21, the first Reference potential area 22 and the second Reference potential area 23 are also made of electrical conductive material formed and on a second Carrier material 50 applied. In the first carrier material 45 and the second carrier material 50 may be the act same carrier material. The first substrate 45, however, may be different from the second substrate 50 be. Via an electrically conductive first bridge 40, the for example, applied to the first substrate 45 is the first inner Spiralarmende 5 with the third inner Spiralarmende 7 electrically connected. there are the first inner Spiralarmende 5 and the third inner Spiralarmende 7 according to Figure 3 and Figure 4 each other across from. Also, the second inner Spiralarmende 6 and the fourth inner Spiralarmende 8 are shown in FIG 3 and FIG 4 facing each other, but without an electric conductive bridge to be interconnected. The Feeding the spiral arms 11, 12, 13, 14 with from the Spiral antenna 1 signals to be radiated via the corresponding inner Spiralarmenden 5, 6, 7, 8 and the Coplanar line 2. According to FIG. 1, the coplanar line is the second arranged perpendicular to the plane of the spiral antenna 1 and in the center of the spiral antenna 1 out. This is the first one Inner conductor 21 electrically conductive with the first bridge 40th connected. The first reference potential area 22 is electrical conductively connected to the second inner Spiralarmende 6. The second reference potential area 23 is electrically conductive connected to the fourth inner Spiralarmende 8. The Coplanar line 2 is used to feed the spiral antenna 1 with can be radiated from the spiral antenna 1 signals and can additionally or alternatively also for the reception of signals be used by the spiral antenna 1.

Die Spiralantenne 1 wird als selbstkomplementär bezeichnet, wenn ihre Spiralarme 11, 12, 13, 14 bei einer Drehung um 45° vollständig auf die Bereiche abgebildet werden, die vor der Drehung die Freiräume zwischen den Spiralarmen 11, 12, 13, 14 bildeten. Entsprechend werden bei einer solchen Drehung die vor der Drehung bestehenden Freiräume vollständig auf Bereiche abgebildet, die vor der Drehung die Spiralarme 11, 12, 13, 14 bildeten. Die Drehachse geht in beiden Fällen durch die Mitte der Spiralantenne 1, senkrecht zur Ebene der Spiralantenne 1, und wird im folgenden als Mittelachse bezeichnet.The spiral antenna 1 is called self-complementary, when her spiral arms 11, 12, 13, 14 at a rotation of 45 ° be fully mapped to the areas that precede the Rotation the free spaces between the spiral arms 11, 12, 13, 14 formed. Accordingly, in such a rotation the existing free spaces before the rotation completely Areas shown before the rotation of the spiral arms 11, 12, 13, 14 formed. The axis of rotation goes in both cases through the center of the spiral antenna 1, perpendicular to the plane of the Spiral antenna 1, and is referred to below as the central axis designated.

Wenn die Breite der Spiralarme 11, 12, 13, 14 so gewählt ist, daß die Spirale selbstkomplementär ist, dann ergibt sich eine Eingangsimpedanz an den inneren Spiralarmenden 5, 6, 7, 8 von 94Ω. Die Eingangsimpedanz steigt mit dünner werdenden Spiralarmen und sinkt mit breiteren Spiralarmen, jeweils im Verhältnis zur Breite der Freiräume zwischen den Spiralarmen 11, 12, 13, 14. Die Anpassung dieser Impedanz an die herkömmlich geforderte Impedanz von 50Ω erfordert eine Impedanztransformation, die beispielsweise durch Taperung der Koplanarleitung 2 erzielt werden kann. In Figur 2 ist die Koplanarleitung 2 nochmals allein dargestellt, wobei gleiche Bezugszeichen gleiche Elemente wie in Fig. 1 kennzeichnen. Gemäß Figur 1 und Figur 2 verbreitern sich der erste Innenleiter 21, die erste Bezugspotentialfläche 22 und die zweite Bezugspotentialfläche 23 ausgehend von den Anschlüssen an die Spiralantenne 1 in Richtung zu einem in Figur 1 und Figur 2 nicht dargestellten Speise- und/oder Empfangsnetzwerk auf der der Spiralantenne 1 abgewandten Seite der Koplanarleitung 2. Die Verbreitung ist dabei gemäß Figur 1 und Figur 2 linear, so daß sich eine lineare Taperung der Koplanarleitung 2 ergibt. Es kann jedoch auch eine nichtlineare Taperung der Koplanarleitung vorgesehen sein, beispielsweise eine exponentielle Taperung. Die Länge, auf der die Koplanarleitung 2 getapert ist, muß mindestens ein Viertel der Wellenlänge der mittleren Betriebsfrequenz der Spiralantenne 1 betragen. Je nachdem, wie breit die Spiralarme 11, 12, 13, 14 sind und welche Eingangsimpedanz sich dadurch an den inneren Spiralarmenden 5, 6, 7, 8 ergibt, kann durch entsprechende Taperung der Koplanarleitung 2 diese Eingangsimpedanz an die geforderten 50Ω angepaßt werden, so daß durch die Taperung die Koplanarleitung 2 flexibel an die Geometrie der Spiralantenne 1 angepaßt werden kann.If the width of the spiral arms 11, 12, 13, 14 chosen so is that the spiral is self-complementary, then yields an input impedance at the inner Spiralarmenden 5, 6, 7, 8 from 94Ω. The input impedance increases with thinner expectant spiral arms and sink with wider spiral arms, each in proportion to the width of the spaces between the Spiral arms 11, 12, 13, 14. The adaptation of this impedance the conventionally required impedance of 50Ω requires one Impedance transformation, for example, by taping the coplanar line 2 can be achieved. In FIG. 2 the coplanar line 2 again shown alone, where same reference numerals same elements as in Fig. 1st mark. According to Figure 1 and Figure 2 widen the first inner conductor 21, the first reference potential surface 22 and the second reference potential area 23 starting from the Connections to the spiral antenna 1 towards a in Figure 1 and Figure 2, not shown food and / or Receiving network on the spiral antenna 1 facing away Page of the coplanar line 2. The distribution is according to Figure 1 and Figure 2 linear, so that a linear Taperung the coplanar line 2 results. It can, however provided a non-linear tapering of the coplanar line be, for example, an exponential taping. The length, on which the coplanar line 2 is tapped, must at least a quarter of the wavelength of the average operating frequency the spiral antenna 1 amount. Depending on how wide the Spiral arms 11, 12, 13, 14 are and which input impedance thereby at the inner Spiralarmenden 5, 6, 7, 8th can, by appropriate taping the Coplanar line 2 this input impedance to the required 50Ω be adapted so that by the taping the Coplanar 2 flexible to the geometry of Spiral antenna 1 can be adjusted.

