EP1192838B2 - Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device - Google Patents

Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device Download PDF

Info

Publication number
EP1192838B2
EP1192838B2 EP00927233.7A EP00927233A EP1192838B2 EP 1192838 B2 EP1192838 B2 EP 1192838B2 EP 00927233 A EP00927233 A EP 00927233A EP 1192838 B2 EP1192838 B2 EP 1192838B2
Authority
EP
European Patent Office
Prior art keywords
hearing aid
order
microphone
directional microphone
frequencies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00927233.7A
Other languages
German (de)
French (fr)
Other versions
EP1192838A2 (en
EP1192838B1 (en
Inventor
Benno Knapp
Hartmut Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7910100&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1192838(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1192838A2 publication Critical patent/EP1192838A2/en
Application granted granted Critical
Publication of EP1192838B1 publication Critical patent/EP1192838B1/en
Publication of EP1192838B2 publication Critical patent/EP1192838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers

Definitions

  • the invention relates to a hearing aid with the features of the preamble of claim 1.
  • the frequency range from 100 Hz to 6 kHz is of particular interest for improving the hearing.
  • first-order directional microphone systems one obtains over this frequency range a directional index falling slightly in the direction of higher frequencies.
  • DI values of about 5 dB are obtained.
  • n-th order directional microphone systems with n> 1 have a negative directivity index because of their high sensitivity to component tolerances at low frequencies.
  • DI values of 7 dB and more can be achieved for frequencies from 1 kHz to 5 kHz.
  • a hearing aid is known in which manually switched between a microphone zeroth order (microphone without directivity) and a first-order microphone system. The switchover is carried out by the hearing aid wearer.
  • the invention has for its object to provide a hearing aid and a method for operating a hearing aid, in which a high directivity index over a wide frequency range of the input signal is achieved.
  • the hearing aid according to the invention comprises at least two microphones in order to realize directional microphone systems zeroth, first or higher order.
  • a directional microphone system of zeroth order in the sense of the invention is to be understood as meaning a microphone system without directivity, for example an omnidirectional microphone which is not interconnected with further microphones.
  • DI directivity index
  • the KEMAR a standard research dummy
  • DI values of 4 - 4.5 dB with optimum positioning of the microphones and best matching of the signals generated by the microphones.
  • Second and higher-order directional microphone systems have DI values of 10 dB and more, which are advantageous for better speech intelligibility, for example.
  • a hearing aid e.g. Three omnidirectional microphones, so on this basis directional microphone systems zeroth to second order can be formed. From these directional microphone systems can thus simultaneously derive microphone signals with directional characteristics zeroth to second order.
  • the microphone signals emanating from microphone systems of different order are weighted and summed differently depending on the frequency.
  • the microphone signal of the second order further processed.
  • the weighting is preferably carried out by filter elements, the microphone signal of the directional microphone system of the first order being subjected to low-pass filtering and the microphone signal of the second-order directional microphone system being subjected to high-pass filtering.
  • the microphone signal of the first-order directional microphone is passed on at low frequencies, and the microphone signal of the nth-order directional microphone system is passed on for further processing at high frequencies, where n stands for the highest order occurring.
  • the microphone signals of the directional microphone systems are preferably further processed between the first and the highest occurring order.
  • the cut-off frequencies of the filter elements connected downstream of the directional microphone systems are adjustable.
  • the cutoff frequencies in the audible frequency range for example up to 10 kHz
  • the associated frequency-dependent selection of directional microphone systems of different order can be achieved for the overall system directivity properties
  • the conventional hearing aid devices, considered over the entire frequency range are clearly superior.
  • For each frequency of the input signal an optimized directivity can be achieved.
  • Modern hearing aids allow the division of the acoustic input signal into channels. This allows, among other things, a different amplification of individual frequency ranges.
  • the cut-off frequencies of the filter elements connected downstream of the directional microphone systems are coupled to channel limiting frequencies of the hearing aid device.
  • each directional microphone system forms a channel.
  • the filter elements for weighting the microphone signals then simultaneously effect the channel classification, with which additional filter elements for channel classification can be omitted.
  • the position of one or more cutoff frequencies can also be determined according to the situation and continuously checked and adjusted. This results in an optimized adaptation to different useful / Störschallsituationen.
  • the analysis of the environmental situation is preferably carried out by means of a neural network and / or a fuzzy logic controller.
  • the setting of the cutoff frequencies as well as the overall directional characteristic of the microphone system of a hearing aid according to the invention can also take place differently depending on the set hearing program.
  • at least substantially a microphone signal of zero order can be further processed for a certain frequency range.
  • the electronic circuit arrangement ES for the formation of directional microphone systems may comprise electronic components, such as delay elements, summation elements or inverters.
  • the directional microphone signals thus formed at the output of the electronic circuit ES are referred to as the zero-order directional microphone signal RS0, the first-order directional microphone signal RS1,..., The nth-order directional microphone signal RSn. In this case, several directional microphone signals of the same order can be formed.
  • At least two directional microphone signals differ in their order.
  • these are fed to a filter bank FB.
  • the filter bank FB has filter elements, for example highpass, lowpass or bandpass filters.
  • the directional microphone signals are attenuated differently by means of the filter bank FB depending on their order and their signal frequency. In this case, the cutoff frequencies and filter coefficients of the individual filter elements are preferably adjustable.
  • the output signals (AS0, AS1... ASn) of the filter bank FB are fed to a summation element S to form the total-directional-microphone signal GRS.
  • the illustrated circuit diagram for processing the microphone signals of a hearing aid can be performed both in digital and in analog circuit technology.
  • Other components such as A / D converters, D / A converters, switches, amplifiers, etc. (not shown) may also be located between the individual elements.
  • the circuit will be set so that at least substantially the directional microphone signal of the first order is forwarded up to a lower limit frequency fg1, for example 1 kHz.
  • a lower limit frequency fg1 for example 1 kHz.
  • FIG. 2 shows a hearing aid with three microphones 1, 2 and 3.
  • a signal line 11 is a signal of a system of first order with the directional microphone "undelayed eight" before, when the input signals of the microphones 1, 2 after inversion in the inverter 4 via the sum element 7 are added.
  • the signal line 13 is a signal with the directional microphone "delayed eight" of a directional microphone system first order exists when the signals of the microphones 2 and 3 after inversion of the signal of the microphone 3 in the inverter 5 in the sum element 8 added and subsequently inverted in the inverter 6 and in Delay element 10 are delayed.
  • the microphone pairs 1, 2 and 2, 3 thus each form a directional microphone system of the first order due to the illustrated interconnection.
  • the said signals of the directional microphone systems of the first order are further processed in a signal processing unit 14 (channel-specific) and fed as an output signal to the loudspeaker 16.
  • the circuit diagram according to FIG. 2 allows by appropriate interconnection of all three microphones, a realization of a directional microphone system second order by the signals of the signal lines 11, 13 are combined in the sum element 9 to the signal line 12.
  • the signal processing unit 14 includes a Filter element 17 and an adjusting element 15 for adjusting at least one cutoff frequency of the filter element 17th
  • the filter element 17 essentially carries out further processing of the signal of the signal line 12, and thus of a signal of a second-order directional microphone system.
  • the signal lines 11 and 13 are connected in the filter element 17 with low-pass filters, while the signal line 12 is fed to a high-pass filter.
  • the filtered signals are summed (not shown).
  • neural networks and fuzzy logic controls may be present in order to determine the respective cut-off frequencies fg in accordance with the situation by signal analysis of the useful / Störschallsituation again and again, if necessary, to adapt continuously.
  • FIG. 3 shows the different courses of the DI over the frequency range to be processed.
  • the cut-off frequency fg 1000 Hz essentially the forwarding of the signal of a second-order directional microphone system takes place with the DI curve B, which reaches higher DI values than the first-order system.
  • the DI course C is a normal hearing person without the aid of technical aids, simulated on KEMAR, also shown.

