EP1503612B1 - Hearing aid and method for operating a hearing aid with a microphone system in which different directional characteristics are selectable - Google Patents

Hearing aid and method for operating a hearing aid with a microphone system in which different directional characteristics are selectable Download PDF

Info

Publication number
EP1503612B1
EP1503612B1 EP04014898A EP04014898A EP1503612B1 EP 1503612 B1 EP1503612 B1 EP 1503612B1 EP 04014898 A EP04014898 A EP 04014898A EP 04014898 A EP04014898 A EP 04014898A EP 1503612 B1 EP1503612 B1 EP 1503612B1
Authority
EP
European Patent Office
Prior art keywords
microphone
microphones
microphone unit
unit
hearing aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04014898A
Other languages
German (de)
French (fr)
Other versions
EP1503612A3 (en
EP1503612A2 (en
Inventor
Tom Weidner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33016475&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1503612(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1503612A2 publication Critical patent/EP1503612A2/en
Publication of EP1503612A3 publication Critical patent/EP1503612A3/en
Application granted granted Critical
Publication of EP1503612B1 publication Critical patent/EP1503612B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers

Definitions

  • the invention relates to a hearing aid as well as a method for operating a hearing aid with at least three microphones, which are electrically interconnected to form a directional microphone system.
  • the transmission parameters of the hearing aid are automatically varied.
  • the classification can have an influence on the mode of operation of noise suppression algorithms as well as on the microphone system. For example, depending on the detected hearing situation selected (discretely switched or continuously faded) between an omnidirectional directional characteristic (directional characteristic of zero order) and a clear directivity of the microphone system (directivity of the first or higher order).
  • To generate the directional characteristic gradient microphones are used or interconnected several omnidirectional microphones with each other.
  • Such microphone systems show a frequency-dependent transmission behavior, in which a significant drop to low frequencies is recorded.
  • the noise behavior of the microphones is independent of frequency and slightly amplified compared to an omnidirectional microphone.
  • the high-pass frequency response of the microphone system must be balanced by amplifying the low frequencies.
  • the noise in the low frequency range is also amplified and, under certain circumstances, clearly and disturbingly audible, while quiet noises are obscured by the noise.
  • a hearing aid is known with a signal processing unit and at least two microphones, which are interconnected to form directional microphone systems of different order, the directional microphone systems in turn are interconnected in dependent on the frequency of the votes of the microphones microphone signals weighting.
  • the cut-off frequency between adjacent frequency bands, in which a different weighting of the microphone signals is provided can be set.
  • From the EP 0 942 627 A2 is a hearing aid with directional microphone system with a signal processing device, a handset and a plurality of microphones known whose output signals for generating an individual directional microphone characteristic via delay means and the signal processing means in different weighting are interconnected.
  • the preferred direction of reception (main direction) can be set individually in adaptation to a present hearing situation.
  • the microphone signal of the directional microphone is amplified in the region of low signal frequencies in amplitude and matched to the microphone signal of the omnidirectional microphone.
  • Both the microphone signal of the omnidirectional microphone and the microphone signal of the directional microphone are supplied to a switching unit. In a first switching position of the switching unit, the omnidirectional microphone and in a second switching position of the switching unit, the directional microphone is connected to a hearing aid amplifier.
  • the switching unit can automatically switch depending on the signal level of a microphone signal.
  • a disadvantage of the known hearing aid devices with a directional microphone system is that in certain listening situations either the directivity of the microphone system is not optimally used or that a high degree of directivity leads to a clearly audible deterioration of the sound quality.
  • Object of the present invention is to improve the sound quality of a hearing aid with directional microphone system.
  • a hearing aid with at least three microphones, which are electrically interconnected to form a directional microphone system, characterized in that at least two microphones are connected to a first microphone unit with a directional characteristic of a particular order and that at least two microphones to a second microphone unit with a directional characteristic of the same order are connected, wherein the two microphone units are connected to form a third microphone unit with a directional characteristic of the same order.
  • the object in a method for operating a hearing aid with at least three microphones, which are electrically interconnected to form a directional microphone system achieved in that at least two microphones are connected to a first microphone unit with a directional characteristic of a particular order and that at least two microphones are connected to a second microphone unit with a directional characteristic of the same order, wherein the two microphone units are electrically interconnected to form a third microphone unit having a directional characteristic of the same order.
  • the hearing aid according to the invention comprises a microphone system with at least three microphones in order to realize directional characteristics zeroth to second order. However, there may be more than three microphones, so that directional characteristics of higher order are possible.
  • the hearing aid device comprises a signal processing unit for processing and frequency-dependent amplification of the microphone signal generated by the microphone system.
  • the signal output is usually carried out by an acoustic output signal by means of a handset. But there are also other, eg vibration generating output transducer known.
  • a microphone unit with a directional pattern of first order can be realized for example by a single gradient microphone or the electrical interconnection of two omnidirectional microphones.
  • DI directivity index
  • KEMAR a standard research dummy
  • Directional microphones of the second and higher order have DI values of 6 dB and more, which are advantageous for better speech intelligibility, for example. If a hearing aid device contains a microphone system with, for example, three omnidirectional microphones, microphone units with directional characteristics of zeroth to second order can be realized on this basis at the same time by suitable interconnection of the microphones.
  • a single omnidirectional microphone in itself represents a zero-order microphone unit. If two microphone omnidirectional delayed the microphone signal of a microphone, and subtracted from the microphone signal of the other microphone, a first-order microphone unit is created. If, in turn, the microphone signal of a microphone unit is delayed in two microphone units of the first order, and of the microphone signal of the second microphone unit of the first order subtracted, the result is a microphone unit with directivity second order. In this way - depending on the number of omnidirectional microphones - microphone units of any order can be realized.
  • a microphone system comprises microphone units of different order, it is possible to switch between different directional characteristics, e.g. by turning on or off one or more microphones. Furthermore, by means of a suitable electrical connection of the microphone units, it is also possible to produce any desired mixed forms between the directional characteristics of different order. For this purpose, the microphone signals of the microphone units are weighted differently and added before they are further processed and amplified in the signal processing unit of the hearing aid. Thus, a continuous, smooth transition between different directional characteristics can be realized, which can avoid disturbing artifacts when switching.
  • the basic idea of the invention is not to set the maximum possible order of the directivity with the given number of microphones in a directional microphone system with a plurality of microphones, but to form a plurality of microphone units with a lower order than the largest possible order and to provide the microphone signals emanating from these microphone units for further processing.
  • the different microphone units can be optimized for specific frequency ranges, so that after the merging of the microphone units with directional characteristics of the same order outgoing microphone signals a directional microphone of the same order arises, compared to the individual microphone units over a wide or the entire frequency range to be transmitted shows improved signal transmission behavior.
  • a different frequency response of the microphone units may e.g. by a suitable selection of the omnidirectional microphones, which are electrically interconnected to form the microphone unit.
  • two omnidirectional microphones are selected, which are located in a relatively short distance from each other, and in itself for the directivity not the distance of the microphones as such is crucial, but the distance of the sound inlet openings of these microphones.
  • hearing aids with a directional microphone system usually identical microphones are used and also the storage of microphones and the connection of these microphones, each with a sound inlet opening in the housing of the hearing aid is at least essentially the same for all microphones, the distance of the microphones corresponds to Distance of the sound inlets of these microphones.
  • the distance of the sound entry openings in the housing of the hearing aid device is to be understood in the context of the invention under the "distance between two microphones", these being connected in each case via a sound channel to a microphone.
  • a second microphone unit two omnidirectional microphones are interconnected, between which compared to the first microphone unit is a greater distance between the two omnidirectional microphones. Since the signal transmission behavior of a directional microphone constructed from two omnidirectional microphones depends on the distance of the microphones, the two microphone units thus formed differ in their signal transmission behavior, although both microphone units have the same order of directivity (first order in the example). In particular, with the short distance between the two omnidirectional microphones, the microphone unit is better for transmitting high frequencies and the microphone unit having the greater distance between the two omnidirectional ones used Microphones better suited for transmitting low frequencies. If the microphone signals emanating from both microphone units are subsequently combined, the result is a microphone system which exhibits good signal transmission behavior over a wide frequency range. Furthermore, in the microphone system thus formed, the signal-to-noise ratio is improved over a directional microphone, in which the maximum order of the directivity is set with the existing number of microphones.
  • the invention provides significant advantages for the hearing aid wearer.
  • the microphone system generates less noise than a microphone system with the maximum order of the directivity, which is possible with the existing number of microphones.
  • the microphone system shows a high degree of sensitivity over a wide frequency range. The typical for directional microphones existing high-pass effect, which leads to a falsification of the usual sound, can be mitigated.
  • the directivity is improved.
  • the AI-DI of a directional microphone system constructed according to the invention is higher than in a conventional directional microphone system of the same order.
  • a further development of the invention provides for a weighting unit connected downstream of the different microphone units, by means of which the microphone signals emanating from the different microphone units can be weighted differently before the addition.
  • the hearing aid device is, for example, a hearing aid worn behind the ear, a hearing aid that can be worn in the ear, an implantable hearing aid, a pocket hearing device or a hearing aid.
  • the hearing aid according to the invention may also be part of a plurality of devices for supplying a hearing aid comprising comprehensive hearing aid system, e.g. Part of a hearing aid system with two worn on the head hearing aids for binaural care, part of a hearing aid with a head-worn hearing and a portable external processor unit, part of a fully or partially implantable hearing aid system with multiple components or part of a hearing aid system with external auxiliary components such as remote control unit or external microphone unit.
  • FIG. 1 shows a behind the ear portable hearing aid 1, in whose housing three sound inlet openings 2, 3 and 4 are present.
  • the sound incident in the sound entry opening 2 is supplied to an omnidirectional microphone 7, the sound incident on the sound entry opening 3 to an omnidirectional microphone 6 and the sound incident into the sound entry opening 4.
  • the microphones 5-7 each convert an acoustic input signal into an electrical microphone signal, wherein different directional characteristics of the microphone system can be set by means of different electrical connections of the three microphones 5, 6 and 7.
  • the microphone signal resulting from the microphone system is fed to a signal processing unit 8 for further processing and frequency-dependent amplification.
  • the electrical output signal of the signal processing unit 8 is converted by an earphone 9 into an acoustic signal and fed via a sound channel 10 and an adjoining sound tube (not shown) to the hearing of a hearing aid wearer.
  • a battery 11 is provided to power the electrical components of the hearing aid 1.
  • the hearing aid 1 according to the embodiment comprises two operating elements 12 and 13, wherein the key switch 12 is used for program selection and the volume control 13 for adjusting the volume.
  • a hearing aid device 1 with a microphone system In a hearing aid device 1 with a microphone system according to the embodiment directional effects zeroth to second order can be generated. So far, was for an omnidirectional Reception (zero order directivity) only the microphone signal of a microphone, eg the microphone 5, further processed. In order to produce a directivity of first order, two microphones were electrically interconnected, for example, the microphones 5 and 7, and further processed the output of this microphone unit. The output signal of the third microphone (in the example the output signal of the microphone 6) was not used. Preferably, therefore, the microphone 6 is turned off in this mode of the hearing aid 1. Only to produce a second-order directivity, the output signals of all three microphones were used.
  • the microphones 5 and 6 can be connected to a first microphone unit with directivity of the first order by delaying the microphone signal emitted by the microphone 6 and being subtracted from the microphone signal emanating from the microphone 5.
  • the microphone signal emanating from the microphone 7 can be delayed and subtracted from the microphone signal emanating from the microphone 6. This creates a second microphone unit of the first order.
  • a directivity of the second order is obtained, for example, by delaying the microphone signal emanating from the second microphone unit and subtracting it from the microphone signal of the first microphone unit.
  • the three omnidirectional microphones 5, 6 and 7 are now electrically connected to one another in order to form two microphone units with directivity in at least one of several possible modes of operation of the hearing aid device 1.
  • the first microphone unit from the two microphones 5 and 6 and the second microphone unit from the two microphones 5 and 7 are formed.
  • the distance between the two microphones 5 and 6 (or the distance between the sound inlet openings 2 and 3 of the two microphones 5 and 6) of the first microphone unit small in relation to the distance of the two microphones 5 and 7 ( or to the distance of the sound inlet openings 2 and 4 of the microphones. 5 and 7) the second microphone unit.
  • the two microphone signals of the first-order microphone units are not electrically interconnected to form a directional second-order directional microphone, but merely summed, so the directional microphone system thus formed from the microphones 5, 6, and 7 also has only a first-order directional characteristic on, however, considered over the entire transmittable frequency range with an improved signal transmission behavior compared to the individual, each formed from two omnidirectional microphones microphone units.
  • this gain does not have to be paid for by an increased microphone noise, as would be the case with an electrical interconnection of the three omnidirectional microphones 5, 6 and 7 to a directional microphone system with directional characteristics of the second order.
  • the associated, pronounced high-pass characteristic of such a second-order directional microphone system with the associated unfamiliar sound pattern is also avoided by the invention.
  • FIG. 2 shows a simplified block diagram of the directional microphone system of a hearing aid with three omnidirectional microphones 20, 21 and 22, the example as in FIG. 1 illustrated in a hearing aid 1 may be arranged.
  • the three omnidirectional microphones 20, 21 and 22 each have a signal preprocessing unit 23, 24 and 25 connected downstream.
  • the signal preprocessing units 23-25 for example, an A / D conversion, a microphone adjustment to compensate for component tolerances in the microphones, a signal delay, etc.
  • the emanating from the omnidirectional microphone 21 electrical microphone signal is delayed in the signal preprocessing unit 24, inverted and in the adder 26 is added to the output from the omnidirectional microphone 20 electrical microphone signal.
  • the two omnidirectional microphones 20 and 21 form a first microphone unit with directivity of the first order.
  • the electrical microphone signal emanating from the omnidirectional microphone 22 is also delayed in the signal preprocessing unit 25 and inverted and added in an adder 27 to the electrical microphone signal emanating from the omnidirectional microphone 20.
  • the two microphones 20 and 22 thereby form a microphone unit with directivity of the first order.
  • the inversion of a microphone signal and subsequent addition with the respective other microphone signal actually corresponds to a subtraction of the two microphone signals.
  • the two microphone signals emanating from the microphone units with directional characteristics of the first order are each first supplied to a filter unit 28 or 29 and then added to an adder 30.
  • the filter device 28 is designed as a high pass and the filter device 29 as a low pass. Since neither of the two microphone signals at the input of the adder 30 is delayed and inverted, the microphone signal applied to the output of the adder 30 also originates from a microphone system having a directional characteristic of the first order.
  • FIG. 3 An alternative embodiment of the embodiment according to FIG. 2 shows FIG. 3 , Also in this embodiment, three omnidirectional microphones 40, 41 and 42 are interconnected with each other to form a directional microphone system having directivity.
  • the microphones 40, 41 and 42 are each followed by a signal preprocessing unit 43, 44 and 45, respectively.
  • each two microphones arranged next to each other form a first-order microphone unit.
  • the electrical microphone signal emanating from the omnidirectional microphone 41 is delayed in the signal preprocessing unit 44 and inverted and added in an adder 46 to the microphone signal output from the omnidirectional microphone 40.
  • the two omnidirectional microphones 40 and 41 thus form a first microphone unit with directivity of the first order.
  • the microphone signal emanating from the omnidirectional microphone 42 is also delayed in the signal pre-processing unit 45 and inverted and added in an adder 47 to the microphone signal output from the omnidirectional microphone 41.
  • the two microphones 41 and 42 form a microphone unit with directivity of the first order.
  • the not necessarily required filter devices 28 and 29 according to the embodiment according to FIG. 2 corresponding filter devices are in accordance with the embodiment FIG. 3 not provided.
  • a weighting unit 51 is present for different weighting of the microphone signals.
  • FIG. 4 the essential advantage of the invention is illustrated graphically. Shown is a diagram of the signal transmission behavior of two microphone units with directional characteristics of the first order as a function of the signal frequency.
  • the curve A represents the signal transmission behavior of a microphone unit with a relatively large distance between the individual microphones or a relatively large delay time.
  • curve B shows the signal transmission behavior with a small microphone spacing or a small delay time. Both curves have the typical high-pass characteristic of a directional microphone system.
  • a signal transmission behavior according to the curve C results overall, which essentially coincides with the curve A at low frequencies and substantially with the curve B at higher frequencies. Overall, thus results over a relatively wide frequency range, a good signal transmission behavior.
  • the invention is not limited to the embodiments with a directional microphone system with three microphones, but it can be transmitted in an analogous manner to directional microphone systems with more than three microphones.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Stereophonic Arrangements (AREA)