Über die Koplanarleitung 2 kann die Spiralantenne 1 auf einfache Weise zum Abstrahlen von Signalen gespeist werden, wobei zwei verschiedene Abstrahlcharakteristiken erzeugt werden können. Zum einen ist dies eine omnidirektionale Abstrahlcharakteristik mit einer Nullstelle senkrecht zur Ebene der Spiralantenne 1. Die omnidirektionale Abstrahlcharakteristik ist besonders vorteilhaft für den mobilen Einsatz mit terrestrischen Funkdiensten geeignet. Zum andern ist dies eine Abstrahlcharakteristik mit einer Hauptstrahlrichtung senkrecht zur Ebene der Spiralantenne 1, die unter Verwendung von zirkularer Polarisation für den Einsatz mit satellitengestützten Navigations- u. Kommunikationsdiensten besonders geeignet ist. Mit der Spiralantenne 1 läßt sich also ein erster oder omnidirektionaler Mode mit einer omnidirektionalen Abstrahlcharakteristik und ein zweiter oder Zenit-Mode mit einer Abstrahlcharakteristik, die eine Hauptstrahlrichtung senkrecht zur Ebene der Spiralantenne 1 aufweist und im folgenden als Zenit-Strahlung bezeichnet wird, realisieren.Via the coplanar line 2, the spiral antenna 1 on be fed in a simple way for emitting signals, where two different emission characteristics are generated can be. For one, this is an omnidirectional one Radiation characteristic with a zero point perpendicular to Spiral antenna plane 1. The omnidirectional radiation pattern is particularly advantageous for the mobile Use with terrestrial radio services. To change this is a radiation characteristic with a Main beam direction perpendicular to the plane of the spiral antenna 1, using circular polarization for the Use with satellite-based navigation u. Communication services is particularly suitable. With the Spiral antenna 1 can thus be a first or omnidirectional mode with an omnidirectional radiation characteristic and a second or zenith mode with a Radiation characteristic, the main beam direction perpendicular to the plane of the spiral antenna 1 and in hereinafter referred to as zenith radiation realize.

Zur Erläuterung der Erzeugung der verschiedenen Modes oder Abstrahlcharakteristiken ist in Figur 3 und Figur 4 dieselbe Spiralantenne 1 dargestellt, wobei gleiche Bezugszeichen gleiche Elemente kennzeichnen. Die Einfach-Pfeile in den Figuren 3 und 4 geben dabei Stromvektoren auf den Spiralarmen 11, 12, 13, 14 in einer Momentaufnahme wieder. In Fig. 3 ist dabei eine Stromverteilung für den omnidirektionalen Mode dargestellt, während in Figur 4 eine Stromverteilung für den Zenit-Mode gezeigt ist. To explain the generation of the different modes or Radiation characteristics is the same in Figure 3 and Figure 4 Spiral antenna 1 shown, wherein like reference numerals Identify the same elements. The simple arrows in the Figures 3 and 4 give current vectors on the Spiral arms 11, 12, 13, 14 in a snapshot again. In Fig. 3 is a current distribution for the omnidirectional mode, while in Figure 4 a Power distribution for the zenith mode is shown.

Beim omnidirektionalen Mode gemäß Figur 3 werden der erste Spiralarm 11 und der dritte Spiralarm 13 gleichphasig gespeist. Auch der zweite Spiralarm 12 und der vierte Spiralarm 14 werden gleichphasig gespeist, jedoch um 180° phasenverschoben gegenüber dem ersten Spiralarm 11 und dem dritten Spiralarm 13. Dies ist durch die Richtung der Stromvektoren an den inneren Spiralarmenden 5, 6, 7, 8, also an den Einspeisepunkten, gemäß der in Figur 3 skizzierten Momentaufnahme der Stromverteilung dargestellt. Gemäß Figur 3 sind dabei die Stromvektoren benachbarter Spiralarme an deren inneren Spiralarmenden jeweils gegenphasig, also um 180° phasenverschoben. Mit Hilfe dieser Stromverteilung an den Einspeisepunkten und geometrischer Betrachtungen läßt sich eine Abstrahlregion der Spiralantenne 1 bestimmen. Die Spiralantenne 1 strahlt dort ab, wo Ströme in benachbarten Spiralarmen in Phase sind. Aufgrund der unterschiedlichen Weglängen der Spiralarme von einem ersten festen Winkel o bis zu einem zweiten festen Winkel 1 verändert sich der Phasenunterschied zwischen den in benachbarten Spiralarmen laufenden Wellen. Dabei sind die beiden festen Winkel o, 1 in einem zylindrischen Koordinatensystem definiert, dessen Mittelachse senkrecht durch die Mitte der Spiralantenne 1 läuft. Der Phasenunterschied von 180° zwischen benachbarten Spiralarmen an den Einspeisepunkten beziehungsweise an den inneren Spiralarmenden in der Mitte der Spiralantenne wird bei einem ersten Radius r1 auf 0° reduziert. Gleichphasigkeit zwischen benachbarten Spiralarmen kann bei einem Wegunterschied von einer Wellenlänge λ oder einem Vielfachen der Wellenlänge λ zwischen punktsymmetrisch zur Mittelachse der Spiralantenne 1 einander gegenüberliegenden Punkten dieser Spiralarme erreicht werden, da Ströme an solchen punktsymmetrisch gegenüberliegenden Punkten unabhängig von deren Abstand zur Mitte der Spiralantenne 1 in entgegengesetzte Raumrichtungen gerichtet sind. Dieser Wegunterschied entspricht dabei der zwischen den gegenüberliegenden Punkten zurückzulegende Strecke auf den benachbarten Spiralarmen. An diesen einander gegenüberliegenden Punkten der Spiralarme sind die Ströme dann wie in Figur 3 dargestellt in entgegengesetzte Raumrichtungen gerichtet. Bei der unter dieser Bedingung am nächsten zur Mitte der Spiralantenne 1 liegenden Abstrahlregion der Spiralantenne 1 entspricht der genannte Wegunterschied der Wellenlänge λ. Damit tritt die Abstrahlung dort auf, wo der Umfang der Spiralarme 2λ beträgt, wobei λ die Wellenlänge der Welle auf den Spiralarmen ist. Da der erste Radius r1 nicht größer sein kann als der Radius r der Spiralantenne 1 ist mit 2λ = 2πr1= 2πr eine Grenzbedingung gegeben. Daraus ergibt sich eine erste untere Grenzfrequenz fmin1 der Spiralantenne 1 im omnidirektionalen Mode zu fmin1 = c/(πr). In the omnidirectional mode according to FIG. 3, the first spiral arm 11 and the third spiral arm 13 are fed in phase. Also, the second spiral arm 12 and the fourth spiral arm 14 are fed in-phase, but out of phase with respect to the first spiral arm 11 and the third spiral arm 13. This is by the direction of the current vectors at the inner Spiralarmenden 5, 6, 7, 8, that is at the feed points, according to the outlined in Figure 3 snapshot of the current distribution. According to FIG. 3, the current vectors of adjacent spiral arms at their inner spiral arm ends are in each case opposite in phase, ie phase-shifted by 180 °. With the aid of this current distribution at the feed-in points and geometric considerations, a radiation region of the spiral antenna 1 can be determined. The spiral antenna 1 radiates from where currents in adjacent spiral arms are in phase. Due to the different path lengths of the spiral arms from a first fixed angle  o to a second fixed angle  1 , the phase difference between the waves running in adjacent spiral arms changes. In this case, the two fixed angles  o ,  1 are defined in a cylindrical coordinate system whose central axis runs perpendicularly through the center of the spiral antenna 1. The phase difference of 180 ° between adjacent spiral arms at the feed points or at the inner spiral arm ends in the center of the spiral antenna is reduced to 0 ° at a first radius r 1 . Equal phase between adjacent spiral arms can be achieved with a path difference of a wavelength λ or a multiple of the wavelength λ between points symmetrical to the central axis of the spiral antenna 1 opposite points of these spiral arms, since currents at such point symmetrically opposite points regardless of their distance from the center of the spiral antenna 1 in directed opposite directions in space. This path difference corresponds to the distance to be traveled between the opposite points on the adjacent spiral arms. At these opposite points of the spiral arms, the currents are then directed as shown in Figure 3 in opposite directions in space. In the case of the emission region of the spiral antenna 1 which is closest to the center of the spiral antenna 1 under this condition, said path difference corresponds to the wavelength λ. Thus, the radiation occurs where the circumference of the spiral arms is 2λ, where λ is the wavelength of the wave on the spiral arms. Since the first radius r 1 can not be greater than the radius r of the spiral antenna 1 is with 2λ = 2πr 1 = 2πr given a boundary condition. This results in a first lower limit frequency f min1 of the spiral antenna 1 in the omnidirectional mode f min1 = c / (πr).