Description

Die Erfindung betrifft ein Hörhilfsgerät mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.The invention relates to a hearing aid with the features of the preamble of claim 1.

Als Stand der Technik sind Hörhilfsgeräte mit mindestens zwei Mikrofonen zur Erzielung von Richtmikrofoncharakteristiken erster oder höherer Ordnung bekannt. Bei Verwendung von Richtmikrofonsystemen zweiter oder höherer Ordnung tritt in einzelnen Frequenzbereichen des Eingangssignals eine unerwünschte Absenkung des Directivity-Index (Richtwirkungsindex) auf.As prior art hearing aids are known with at least two microphones to achieve directional microphone first or higher order. When using directional microphone systems of second or higher order occurs in individual frequency ranges of the input signal an undesirable reduction in the directivity index (directivity index).

Bei Hörhilfsgeräten ist insbesondere der Frequenzbereich von 100 Hz bis 6 kHz für die Verbesserung des Hörvermögens interessant. Bei Richtmikrofonsystemen erster Ordnung erhält man über diesen Frequenzbereich einen in Richtung höheren Frequenzen leicht fallenden Richtwirkungsindex. Für tiefere Frequenzen, beispielsweise bis 1 kHz, erhält man DI-Werte von etwa 5 dB. Richtmikrofonsysteme n-ter Ordnung mit n>1 haben jedoch wegen der hohen Empfindlichkeit gegenüber Bauteiltoleranzen bei tiefen Frequenzen einen negativen Richtwirkungsindex. Dafür sind aber für Frequenzen von 1 kHz bis 5 kHz DI-Werte von 7 dB und mehr erreichbar. Um auch für tiefe Frequenzen höhere DI-Werte erreichen zu können, sind enge Bauteiltoleranzen (z.B. Phasendifferenz der beteiligten Mikrofone <0,25°) einzuhalten, die bestenfalls mit Silizium-Mikrofonarrays erreicht werden können. Diese haben aber bei der für Hörgeräte verwendeten Versorgungsspannung (<1V) noch ein zu großes Signal-zü-Rausch-Verhältnis, wodurch der Einsatz dieser Arrays aktuell noch nicht sinnvoll ist.In the case of hearing aids, the frequency range from 100 Hz to 6 kHz is of particular interest for improving the hearing. In first-order directional microphone systems one obtains over this frequency range a directional index falling slightly in the direction of higher frequencies. For lower frequencies, for example up to 1 kHz, DI values of about 5 dB are obtained. However, n-th order directional microphone systems with n> 1 have a negative directivity index because of their high sensitivity to component tolerances at low frequencies. However, DI values of 7 dB and more can be achieved for frequencies from 1 kHz to 5 kHz. In order to be able to achieve higher DI values even for low frequencies, narrow component tolerances (for example phase difference of the participating microphones <0.25 °) must be maintained, which can best be achieved with silicon microphone arrays. However, these still have too high a signal-to-noise ratio in the supply voltage used for hearing aids (<1 V), which makes the use of these arrays currently not meaningful.

Aus der US 5,757,933 ist ein Hörhilfsgerät bekannt, bei dem manuell zwischen einem Mikrofon nullter Ordnung (Mikrofon ohne Richtwirkung) und einem Mikrofonsystem erster Ordnung umgeschaltet werden kann. Die Umschaltung erfolgt dabei durch den Hörgeräteträger.From the US 5,757,933 a hearing aid is known in which manually switched between a microphone zeroth order (microphone without directivity) and a first-order microphone system. The switchover is carried out by the hearing aid wearer.

Der Erfindung liegt die Aufgabe zugrunde, ein Hörhilfsgerät sowie ein Verfahren zum Betrieb eines Hörhilfsgeräts anzubieten, bei dem ein hoher Directivity-Index über einen großen Frequenzbereich des Eingangssignals erreicht wird.The invention has for its object to provide a hearing aid and a method for operating a hearing aid, in which a high directivity index over a wide frequency range of the input signal is achieved.