Abstract

The hearing aid has at least 3 omnidirectional microphones (20,21,22), connected together for providing a directional microphone system. Two microphone units, each having a directional characteristic of similar order, are each provided by combining at least 2 microphones (20,21; 20,22), the microphone units combined for providing a third microphone unit with a directional characteristic of the same order. An independent claim for an operating method for a hearing aid is also included.

Description

Die Erfindung betrifft ein Hörhilfegerät sowie ein Verfahren zum Betrieb eines Hörhilfegerätes mit wenigstens drei Mikrofonen, die zur Bildung eines Richtmikrofonsystems elektrisch miteinander verschaltet sind.The invention relates to a hearing aid as well as a method for operating a hearing aid with at least three microphones, which are electrically interconnected to form a directional microphone system.

In modernen Hörhilfegeräten finden Einrichtungen zur Klassifikation von Hörsituationen Verwendung. Je nach Hörsituation werden die Übertragungsparameter des Hörhilfegerätes automatisch variiert. Dabei kann die Klassifikation u.a. Einfluss haben auf die Wirkungsweise von Störgeräuschunterdrückungsalgorithmen als auch auf das Mikrofonsystem. So wird beispielsweise je nach erkannter Hörsituation gewählt (diskret umgeschaltet bzw. kontinuierlich übergeblendet) zwischen einer omnidirektionalen Richtcharakteristik (Richtcharakteristik nullter Ordnung) und einer deutlichen Richtwirkung des Mikrofonsystems (Richtcharakteristik erster oder höherer Ordnung). Zur Erzeugung der Richtcharakteristik werden Gradientenmikrofone verwendet oder mehrere omnidirektionale Mikrofone elektrisch miteinander verschaltet. Derartige Mikrofonsysteme zeigen ein frequenzabhängiges Übertragungsverhalten, bei dem ein deutlicher Abfall zu tiefen Frequenzen zu verzeichnen ist. Das Rauschverhalten der Mikrofone ist dagegen frequenzunabhängig und gegenüber einem omnidirektionalen Mikrofon geringfügig verstärkt. Zum Erreichen eines natürlichen Klangeindrucks muss der Hochpassfrequenzgang des Mikrofonsystems durch Verstärkung der tiefen Frequenzen ausgeglichen werden. Dabei wird das im tiefen Frequenzbereich vorhandene Rauschen ebenfalls verstärkt und unter Umständen deutlich und störend hörbar, während leise Geräusche vom Rauschen verdeckt werden.In modern hearing aids devices for the classification of hearing situations are used. Depending on the hearing situation, the transmission parameters of the hearing aid are automatically varied. The classification can have an influence on the mode of operation of noise suppression algorithms as well as on the microphone system. For example, depending on the detected hearing situation selected (discretely switched or continuously faded) between an omnidirectional directional characteristic (directional characteristic of zero order) and a clear directivity of the microphone system (directivity of the first or higher order). To generate the directional characteristic gradient microphones are used or interconnected several omnidirectional microphones with each other. Such microphone systems show a frequency-dependent transmission behavior, in which a significant drop to low frequencies is recorded. In contrast, the noise behavior of the microphones is independent of frequency and slightly amplified compared to an omnidirectional microphone. To achieve a natural sound impression, the high-pass frequency response of the microphone system must be balanced by amplifying the low frequencies. The noise in the low frequency range is also amplified and, under certain circumstances, clearly and disturbingly audible, while quiet noises are obscured by the noise.