Die Ausbreitungsgeschwindigkeit der Welle auf der Spiralantenne 1 ist mit c angegeben. Die Spiralantenne 1 strahlt im omnidirektionalen Mode nur oberhalb der ersten unteren Grenzfrequenz fmin1 ab. Aufgrund der Tatsache, daß Ströme an punktsymmetrisch einander gegenüberliegenden Punkten in entgegengesetzte Raumrichtungen gerichtet sind, heben sich die Strahlungsbeiträge dieser Ströme senkrecht zur Ebene der Spiralantenne 1 auf und überlagern sich konstruktiv in Richtungen parallel zur Ebene der Spiralantenne 1. Dadurch wird der omnidirektionale Strahlungsmode erzielt.The propagation speed of the wave on the spiral antenna 1 is indicated by c. The spiral antenna 1 radiates in omnidirectional mode only above the first lower limit frequency f min1 . Due to the fact that currents are directed at point-symmetrically opposite points in opposite spatial directions, the radiation contributions of these currents perpendicular to the plane of the spiral antenna 1 cancel each other and constructively overlap in directions parallel to the plane of the spiral antenna 1. Thus, the omnidirectional radiation mode is achieved.

In Figur 3 ist der halbe für die Abstrahlung erforderliche Wegunterschied durch einen Doppelpfeil dargestellt, wobei der halbe Wegunterschied der halben Wellenlänge λ/2 entspricht, wobei bei Zürücklegung dieses Weges auf den benachbarten Spiralarmen eine Umkehr der Phasenlage erfolgt, wie an der Umkehrung der Stromvektoren in Fig. 3 dargestellt ist.In Figure 3, half is required for the radiation Path difference represented by a double arrow, where half the path difference of half wavelength λ / 2 corresponds to, with Zuückücklegung this way on the adjacent spiral arms, a reversal of the phase position, as shown in the inverse of the current vectors in Fig. 3 is.