Die Aufgabe wird für das Hörhilfsgerät durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausführungsformen werden in den Ansprüchen 2 - 7 realisiert.The object is achieved for the hearing aid by the features of claim 1. Advantageous embodiments are realized in claims 2-7.

Das erfindungsgemäße Hörhilfsgerät umfasst mindestens zwei Mikrofone, um Richtmikrofonsysteme nullter, erster oder höherer Ordnung realisieren zu können. Als Richtmikrofonsystem nullter Ordnung im Sinne der Erfindung ist dabei ein Mikrofonsystem ohne Richtwirkung zu verstehen, beispielsweise ein nicht mit weiteren Mikrofonen verschaltetes omnidirektionales Mikrofon. Mit Richtmikrofonsystemen erster Ordnung ist ein theoretisch erreichbarer Maximalwert des Directivity-Index (DI) von 6 dB(Hyperniere) zu erreichen. In der Praxis erhält man am KEMAR (einer Standard Forschungspuppe) bei optimaler Lage der Mikrofone und bestem Abgleich der von den Mikrofonen erzeugten Signale DI-Werte von 4 - 4,5 dB. Richtmikrofonsysteme zweiter und höherer Ordnung weisen DI-Werte von 10 dB und mehr auf, die beispielsweise für eine bessere Sprachverständlichkeit vorteilhaft sind.The hearing aid according to the invention comprises at least two microphones in order to realize directional microphone systems zeroth, first or higher order. A directional microphone system of zeroth order in the sense of the invention is to be understood as meaning a microphone system without directivity, for example an omnidirectional microphone which is not interconnected with further microphones. With directional microphone systems of the first order, a theoretically achievable maximum value of the directivity index (DI) of 6 dB (hypercardioid) can be achieved. In practice, the KEMAR (a standard research dummy) achieves DI values of 4 - 4.5 dB with optimum positioning of the microphones and best matching of the signals generated by the microphones. Second and higher-order directional microphone systems have DI values of 10 dB and more, which are advantageous for better speech intelligibility, for example.

Enthält ein Hörhilfsgerät z.B. drei omnidirektionale Mikrofone, so können auf dieser Basis Richtmikrofonsysteme nullter bis zweiter Ordnung gebildet werden. Von diesen Richtmikrofonsystemen lassen sich somit gleichzeitig Mikrofonsignale mit Richtcharakteristiken nullter bis zweiter Ordnung ableiten.If a hearing aid, e.g. Three omnidirectional microphones, so on this basis directional microphone systems zeroth to second order can be formed. From these directional microphone systems can thus simultaneously derive microphone signals with directional characteristics zeroth to second order.

Vorteilhaft werden gemäß der Erfindung die von Mikrofonsystemen unterschiedlicher Ordnung ausgehenden Mikrofonsignale in Abhängigkeit von der Frequenz unterschiedlich gewichtet und summiert. So wird beispielsweise bei einem Hörhilfsgerät mit Richtmikrofonsystemen erster und zweiter Ordnung bei niedrigen Frequenzen im Wesentlichen das Mikrofonsignal erster Ordnung und bei höheren Frequenzen das Mikrofonsignal zweiter Ordnung weiterverarbeitet. Die Gewichtung erfolgt vorzugsweise durch Filterelemente, wobei das Mikrofonsignal des Richtmikrofonsystems erster Ordnung einer Tiefpassfilterung und das Mikrofonsignal des Richtmikrofonsystems zweiter Ordnung einer Hochpassfilterung unterworfen wird. Allgemein wird bei tiefen Frequenzen im Wesentlichen das Mikrofonsignal des-Richtmikrofons erster Ordnung und bei hohen Frequenzen das Mikrofonsignal des Richtmikrofonsystems n-ter Ordnung zur Weiterverarbeitung weitergeleitet, wobei n für die höchste auftretende Ordnung steht. Im mittleren Frequenzbereich werden vorzugsweise im Wesentlichen die Mikrofonsignale der Richtmikrofonsysteme zwischen der ersten und der höchsten auftretenden Ordnung weiterverarbeitet.Advantageously, according to the invention, the microphone signals emanating from microphone systems of different order are weighted and summed differently depending on the frequency. Thus, for example, in a hearing aid with directional microphone systems of first and second order at low frequencies essentially the microphone signal of the first order and at higher frequencies, the microphone signal of the second order further processed. The weighting is preferably carried out by filter elements, the microphone signal of the directional microphone system of the first order being subjected to low-pass filtering and the microphone signal of the second-order directional microphone system being subjected to high-pass filtering. In general, the microphone signal of the first-order directional microphone is passed on at low frequencies, and the microphone signal of the nth-order directional microphone system is passed on for further processing at high frequencies, where n stands for the highest order occurring. In the middle frequency range, the microphone signals of the directional microphone systems are preferably further processed between the first and the highest occurring order.

Bei einer Ausführungsform der Erfindung sind die Grenzfrequenzen der den Richtmikrofonsystemen nachgeschalteten Filterelemente einstellbar. Durch die Festlegung der Grenzfrequenzen im hörbaren Frequenzbereich, beispielsweise bis 10 kHz, und die damit verbundene frequenzabhängige Auswahl von Richtmikrofonsystemen unterschiedlicher Ordnung lassen sich für das Gesamtsystem Richtwirkungseigenschaften erreichen, die herkömmlichen Hörhilfsgeräten, über den gesamten Frequenzbereich betrachtet, deutlich überlegen sind. Für jede Frequenz des Eingangssignals ist damit eine optimierte Richtwirkung erreichbar.In one embodiment of the invention, the cut-off frequencies of the filter elements connected downstream of the directional microphone systems are adjustable. By setting the cutoff frequencies in the audible frequency range, for example up to 10 kHz, and the associated frequency-dependent selection of directional microphone systems of different order can be achieved for the overall system directivity properties, the conventional hearing aid devices, considered over the entire frequency range, are clearly superior. For each frequency of the input signal an optimized directivity can be achieved.