Aus der WO 00/76268 A2 ist ein Hörhilfegerät bekannt mit einer Signalverarbeitungseinheit und mindestens zwei Mikrofonen, die zur Bildung von Richtmikrofonsystemen unterschiedlicher Ordnung miteinander verschaltbar sind, wobei die Richtmikrofonsysteme ihrerseits in von der Frequenz der von den Mikrofonen abgegebenen Mikrofonsignale abhängiger Gewichtung miteinander verschaltbar sind. In Abhängigkeit des Ergebnisses einer Signalanalyse kann die Grenzfrequenz zwischen benachbarten Frequenzbändern, bei denen eine unterschiedliche Gewichtung der Mikrofonsignale vorgesehen ist, eingestellt werden.From the WO 00/76268 A2 a hearing aid is known with a signal processing unit and at least two microphones, which are interconnected to form directional microphone systems of different order, the directional microphone systems in turn are interconnected in dependent on the frequency of the votes of the microphones microphone signals weighting. Depending on the result of a signal analysis, the cut-off frequency between adjacent frequency bands, in which a different weighting of the microphone signals is provided, can be set.

Aus der EP 0 942 627 A2 ist ein Hörgerät mit Richtmikrofon-System mit einer Signalverarbeitungseinrichtung, einem Hörer und mehreren Mikrofonen bekannt, deren Ausgangssignale zur Erzeugung einer individuellen Richtmikrofoncharakteristik über Verzögerungseinrichtungen und die Signalverarbeitungseinrichtung in unterschiedlicher Gewichtung miteinander verschaltbar sind. Bei dem Richtmikrofon-System kann die bevorzugte Empfangsrichtung (Hauptrichtung) in Anpassung an eine vorliegende Hörsituation individuell eingestellt werden.From the EP 0 942 627 A2 is a hearing aid with directional microphone system with a signal processing device, a handset and a plurality of microphones known whose output signals for generating an individual directional microphone characteristic via delay means and the signal processing means in different weighting are interconnected. In the directional microphone system, the preferred direction of reception (main direction) can be set individually in adaptation to a present hearing situation.

Aus der US 5,524,056 ist ein Hörgerät mit einem omnidirektionalen Mikrofon und einem direktionalen Mikrofon erster oder höherer Ordnung bekannt. Das Mikrofonsignal des direktionalen Mikrofons wird im Bereich niedriger Signalfrequenzen in seiner Amplitude verstärkt und dem Mikrofonsignal des omnidirektionalen Mikrofons angeglichen. Sowohl das Mikrofonsignal des omnidirektionalen Mikrofons als auch das Mikrofonsignal des direktionalen Mikrofons sind einer Umschalteinheit zugeführt. In einer ersten Schaltstellung der Umschalteinheit ist das omnidirektionale Mikrofon und in einer zweiten Schaltstellung der Umschalteinheit das direktionale Mikrofon mit einem Hörgeräte-Verstärker verbunden. Die Umschalteinheit kann in Abhängigkeit des Signalpegels eines Mikrofonsignals automatisch umschalten.From the US 5,524,056 is a hearing aid with an omnidirectional microphone and a directional microphone first or higher order known. The microphone signal of the directional microphone is amplified in the region of low signal frequencies in amplitude and matched to the microphone signal of the omnidirectional microphone. Both the microphone signal of the omnidirectional microphone and the microphone signal of the directional microphone are supplied to a switching unit. In a first switching position of the switching unit, the omnidirectional microphone and in a second switching position of the switching unit, the directional microphone is connected to a hearing aid amplifier. The switching unit can automatically switch depending on the signal level of a microphone signal.

Nachteilig bei den bekannten Hörhilfegeräten mit einem Richtmikrofonsystem ist, dass in bestimmten Hörsituationen entweder die Richtwirkung des Mikrofonsystems nicht optimal verwendet wird oder dass ein hoher Grad an Richtwirkung zu einer deutlich hörbaren Verschlechterung der Klangqualität führt.A disadvantage of the known hearing aid devices with a directional microphone system is that in certain listening situations either the directivity of the microphone system is not optimally used or that a high degree of directivity leads to a clearly audible deterioration of the sound quality.

Aufgabe der vorliegenden Erfindung ist es, die Klangqualität eines Hörhilfegerätes mit Richtmikrofonsystem zu verbessern.Object of the present invention is to improve the sound quality of a hearing aid with directional microphone system.

Diese Aufgabe wird bei einem Hörhilfegerät mit wenigstens drei Mikrofonen, die zur Bildung eines Richtmikrofonsystems elektrisch miteinander verschaltet sind, dadurch gelöst, dass wenigstens zwei Mikrofone zu einer ersten Mikrofoneinheit mit einer Richtcharakteristik einer bestimmten Ordnung verschaltet sind und dass wenigstens zwei Mikrofone zu einer zweiten Mikrofoneinheit mit einer Richtcharakteristik derselben Ordnung verschaltet sind, wobei auch die beiden Mikrofoneinheiten zur Bildung einer dritten Mikrofoneinheit mit einer Richtcharakteristik derselben Ordnung verschaltet sind.This object is achieved in a hearing aid with at least three microphones, which are electrically interconnected to form a directional microphone system, characterized in that at least two microphones are connected to a first microphone unit with a directional characteristic of a particular order and that at least two microphones to a second microphone unit with a directional characteristic of the same order are connected, wherein the two microphone units are connected to form a third microphone unit with a directional characteristic of the same order.

Ferner wird die Aufgabe bei einem Verfahren zum Betrieb eines Hörhilfegerätes mit wenigstens drei Mikrofonen, die zur Bildung eines Richtmikrofonsystems elektrisch miteinander verschaltet werden, dadurch gelöst, dass wenigstens zwei Mikrofone zu einer ersten Mikrofoneinheit mit einer Richtcharakteristik einer bestimmten Ordnung verschaltet werden und dass wenigstens zwei Mikrofone zu einer zweiten Mikrofoneinheit mit einer Richtcharakteristik derselben Ordnung verschaltet werden, wobei auch die beiden Mikrofoneinheiten zur Bildung einer dritten Mikrofoneinheit mit einer Richtcharakteristik derselben Ordnung elektrisch miteinander verschaltet werden.Furthermore, the object in a method for operating a hearing aid with at least three microphones, which are electrically interconnected to form a directional microphone system, achieved in that at least two microphones are connected to a first microphone unit with a directional characteristic of a particular order and that at least two microphones are connected to a second microphone unit with a directional characteristic of the same order, wherein the two microphone units are electrically interconnected to form a third microphone unit having a directional characteristic of the same order.

Das erfindungsgemäße Hörhilfegerät umfasst ein Mikrofonsystem mit mindestens drei Mikrofonen, um Richtcharakteristiken nullter bis zweiter Ordnung realisieren zu können. Es können jedoch auch mehr als drei Mikrofone vorhanden sein, so dass auch Richtcharakteristiken höherer Ordnung möglich sind. Weiterhin umfasst das Hörhilfegerät eine Signalverarbeitungseinheit zur Verarbeitung und frequenzabhängigen Verstärkung des von dem Mikrofonsystem erzeugten Mikrofonsignals. Die Signalausgabe erfolgt üblicherweise durch ein akustisches Ausgangssignal mittels eines Hörers. Es sind aber auch andere, z.B. Vibrationen erzeugende Ausgangswandler bekannt.The hearing aid according to the invention comprises a microphone system with at least three microphones in order to realize directional characteristics zeroth to second order. However, there may be more than three microphones, so that directional characteristics of higher order are possible. Farther The hearing aid device comprises a signal processing unit for processing and frequency-dependent amplification of the microphone signal generated by the microphone system. The signal output is usually carried out by an acoustic output signal by means of a handset. But there are also other, eg vibration generating output transducer known.

Als Richtcharakteristik nullter Ordnung im Sinne der Erfindung ist eine omnidirektionale Richtcharakteristik zu verstehen, die beispielsweise von einem einzelnen, nicht mit weiteren Mikrofonen verschalteten omnidirektionalen Mikrofon hervorgeht. Eine Mikrofoneinheit mit einer Richtcharakteristik erster Ordnung (Richtmikrofon erster Ordnung) kann beispielsweise durch ein einzelnes Gradientenmikrofon oder die elektrische Verschaltung zweier omnidirektionaler Mikrofone realisiert werden. Mit Richtmikrofonen erster Ordnung ist ein theoretisch erreichbarer Maximalwert des Direktiviti-Index (DI) von 6 dB (Hyperniere) zu erreichen. In der Praxis erhält man am KEMAR (einer Standardforschungspuppe) bei optimaler Lage der Mikrofone und bestem Abgleich der von den Mikrofonen erzeugten Signale DI-Werte von 4-4,5 dB. Richtmikrofone zweiter und höherer Ordnung weisen DI-Werte von 6 dB und mehr auf, die beispielsweise für eine bessere Sprachverständlichkeit vorteilhaft sind. Enthält ein Hörhilfegerät ein Mikrofonsystem mit beispielsweise drei omnidirektionalen Mikrofonen, so können auf dieser Basis durch geeignete Verschaltung der Mikrofone gleichzeitig Mikrofoneinheiten mit Richtcharakteristiken nullter bis zweiter Ordnung realisiert werden.As a directional characteristic zeroth order in the context of the invention is an omnidirectional directional pattern to understand, for example, from a single, not interconnected with other microphones omnidirectional microphone. A microphone unit with a directional pattern of first order (directional microphone first order) can be realized for example by a single gradient microphone or the electrical interconnection of two omnidirectional microphones. With directional microphones of the first order a theoretically achievable maximum value of the directivity index (DI) of 6 dB (hypercardioid) can be achieved. In practice, the KEMAR (a standard research dummy) achieves DI values of 4-4.5 dB with optimum positioning of the microphones and best matching of the signals generated by the microphones. Directional microphones of the second and higher order have DI values of 6 dB and more, which are advantageous for better speech intelligibility, for example. If a hearing aid device contains a microphone system with, for example, three omnidirectional microphones, microphone units with directional characteristics of zeroth to second order can be realized on this basis at the same time by suitable interconnection of the microphones.