Beim Zenit-Mode gemäß Figur 4 werden der zweite Spiralarm 12 und der vierte Spiralarm 14 mit 180° Phasendifferenz gespeist, während der erste Spiralarm 11 und der dritte Spiralarm 13, die über die erste Brücke 40 mit dem ersten Innenleiter 21 der Koplanarleitung 2 verbunden sind, auf einem festen Null-Potential in der Mitte zwischen den Potentialen auf dem zweiten Spiralarm 12 und dem vierten Spiralarm 14 liegen. Damit ergibt sich nur auf dem zweiten Spiralarm 12 und dem vierten Spiralarm 14 eine Stromverteilung, die durch die Einfachpfeile gemäß Figur 4 angegeben ist, während auf dem ersten Spiralarm 11 und dem dritten Spiralarm 13 kein Strom fließt, wobei Koppelströme von benachbarten stromführenden Spiralarmen nicht berücksichtigt werden sollen. Ebenfalls mit Hilfe der Stromverteilung an den durch das zweite innere Spiralarmende 6 und das vierte innere Spiralarmende 8 gebildeten Einspeisepunkten und geometrischen Betrachtungen wie im Fall des omnidirektionalen Modes läßt sich beim Zenit-Mode die Abstrahlregion bestimmen. Abstrahlung tritt auch beim Zenit-Mode dort auf, wo Ströme in benachbarten Spiralarmen, auch wenn diese durch einen stromlosen weiteren Spiralarm getrennt sind, in Phase sind. Die Ströme in benachbarten, nur durch den ersten Spiralarm 11 oder den dritten Spiralarm 13 getrennten Spiralarmen 12, 14 sind dann in Phase, wenn der Wegunterschied auf dem zweiten Spiralarm 12 beziehungsweise auf dem vierten Spiralarm 14 zwischen punktsymmetrisch einander gegenüberliegenden Punkten λ/2 oder ungeradzahlige Vielfache davon beträgt. Da die Ströme an den einander gegenüberliegenden Einspeisepunkten beziehungsweise am zweiten inneren Spiralarmende 6 und am vierten inneren Spiralarmende 8 in dieselbe Raumrichtung weisen, weisen unter der genannten Bedingung für den Wegunterschied die Ströme an allen jeweils punktsymmetrisch gegenüberliegenden Punkten des zweiten Spiralarms 12 und des vierten Spiralarms 14 in dieselbe Raumrichtung, so daß der Phasenunterschied auf dem zweiten Spiralarm 12 beziehungsweise auf dem vierten Spiralarm 14 zwischen diesen punktsymmetrisch gegenüberliegenden Punkten 180° beträgt. Also tritt Abstrahlung bei einem zweiten Radius r2 auf, bei dem der Umfang des zweiten Spiralarms 12 beziehungsweise des vierten Spiralarms 14 gleich der Wellenlänge λ ist. Die Grenzbedingung wird auch hier dadurch gegeben, daß der zweite Radius r2 nicht größer werden kann, als der Radius r der Spiralantenne 1. Also wird eine zweite untere Grenzfrequenz fmin2 durch λ = 2πr2 = 2πr hergeleitet und durch fmin2 = c/(2πr) definiert. Aufgrund der Tatsache, daß Ströme an punktsymmetrisch einander gegenüberliegenden Punkten des zweiten Spiralarms 12 beziehungsweise des vierten Spiralarms 14 in gleiche Raumrichtung gerichtet sind, überlagern sich die Strahlungsbeiträge der Ströme senkrecht zur Ebene der Spiralantenne 1 konstruktiv. Dadurch wird eine Abstrahlcharakteristik mit einem Maximum senkrecht zur Ebene der Spiralantenne 1 erzielt, die als Zenit-Strahlung bezeichnet wird.In the zenith mode according to FIG. 4, the second spiral arm 12 and the fourth spiral arm 14 are fed with a 180 ° phase difference, while the first spiral arm 11 and the third spiral arm 13 are connected via the first bridge 40 to the first inner conductor 21 of the coplanar line 2 , lie at a fixed zero potential in the middle between the potentials on the second spiral arm 12 and the fourth spiral arm 14. This results only in the second spiral arm 12 and the fourth spiral arm 14, a current distribution, which is indicated by the single arrows of Figure 4, while on the first spiral arm 11 and the third spiral arm 13 no current flows, not taking into account coupling currents of adjacent current-carrying spiral arms should be. Also with the aid of the current distribution at the feed-in points and geometric considerations formed by the second inner spiral arm end 6 and the fourth inner spiral arm end 8, as in the case of the omnidirectional mode, the emission region can be determined in zenith mode. Radiation also occurs in zenith mode where currents in adjacent spiral arms are in phase, even though they are separated by a de-energized further spiral arm. The currents in adjacent spiral arms 12, 14 separated by only the first spiral arm 11 or the third spiral arm 13 are then in phase when the path difference on the second spiral arm 12 and on the fourth spiral arm 14, respectively, is between point symmetrical points λ / 2 or odd Multiple of it amounts. Since the currents at the opposite infeed points or at the second inner Spiralarmende 6 and the fourth inner Spiralarmende 8 in the same spatial direction, under the said condition for the path difference, the currents at all points symmetrically opposite points of the second spiral arm 12 and the fourth spiral arm 14th in the same spatial direction, so that the phase difference on the second spiral arm 12 and on the fourth spiral arm 14 between these point-symmetrically opposite points is 180 °. Thus, radiation occurs at a second radius r 2 at which the circumference of the second spiral arm 12 and the fourth spiral arm 14 is equal to the wavelength λ. The boundary condition is given here by the fact that the second radius r 2 can not be greater than the radius r of the spiral antenna 1. So a second lower limit frequency f min2 by λ = 2πr 2 = 2πr derived and through f min2 = c / (2πr) Are defined. Due to the fact that currents are directed at point-symmetrically opposite points of the second spiral arm 12 and the fourth spiral arm 14 in the same spatial direction, the radiation contributions of the currents perpendicular to the plane of the spiral antenna 1 constructively overlap. As a result, a radiation characteristic is achieved with a maximum perpendicular to the plane of the spiral antenna 1, which is referred to as zenith radiation.

Gemäß den Figuren 3 und 4 wurde eine Spiralantenne in Form einer archimedischen Spirale beschrieben. Die Form der Spiralantenne 1 ist jedoch nicht auf rein archimedische Spiralen beschränkt. Die Spiralstruktur kann beispielsweise auch logarithmisch-periodisch sein.According to Figures 3 and 4, a spiral antenna in shape an Archimedean spiral. The shape of the Spiral antenna 1, however, is not purely Archimedean Spirals limited. The spiral structure can, for example also logarithmic-periodic.