Moderne Hörhilfsgeräte erlauben die Einteilung des akustischen Eingangssignals in Kanäle. Dadurch wird unter anderem eine unterschiedliche Verstärkung einzelner Frequenzbereiche ermöglicht. Bei einer vorteilhaften Ausführungsform der Erfindung sind die Grenzfrequenzen der den Richtmikrofonsystemen nachgeschalteten Filterelemente an Kanalgrenzfrequenzen des Hörhilfsgeräts gekoppelt. Im einfachsten Fall bildet dabei jedes Richtmikrofonsystem einen Kanal. Die Filterelemente zur Gewichtung der Mikrofonsignale bewirken dann gleichzeitig die Kanaleinteilung, womit zusätzliche Filterelemente zur Kanaleinteilung entfallen können.Modern hearing aids allow the division of the acoustic input signal into channels. This allows, among other things, a different amplification of individual frequency ranges. In an advantageous embodiment of the invention, the cut-off frequencies of the filter elements connected downstream of the directional microphone systems are coupled to channel limiting frequencies of the hearing aid device. In the simplest case, each directional microphone system forms a channel. The filter elements for weighting the microphone signals then simultaneously effect the channel classification, with which additional filter elements for channel classification can be omitted.

Neben einer einmaligen, beispielsweise bei der Anpassung des Hörhilfsgeräts erfolgten Einstellung der Grenzfrequenzen kann die Lage einzelner oder mehrerer Grenzfrequenzen auch situationsgerecht bestimmt und kontinuierlich überprüft und angepasst werden. Hierdurch erfolgt eine optimierte Anpassung an verschiedene Nutz-/Störschallsituationen. Die Analyse der Umgebungssituation erfolgt vorzugsweise mittels eines neuronalen Netzes und/oder einer Fuzzy-Logik-Steuerung.In addition to a one-time adjustment of the cutoff frequencies, for example when adjusting the hearing aid, the position of one or more cutoff frequencies can also be determined according to the situation and continuously checked and adjusted. This results in an optimized adaptation to different useful / Störschallsituationen. The analysis of the environmental situation is preferably carried out by means of a neural network and / or a fuzzy logic controller.

Die Einstellung der Grenzfrequenzen sowie der gesamten Richtcharakteristik des Mikrofonsystems eines Hörhilfsgeräts gemäß der Erfindung kann- auch in Abhängigkeit des eingestellten Hörprogramms unterschiedlich erfolgen. Dabei kann für einen bestimmten Frequenzbereich zumindest im Wesentlichen auch ein Mikrofonsignal nullter Ordnung (Mikrofonsignal ohne Richtwirkung) weiterverarbeitet werden.The setting of the cutoff frequencies as well as the overall directional characteristic of the microphone system of a hearing aid according to the invention can also take place differently depending on the set hearing program. In this case, at least substantially a microphone signal of zero order (microphone signal without directivity) can be further processed for a certain frequency range.

Weitere Einzelheiten der Erfindung werden nachfolgend anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:

  • Figur 1 ein Prinzip-Schaltbild zur Erzeugung und frequenzabhängigen Kombination von Richtmikrofonsystemen unterschiedlicher Ordnung,
  • Figur 2 ein schematisches Schaltbild eines Hörhilfsgeräts mit drei Mikrofonen sowie
  • Figur 3 einen frequenzspezifischen Verlauf des Directivity-Index (DI).
Further details of the invention will be explained in more detail with reference to the embodiments illustrated in the drawings. Show it:
  • FIG. 1 a schematic circuit diagram for the generation and frequency-dependent combination of directional microphone systems of different order,
  • FIG. 2 a schematic diagram of a hearing aid with three microphones and
  • FIG. 3 a frequency-specific course of the directivity index (DI).

Bei dem in Figur 1 dargestellten Prinzipschaltbild sind die Mikrofone eines Hörhilfsgeräts mit MIK1, MIK2, ...., MIKm bezeichnet. Zur Bildung von Richtmikrofonsystemen unterschiedlicher Ordnung werden die Ausgangssignale der Mikrofone in einer elektronischen Schaltung ES miteinander verschaltet. Die elektronische Schaltungsanordnung ES zur Bildung von Richtmikrofonsystemen kann dabei elektronische Komponenten, wie Verzögerungselemente, Summationselemente oder Inverter, umfassen. Die so gebildeten Richtmikrofonsignale am Ausgang der elektronischen Schaltung ES werden als Richtmikrofonsignal nullter Ordnung RS0, Richtmikrofonsignal erster Ordnung RS1, ...., Richtmikrofonsignal n-ter Ordnung RSn bezeichnet. Dabei können auch mehrere Richtmikrofonsignale derselben Ordnung gebildet werden. Bei dem Hörhilfsgerät gemäß der Erfindung unterscheiden sich jedoch wenigstens zwei Richtmikrofonsignale hinsichtlich ihrer Ordnung. Zur Weiterverarbeitung der Richtmikrofonsignale sind diese einer Filterbank FB zugeführt. Die Filterbank FB weist Filterelemente auf, zum Beispiel Hochpass-, Tiefpass- oder Bandpassfilter. Die Richtmikrofonsignale werden mittels der Filterbank FB in Abhängigkeit ihrer Ordnung und ihrer Signalfrequenz unterschiedlich gedämpft. Dabei sind vorzugsweise die Grenzfrequenzen und Filterkoeffizienten der einzelnen Filterelemente einstellbar. Die Ausgangssignale (AS0, AS1 ... ASn) der Filterbank FB sind zur Bildung des Gesamtrichtmikrofonsignals GRS einem Summationselement S zugeführt.At the in FIG. 1 shown schematic diagram are the microphones of a hearing aid with MIK1, MIK2, ...., MIKm called. To form directional microphone systems of different order, the output signals of the microphones are interconnected in an electronic circuit ES. The electronic circuit arrangement ES for the formation of directional microphone systems may comprise electronic components, such as delay elements, summation elements or inverters. The directional microphone signals thus formed at the output of the electronic circuit ES are referred to as the zero-order directional microphone signal RS0, the first-order directional microphone signal RS1,..., The nth-order directional microphone signal RSn. In this case, several directional microphone signals of the same order can be formed. In the hearing aid according to the invention, however, at least two directional microphone signals differ in their order. For further processing of the directional microphone signals, these are fed to a filter bank FB. The filter bank FB has filter elements, for example highpass, lowpass or bandpass filters. The directional microphone signals are attenuated differently by means of the filter bank FB depending on their order and their signal frequency. In this case, the cutoff frequencies and filter coefficients of the individual filter elements are preferably adjustable. The output signals (AS0, AS1... ASn) of the filter bank FB are fed to a summation element S to form the total-directional-microphone signal GRS.