Ein einzelnes omnidirektionales Mikrofon stellt für sich eine Mikrofoneinheit nullter Ordnung dar. Wird bei zwei omnidirektionalen Mikrofonen das Mikrofonsignal eines Mikrofons verzögert, und von dem Mikrofonsignal des anderen Mikrofons subtrahiert, so entsteht eine Mikrofoneinheit erster Ordnung. Wird wiederum bei zwei Mikrofoneinheiten erster Ordnung das Mikrofonsignal einer Mikrofoneinheit verzögert, und von dem Mikrofonsignal der zweiten Mikrofoneinheit erster Ordnung subtrahiert, so ergibt sich eine Mikrofoneinheit mit Richtcharakteristik zweiter Ordnung. Auf diese Weise lassen sich - abhängig von der Anzahl omnidirektionaler Mikrofone - Mikrofoneinheiten beliebiger Ordnung realisieren.A single omnidirectional microphone in itself represents a zero-order microphone unit. If two microphone omnidirectional delayed the microphone signal of a microphone, and subtracted from the microphone signal of the other microphone, a first-order microphone unit is created. If, in turn, the microphone signal of a microphone unit is delayed in two microphone units of the first order, and of the microphone signal of the second microphone unit of the first order subtracted, the result is a microphone unit with directivity second order. In this way - depending on the number of omnidirectional microphones - microphone units of any order can be realized.

Umfasst ein Mikrofonsystem Mikrofoneinheiten unterschiedlicher Ordnung, so kann zwischen unterschiedlichen Richtcharakteristiken umgeschaltet werden, z.B. durch An- oder Ausschalten eines oder mehrerer Mikrofone. Weiterhin können durch eine geeignete elektrische Verschaltung der Mikrofoneinheiten auch beliebige Mischformen zwischen den Richtcharakteristiken unterschiedlicher Ordnung erzeugt werden. Hierzu werden die Mikrofonsignale der Mikrofoneinheiten unterschiedlich gewichtet und addiert, bevor sie in der Signalverarbeitungseinheit des Hörhilfegerätes weiter verarbeitet und verstärkt werden. So kann auch ein kontinuierlicher, gleitender Übergang zwischen unterschiedlichen Richtcharakteristiken realisiert werden, wodurch sich störende Artefakte beim Umschalten vermeiden lassen.If a microphone system comprises microphone units of different order, it is possible to switch between different directional characteristics, e.g. by turning on or off one or more microphones. Furthermore, by means of a suitable electrical connection of the microphone units, it is also possible to produce any desired mixed forms between the directional characteristics of different order. For this purpose, the microphone signals of the microphone units are weighted differently and added before they are further processed and amplified in the signal processing unit of the hearing aid. Thus, a continuous, smooth transition between different directional characteristics can be realized, which can avoid disturbing artifacts when switching.

Die Grundidee der Erfindung besteht darin, bei einem Richtmikrofonsystem mit mehreren Mikrofonen nicht die mit der gegebenen Anzahl an Mikrofonen größtmögliche Ordnung der Richtwirkung einzustellen, sondern mehrere Mikrofoneinheiten mit niedrigerer als der größtmöglichen Ordnung zu bilden und die von diesen Mikrofoneinheiten ausgehenden Mikrofonsignale zur Weiterverarbeitung vorzusehen. Dabei können die unterschiedlichen Mikrofoneinheiten für bestimmte Frequenzbereiche optimiert werden, so dass nach der Zusammenführung der von den Mikrofoneinheiten mit Richtcharakteristik gleicher Ordnung ausgehenden Mikrofonsignale ein Richtmikrofon derselben Ordnung entsteht, das im Vergleich zu den einzelnen Mikrofoneinheiten über einen breiten bzw. den gesamten zu übertragenden Frequenzbereich ein verbessertes Signalübertragungsverhalten zeigt.The basic idea of the invention is not to set the maximum possible order of the directivity with the given number of microphones in a directional microphone system with a plurality of microphones, but to form a plurality of microphone units with a lower order than the largest possible order and to provide the microphone signals emanating from these microphone units for further processing. In this case, the different microphone units can be optimized for specific frequency ranges, so that after the merging of the microphone units with directional characteristics of the same order outgoing microphone signals a directional microphone of the same order arises, compared to the individual microphone units over a wide or the entire frequency range to be transmitted shows improved signal transmission behavior.

Ein unterschiedlicher Frequenzgang der Mikrofoneinheiten kann z.B. durch eine geeignete Auswahl der omnidirektionalen Mikrofone erfolgen, die zur Bildung der Mikrofoneinheit elektrisch miteinander verschaltet sind. So können z.B. bei einer ersten Mikrofoneinheit zwei omnidirektionale Mikrofone ausgewählt werden, die sich in einem verhältnismäßig kurzen Abstand zueinander befinden, wobei an und für sich für die Richtwirkung nicht der Abstand der Mikrofone als solcher entscheidend ist, sondern der Abstand der Schalleintrittsöffnungen dieser Mikrofone. Da bei Hörhilfegeräten mit einem Richtmikrofonsystem in der Regel jedoch baugleiche Mikrofone verwendet werden und auch die Lagerung der Mikrofone sowie die Verbindung dieser Mikrofone mit jeweils einer Schalleintrittsöffnung in dem Gehäuse des Hörhilfegerätes zumindest im Wesentlichen für alle Mikrofone gleich ausgeführt ist, entspricht der Abstand der Mikrofone dem Abstand der Schalleintrittsöffnungen dieser Mikrofone. Trifft dies bei einem Hörhilfegerät nicht zu, so ist im Rahmen der Erfindung unter dem "Abstand zweier Mikrofone" korrekter Weise der Abstand der Schalleintrittsöffnungen im Gehäuse des Hörhilfegerätes zu verstehen, wobei diese jeweils über einen Schallkanal mit einem Mikrofon verbunden sind.A different frequency response of the microphone units may e.g. by a suitable selection of the omnidirectional microphones, which are electrically interconnected to form the microphone unit. Thus, e.g. in a first microphone unit two omnidirectional microphones are selected, which are located in a relatively short distance from each other, and in itself for the directivity not the distance of the microphones as such is crucial, but the distance of the sound inlet openings of these microphones. Since hearing aids with a directional microphone system, however, usually identical microphones are used and also the storage of microphones and the connection of these microphones, each with a sound inlet opening in the housing of the hearing aid is at least essentially the same for all microphones, the distance of the microphones corresponds to Distance of the sound inlets of these microphones. If this is not the case with a hearing aid device, the distance of the sound entry openings in the housing of the hearing aid device is to be understood in the context of the invention under the "distance between two microphones", these being connected in each case via a sound channel to a microphone.

Bei einer zweiten Mikrofoneinheit werden zwei omnidirektionale Mikrofone miteinander verschaltet, zwischen denen im Vergleich zu der ersten Mikrofoneinheit ein größerer Abstand zwischen den beiden omnidirektionalen Mikrofonen liegt. Da das Signalübertragungsverhalten eines aus zwei omnidirektionalen Mikrofonen aufgebauten Richtmikrofons vom Abstand der Mikrofone abhängt, unterscheiden sich die beiden so gebildeten Mikrofoneinheiten in ihrem Signalübertragungsverhalten, obwohl beide Mikrofoneinheiten die gleiche Ordnung der Richtcharakteristik (im Beispiel erste Ordnung) aufweisen. Insbesondere ist die Mikrofoneinheit mit dem kurzen Abstand zwischen den beiden omnidirektionalen Mikrofonen besser zur Übertragung hoher Frequenzen und die Mikrofoneinheit mit dem größeren Abstand zwischen den beiden verwendeten omnidirektionalen Mikrofonen besser zur Übertragung niedriger Frequenzen geeignet. Werden die von beiden Mikrofoneinheiten ausgehenden Mikrofonsignale anschließend zusammengeführt, so resultiert ein Mikrofonsystem, das über einen breiten Frequenzbereich ein gutes Signalübertragungsverhalten zeigt. Weiterhin ist bei dem so gebildeten Mikrofonsystem das Signal-Rausch-Verhältnis gegenüber einem Richtmikrofon verbessert, bei dem die mit der vorhandenen Anzahl an Mikrofonen größtmögliche Ordnung der Richtwirkung eingestellt ist.In a second microphone unit two omnidirectional microphones are interconnected, between which compared to the first microphone unit is a greater distance between the two omnidirectional microphones. Since the signal transmission behavior of a directional microphone constructed from two omnidirectional microphones depends on the distance of the microphones, the two microphone units thus formed differ in their signal transmission behavior, although both microphone units have the same order of directivity (first order in the example). In particular, with the short distance between the two omnidirectional microphones, the microphone unit is better for transmitting high frequencies and the microphone unit having the greater distance between the two omnidirectional ones used Microphones better suited for transmitting low frequencies. If the microphone signals emanating from both microphone units are subsequently combined, the result is a microphone system which exhibits good signal transmission behavior over a wide frequency range. Furthermore, in the microphone system thus formed, the signal-to-noise ratio is improved over a directional microphone, in which the maximum order of the directivity is set with the existing number of microphones.

Neben der Zusammenschaltung von Mikrofonen mit unterschiedlichem Abstand existiert eine weitere Möglichkeit zur Bildung von Mikrofoneinheiten mit Richtcharakteristik gleicher Ordnung und unterschiedlichem Signalübertragungsverhalten. Durch eine Einstellung der Signalverzögerung bei wenigstens einem Mikrofonsignal der Mikrofone, die zu einer Mikrofoneinheit miteinander verschaltet sind, lässt sich ein "künstlicher Abstand" zwischen diesen Mikrofonen einstellen. Eine Zunahme der Signalverzögerung führt nämlich auch hierbei dazu, dass sich - ähnlich wie bei einer Vergrößerung des physikalischen Abstandes der Mikrofone - eine Verbesserung des Signalübertragungsverhaltens im Tieftonbereich und eine Verschlechterung bei höheren Frequenzen einstellt. Durch die Einstellung unterschiedlicher Verzögerungszeiten bei mehreren Mikrofoneinheiten kann dadurch auch dann eine Verbesserung des insgesamt resultierenden Signalübertragungsverhaltens erreicht werden, wenn die einzelnen Mikrofone der unterschiedlichen Mikrofoneinheiten jeweils in gleichem Abstand zueinander angeordnet sind.In addition to the interconnection of microphones with different distances exists another way to form microphone units with directional characteristics of the same order and different signal transmission behavior. By adjusting the signal delay at least one microphone signal of the microphones, which are interconnected to form a microphone unit, an "artificial distance" between these microphones can be set. Namely, an increase in the signal delay also leads to an improvement in the signal transmission behavior in the low-frequency range and a deterioration at higher frequencies-similar to an increase in the physical distance of the microphones. By setting different delay times in the case of several microphone units, an improvement of the overall resulting signal transmission behavior can be achieved even if the individual microphones of the different microphone units are each arranged equidistant from one another.