Die Möglichkeit der Erzeugung der beiden Moden mit der Koplanarleitung 2 zur Speisung der Spiralantenne 1 wird im folgenden anhand der Figur 5 und der Figur 6 erläutert. In Fig. 5 kennzeichnet 55 ein sogenanntes Drei-Tor mit einem ersten Tor 60, einem zweiten Tor 65 und einem dritten Tor 70: Das Drei-Tor 55 umfaßt ein drittes Trägermaterial 75, das gleich oder verschieden zum ersten Trägermaterial 45 beziehungsweise zum zweiten Trägermaterial 50 sein kann. Auf diesem dritten Trägermaterial 75 ist ein zweiter Innenleiter 30 und senkrecht dazu ein dritter Innenleiter 31 angeordnet, wobei der zweite Innenleiter 30 und der dritte Innenleiter 31 galvanisch voneinander getrennt sind und somit nicht in elektrisch leitfähigem Kontakt zueinander stehen. Das Drei-Tor 55 umfaßt ferner eine dritte Bezugspotentialfläche 35 und eine vierte Bezugspotentialfläche 36. Der zweite Innenleiter 30, der dritte Innenleiter 31, die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 sind elektrisch leitfähig, beispielsweise metallisch, ausgebildet. Der zweite Innenleiter 30 und der dritte Innenleiter 31 sind durch das dritte Trägermaterial 75 elektrisch von der dritten Bezugspotentialfläche 35 und der vierten Bezugspotentialfläche 36 in Form eines den jeweiligen Innenleiter 30, 31 umgebenden Schlitzes isoliert. Der zweite Innenleiter 30 teilt das Dreittors 55 in eine linke und eine rechte Hälfte auf. In der linken Hälfte verläuft der dritte Innenleiter 31 senkrecht zum zweiten Innenleiter 30. Die dritte Bezugspotentialfläche 35 befindet sich ausschließlich in der linken Hälfte des Dreitors 55. Die vierte Bezugspotentialfläche 36 befindet sich ausschließlich in der rechten Hälfte des Drei-Tor 55. Das erste Tor 60 des Dreitors 55 ist an das der Spiralantenne 1 abgewandte Ende der Koplanarleitung 2 angeschlossen, wobei der zweite Innenleiter 30 mit dem ersten Innenleiter 21 verbunden ist. Die dritte Bezugspotentialfläche 35 ist mit der zweiten Bezugspotentialfläche 23 am ersten Tor 60 verbunden. Die vierte Bezugspotentialfläche 36 ist am ersten Tor 60 mit der ersten Bezugspotentialfläche 22 verbunden. An dem dem ersten Tor 60 gegenüberliegenden Ende des zweiten Innenleiters 30 umfaßt der Drei-Tor 55 das zweite Tor 65, daß ebenfalls aus dem ersten Innenleiter 30, der dritten Bezugspotentialfläche 35 und der vierten Bezugspotentialfläche 36 gebildet wird und zur Einspeisung von Signalen für den omnidirektionalen Mode dient. Das dritte Tor 70 wird gebildet durch den dritten Innenleiter 31 und die dritte Bezugspotentialfläche 35 und dient der Einspeisung von Signalen zur Abstrahlung im Zenit-Mode. Über eine zweite elektrisch leitfähige, beispielsweise metallische Brücke 32 sind die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 elektrisch leitend miteinander verbunden. Durch eine dritte elektrisch leitfähige, beispielsweise metallische Brücke 33 ist der dritte Innenleiter 31 mit der vierten Bezugspotentialfläche 36 elektrisch leitend verbunden. Die zweite Brücke 32 ist dabei von der dritten Brücke 33 in Richtung zum zweiten Tor 65 hin beabstandet.The possibility of generating the two modes with the Coplanar line 2 for feeding the spiral antenna 1 is in The following explained with reference to Figure 5 and Figure 6. In Fig. 5 denotes 55 a so-called three-port with a first goal 60, a second goal 65 and a third goal 70: The three-port 55 comprises a third carrier material 75, the same or different from the first carrier material 45 or to the second carrier material 50 may be. On This third carrier material 75 is a second inner conductor 30 and arranged perpendicular thereto a third inner conductor 31, wherein the second inner conductor 30 and the third inner conductor 31 are galvanically separated from each other and thus not in electrically conductive contact each other. The three-goal 55 further includes a third reference potential area 35 and a fourth reference potential area 36. The second Inner conductor 30, the third inner conductor 31, the third Reference potential area 35 and the fourth Reference potential surface 36 are electrically conductive, for example, metallic, formed. The second Inner conductor 30 and the third inner conductor 31 are through the third substrate 75 electrically from the third Reference potential area 35 and the fourth Reference potential surface 36 in the form of the respective Inner conductor 30, 31 surrounding slot isolated. The second Inner conductor 30 divides the Dreittors 55 in a left and a right half up. In the left half runs the third Inner conductor 31 perpendicular to the second inner conductor 30. Die third reference potential area 35 is exclusively in the left half of the three-door 55th The fourth Reference potential area 36 is located exclusively in the right half of the three-goal 55th The first goal 60 of the Dreitors 55 is facing away from the spiral antenna 1 end of Coplanar line 2 connected, the second Inner conductor 30 is connected to the first inner conductor 21. The third reference potential area 35 is with the second Reference potential surface 23 connected to the first port 60. The fourth reference potential area 36 is at the first gate 60 with the first reference potential surface 22 connected. At the first Tor 60 opposite end of the second inner conductor 30th the three-port 55 includes the second gate 65, that also out the first inner conductor 30, the third reference potential surface 35 and the fourth reference potential surface 36 is formed and for feeding signals for the omnidirectional Fashion serves. The third gate 70 is formed by the third inner conductor 31 and the third reference potential area 35 and serves to feed in signals for radiation in Zenit mode. Via a second electrically conductive, For example, metallic bridge 32 are the third Reference potential area 35 and the fourth Reference potential surface 36 electrically conductive with each other connected. By a third electrically conductive, For example, metallic bridge 33 is the third Inner conductor 31 with the fourth reference potential surface 36th electrically connected. The second bridge 32 is included from the third bridge 33 toward the second gate 65 back spaced.

Die Erzeugung der omnidirektionalen Abstrahlcharakteristik wird dadurch erreicht, daß die elektrische Feldverteilung auf der speisenden Koplanarleitung 2 symmetrisch ist. Dies entspricht dem sogenannten "Odd Mode". Diese symmetrische elektrische Feldverteilung ist in einer Momentaufnahme gemäß Figur 5 durch Pfeile in den durch das dritte Trägermaterial 75 gebildeten Schlitzen zwischen der dritten Bezugspotentialfläche 35 beziehungsweise der vierten Bezugspotentialfläche 36 und dem zweiten Innenleiter 30 dargestellt. Die zweite Brücke 32, die die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 zu beiden Seiten des zweiten Innenleiters 30 auf gleichem Potential hält, wirkt dabei nicht störend, da beim "Odd Mode" die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 von vornherein auf gleiches Potential gelegt werden. Damit ist die dritte Brücke 33, die die vierte Bezugspotentialfläche 36 mit dem dritten Innenleiter 31 verbindet, ebenfalls nicht störend, da sie den dritten Innenleiter 31 ebenfalls auf das Potential der vierten Bezugspotentialfläche 36 legt. Der dritte Innenleiter 31 ist somit vom zweiten Innenleiter 30 entkoppelt.The generation of the omnidirectional radiation characteristic is achieved in that the electric field distribution on the feeding coplanar line 2 is symmetrical. This corresponds to the so-called "odd mode". This symmetrical electric field distribution is in a snapshot according to Figure 5 by arrows in through the third carrier material 75 formed slots between the third Reference potential area 35 or the fourth Reference potential surface 36 and the second inner conductor 30th shown. The second bridge 32, the third Reference potential area 35 and the fourth Reference potential area 36 on both sides of the second Inner conductor 30 holds at the same potential, it acts not disturbing, because the "Odd Mode" the third Reference potential area 35 and the fourth Reference potential surface 36 from the outset to the same Potential to be laid. This is the third bridge 33, the the fourth reference potential area 36 with the third Inner conductor 31 connects, also not disturbing because they the third inner conductor 31 also to the potential of fourth reference potential surface 36 sets. The third Inner conductor 31 is thus of the second inner conductor 30th decoupled.