Das dargestellte Prinzip-Schaltbild zur Verarbeitung der Mikrofonsignale eines Hörhilfsgeräts kann sowohl in digitaler als auch in analoger Schaltungstechnik ausgeführt werden. Zwischen den einzelnen Elementen können sich auch weitere Komponenten, wie A/D-Wandler, D/A-Wandler, Schalter, Verstärker usw. (hier nicht dargestellt), befinden.The illustrated circuit diagram for processing the microphone signals of a hearing aid can be performed both in digital and in analog circuit technology. Other components such as A / D converters, D / A converters, switches, amplifiers, etc. (not shown) may also be located between the individual elements.

In der Regel wird die Schaltung so eingestellt sein, dass bis zu einer unteren Grenzfrequenz fg1, beispielsweise 1 kHz, wenigstens im Wesentlichen das Richtmikrofonsignal erster Ordnung weitergeleitet wird. Mit steigender Frequenz werden dem Richtmikrofonsignal erster Ordnung zunehmend Richtmikrofonsignale höherer Ordnung zugemischt und eventuell die Richtmikrofonsignale niedriger Ordnung sogar gedämpft.In general, the circuit will be set so that at least substantially the directional microphone signal of the first order is forwarded up to a lower limit frequency fg1, for example 1 kHz. As the frequency increases, directional microphone signals of higher order are increasingly mixed with the directional microphone signal of the first order and possibly the directional microphone signals of lower order are even attenuated.

So kann es sein, dass oberhalb einer bestimmten Grenzfrequenz fg2 am Ausgang des Summationselements S wenigstens im Wesentlichen nur noch das Richtmikrofonsignal mit der höchsten vorkommenden Ordnung weitergeleitet wird.Thus, it may be that above a certain limit frequency fg2 at the output of the summation element S at least substantially only the directional microphone signal with the highest occurring order is forwarded.

Figur 2 zeigt als Ausführungsbeispiel ein Hörhilfsgerät mit drei Mikrofonen 1, 2 und 3. In einer Signalleitung 11 liegt ein Signal eines Systems erster Ordnung mit der Richtmikrofoncharakteristik "unverzögerte Acht" vor, wenn die Eingangssignale der Mikrofone 1, 2 nach Invertierung im Inverter 4 über das Summenelement 7 addiert werden. FIG. 2 shows a hearing aid with three microphones 1, 2 and 3. In a signal line 11 is a signal of a system of first order with the directional microphone "undelayed eight" before, when the input signals of the microphones 1, 2 after inversion in the inverter 4 via the sum element 7 are added.

In der Signalleitung 13 ist ein Signal mit der Richtmikrofoncharakteristik "verzögerte Acht" eines Richtmikrofonssystems erster Ordnung vorhanden, wenn die Signale der Mikrofone 2 und 3 nach Invertierung des Signals des Mikrofons 3 im Inverter 5 im Summenelement 8 addiert und nachfolgend im Inverter 6 invertiert und im Verzögerungselement 10 verzögert werden.In the signal line 13 is a signal with the directional microphone "delayed eight" of a directional microphone system first order exists when the signals of the microphones 2 and 3 after inversion of the signal of the microphone 3 in the inverter 5 in the sum element 8 added and subsequently inverted in the inverter 6 and in Delay element 10 are delayed.

Die Mikrofonpaare 1, 2 und 2, 3 bilden somit durch die dargestellte Verschaltung jeweils ein Richtmikrofonsystem erster Ordnung.The microphone pairs 1, 2 and 2, 3 thus each form a directional microphone system of the first order due to the illustrated interconnection.

Die genannten Signale der Richtmikrofonssysteme erster Ordnung werden in einer Signalverarbeitungseinheit 14 (kanalspezifisch) weiterverarbeitet und als Ausgangssignal dem Lautsprecher 16, zugeführt.The said signals of the directional microphone systems of the first order are further processed in a signal processing unit 14 (channel-specific) and fed as an output signal to the loudspeaker 16.

Das Schaltbild gemäß FIG 2 erlaubt durch geeignete Verschaltung aller drei Mikrofone auch eine Realisierung eines Richtmikrofonsystems zweiter Ordnung, indem die Signale der Signalleitungen 11, 13 im Summenelement 9 zur Signalleitung 12 vereint werden.The circuit diagram according to FIG. 2 allows by appropriate interconnection of all three microphones, a realization of a directional microphone system second order by the signals of the signal lines 11, 13 are combined in the sum element 9 to the signal line 12.