Durch die Erfindung ergeben sich für den Hörhilfegeräteträger deutliche Vorteile. So wird durch das Mikrofonsystem weniger Rauschen erzeugt als bei einem Mikrofonsystem mit der größtmöglichen Ordnung der Richtcharakteristik, die mit der vorhandenen Anzahl an Mikrofonen möglich ist. Weiterhin zeigt das Mikrofonsystem über einen breiten Frequenzbereich ein hohes Maß an Empfindlichkeit. Der bei Richtmikrofonen typischerweise vorhandene Hochpasseffekt, der zu einer Verfälschung des gewohnten Klangbildes führt, kann dadurch abgemildert werden. Weiterhin wird auch die Richtwirkung verbessert. So ist z.B. der AI-DI eines gemäß der Erfindung aufgebauten Richtmikrofonsystems höher als bei einem herkömmlichen Richtmikrofonsystem gleicher Ordnung.The invention provides significant advantages for the hearing aid wearer. Thus, the microphone system generates less noise than a microphone system with the maximum order of the directivity, which is possible with the existing number of microphones. Furthermore, the microphone system shows a high degree of sensitivity over a wide frequency range. The typical for directional microphones existing high-pass effect, which leads to a falsification of the usual sound, can be mitigated. Furthermore, the directivity is improved. For example, the AI-DI of a directional microphone system constructed according to the invention is higher than in a conventional directional microphone system of the same order.

Eine Weiterbildung der Erfindung sieht eine den unterschiedlichen Mikrofoneinheiten nachgeschaltete Gewichtungseinheit vor, durch die die von den unterschiedlichen Mikrofoneinheiten ausgehenden Mikrofonsignale vor der Addition unterschiedlich gewichtet werden können.A further development of the invention provides for a weighting unit connected downstream of the different microphone units, by means of which the microphone signals emanating from the different microphone units can be weighted differently before the addition.

Bei dem Hörhilfegerät gemäß der Erfindung handelt es sich beispielsweise um ein hinter dem Ohr tragbares Hörgerät, ein in dem Ohr tragbares Hörgerät, ein implantierbares Hörgerät, ein Taschenhörgerät oder eine Hörbrille. Weiterhin kann das Hörhilfegerät gemäß der Erfindung auch Teil eines mehrere Geräte zur Versorgung eines Schwerhörigen umfassenden Hörgerätesystems sein, z.B. Teil eines Hörgerätesystems mit zwei am Kopf getragenen Hörgeräten zur binauralen Versorgung, Teil eines Hörgerätesystems mit einem am Kopf tragbaren Hörgerät und einer am Körper tragbaren externen Prozessoreinheit, Teil eines ganz oder teilweise implantierbaren Hörgerätesystems mit mehreren Komponenten oder Teil eines Hörgerätesystems mit externen Zusatzkomponenten wie Fernsteuereinheit oder externer Mikrofoneinheit.The hearing aid device according to the invention is, for example, a hearing aid worn behind the ear, a hearing aid that can be worn in the ear, an implantable hearing aid, a pocket hearing device or a hearing aid. Furthermore, the hearing aid according to the invention may also be part of a plurality of devices for supplying a hearing aid comprising comprehensive hearing aid system, e.g. Part of a hearing aid system with two worn on the head hearing aids for binaural care, part of a hearing aid with a head-worn hearing and a portable external processor unit, part of a fully or partially implantable hearing aid system with multiple components or part of a hearing aid system with external auxiliary components such as remote control unit or external microphone unit.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert. Es zeigen:

  • Figur 1 ein hinter dem Ohr tragbares Hörhilfegerät mit drei Mikrofonen,
  • Figur 2 ein vereinfachtes Blockschaltbild des Richtmikrofonsystems eines Hörhilfegerätes mit drei omnidirektionalen Mikrofonen,
  • Figur 3 ein vereinfachtes Blockschaltbild einer alternativen Ausführungsform des Richtmikrofonsystems eines Hörhilfegerätes mit drei omnidirektionalen Mikrofonen und
  • Figur 4 das Signalübertragungsverhalten eines aus drei Mikrofonen gemäß der Erfindung aufgebauten Richtmikrofonsystems.
The invention will be explained in more detail with reference to embodiments. Show it:
  • FIG. 1 a behind the ear portable hearing aid with three microphones,
  • FIG. 2 a simplified block diagram of the directional microphone system of a hearing aid with three omnidirectional microphones,
  • FIG. 3 a simplified block diagram of an alternative embodiment of the directional microphone system of a hearing aid with three omnidirectional microphones and
  • FIG. 4 the signal transmission behavior of a built-up of three microphones according to the invention directional microphone system.

Figur 1 zeigt ein hinter dem Ohr tragbares Hörhilfegerät 1, in dessen Gehäuse drei Schalleintrittsöffnungen 2, 3 und 4 vorhanden sind. Der in die Schalleintrittsöffnung 2 einfallende Schall ist einem omnidirektionalen Mikrofon 5, der in die Schalleintrittsöffnung 3 einfallende Schall einem omnidirektionalen Mikrofon 6 und der in die Schalleintrittsöffnung 4 einfallende Schall einem omnidirektionalen Mikrofon 7 zugeführt. Die Mikrofone 5-7 wandeln jeweils ein akustisches Eingangssignal in ein elektrisches Mikrofonsignal, wobei durch unterschiedliche elektrische Verschaltungen der drei Mikrofone 5, 6 und 7 unterschiedliche Richtcharakteristiken des Mikrofonsystems einstellbar sind. Das aus dem Mikrofonsystem hervorgehende Mikrofonsignal ist zur Weiterverarbeitung und frequenzabhängigen Verstärkung einer Signalverarbeitungseinheit 8 zugeführt. Schließlich wird das elektrische Ausgangssignal der Signalverarbeitungseinheit 8 durch einen Hörer 9 in ein akustisches Signal gewandelt und über einen Schallkanal 10 und einen daran anschließenden Schallschlauch (nicht dargestellt) dem Gehör eines Hörgeräteträgers zugeführt. Zur Spannungsversorgung der elektrischen Komponenten des Hörhilfegerätes 1 ist eine Batterie 11 vorgesehen. Weiterhin umfasst das Hörhilfegerät 1 gemäß dem Ausführungsbeispiel zwei Bedienelemente 12 und 13, wobei der Tastschalter 12 zur Programmwahl und der Lautstärkesteller 13 zur Einstellung der Lautstärke dient. FIG. 1 shows a behind the ear portable hearing aid 1, in whose housing three sound inlet openings 2, 3 and 4 are present. The sound incident in the sound entry opening 2 is supplied to an omnidirectional microphone 7, the sound incident on the sound entry opening 3 to an omnidirectional microphone 6 and the sound incident into the sound entry opening 4. The microphones 5-7 each convert an acoustic input signal into an electrical microphone signal, wherein different directional characteristics of the microphone system can be set by means of different electrical connections of the three microphones 5, 6 and 7. The microphone signal resulting from the microphone system is fed to a signal processing unit 8 for further processing and frequency-dependent amplification. Finally, the electrical output signal of the signal processing unit 8 is converted by an earphone 9 into an acoustic signal and fed via a sound channel 10 and an adjoining sound tube (not shown) to the hearing of a hearing aid wearer. To power the electrical components of the hearing aid 1, a battery 11 is provided. Furthermore, the hearing aid 1 according to the embodiment comprises two operating elements 12 and 13, wherein the key switch 12 is used for program selection and the volume control 13 for adjusting the volume.

Bei einem Hörhilfegerät 1 mit einem Mikrofonsystem gemäß dem Ausführungsbeispiel können Richtwirkungen nullter bis zweiter Ordnung erzeugt werden. Bislang wurde für einen omnidirektionalen Empfang (Richtwirkung nullter Ordnung) lediglich das Mikrofonsignal eines Mikrofons, z.B. des Mikrofons 5, weiterverarbeitet. Um eine Richtwirkung erster Ordnung zu erzeugen, wurden zwei Mikrofone elektrisch miteinander verschaltet, z.B. die Mikrofone 5 und 7, und das Ausgangssignal dieser Mikrofoneinheit weiterverarbeitet. Das Ausgangssignal des dritten Mikrofons (im Beispiel das Ausgangssignal des Mikrofons 6) wurde nicht verwendet. Vorzugsweise ist daher das Mikrofon 6 bei dieser Betriebsart des Hörhilfegerätes 1 abgeschaltet. Nur zur Erzeugung einer Richtwirkung zweiter Ordnung wurden die Ausgangssignale aller drei Mikrofone verwendet. Beispielsweise können hierzu die Mikrofone 5 und 6 zu einer ersten Mikrofoneinheit mit Richtwirkung erster Ordnung verschaltet werden, indem das von dem Mikrofon 6 ausgehende Mikrofonsignal verzögert und von dem Mikrofonsignal subtrahiert wird, das von dem Mikrofon 5 ausgeht. Ebenso kann das von dem Mikrofon 7 ausgehende Mikrofonsignal verzögert und von dem Mikrofonsignal, das von dem Mikrofon 6 ausgeht, subtrahiert werden. Dadurch entsteht eine zweite Mikrofoneinheit erster Ordnung. Eine Richtwirkung zweiter Ordnung erhält man beispielsweise dadurch, dass das von der zweiten Mikrofoneinheit ausgehende Mikrofonsignal verzögert und von dem Mikrofonsignal der ersten Mikrofoneinheit subtrahiert wird.In a hearing aid device 1 with a microphone system according to the embodiment directional effects zeroth to second order can be generated. So far, was for an omnidirectional Reception (zero order directivity) only the microphone signal of a microphone, eg the microphone 5, further processed. In order to produce a directivity of first order, two microphones were electrically interconnected, for example, the microphones 5 and 7, and further processed the output of this microphone unit. The output signal of the third microphone (in the example the output signal of the microphone 6) was not used. Preferably, therefore, the microphone 6 is turned off in this mode of the hearing aid 1. Only to produce a second-order directivity, the output signals of all three microphones were used. For example, for this purpose, the microphones 5 and 6 can be connected to a first microphone unit with directivity of the first order by delaying the microphone signal emitted by the microphone 6 and being subtracted from the microphone signal emanating from the microphone 5. Likewise, the microphone signal emanating from the microphone 7 can be delayed and subtracted from the microphone signal emanating from the microphone 6. This creates a second microphone unit of the first order. A directivity of the second order is obtained, for example, by delaying the microphone signal emanating from the second microphone unit and subtracting it from the microphone signal of the first microphone unit.