Die Erzeugung des Zenit-Modes auf der Spiralantenne 1 wird durch eine asymmetrische elektrische Feldverteilung auf der speisenden Koplanarleitung 2 und dem zweiten Innenleiter 30 erreicht. Figur 6 skizziert diese Feldverteilung, die als "Even-Mode" bezeichnet wird, mit entsprechenden Pfeilen in den durch das dritte Trägermaterial 75 gebildeten Schlitzen zwischen der dritten Bezugspotentialfläche 35 beziehungsweise der vierten Bezugspotentialfläche 36 und dem zweiten Innenleiter 30. In Figur 6 kennzeichnen dabei gleiche Bezugszeichen gleiche Elemente wie in Figur 5, da es sich um dasselbe Drei-Tor 55 handelt. Die asymmentrische elektrische Feldverteilung kann durch die beschriebene Anordnung des zweiten Innenleiters 30, des dritten Innenleiters 31, der zweiten Brücke 32 und der dritten Brücke 33 auf dem Drei-Tor 55 erzeugt werden. Dabei wird am dritten Tor 70 der "Odd-Mode" erzeugt, der zu einer symmetrischen elektrischen Feldverteilung zwischen dem dritten Innenleiter 31 und der dritten Bezugspotentialfläche 35 führt, wie durch die Pfeile in den durch das dritte Trägermaterial 75 gebildeten Schlitzen zwischen der dritten Bezugspotentialfläche 35 und dem dritten Innenleiter 31 gemäß Figur 6 dargestellt ist. Die Kopplung des einfach zu erzeugenden "Odd Modes" vom dritten Tor 70 zum ersten Tor 60 wird in "Uniplanar MMIC-A Proposed New MMIC Structure" von Thirota, Y.Tarusawa, H.Agawa, IEEE Transactions on Microwave Theory and Technics, vol.35, no.6,pp.576-581, June 1987 beschrieben. Der am dritten Tor 70 erzeugte "Odd Mode" erzeugt einen Potentialunterschied zwischen dem dritten Innenleiter 31 und der dritten Bezugspotentialfläche 35. Die vierte Bezugspotentialfläche 36 ist durch die dritte Brücke 33 auf dem gleichen Potential wie der dritte Innenleiter 31. Dadurch entsteht ein Potentialunterschied zwischen der dritten Bezugspotentialfläche 35 und der vierten Bezugspotentialfläche 36. Dieser Potentialunterschied ruft den "Even Mode" hervor, der sich in beide Richtungen zwischen dem ersten Tor 60 und dem zweiten Tor 65 ausbreitet. Zur Unterdrückung der Ausbreitung des "Even Mode" in Richtung des zweiten Tors 65 und damit in Richtung der Einspeisung für den omnidirektionalen Mode ist die zweite Brücke 32 vorgesehen, die die dritte Bezugspotentialfläche 35 und die vierte Bezugspotentialfläche 36 auf gleichem Potential hält und damit die Ausbreitung des "Even Mode" unterdrückt. Dieser wird an der zweiten Brücke 32 reflektiert und breitet sich in entgegengesetzte Richtung zum ersten Tor 60 aus. Bei Anbringen der zweiten Brücke 32 in einem Abstand einer viertel Wellenlänge von der dritten Brücke 33 bezogen auf die mittlere verwendete Betriebsfrequenz überlagern sich der an der zweiten Brücke 32 reflektierte "Even-Mode" und der vom dritten Tor 70 direkt in Richtung zum ersten Tor 60 eingekoppelte "Even Mode" konstruktiv und breiten sich als "Even-Mode" in Richtung zum ersten Tor 60 und damit zur Spiralantenne 1 aus. The generation of the zenith mode on the spiral antenna 1 becomes by an asymmetric electric field distribution on the feeding coplanar line 2 and the second inner conductor 30 reached. FIG. 6 outlines this field distribution as "Even-mode" is called, with appropriate arrows in the slots formed by the third substrate 75 between the third reference potential area 35 or the fourth reference potential surface 36 and the second inner conductor 30. Mark in FIG. 6 same reference numerals same elements as in FIG 5, since it is the same three-goal 55. The Asymetric electric field distribution can be achieved by the described arrangement of the second inner conductor 30, the third inner conductor 31, the second bridge 32 and the third bridge 33 on the three-gate 55 are generated. there is generated at the third gate 70 of the "odd mode", which to a symmetric electric field distribution between the third inner conductor 31 and the third reference potential area 35 leads, as indicated by the arrows in the third Carrier material 75 formed slots between the third Reference potential surface 35 and the third inner conductor 31 is shown according to FIG. The coupling of easy to generating "odd modes" from the third goal 70 to the first goal 60 is published in "Uniplanar MMIC-A Proposed New MMIC Structure" by Thirota, Y. Tarusawa, H.Agawa, IEEE Transactions on Microwave Theory and Technics, vol.35, no.6, pp.576-581, June 1987 described. The generated at the third gate 70 "odd mode" creates a potential difference between the third Inner conductor 31 and the third reference potential surface 35th Die fourth reference potential area 36 is through the third bridge 33 at the same potential as the third inner conductor 31. This creates a potential difference between the third reference potential area 35 and the fourth Reference potential area 36. This potential difference calls the "Even Mode", which is in both directions between the first port 60 and the second port 65 spreads. To suppress the spread of the "Even Mode" in the direction of the second gate 65 and thus in Direction of the feed for the omnidirectional mode is the second bridge 32 is provided, which is the third Reference potential area 35 and the fourth Reference potential surface 36 holds at the same potential and so that the spread of "even mode" suppressed. This is reflected at the second bridge 32 and spreads in the opposite direction to the first gate 60. at Attaching the second bridge 32 at a distance one quarter wavelength of the third bridge 33 with respect to the average operating frequency used is superimposed on the at the second bridge 32 reflected "even-mode" and the from the third gate 70 directly towards the first gate 60 coupled "Even Mode" constructive and spread as "Even-Mode" towards the first gate 60 and thus to Spiral antenna 1 off.