Die Signalverarbeitungseinheit 14 umfasst ein Filterelement 17 sowie ein Stellelement 15 zur Einstellung wenigstens einer Grenzfrequenz des Filterelements 17.The signal processing unit 14 includes a Filter element 17 and an adjusting element 15 for adjusting at least one cutoff frequency of the filter element 17th

In Abhängigkeit einer im Stellelement 15 der Signalverarbeitungseinheit 14 eingestellten Grenzfrequenz fg kann bei Signalfrequenzen f < fg durch die Signalverarbeitungseinheit 14 im Wesentlichen eine Weiterverarbeitung der Signale in den Signalleitungen 11 oder 13 erfolgen. Wenn die Signalfrequenzdie Grenzfrequenz fg überschreitet, erfolgt durch das Filterelement 17 im Wesentlichen die Weiterverarbeitung des Signals der Signalleitung 12, und damit eines Signals eines Richtmikrofonssystems zweiter Ordnung.Depending on a set in the control element 15 of the signal processing unit 14 limit frequency fg at signal frequencies f <fg by the signal processing unit 14 is essentially carried out a further processing of the signals in the signal lines 11 or 13. When the signal frequency exceeds the cutoff frequency fg, the filter element 17 essentially carries out further processing of the signal of the signal line 12, and thus of a signal of a second-order directional microphone system.

Hierfür sind die Signalleitungen 11 und 13 im Filterelement 17 mit Tiefpassfiltern verschaltet, während die Signalleitung 12 einem Hochpass zugeführt ist. Am Ausgang des Filterelements 17 werden die gefilterten Signale summiert (nicht dargestellt).For this purpose, the signal lines 11 and 13 are connected in the filter element 17 with low-pass filters, while the signal line 12 is fed to a high-pass filter. At the output of the filter element 17, the filtered signals are summed (not shown).

Damit wird auch bei Unterschreiten der Grenzfrequenz fG ein Absinken des Directivity-Index (DI) vermieden. Es werden die vorteilhaften Verläufe des DI der Systeme erster und zweiter Ordnung über den gesamten Frequenzbereich kombiniert (vgl. FIG 3).Thus, a drop in the directivity index (DI) is avoided even when falling below the cutoff frequency f G. The advantageous courses of the first and second order systems over the entire frequency range are combined (cf. FIG. 3 ).

In der Signalverarbeitungseinheit 14 können neuronale Netze und Fuzzy-logic-Steuerungen vorhanden sein, um die jeweiligen Grenzfrequenzen fg situationsgerecht durch signalanalytische Beurteilung der Nutz-/Störschallsituation immer wieder festzulegen und gegebenenfalls kontinuierlich anzupassen.In the signal processing unit 14 neural networks and fuzzy logic controls may be present in order to determine the respective cut-off frequencies fg in accordance with the situation by signal analysis of the useful / Störschallsituation again and again, if necessary, to adapt continuously.

FIG 3 zeigt die verschiedenen Verläufe des DI über den zu verarbeitenden Frequenzbereich. Um zu erreichen, dass die DI-Werte über den gesamten Frequenzbereich auf möglichst hohem Niveau verbleiben, wird bei der Signalverarbeitung bei Frequenzen unterhalb der Grenzfrequenz fg = 1000 Hz im wesentlichen auf ein System erster Ordnung mit dem DI-Verlauf A zurückgegriffen. FIG. 3 shows the different courses of the DI over the frequency range to be processed. In order to ensure that the DI values remain at the highest possible level over the entire frequency range, signal processing at frequencies below the cutoff frequency fg = 1000 Hz essentially makes use of a first-order system with the DI profile A.

Oberhalb der Grenzfrequenz fg = 1000 Hz erfolgt im wesentlichen die Weiterleitung des Signals eines Richtmikrofonsystems zweiter Ordnung mit dem DI-Verlauf B, welcher höhere DI-Werte als das System erster Ordnung erreicht. Zum Vergleich ist der DI-Verlauf C einer normal hörenden Person ohne Zuhilfenahme technischer Hilfsmittel, simuliert am KEMAR, ebenfalls abgebildet.Above the cut-off frequency fg = 1000 Hz essentially the forwarding of the signal of a second-order directional microphone system takes place with the DI curve B, which reaches higher DI values than the first-order system. For comparison, the DI course C is a normal hearing person without the aid of technical aids, simulated on KEMAR, also shown.

Vorteilhafterweise entspricht die Grenzfrequenz fg = 1000 Hz der Grenzfrequenz fg eines Zwei-Kanal-Signalverarbeitungssystems, welches einen ersten Signalverarbeitungskanal für Signalfrequenzen bis zu 1000 Hz und einen zweiten Kanal für Frequenzen ab 1000 Hz aufweist.Advantageously, the cut-off frequency fg = 1000 Hz corresponds to the cut-off frequency fg of a two-channel signal processing system which has a first signal processing channel for signal frequencies up to 1000 Hz and a second channel for frequencies from 1000 Hz.

Claims (7)

  1. Hearing aid with a signal processing unit (14) and at least two microphones (1, 2, 3) which are interconnected to form directional microphone systems of a first and higher order, characterised in that microphone signals (11, 12, 13) emitted by directional microphone systems of different order are interconnected to one another in a weighting dependent on the frequency of the microphone signals, wherein for frequencies of the microphone signals (11, 12, 13) below a lower limit frequency (fg), at least mainly the microphone signal (11) generated by the directional microphone system of the first order is further process and above a limit frequency at least mainly the microphone signal (12) generated by the directional microphone system with the highest occurring order is further processed.
  2. Hearing aid according to claim 1, characterised in that filter elements (17) such as high-pass filters, low-pass filters or bandpass filters are used for weighting the microphone signals (1, 2, 3).
  3. Hearing aid according to claim 2, characterised in that the limit frequencies of the filter elements (17) are adjustable.
  4. Hearing aid according to one of claims 1 to 3, characterised in that, for frequencies of the microphone signals between a lower and an upper limit frequency, at least mainly the microphone signal generated by the directional microphone system of the i-th order is further processed, where 1 < i < n, and n stands for the highest order of the directional microphone systems of the hearing aid.
  5. Hearing aid according to claim 3 or 4, characterised in that the limit frequencies are coupled to channel frequencies of the hearing aid.
  6. Hearing aid according to one of claims 3 to 5, characterised in that a detector element for determining the useful noise/interference noise situation is provided for adjusting the limit frequencies.
  7. Hearing aid according to claim 6, characterised in that a neuronal network or a fuzzy logic control is provided for adjusting the limit frequency fg.
EP00927233.7A 1999-06-02 2000-05-22 Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device Expired - Lifetime EP1192838B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19925392 1999-06-02
DE19925392 1999-06-02
PCT/EP2000/004648 WO2000076268A2 (en) 1999-06-02 2000-05-22 Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device