Gemäß der Erfindung werden nun - zumindest in einer von mehreren möglichen Betriebsarten das Hörhilfegerätes 1 - die drei omnidirektionalen Mikrofone 5, 6 und 7 zur Bildung zweier Mikrofoneinheiten mit Richtcharakteristik erster Ordnung elektrisch miteinander verschaltet. Dabei wird vorzugsweise die erste Mikrofoneinheit aus den beiden Mikrofonen 5 und 6 und die zweite Mikrofoneinheit aus den beiden Mikrofonen 5 und 7 gebildet. Wie der Zeichnung leicht entnommen werden kann, ist damit der Abstand der beiden Mikrofone 5 und 6 (bzw. der Abstand der Schalleintrittsöffnungen 2 und 3 der beiden Mikrofone 5 und 6) der ersten Mikrofoneinheit klein im Verhältnis zum Abstand der beiden Mikrofone 5 und 7 (bzw. zum Abstand der Schalleintrittsöffnungen 2 und 4 der Mikrofone 5 und 7) der zweiten Mikrofoneinheit. Daraus resultiert ein besseres Signalübertragungsverhalten der ersten Mikrofoneinheit im Bereich höherer, mit dem Hörhilfegerät übertragbarer Frequenzen und ein besseres Signalübertragungsverhalten der zweiten Mikrofoneinheit im Tieftonbereich. Werden nun gemäß der Erfindung die beiden Mikrofonsignale der Mikrofoneinheiten erster Ordnung nicht zur Bildung eines Richtmikrofons mit Richtwirkung zweiter Ordnung elektrisch miteinander verschaltet, sondern lediglich addiert, so weist das so aus den Mikrofonen 5, 6 und 7 gebildete Richtmikrofonsystem zwar ebenfalls nur eine Richtcharakteristik erster Ordnung auf, jedoch - über den gesamten übertragbaren Frequenzbereich betrachtet - mit einem verbessertes Signalübertragungsverhalten im Vergleich zu den einzelnen, aus jeweils zwei omnidirektionalen Mikrofonen gebildeten Mikrofoneinheiten. Vorteilhaft muss dieser Zugewinn nicht durch ein erhöhtes Mikrofonrauschen erkauft werden, wie dies bei einer elektrischen Verschaltung der drei omnidirektionalen Mikrofone 5, 6 und 7 zu einem Richtmikrofonsystem mit Richtcharakteristik zweiter Ordnung der Fall wäre. Auch die damit verbundene, stark ausgeprägte Hochpasscharakteristik eines derartigen Richtmikrofonsystems zweiter Ordnung mit dem damit verbundenen ungewohnten Klangbild wird durch die Erfindung vermieden.According to the invention, the three omnidirectional microphones 5, 6 and 7 are now electrically connected to one another in order to form two microphone units with directivity in at least one of several possible modes of operation of the hearing aid device 1. In this case, preferably the first microphone unit from the two microphones 5 and 6 and the second microphone unit from the two microphones 5 and 7 are formed. As the drawing can be easily seen, so is the distance between the two microphones 5 and 6 (or the distance between the sound inlet openings 2 and 3 of the two microphones 5 and 6) of the first microphone unit small in relation to the distance of the two microphones 5 and 7 ( or to the distance of the sound inlet openings 2 and 4 of the microphones. 5 and 7) the second microphone unit. This results in a better signal transmission behavior of the first microphone unit in the range of higher, with the hearing aid transmittable frequencies and a better signal transmission behavior of the second microphone unit in the low frequency range. Now, according to the invention, the two microphone signals of the first-order microphone units are not electrically interconnected to form a directional second-order directional microphone, but merely summed, so the directional microphone system thus formed from the microphones 5, 6, and 7 also has only a first-order directional characteristic on, however, considered over the entire transmittable frequency range with an improved signal transmission behavior compared to the individual, each formed from two omnidirectional microphones microphone units. Advantageously, this gain does not have to be paid for by an increased microphone noise, as would be the case with an electrical interconnection of the three omnidirectional microphones 5, 6 and 7 to a directional microphone system with directional characteristics of the second order. The associated, pronounced high-pass characteristic of such a second-order directional microphone system with the associated unfamiliar sound pattern is also avoided by the invention.

Figur 2 zeigt ein vereinfachtes Blockschaltbild des Richtmikrofonsystems eines Hörhilfegerätes mit drei omnidirektionalen Mikrofonen 20, 21 und 22, das z.B. wie in Figur 1 veranschaulicht in einem Hörhilfegerät 1 angeordnet sein kann. Im Ausführungsbeispiel gemäß Figur 2 ist den drei omnidirektionalen Mikrofonen 20, 21 und 22 jeweils eine Signalvorverarbeitungseinheit 23, 24 bzw. 25 nachgeschaltet. In den Signalvorverarbeitungseinheiten 23-25 erfolgt z.B. jeweils eine A/D-Wandlung, ein Mikrofonabgleich zum Ausgleich von Bauteiltoleranzen bei den Mikrofonen, eine Signalverzögerung usw. Im Ausführungsbeispiel wird das von dem omnidirektionalen Mikrofon 21 ausgehende elektrische Mikrofonsignal in der Signalvorverarbeitungseinheit 24 verzögert, invertiert und in dem Addierer 26 zu dem von dem omnidirektionalen Mikrofon 20 ausgehenden elektrischen Mikrofonsignal addiert. Somit bilden die beiden omnidirektionalen Mikrofone 20 und 21 eine erste Mikrofoneinheit mit Richtcharakteristik erster Ordnung. Ebenso wird auch das von dem omnidirektionalen Mikrofon 22 ausgehende elektrische Mikrofonsignal in der Signalvorverarbeitungseinheit 25 verzögert und invertiert und in einem Addierer 27 zu dem von dem omnidirektionalen Mikrofon 20 ausgehenden elektrischen Mikrofonsignal addiert. Auch die beiden Mikrofone 20 und 22 bilden dadurch eine Mikrofoneinheit mit Richtcharakteristik erster Ordnung. Die Invertierung eines Mikrofonsignals und anschließende Addition mit dem jeweils anderen Mikrofonsignal entspricht faktisch einer Subtraktion der beiden Mikrofonsignale. Im Unterschied zu bekannten Richtmikrofonanordnungen mit drei omnidirektionalen Mikrofonen erfolgt nun keine Verzögerung und Invertierung eines Mikrofonsignals der beiden Mikrofoneinheiten, wodurch mittels Addition zu dem Mikrofonsignal der jeweils anderen Mikrofoneinheit ein Richtmikrofonsystem mit Richtcharakteristik zweiter Ordnung entstehen würde. Stattdessen werden die beiden von den Mikrofoneinheiten mit Richtcharakteristik erster Ordnung ausgehenden Mikrofonsignale jeweils zunächst einer Filtereinheit 28 bzw. 29 zugeführt und anschließend in einem Addierer 30 addiert. Dabei ist die Filtereinrichtung 28 als Hochpass und die Filtereinrichtung 29 als Tiefpass ausgeführt. Da keines der beiden Mikrofonsignale am Eingang des Addierers 30 verzögert und invertiert wird, stammt auch das am Ausgang des Addierers 30 anliegende Mikrofonsignal von einem Mikrofonsystem mit Richtcharakteristik erster Ordnung. Dieses durchläuft schließlich die bei Hörhilfegeräten übliche weitere Signalverarbeitung (aus dem Schaltbild nicht ersichtlich). Bei einer geometrischen Anordnung der Mikrofone 20, 21 und 22 bzw. der Schalleintrittsöffnungen dieser Mikrofone gemäß dem Ausführungsbeispiel nach Figur 1 ergeben sich auch bei dem Richtmikrofonsystem gemäß Figur 2 die bei den Erläuterungen zu Figur 1 beschriebenen Vorteile. FIG. 2 shows a simplified block diagram of the directional microphone system of a hearing aid with three omnidirectional microphones 20, 21 and 22, the example as in FIG. 1 illustrated in a hearing aid 1 may be arranged. In the embodiment according to FIG. 2 is the three omnidirectional microphones 20, 21 and 22 each have a signal preprocessing unit 23, 24 and 25 connected downstream. In the signal preprocessing units 23-25, for example, an A / D conversion, a microphone adjustment to compensate for component tolerances in the microphones, a signal delay, etc. In the exemplary embodiment, the emanating from the omnidirectional microphone 21 electrical microphone signal is delayed in the signal preprocessing unit 24, inverted and in the adder 26 is added to the output from the omnidirectional microphone 20 electrical microphone signal. Thus, the two omnidirectional microphones 20 and 21 form a first microphone unit with directivity of the first order. Likewise, the electrical microphone signal emanating from the omnidirectional microphone 22 is also delayed in the signal preprocessing unit 25 and inverted and added in an adder 27 to the electrical microphone signal emanating from the omnidirectional microphone 20. The two microphones 20 and 22 thereby form a microphone unit with directivity of the first order. The inversion of a microphone signal and subsequent addition with the respective other microphone signal actually corresponds to a subtraction of the two microphone signals. In contrast to known directional microphone arrangements with three omnidirectional microphones no delay and inversion of a microphone signal of the two microphone units now takes place, whereby by means of addition to the microphone signal of the respective other microphone unit a directional microphone system with directivity of the second order would arise. Instead, the two microphone signals emanating from the microphone units with directional characteristics of the first order are each first supplied to a filter unit 28 or 29 and then added to an adder 30. In this case, the filter device 28 is designed as a high pass and the filter device 29 as a low pass. Since neither of the two microphone signals at the input of the adder 30 is delayed and inverted, the microphone signal applied to the output of the adder 30 also originates from a microphone system having a directional characteristic of the first order. This finally goes through the usual in hearing aids further signal processing (not shown in the diagram). In a geometric arrangement of the microphones 20, 21 and 22 and the sound inlet openings of these microphones according to the embodiment according to FIG. 1 also arise in the directional microphone system according to FIG. 2 the explanatory notes to FIG. 1 described advantages.