Auf diese Weise ist das dritte Tor 70 vom zweiten Tor 65 entkoppelt. Da die beschriebene Funktionsweise sowohl für das Senden als auch für den Empfang mit der Spiralantenne 1 gilt, können am zweiten Tor 65 und am dritten Tor 70 zwei voneinander entkoppelte Signale empfangen werden, die aus verschiedenen Raumrichtungen auf die Spiralantenne 1 treffen.In this way, the third port 70 is from the second port 65 decoupled. Since the described operation both for the transmission as well as for the reception with the spiral antenna 1 is valid, at the second gate 65 and at the third gate 70 two decoupled signals are received from the different spatial directions on the spiral antenna. 1 to meet.

Die Erzeugung des omnidirektionalen Modes mit der beschriebenen kombinierten Speisung erfolgt frequenzunabhängig, während abhängig durch die Position.der zweiten Brücke 32 die Erzeugung des Zenit-Modes auf bestimmte Frequenzbänder begrenzt ist. Dabei kann über das Drei-Tor 55 gleichzeitig der omnidirektionale Mode und der Zenit-Mode gespeist werden. Auch ein gleichzeitiges Empfangen im omnidirektionalen Mode und im Zenit-Mode ist mit dem beschriebenen Drei-Tor 55 möglich. Auch das gleichzeitige Senden im einen und Empfangen im entsprechend anderen Mode ist mit dem beschriebenen Drei-Tor 55 möglich.The generation of the omnidirectional mode with the described combined feed takes place frequency independent, while dependent on the position.der second bridge 32 on the generation of the zenith mode certain frequency bands is limited. It can over the Three-door 55 at the same time the omnidirectional fashion and the Zenith mode are fed. Also a simultaneous Receiving is in omnidirectional mode and zenith mode possible with the three-port 55 described. That too Simultaneous sending in one and receiving in the corresponding other fashion is possible with the three-port 55 described.

Die untere Grenzfrequenz für die Abstrahlung von der Spiralantenne 1 im omnidirektionalen Mode oder im Zenit-Mode wird auch durch die Länge der Taperung auf der Koplanarleitung 2 beeinflußt. Dabei kann die untere Grenzfrequenz gesenkt werden, wenn die Taperung auf der Koplanarleitung 2 verlängert wird.The lower cutoff frequency for the radiation from the Spiral antenna 1 in omnidirectional mode or in zenith mode is also due to the length of the taping on the Coplanar line 2 affected. Here, the lower Cutoff frequency can be lowered when the taping on the Coplanar 2 is extended.

Der Übergang von der Koplanarleitung 2 auf die Spiralantenne 1 ist unabhängig vom Sprung in der Dielektrizitätskonstanten der Trägermaterialien. Dabei kann ein niederpremittives erstes Trägermaterial 45 für die Spiralantenne 1 gewählt werden, womit gute Abstrahlung erreicht wird, bei gleichzeitiger Wahl eines hochpermittiven zweiten Trägermaterials 50 für die Koplanarleitung 2, was eine Längenreduktion der Koplanarleitung 2 ermöglicht und parasitäre Abstrahlung von der Koplanarleitung 2 unterdrückt beziehungsweise die Koplanarleitung 2 vom Strahlungsfeld der Spiralantenne 1 unabhängig macht.The transition from the coplanar line 2 to the spiral antenna 1 is independent of the jump in the dielectric constant the carrier materials. It can be a niederpremittives first carrier material 45 for the spiral antenna 1 be selected, whereby good radiation is achieved at simultaneous selection of a high-permeability second Support material 50 for the coplanar line 2, which is a Length reduction of the coplanar line 2 allows and parasitic radiation from the coplanar line 2 suppressed or the coplanar line 2 from the radiation field of Spiral antenna 1 makes independent.

Die Spiralantenne 1 ist insbesondere für den flachen Einbau in die Karosserie eines Kraftfahrzeugs geeignet, insbesondere in das Dach oder in den Kofferraumdeckel des Kraftfahrzeugs, da hiermit ein aerodynamischer und ästhetischer Einbau realisiert werden kann. Auf diese Weise ergibt sich eine einfache, lochlose Montage der Spiralantenne in die Karosserie des Kraftfahrzeugs, wodurch Korrosionsherde in der Karosserie vermieden werden.The spiral antenna 1 is particularly for the flat installation suitable for the bodywork of a motor vehicle, especially in the roof or in the boot lid of the Motor vehicle, since this aerodynamic and aesthetic installation can be realized. In this way results in a simple, holeless assembly of Spiral antenna in the bodywork of the motor vehicle, thereby Corrosive foci in the body are avoided.

Claims (8)

  1. Spiral antenna (1) having four approximately parallel and electrically conductive spiral arms (11, 12, 13, 14), characterized in that the spiral arms (11, 12, 13, 14) are connected at their respective inner spiral arm end (5, 6, 7, 8) to a common coplanar line (2) for feeding and/or receiving signals, with the coplanar line (2) and the spiral antenna (1) being mounted on the same substrate material.
  2. Spiral antenna (1) according to Claim 1, characterized in that the coplanar line (2) comprises an inner conductor (21; 30) and at least one reference earth potential surface (22, 23; 35, 36), with the inner conductor (21; 30) and the at least one reference earth potential surface (22, 23; 35, 36) each being connected to two of the four inner spiral arms ends (5, 6, 7, 8).
  3. Spiral antenna (1) according to Claim 1 or 2, characterized in that the coplanar line (2) is arranged at right angles to the plane of the spiral antenna (1).
  4. Spiral antenna (1) according to one of the preceding claims, characterized in that the coplanar line (2) is at least partially in the form of a taper.
  5. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) is in the form of an Archimedes spiral or a logarithmic spiral.
  6. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) is fed with a symmetrical electrical field distribution on the coplanar line (2), thus resulting in an omnidirectional polar diagram characteristic.
  7. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) is fed with an asymmetric electrical field distribution on the coplanar line (2), thus resulting in a directional polar diagram characteristic.
  8. Spiral antenna (1) according to one of the preceding claims, characterized in that the spiral antenna (1) is arranged in or on the bodywork of a vehicle.
EP00947810A 1999-06-29 2000-06-26 Helical antenna Expired - Lifetime EP1196965B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19929879 1999-06-29
DE19929879A DE19929879A1 (en) 1999-06-29 1999-06-29 Spiral antenna
PCT/DE2000/001991 WO2001003239A1 (en) 1999-06-29 2000-06-26 Helical antenna

Publications (2)

Publication Number Publication Date
EP1196965A1 EP1196965A1 (en) 2002-04-17
EP1196965B1 true EP1196965B1 (en) 2005-02-16