Publications (3)

Publication Number Publication Date
EP1192838A2 EP1192838A2 (en) 2002-04-03
EP1192838B1 EP1192838B1 (en) 2003-08-06
EP1192838B2 true EP1192838B2 (en) 2013-09-04

Family

ID=7910100

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927233.7A Expired - Lifetime EP1192838B2 (en) 1999-06-02 2000-05-22 Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device

Country Status (5)

Country Link
US (2) US7324649B1 (en)
EP (1) EP1192838B2 (en)
DE (1) DE50003206D1 (en)
DK (1) DK1192838T4 (en)
WO (1) WO2000076268A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050876B1 (en) 2000-10-06 2006-05-23 Phonak Ltd. Manufacturing methods and systems for rapid production of hearing-aid shells
DE10310579B4 (en) * 2003-03-11 2005-06-16 Siemens Audiologische Technik Gmbh Automatic microphone adjustment for a directional microphone system with at least three microphones
DE10327889B3 (en) 2003-06-20 2004-09-16 Siemens Audiologische Technik Gmbh Adjusting hearing aid with microphone system with variable directional characteristic involves adjusting directional characteristic depending on acoustic input signal frequency and hearing threshold
EP1489882A3 (en) * 2003-06-20 2009-07-29 Siemens Audiologische Technik GmbH Method for operating a hearing aid system as well as a hearing aid system with a microphone system in which different directional characteristics are selectable.
DE10327890A1 (en) * 2003-06-20 2005-01-20 Siemens Audiologische Technik Gmbh Method for operating a hearing aid and hearing aid with a microphone system, in which different directional characteristics are adjustable
WO2005004114A1 (en) * 2003-07-07 2005-01-13 Koninklijke Philips Electronics N.V. System and method for audio signal processing
DE10331956C5 (en) 2003-07-16 2010-11-18 Siemens Audiologische Technik Gmbh Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable
DE10334396B3 (en) * 2003-07-28 2004-10-21 Siemens Audiologische Technik Gmbh Electrical hearing aid has individual microphones combined to provide 2 microphone units in turn combined to provide further microphone unit with same order directional characteristic
DE60322447D1 (en) 2003-09-19 2008-09-04 Widex As METHOD FOR CONTROLLING THE TRACE CHARACTERISTICS OF A HEARING DEVICE WITH CONTROLLABLE TRACE CHARACTERISTICS
DK1695590T3 (en) * 2003-12-01 2014-06-02 Wolfson Dynamic Hearing Pty Ltd Method and apparatus for producing adaptive directional signals
ATE511321T1 (en) * 2005-03-01 2011-06-15 Oticon As SYSTEM AND METHOD FOR DETERMINING THE DIRECTIONALITY OF SOUND USING A HEARING AID
US7697827B2 (en) 2005-10-17 2010-04-13 Konicek Jeffrey C User-friendlier interfaces for a camera
US7936890B2 (en) 2006-03-28 2011-05-03 Oticon A/S System and method for generating auditory spatial cues
EP1841281B1 (en) * 2006-03-28 2015-07-29 Oticon A/S System and method for generating auditory spatial cues
DK2123113T3 (en) 2006-12-15 2018-05-07 Sonova Ag Hearing system with improved noise reduction and method of operating the hearing system
JP4367484B2 (en) 2006-12-25 2009-11-18 ソニー株式会社 Audio signal processing apparatus, audio signal processing method, and imaging apparatus
US8107654B2 (en) 2008-05-21 2012-01-31 Starkey Laboratories, Inc Mixing of in-the-ear microphone and outside-the-ear microphone signals to enhance spatial perception
DE102008049086B4 (en) * 2008-09-26 2011-12-15 Siemens Medical Instruments Pte. Ltd. Hearing aid with a directional microphone system and method for operating such a hearing aid
DK2262285T3 (en) * 2009-06-02 2017-02-27 Oticon As Listening device providing improved location ready signals, its use and method
JP5304571B2 (en) * 2009-09-24 2013-10-02 沖電気工業株式会社 Sound collector, acoustic communication system, and program
US9055357B2 (en) 2012-01-05 2015-06-09 Starkey Laboratories, Inc. Multi-directional and omnidirectional hybrid microphone for hearing assistance devices
WO2015179914A1 (en) 2014-05-29 2015-12-03 Wolfson Dynamic Hearing Pty Ltd Microphone mixing for wind noise reduction
US9763016B2 (en) 2014-07-31 2017-09-12 Starkey Laboratories, Inc. Automatic directional switching algorithm for hearing aids
US10492008B2 (en) 2016-04-06 2019-11-26 Starkey Laboratories, Inc. Hearing device with neural network-based microphone signal processing
US10679640B2 (en) * 2018-08-16 2020-06-09 Harman International Industries, Incorporated Cardioid microphone adaptive filter