Eine alternative Ausführungsform zu dem Ausführungsbeispiel gemäß Figur 2 zeigt Figur 3. Auch bei diesem Ausführungsbeispiel sind drei omnidirektionale Mikrofone 40, 41 und 42 zur Bildung eines Richtmikrofonsystems mit Richtcharakteristik erster Ordnung miteinander verschaltet. Auch den Mikrofonen 40, 41 und 42 ist jeweils eine Signalvorverarbeitungseinheit 43, 44 bzw. 45 nachgeschaltet. Im Unterschied zu dem Ausführungsbeispiel gemäß Figur 2 bilden dabei jedoch jeweils zwei nebeneinander angeordnete Mikrofone eine Mikrofoneinheit erster Ordnung. So wird das von dem omnidirektionalen Mikrofon 41 ausgehende elektrische Mikrofonsignal in der Signalvorverarbeitungseinheit 44 verzögert und invertiert und in einem Addierer 46 zu dem von dem omnidirektionalen Mikrofon 40 ausgehenden Mikrofonsignal addiert. Die beiden omnidirektionalen Mikrofone 40 und 41 bilden somit eine erste Mikrofoneinheit mit Richtcharakteristik erster Ordnung. Entsprechend wird auch das von dem omnidirektionalen Mikrofon 42 ausgehende Mikrofonsignal in der Signalvorverarbeitungseinheit 45 verzögert und invertiert und in einem Addierer 47 zu dem von dem omnidirektionalen Mikrofon 41 ausgehenden Mikrofonsignal addiert. Damit bilden auch die beiden Mikrofone 41 und 42 eine Mikrofoneinheit mit Richtcharakteristik erster Ordnung. Den nicht notwendigerweise erforderlichen Filtereinrichtungen 28 und 29 gemäß dem Ausführungsbeispiel nach Figur 2 entsprechende Filtereinrichtungen sind bei dem Ausführungsbeispiel gemäß Figur 3 nicht vorgesehen. Zur unterschiedlichen Gewichtung der Mikrofonsignale ist jedoch eine Gewichtungseinheit 51 vorhanden.An alternative embodiment of the embodiment according to FIG. 2 shows FIG. 3 , Also in this embodiment, three omnidirectional microphones 40, 41 and 42 are interconnected with each other to form a directional microphone system having directivity. The microphones 40, 41 and 42 are each followed by a signal preprocessing unit 43, 44 and 45, respectively. In contrast to the embodiment according to FIG. 2 However, each two microphones arranged next to each other form a first-order microphone unit. Thus, the electrical microphone signal emanating from the omnidirectional microphone 41 is delayed in the signal preprocessing unit 44 and inverted and added in an adder 46 to the microphone signal output from the omnidirectional microphone 40. The two omnidirectional microphones 40 and 41 thus form a first microphone unit with directivity of the first order. Accordingly, the microphone signal emanating from the omnidirectional microphone 42 is also delayed in the signal pre-processing unit 45 and inverted and added in an adder 47 to the microphone signal output from the omnidirectional microphone 41. Thus, the two microphones 41 and 42 form a microphone unit with directivity of the first order. The not necessarily required filter devices 28 and 29 according to the embodiment according to FIG. 2 corresponding filter devices are in accordance with the embodiment FIG. 3 not provided. However, a weighting unit 51 is present for different weighting of the microphone signals.

Werden in den beiden Signalvorverarbeitungseinheiten 44 und 45 unterschiedliche Signalverzögerungen eingestellt, so wird dadurch ein ähnlicher Effekt erzielt, wie er auch durch den unterschiedlichen geometrischen Abstand jeweils zweier Mikrofone, die ein Mikrofonpaar bilden, gemäß dem Ausführungsbeispiel nach Figur 2 erzeugt wird. Damit resultiert bei den Mikrofoneinheiten auch bei gleichem geometrischem Abstand der Mikrofone 40, 41 und 42 ein unterschiedliches Signalübertragungsverhalten in Abhängigkeit der Frequenz. Insgesamt ergibt sich somit auch bei diesem Ausführungsbeispiel - über das gesamte von dem Hörhilfegerät übertragene Frequenzspektrum betrachtet - ein gegenüber einer reinen Zwei-Mikrofon-Anordnung verbessertes Signalübertragungsverhalten mit den bereits genannten Vorteilen.If different signal delays are set in the two signal preprocessing units 44 and 45, a similar effect is thereby achieved, as is shown by the different geometrical spacing of two microphones each, which form a microphone pair, according to the exemplary embodiment FIG. 2 is produced. This results in the microphone units even with the same geometric distance of the microphones 40, 41 and 42, a different signal transmission behavior depending on the frequency. Overall, therefore, in this exemplary embodiment as well-considered over the entire frequency spectrum transmitted by the hearing aid device-a signal transmission behavior which is improved compared to a pure two-microphone arrangement results with the already mentioned advantages.

In Figur 4 ist der wesentliche Vorteil der Erfindung grafisch veranschaulicht. Dargestellt ist in einem Diagramm das Signalübertragungsverhalten zweier Mikrofoneinheiten mit Richtcharakteristik erster Ordnung in Abhängigkeit der Signalfrequenz. Es sind zwei Übertragungskurven A und B ersichtlich, wobei die Kurve A das Signalübertragungsverhalten einer Mikrofoneinheit mit einem verhältnismäßig großen Abstand zwischen den einzelnen Mikrofonen bzw. einer verhältnismäßig großen Verzögerungszeit wiedergibt. Im Unterschied hierzu zeigt die Kurve B das Signalübertragungsverhalten bei geringem Mikrofonabstand bzw. kleiner Verzögerungszeit. Beide Kurven weisen die typische Hochpasscharakteristik eines Richtmikrofonsystems auf. Werden gemäß der Erfindung die Mikrofonsignale beider Mikrofoneinheiten addiert, so resultiert insgesamt ein Signalübertragungsverhalten gemäß der Kurve C, die bei niedrigen Frequenzen im Wesentlichen mit der Kurve A und bei höheren Frequenzen im Wesentlichen mit der Kurve B zusammenfällt. Insgesamt resultiert somit über einen verhältnismäßig breiten Frequenzbereich ein gutes Signalübertragungsverhalten.In FIG. 4 the essential advantage of the invention is illustrated graphically. Shown is a diagram of the signal transmission behavior of two microphone units with directional characteristics of the first order as a function of the signal frequency. There are two transmission curves A and B can be seen, wherein the curve A represents the signal transmission behavior of a microphone unit with a relatively large distance between the individual microphones or a relatively large delay time. In contrast to this, curve B shows the signal transmission behavior with a small microphone spacing or a small delay time. Both curves have the typical high-pass characteristic of a directional microphone system. According to the invention, when the microphone signals of both microphone units are added together, a signal transmission behavior according to the curve C results overall, which essentially coincides with the curve A at low frequencies and substantially with the curve B at higher frequencies. Overall, thus results over a relatively wide frequency range, a good signal transmission behavior.

Die Erfindung ist nicht auf die Ausführungsbeispiele mit einem Richtmikrofonsystem mit jeweils drei Mikrofonen beschränkt, sondern sie lässt sich in analoger Weise auch auf Richtmikrofonsysteme mit mehr als drei Mikrofonen übertragen.The invention is not limited to the embodiments with a directional microphone system with three microphones, but it can be transmitted in an analogous manner to directional microphone systems with more than three microphones.

Claims (10)