Family

ID=7912996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00947810A Expired - Lifetime EP1196965B1 (en) 1999-06-29 2000-06-26 Helical antenna

Country Status (6)

Country Link
US (1) US6750828B1 (en)
EP (1) EP1196965B1 (en)
JP (1) JP2003521848A (en)
KR (1) KR100663658B1 (en)
DE (2) DE19929879A1 (en)
WO (1) WO2001003239A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108993B4 (en) 2001-02-23 2004-12-16 Endress + Hauser Gmbh + Co. Kg Device for determining the level of a product in a container
DE10110230A1 (en) * 2001-03-02 2002-09-05 Endress & Hauser Gmbh & Co Kg Device for determining the filling level of a material or liquid in a reservoir using radar based measuring with a spiral antenna that provides more accurate measurements when the fluid level approaches the antenna
US7075500B2 (en) * 2004-09-24 2006-07-11 Avocent California Corporation Antenna for wireless KVM, and housing therefor
US7750861B2 (en) * 2007-05-15 2010-07-06 Harris Corporation Hybrid antenna including spiral antenna and periodic array, and associated methods
EP2589107A1 (en) * 2010-06-30 2013-05-08 BAE Systems Plc. Antenna structure
JP2014168108A (en) * 2011-06-27 2014-09-11 Toyohashi Univ Of Technology Wireless transmitter
US9450300B2 (en) * 2012-11-15 2016-09-20 3M Innovative Properties Company Spiral antenna for distributed wireless communications systems
US10944157B2 (en) 2019-04-19 2021-03-09 Bose Corporation Multi-arm spiral antenna for a wireless device
KR102096620B1 (en) * 2019-05-15 2020-04-02 숭실대학교산학협력단 Apparatus and method for radiating a circularly polarized impulse
US11525703B2 (en) 2020-03-02 2022-12-13 Bose Corporation Integrated capacitor and antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019439A (en) * 1957-09-19 1962-01-30 Martin Marietta Corp Elliptically polarized spiral antenna
DE3739205A1 (en) * 1986-04-12 1989-06-01 Plessey Overseas SPIRAL ANTENNA

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562756A (en) * 1968-06-03 1971-02-09 Texas Instruments Inc Multiple polarization spiral antenna
US3681772A (en) * 1970-12-31 1972-08-01 Trw Inc Modulated arm width spiral antenna
US3906514A (en) * 1971-10-27 1975-09-16 Harris Intertype Corp Dual polarization spiral antenna
US3925784A (en) * 1971-10-27 1975-12-09 Radiation Inc Antenna arrays of internally phased elements
US3949407A (en) * 1972-12-25 1976-04-06 Harris Corporation Direct fed spiral antenna
US4609888A (en) * 1980-10-02 1986-09-02 The United States Of America As Represented By The Secretary Of The Navy Direction finding antenna interface
US4605934A (en) * 1984-08-02 1986-08-12 The Boeing Company Broad band spiral antenna with tapered arm width modulation
GB8717579D0 (en) * 1987-07-24 1987-09-03 Gen Electric Co Plc Protective electric fuses
US5146234A (en) * 1989-09-08 1992-09-08 Ball Corporation Dual polarized spiral antenna
ES2021522A6 (en) * 1990-04-20 1991-11-01 Consejo Superior Investigacion microstrip radiator for circular polarization free of welds and floating potentials.
JPH1075114A (en) * 1996-08-29 1998-03-17 Nippon Dengiyou Kosaku Kk Helical spiral antenna
US5936595A (en) * 1997-05-15 1999-08-10 Wang Electro-Opto Corporation Integrated antenna phase shifter
US6130652A (en) * 1999-06-15 2000-10-10 Trw Inc. Wideband, dual RHCP, LHCP single aperture direction finding antenna system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019439A (en) * 1957-09-19 1962-01-30 Martin Marietta Corp Elliptically polarized spiral antenna
DE3739205A1 (en) * 1986-04-12 1989-06-01 Plessey Overseas SPIRAL ANTENNA

Also Published As

Publication number Publication date
DE50009557D1 (en) 2005-03-24
KR20020013595A (en) 2002-02-20
EP1196965A1 (en) 2002-04-17
KR100663658B1 (en) 2007-01-03
JP2003521848A (en) 2003-07-15
WO2001003239A1 (en) 2001-01-11
DE19929879A1 (en) 2001-01-18
US6750828B1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
DE69531655T2 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmitting and / or receiving device with such an antenna
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
DE69723093T2 (en) RADIO COMMUNICATION DEVICE
DE60009874T2 (en) V-slot antenna for circular polarization
DE69729344T2 (en) Radar module and MMIC arrangement therefor
EP2664025B1 (en) Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
DE69936903T2 (en) Antenna for two frequencies for radio communication in the form of a microstrip antenna
DE102009035359A1 (en) Microstrip antenna array
EP2693565B1 (en) Electrical radiator for vertically polarised radio signals
DE102007003388A1 (en) Circular waveguide antenna, has radiation output surface at ends of waveguide, where diameter value of surface, wavelength value of center frequency of used frequency bands and value, satisfy given relationship
EP0514380A1 (en) Antenna combination.
EP2830156A1 (en) Waveguide radiator, group antenna radiator and synthetic aperture radar radiator
DE102014112467B4 (en) FOOD NETWORK FOR ANTENNA SYSTEMS
EP1196965B1 (en) Helical antenna
DE102016207434A1 (en) antenna device
DE102014112825A1 (en) Steghorn radiator with additional groove
DE69914579T2 (en) Antenna arrangement and communication device with such an antenna arrangement
DE60320320T2 (en) COMPACT BROADBAND INTEGRATED ACTIVE MODULE FOR RADAR AND COMMUNICATION SYSTEMS
DE19729664C2 (en) Planar broadband antenna
DE102005062542A1 (en) Antenna arrangement for radiation and reception of e.g. satellite digital audio radio service, has cylinder, where height of cylinder is selected such that radiation characteristic in area outside cylinder axis has high antenna gain
DE3702362A1 (en) FLAT AERIAL
EP3483983A1 (en) Receiving antenna for satellite navigation on a vehicle
DE102022109407A1 (en) Antenna element for wireless communication
EP3707775B1 (en) Coupling and decoupling device between a circuit carrier and a waveguide
WO1999004282A1 (en) Device for sending and receiving radar waves, especially for a distance sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030502

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009557

Country of ref document: DE

Date of ref document: 20050324

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100401

Year of fee payment: 11

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110626

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150804

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50009557

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103