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399327A (en) 1980-01-25 1983-08-16 Victor Company Of Japan, Limited Variable directional microphone system
US4751738A (en) 1984-11-29 1988-06-14 The Board Of Trustees Of The Leland Stanford Junior University Directional hearing aid
US4742548A (en) 1984-12-20 1988-05-03 American Telephone And Telegraph Company Unidirectional second order gradient microphone
JPS6223300A (en) 1985-07-23 1987-01-31 Victor Co Of Japan Ltd Directional microphone equipment
DE8529458U1 (en) 1985-10-16 1987-05-07 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US5121426A (en) 1989-12-22 1992-06-09 At&T Bell Laboratories Loudspeaking telephone station including directional microphone
DE69221762T2 (en) 1991-04-18 1998-03-05 Matsushita Electric Ind Co Ltd Microphone apparatus
US5524056A (en) 1993-04-13 1996-06-04 Etymotic Research, Inc. Hearing aid having plural microphones and a microphone switching system
TW320696B (en) * 1993-06-29 1997-11-21 Philips Electronics Nv
US5463694A (en) * 1993-11-01 1995-10-31 Motorola Gradient directional microphone system and method therefor
US5473701A (en) 1993-11-05 1995-12-05 At&T Corp. Adaptive microphone array
EP0712261A1 (en) 1994-11-10 1996-05-15 Siemens Audiologische Technik GmbH Programmable hearing aid
US5793875A (en) 1996-04-22 1998-08-11 Cardinal Sound Labs, Inc. Directional hearing system
US5715319A (en) * 1996-05-30 1998-02-03 Picturetel Corporation Method and apparatus for steerable and endfire superdirective microphone arrays with reduced analog-to-digital converter and computational requirements
US5757933A (en) 1996-12-11 1998-05-26 Micro Ear Technology, Inc. In-the-ear hearing aid with directional microphone system
US6041127A (en) * 1997-04-03 2000-03-21 Lucent Technologies Inc. Steerable and variable first-order differential microphone array
US6240192B1 (en) * 1997-04-16 2001-05-29 Dspfactory Ltd. Apparatus for and method of filtering in an digital hearing aid, including an application specific integrated circuit and a programmable digital signal processor
US6236731B1 (en) * 1997-04-16 2001-05-22 Dspfactory Ltd. Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids
US6154552A (en) * 1997-05-15 2000-11-28 Planning Systems Inc. Hybrid adaptive beamformer
US6766029B1 (en) * 1997-07-16 2004-07-20 Phonak Ag Method for electronically selecting the dependency of an output signal from the spatial angle of acoustic signal impingement and hearing aid apparatus
US6603861B1 (en) 1997-08-20 2003-08-05 Phonak Ag Method for electronically beam forming acoustical signals and acoustical sensor apparatus
EP0820210A3 (en) 1997-08-20 1998-04-01 Phonak Ag A method for elctronically beam forming acoustical signals and acoustical sensorapparatus
NL1007858C2 (en) 1997-12-19 1999-06-22 Microtronic Nederland Bv Directional hearing aid.
JP4163294B2 (en) * 1998-07-31 2008-10-08 株式会社東芝 Noise suppression processing apparatus and noise suppression processing method

Also Published As

Publication number Publication date
DK1192838T3 (en) 2003-10-27
WO2000076268A2 (en) 2000-12-14
DE50003206D1 (en) 2003-09-11
EP1192838A2 (en) 2002-04-03
US7929721B2 (en) 2011-04-19
EP1192838B1 (en) 2003-08-06
US7324649B1 (en) 2008-01-29
DK1192838T4 (en) 2013-12-16
US20080044046A1 (en) 2008-02-21
WO2000076268A3 (en) 2001-05-17

Similar Documents

Publication Publication Date Title
EP1192838B2 (en) Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device
EP1251493B1 (en) Method for noise reduction with self-adjusting spurious frequency
DE19822021C2 (en) Hearing aid with automatic microphone adjustment and method for operating a hearing aid with automatic microphone adjustment
DE3939478C2 (en) Noise reduction device in an FM stereo tuner
EP0942627A2 (en) Hearing aid with a directional microphone system and method for operating the same
DE10331956C5 (en) Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable
EP0219025B1 (en) Hearing aid
WO2000057671A2 (en) Method and device for receiving and treating audiosignals in surroundings affected by noise
EP1489884B1 (en) Method for operating an hearing aid device and hearing aid device with a microphone system wherein different directional characteristics are selectable
EP2840809B1 (en) Control of the strength of the effect of a binaural directional microphone
DE10310579B4 (en) Automatic microphone adjustment for a directional microphone system with at least three microphones
EP3337188A1 (en) Method for operating a hearing aid
EP1503612B1 (en) Hearing aid and method for operating a hearing aid with a microphone system in which different directional characteristics are selectable
DE102015204253B4 (en) Method for frequency-dependent noise suppression of an input signal and hearing aid
EP2124482A2 (en) Hearing device with an equalisation filter in a filter bank system
DE102010041643B4 (en) Hearing aid for frequency compression
EP1649719B1 (en) Device and method for operating voice-assisted systems in motor vehicles
DE10310580A1 (en) Device and method for adapting hearing aid microphones
DE3133107A1 (en) Personal sound protection
DE102004006957A1 (en) Method and device for amplifying a received signal
DE4306013C3 (en) Circuit arrangement for compressing or expanding an audio signal
DE19856798A1 (en) Hearing aid with multiple channel gain control for frequency selective correction of hearing deficiencies
EP1433295B1 (en) Method for verifying the availability of a signal component and device for carrying out said method
DE102008053095B4 (en) A filter assembly
DE202010017907U1 (en) A filter assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011114

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE DK LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50003206

Country of ref document: DE

Date of ref document: 20030911

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030806

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: WIDEX A/S

Effective date: 20040506

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130904

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): CH DE DK LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50003206

Country of ref document: DE

Effective date: 20130904

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20131212

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50003206

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150520

Year of fee payment: 16

Ref country code: DK

Payment date: 20150522

Year of fee payment: 16

Ref country code: DE

Payment date: 20150521

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50003206

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50003206

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50003206

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531