  1. Hearing aid (1) with at least three microphones (5, 6, 7; 20, 21, 22; 40, 41, 42) which are electrically connected to one another in order to form a directional microphone system, characterized in that at least two microphones (5, 6; 20, 21; 40, 41) are connected to form a first microphone unit with a directional characteristic of a specific order, and in that at least two microphones (5, 7; 20, 22; 41, 42) are connected to form a second microphone unit with a directional characteristic of the same order, the two microphone units also being connected to form a third microphone unit with a directional characteristic of the same order.
  2. Hearing aid according to Claim 1, characterized in that the distance between the two microphones (5, 6; 20, 21; 40, 41) of the first microphone unit differs from the distance between the two microphones (5, 7; 20, 22) of the second microphone unit.
  3. Hearing aid according to Claim 1 or 2, characterized by a first, a second and a third omnidirectional microphone (5, 6, 7), each of which is assigned a sound inlet opening (2, 3, 4), the sound inlet openings (2, 3, 4) being arranged at least approximately in a straight line, the first and second microphones (5, 6) being connected to form a first microphone unit with a directional characteristic of the first order, the first and the third microphones (5, 7) being connected to form a second microphone unit with a directional characteristic of the first order, the microphone signals of the first and second microphone unit being fed to an adder element (30, 50) without a relative delay of the microphone signals with respect to one another and without inversion of one of the microphone signals.
  4. Hearing aid according to one of Claims 1 to 3, characterized by a first filter unit (28) which is connected downstream of the first microphone unit, and a second filter unit (29) which is connected downstream of the second microphone unit, it being possible for the filter units (28, 29) to carry out different filter functions.
  5. Method for operating a hearing aid (1) having at least three microphones (5, 6, 7; 20, 21, 22; 40, 41, 42) which are electrically connected to one another to form a directional microphone system, characterized in that at least two microphones (5, 6; 20, 21; 40, 41) are connected to form a first microphone unit with a directional characteristic of a specific order, and in that at least two microphones (5, 7; 20, 22; 41, 42) are connected to form a second microphone unit with a directional characteristic of the same order, the two microphone units also being electrically connected to one another in order to form a third microphone unit with a directional characteristic of the same order.
  6. Method for operating a hearing aid according to Claim 5, characterized in that in each case a microphone signal which is output by a microphone (6; 21; 41) of the first microphone unit is delayed and is subtracted from the microphone signal of the other microphone (5; 20; 40) of the first microphone unit, and in that in each case a microphone signal which is output by a microphone (7; 22; 42) of the second microphone unit is delayed and is subtracted from the microphone signal of the other microphone (5; 20; 41) of the second microphone unit, the delay which is implemented at the first microphone unit differing from the delay which is implemented at the second microphone unit.
  7. Method for operating a hearing aid according to Claim 5 or 6, characterized in that the microphone signals which are output by the first microphone unit and by the second microphone unit are filtered and added differently.
  8. Method for operating a hearing aid according to one of Claims 5 to 7, characterized in that the microphone signals which are output by the first microphone unit and by the second microphone unit are weighted and added differently.
  9. Method according to one of Claims 5 to 8, characterized in that the distance between the two microphones (5, 6; 20, 21) of the first microphone unit is smaller than the distance between the two microphones (5, 7; 20, 22) of the second microphone unit, and in that high pass filtering is carried out on the microphone signal which is output by the first microphone unit, and low pass filtering is carried out on the microphone signal which is output by the second microphone unit.
  10. Method according to one of Claims 6 to 9, characterized in that the delay which is implemented at one of the two microphones (6; 21; 41) of the first microphone unit is shorter than the delay which is implemented at one of the two microphones (7; 22; 42) of the second microphone unit, and in that high pass filtering is carried out on the microphone signal which is output by the first microphone unit, and low pass filtering is carried out on the microphone signal which is output by the second microphone unit.
EP04014898A 2003-07-28 2004-06-24 Hearing aid and method for operating a hearing aid with a microphone system in which different directional characteristics are selectable Revoked EP1503612B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10334396 2003-07-28
DE10334396A DE10334396B3 (en) 2003-07-28 2003-07-28 Electrical hearing aid has individual microphones combined to provide 2 microphone units in turn combined to provide further microphone unit with same order directional characteristic

Publications (3)

Publication Number Publication Date
EP1503612A2 EP1503612A2 (en) 2005-02-02
EP1503612A3 EP1503612A3 (en) 2009-01-21
EP1503612B1 true EP1503612B1 (en) 2009-08-19

Family

ID=33016475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04014898A Revoked EP1503612B1 (en) 2003-07-28 2004-06-24 Hearing aid and method for operating a hearing aid with a microphone system in which different directional characteristics are selectable

Country Status (6)

Country Link
US (1) US20050058312A1 (en)
EP (1) EP1503612B1 (en)
AT (1) ATE440456T1 (en)
AU (1) AU2004203392B2 (en)
DE (2) DE10334396B3 (en)
DK (1) DK1503612T3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212643B2 (en) * 2004-02-10 2007-05-01 Phonak Ag Real-ear zoom hearing device
US7542580B2 (en) * 2005-02-25 2009-06-02 Starkey Laboratories, Inc. Microphone placement in hearing assistance devices to provide controlled directivity
EP1841281B1 (en) * 2006-03-28 2015-07-29 Oticon A/S System and method for generating auditory spatial cues
US7936890B2 (en) * 2006-03-28 2011-05-03 Oticon A/S System and method for generating auditory spatial cues
DK2088802T3 (en) * 2008-02-07 2013-10-14 Oticon As Method for estimating the weighting function of audio signals in a hearing aid
US20090259091A1 (en) * 2008-03-31 2009-10-15 Cochlear Limited Bone conduction device having a plurality of sound input devices
DE102008046040B4 (en) * 2008-09-05 2012-03-15 Siemens Medical Instruments Pte. Ltd. Method for operating a hearing device with directivity and associated hearing device
DE102008064484B4 (en) * 2008-12-22 2012-01-19 Siemens Medical Instruments Pte. Ltd. Method for selecting a preferred direction of a directional microphone and corresponding hearing device
DE102009014053B4 (en) * 2009-03-19 2012-11-22 Siemens Medical Instruments Pte. Ltd. Method for setting a directional characteristic and hearing devices
JP5452158B2 (en) * 2009-10-07 2014-03-26 株式会社日立製作所 Acoustic monitoring system and sound collection system
CN103686574A (en) * 2013-12-12 2014-03-26 苏州市峰之火数码科技有限公司 Stereophonic electronic hearing-aid
EP3383061A4 (en) * 2015-11-25 2018-11-14 Sony Corporation Sound collecting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524056A (en) * 1993-04-13 1996-06-04 Etymotic Research, Inc. Hearing aid having plural microphones and a microphone switching system
US5463694A (en) * 1993-11-01 1995-10-31 Motorola Gradient directional microphone system and method therefor
US5793875A (en) * 1996-04-22 1998-08-11 Cardinal Sound Labs, Inc. Directional hearing system
EP0820210A3 (en) * 1997-08-20 1998-04-01 Phonak Ag A method for elctronically beam forming acoustical signals and acoustical sensorapparatus
DE19810043A1 (en) * 1998-03-09 1999-09-23 Siemens Audiologische Technik Hearing aid with a directional microphone system
US6741713B1 (en) * 1998-12-17 2004-05-25 Sonionmicrotronic Nederlan B.V. Directional hearing device
WO2000052959A1 (en) * 1999-03-05 2000-09-08 Etymotic Research, Inc. Directional microphone array system
WO2000076268A2 (en) * 1999-06-02 2000-12-14 Siemens Audiologische Technik Gmbh Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device
US7116792B1 (en) * 2000-07-05 2006-10-03 Gn Resound North America Corporation Directional microphone system
US6687187B2 (en) * 2000-08-11 2004-02-03 Phonak Ag Method for directional location and locating system
DE10327889B3 (en) * 2003-06-20 2004-09-16 Siemens Audiologische Technik Gmbh Adjusting hearing aid with microphone system with variable directional characteristic involves adjusting directional characteristic depending on acoustic input signal frequency and hearing threshold
DE10331956C5 (en) * 2003-07-16 2010-11-18 Siemens Audiologische Technik Gmbh Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable

Also Published As

Publication number Publication date
AU2004203392B2 (en) 2007-01-04
DE502004009913D1 (en) 2009-10-01
EP1503612A3 (en) 2009-01-21
US20050058312A1 (en) 2005-03-17
DE10334396B3 (en) 2004-10-21
ATE440456T1 (en) 2009-09-15
EP1503612A2 (en) 2005-02-02
AU2004203392A1 (en) 2005-02-17
DK1503612T3 (en) 2009-11-23

Similar Documents

Publication Publication Date Title
DE10331956C5 (en) Hearing aid and method for operating a hearing aid with a microphone system, in which different Richtcharaktistiken are adjustable
EP1489885B1 (en) Method for operating a hearing aid system as well as a hearing aid system with a microphone system in which different directional characteristics are selectable
EP2180726B2 (en) Sound localization in binaural hearing aids
EP3451705B1 (en) Method and apparatus for the rapid detection of own voice
EP1489884B1 (en) Method for operating an hearing aid device and hearing aid device with a microphone system wherein different directional characteristics are selectable
EP1771038B2 (en) Method for operating a hearing-aid system for binaural treatment of a user
EP0942627A2 (en) Hearing aid with a directional microphone system and method for operating the same
EP1503612B1 (en) Hearing aid and method for operating a hearing aid with a microphone system in which different directional characteristics are selectable
EP1465453B1 (en) Automatic adjustment of a directional microphone system with at least three microphones
DE60316474T2 (en) MICROPHONE SYSTEM WITH TALKING BEHAVIOR
EP2226795A1 (en) Hearing aid and method for reducing interference in a hearing aid
EP3926982A2 (en) Method for direction-dependent noise suppression for a hearing system comprising a hearing device
EP1489882A2 (en) Method for operating a hearing aid system as well as a hearing aid system with a microphone system in which different directional characteristics are selectable.
DE102018207346B4 (en) Method for operating a hearing device and hearing aid
EP2658289B1 (en) Method for controlling an alignment characteristic and hearing aid
EP2222096A2 (en) Method for processing the signal of a hearing device and corresponding hearing device
DE602004001058T2 (en) Hearing aid with a zoom function for the ear of an individual
EP2437521B1 (en) Method for frequency compression with harmonic adjustment and corresponding device
EP1916872B1 (en) Differential directional microphone and hearing aid with such a differential directional microphone
DE102006046699B3 (en) Hearing device particularly hearing aid, has signal processing mechanism by which signals are processed in multiple frequency channels and adjusting mechanism is used for adjusting levels of individual frequency channels
DE102008058496B4 (en) Filter bank system with specific stop attenuation components for a hearing device
DE19908194C1 (en) Hearing aid wearable behind ear
DE102010011730A1 (en) Hearing apparatus and method for generating an omnidirectional directional characteristic
DE10159928A1 (en) Preventing oscillations in hearing aid caused by feedback involves reducing gain for lower input signal levels if oscillations detected, reducing it to lesser extent or not at all for higher levels
DE102011087692A1 (en) Method for enhancement of perceptibility of environment sound for user of hearing device e.g. hearing aid, involves superimposing overlay signal on to reinforcing portion of input signal using additive to produce output signal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20090120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REF Corresponds to:

Ref document number: 502004009913

Country of ref document: DE

Date of ref document: 20091001

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091119

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: OTICON A/S(DK)/WIDEX A/S(DK)/ GN RESOUND A/S(DK)/P

Effective date: 20100519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100608

Year of fee payment: 7

Ref country code: FR

Payment date: 20100702

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100914

Year of fee payment: 7

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100820

Year of fee payment: 7

Ref country code: GB

Payment date: 20100617

Year of fee payment: 7

BERE Be: lapsed

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK G.M.B.H.

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 502004009913

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 502004009913

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100624

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20110819

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20110819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20090819

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20090819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502004009913

Country of ref document: DE

Effective date: 20120216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF REVOCATION BY EPO

Effective date: 20100624

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100220